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Chapter 1

Introduction

Social networks are a hot topic of our age. The importanceetforks is hyped
in business and saocial life, as well as in the function ofayst ranging from eco-
nomical to biological. Social and economical systems aregdly seen through
a network-shaped lens, and even making friends in collegm ionger called

just making friends, but has been taggestworking Social networking sites,
such as Facebook, mySpace, and LinkedIn, abound on the ®hing people

to communicate with their friends, benefit from their netkyaand display their
friendships for all the world to see. Such sites providerimfation on social net-
works on a scale that was not even dreamed of a couple of deagdeproviding

data on social networks as large as millions of user (1;ctpptemented with
even more precise information on the patterns of humanaatien based on mo-
bile phone callsﬂ:ﬂzﬂ 5). Such data sets allow us to makedises about the
structure of social networks and their dynamics at a newescal

It has long been known that different networks of social ratéon have
certain structural features in commadn ES; 7). Perhaps thst fomdamental of
these is the tendency of an individual's acquaintancestalbe acquainted with
one another. This phenomenon is cal@ddstering or transitivity da), and it
is seen in social networks as a higher prevalence of trianthjian expected by
chance |:(|6). Friends tend to link with friends, eventuallyning tight groups
with many internal connections, calledbmmunitiesn complex networks the-
ory (#;[8:19/1b[1ht 12; 13: 14:15:he).

The structural universals observed in social networksiketylto be caused
by fundamental processes of human interaction. We canfséarthese processes
using agent based models (ABMs) of social network evolutiBMs in general
are based on the idea that simple and predictable locahitiens can generate
global patterns. A beautiful example of the emergence affgamordination from
simple rules obeyed by each agent is the movement of a flockasd,bnodeled
in 1987 by Craig Reynoldﬂll?). In his model, each bird reaxthe movement
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of only the birds closest to it, but the flock remains coheresitmilarly, in so-
cial networks, collective behavior such as the formatiomahmunities, or the
coordination of conventionﬂlmlg), can emerge from tloévidual actions of
agents. In other words, they atemplex systemsABMs are used in this thesis
both in generating network structure, and in simulationafial dynamics in a
given network.

Simulation complements the two traditional foundationsscience, theory
and experimentation, and provides a way to perform virtypeements in order
to explain system level phenomena that depend on locakictiens. The agent
based approach does not always lend itself to analyticaltzions, but typi-
cally relies on computer simulation. It can often be emptbydere analytical
derivations are not feasible, making it an invaluable taahie analysis of social
dynamics, where the interactions are often so complex tieytical approaches
fail or are too cumbersome. A shift away from analytical &ghes towards
agent based models can be seen in computational sociolbgyewnodeling so-
cial processes as interactions among variables has intrdeeades given way
to modeling interactions among adaptive agents influencimganother - a shift
“from factors to actors”|_(—J|9).

It is generally acknowledged that individual decisions baninfluenced by
group pressure. In fact, | refused for a long time to join tappgy gang of Face-
book users, holding on to the fear that my personal inforomatour personal
information as a network of friends) could somehow be midusesome suspi-
cious third party. But my friends were already passing atigins to parties and
events through Facebook, and if | didn't join, I'd miss ouindily, | succumbed
to group pressure and created an account (eventually abtididg of superfluous
information). This illustrates the importance sfcial pressurgor the influence
of peers - friends and family, colleagues, or some other geeip - on individual
choices. In particularcommunitiessuch as groups of close friends can have a
decisive impact on the choices of the individuals withinntheSocial dynamics
based on peer pressure is one of the two central themes indhepresented
in this thesis. We will discuss models that concern the fogrof opinions in
society, based on the assumption that individual choicesl@aminated by the in-
fluence of acquaintances. Our research on social dynamiids lmn the other
theme, which concerns the emergence of the universal stali¢éatures of social
networks from the local interactions of nodes. But befoshiig on to detalils, let
us take a look at the history of social networks research.

Networks of social interaction have been the subject of lewtipirical and
theoretical study for several decades, starting with thekvad Jacob Moreno
and his colleagues in the 1920ld dﬂ 0] 21l 22), and leadinguch famous
concepts as Milgram'’s six degrees of separatEh (23) anddvsiter's strength
of weak ties@). The theory of graphs in general dates dufdlack, to the work



of Leonhard Euler in the 18th centdtyA leap towards the field that eventually
became 'complex networks’ was taken in 1959 by the mathemas Erds and
Rényi @), as they began to considendomnes graphs. Their network model,

in which every pair of nodes has an equal probability of hgnanlink between
them, came to be known as the BsdRenyi (ER) random graph. The stochastic
nature of the Erds-Renyi networks made them seem more realistic in modeling
interactions in economy, biology and society than the eafiked, deterministic
networks, and they were long used as models of real worldar&sy Even today,
the ER random graph is often used as a baseline, or a null pasiéis a network
with basically no structure.

The idea of random networks was adopted by mathematicallegasts, who
incorporated sociological hypotheses about the causaskofdrmation between
actors in a network. Frank and Strauss (26) discussed inth@dgst random net-
works that includedlyadic dependencée. in which links were not independent
of all other links. Allowing for dependency enabled the irgibn of motifs such as
triangles and stars. These so-called Markov random grafpRsaok and Strauss
were generalized tpx models |(—2|7|38|§SE|30) also called exponential random
graph models (ERGMmBl). Later ERGM models included moreglcated de-
pendence assumptions, such as that the probability of doétkeen two agents
depends on their number of mutual friendsl (32). The philbgdpehind ERGM
models is to make inferences about to which extent nodabatys and local
structural features explain the global structures obskeiveempirical networks.
Although the local structural dependencies can be thougtdftect processes at
play in network evolution, this approach essentially edekithe evolutionary as-
pect of networks. A class of actor-oriented models propdseg8nijders in 1996
focused on network evolution. This focus on evolutionarnchamisms is shared
by a vast number of later models belonging to the field thatecémnbe called
complex network@;@;@).

A new group of actors with a background mainly in statistiglysics began
to participate in research on social networks at the turmefriillennium. In a
seminal paper from 1998, Watts and Strogatz showed thabh@adndom links
upon a regular structure could reproduce a feature obsénvedny real world
networks - that they exhibit both higtlustering(the tendency for the friends of
an individual being acquainted as well) and short path lengbnly a few links
need to be traversed in order to get from one node to anoti#dthough this
combination of properties was present already in the Markodom graphsEiZG),
the paper by Watts and Strogatz boosted research on comgtiewnks by mak-
ing the physics community aware of the topic. In another sahwork in 1999,
Barabasi and Albert noticed that the number of links on wejepdtheirdegred

1Any introductory book on graph theory will recount how grapleory originated in Euler’s
insightful albeit disappointing solution to the search fioe best route for a Sunday stroll on the
bridges of idyllic Kénigsberg.
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followed an unexpected distribution that could not pogsdarrespond to a ran-
dom graph, and they decided to try an approach based on rketwalution. They
succeeded in reproducing the degree distribution with wigigp network model

in which a node gains links in proportion to the number of $inkalready has,
based on the same principle as a 1955 model of city growth tny)SiE!S) that
also successfully explains the WWW degree distribution).(3te resulting de-
gree distribution in the Barabasi-Albert (BA) modelsisale-free and in it some
nodes have an immensely high degree. Whereas in thizsERdnyi networks all
nodes are essentially equal, and no dramatic structuresati€re we were now
dealing withcomplex networks networks describing a system in which some
global phenomenoamergess a result of individual decisions. The evolutionary
aspect of networks was seen to be a very useful componenpliairixg observed
structure.

This so-called emergence of the scale-free distributiare metwork was an
exciting discovery, and it resulted in an explosion of nekv@search by physi-
cists. A plethora of network models appeared, many of thecadimg on the
scale-free degree distribution in the footsteps of Bariéad Albert, proposing
new mechanisms that might lead to scale-freeness, suchrteg-zepying |(_—3|7),
and soon adding features such as high clustering coeffic@mmassortativity to
emulate social networkﬂ?:@@@ h 42 3, 44) and liights to imitate
flows of traffic or materials in transport networ@(@; 4éhnhense data sets that
contain information on the structure of social networks evgathered from the
newly appearing electronic databades m@gﬂ(ﬂ ﬂéﬂ) In these net-
works, universal features were discovered that are pé#atica social networks,
and that laid them apart from technological and transpdwaorks and the Web.

Along with the wave of excitement about the structure of clexmetworks
that took place at the turn of the millennium, interest wae aékindled in a field
calledsocial dynamicsThe idea of using agent based models to study social dy-
namics had been around for several decades. The econorhatiigs had done
pioneering work in the 1970’s on agent based models conggsucial segrega-
tion, which will be discussed in Chapter 3. The physicista&ahad begun at
around the same time to speak for the use of methods fromgshiysthe study
of social systemsl]iZ), although until recent years he mdstled fervent oppo-
sition. The themes that together make up the field of sociahdhycs vary from
the natural and social sciences to economy and mark%ﬁdamples from
social sciences include studies on the evolution of langua{) and diffusion
of culture Eh), and on the possibility of cooperation bedwgeople faced with
social diIemmasIEEE%). On the commercial side, appbeatinclude the im-
provement of viral marketing strategi@(S?).

When | began working on this thesis, studies of social dynarhad for a
large part been carried out either by employing so-calledmfield calculations
that assume that everyone interacts with everyone, or liyrasg the interaction



network to be a regular lattice or a purely randomdsr&Renyi network. Often the
new network models - the scale-free BA networks and the swailld networks -

were also adopted as a proxy of social networks. What wasngibswever were
models that would take into account the very essence of lsoetavorks, their

clustered structure. The time was ripe for asking the negstjon: what about
communities? How could they be modeled, and how would thigcélynamics

that depend on the network structure, such as rumor spigddishions, and the
forming of opinions? These are the kind of questions thattlaeetopic of this

thesis.

This introductory part of the thesis is further divided irteo parts, which
deal with the dual aspects of the study of social networksdetinog structure and
dynamics. Chapter 2 discusses the modeling of the struofusecial networks.
The central question here is the emergence of structurgepies, such as com-
munities, out of local rules. We propose a model for soci@voeks, and carry
out a comparative study of a class of stochastic network tadbat are based on
a variety of assumptions about how social ties are formedp€h 3 in turn deals
with social dynamics, discussing our research on the catigredf two options
in a networked population, again focusing on communitycstme. In Chapter 4,
| summarize the results obtained in this thesis, and didtiisee directions.
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Chapter 2

Modeling the structure of social
networks

At the simplest, the network representation of social axteons consists solely of
the structure otopologyof interaction: do these two individuals interact or not?
The ties between individuals who together form a social ngtvean be defined
by 1) acquaintance, or 2) participation in common actigitié. useful proxy of
acquaintance networks can be obtained for example by dhgemobile phone
calls between individualﬂ(El!S; 5). The latter type of raie are exemplified
by collaboration networks, such as the network of sciesigto co-authored a pa-
per @3 , actors who appeared on the same cast (50), exexgtiting on the same
board [(50), or jazz musicians playing in the same band (4%jlethese networks
are obviously very different in content, there are many lsirities in their struc-
ture. The introduction discussed two typical charactiegsof social networks:
clustering and community structure. Another notion conitgy social ties is that
popular (highly social, or actively collaborating) people often acquainted with
other popular people, while people with fewer friends temdroup among simi-
lar individuals. This concept has also been empiricallyfiest @), and has been
given the nameassortativity One of the typical features observed across various
social networks, and indeed complex networks in generalfdand its way into
the public imagination. By far the most frequent questiaat fireople will ask me
upon hearing that | study social networks is one inspiredhgyfamous phrase
'six degrees of separation’: Is it true that any two personthée world are linked
through at most six intermediate friends? Although this iloeving idea does
not hold true to the letter, the typical separation betweem geople in a given
social network can indeed be only a handful of stepEhe six-degrees concept

In a 2007 study by Jure Leskovec and Eric Horvitz, the lardissaince observed between any
pair of 240 million Microsoft Messenger users worldwide vmﬂ). 78 percent of all pairs of
individuals were linked through at most 7 steps. The actisthdces could be shorter, because the
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illustrates the fact that individuals in social networks arterconnected through
relatively short paths.

Why are such features universally observed in differenesypf social net-
works? Do they arise as a result of the interactions betwedimiduals? Mod-
eling social networks can help us answer these questionsawpose hypothe-
ses about the mechanisms with which social networks formeantve, and test
whether these mechanisms lead to the observed structires.p&th lengths have
been seen to arise easily whenever 'long-distance’ linkpegsent, i.e. when the
possibility of random global connections is present in rekaevolution process.
The emergence of communities seems to be a far more congolicsgdue. The
work presented in Publications I, Il, and Il addresses dfuigstion.

The characterization, analysis and classification of netsveelies on mea-
surements that are capable of expressing their most releyamlogical features

;@). We begin this chapter by reviewing commonly usedsuees for social
networks in Sectiofi2l1. Secti@nP.2 presents an agent etedrk model by
the author and colleagues that was one of the earliest laaje setwork mod-
els with community structure. Finally, in Secti@n]2.3 wecadiss and compare
recently developed agent based models for the study oflswati@ork structure.

2.1 Characterization of social networks

In order to discuss the structure of networks, we need to tndia with the rel-
evant measures and concepts, which will be reviewed in #uan. Social con-
tacts can be represented bg@mplex networkn which nodes represent individ-
uals and links represent the ties between them. Complexonietvin general fall
into four main typesweighted digraphgdirected graphs)ynweighted digraphs
weighted graphsandunweighted graphﬁ). A digraph can be transformed into
a graph by a symmetry operation, and a weighted (di)graghdnidi)graph by
thresholding. In the context of social networks, directeaps can be thought
to depict for example the networks of phone calls, messag@s ar favors done
between individuals. The underlying network of social eats can nevertheless
often be meaningfully analysed as consisting of mutual fiesl depicted by an
undirected graph. In this work, we will only deal with undited graphs, both
unweighted and weighted, and generally refer to them usiegdrmsnetwork
andweighted network The concepts from graph theory and complex networks
theory used in this work are defined below, based on refese@e and|E2).

users will have links through other media except Messerggethe other hand, only a fraction of all

people are Messenger users. Milgram arrived at approxiymsitesteps in his famous experiment in

which people living in states like Kansas or Nebraska weke@$o pass on a letter to a prominent
persolrz_zilg a large city such as Boston or New York, throughviddals they knew on a first name

basis(23).
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Graph. A graph G consists of a s&f(G) of verticesor nodes a setE(G)
of edgesor links, and a relation that associates with each edge two nodes (nhot
necessarily distinct) called iendpoints Each node can be identified by an integer
i1 =1,2,..., N. If multiple links are not allowed, each link can be identifigy an
an unordered paifi, j} that represents a connection between the nodesl ;.
A graph that does not contain multiple links between nadasd ;j or self-links
{i,1} is calledsimple We consider only simple graphs in this work, and also use
the notatior/;; to denote the linK3, j}.

Weighted graph. A weighted graphadditionally includes a mapping :
E(G) — R which associates a weight with each link.

Adjacency, neighbors.Nodesi and; are said to badjacent or neighbors if
the link setE(G) contains link{i, j}. The link set of a graplé: without multiple
links can be represented by adjacency matrix4, in which the elements;; =
aj; = 1if {i,j} € E(G), anda;; = a;; = 0 otherwise.

Neighborhood. The neighborhoodV (i) of nodei consists of the nodes ad-
jacent toi.

Dyad. A dyadis a pair of nodes, not necessarily adjacent.

Path. A pathis a simple graph whose nodes can be ordered so that two ver-
tices are adjacent if and only if they are consecutive inifte Thelengthl of a
path is its number of links.

Geodesic path. A geodesic patlor ashortest pattbetween nodesandj is a
path of minimal length (not necessarily unique) containiagd ;.

Subgraph. A subgraphof a graphG is a graphH such thatV’ (H) C V(G)
andE(H) C E(G) and the assignment of endpoints to linksinis the same as
in G. We then writeH C G and say that containsi".

ConnectednessA graph G is said to beconnectedf each pair of nodes in
G belongs to a path; otherwisé; is disconnected Similarly, two non-adjacent
nodes; and; said to be connected if they belong to a path.

Component. A componenbf a network is a maximal connected subgraph.
In this work, we often consider tHargest componerdf a graph. The size of the
largest component is denoted B ¢.

k-Clique. A k-cliqueis a set ofk pairwise adjacent nodes. thangle is a
3-clique.

Degree. The number of neighbors of a nodés called itsdegreek;. An iso-
lated node has degree zero. The degree distributifisof large social networks
are often highly skewed, with some nodes having very higheskesgy

Clustering coefficient. A measure of local triangle density, the (unweighted)
clustering coefficient; dﬂ) (Fig[Z1), describes the extent to which the neighbors
of nodei are “acquainted with one another”: if none of them are adjace = 0,
while if all of them are adjacent; = 1. For a nodé with degreek; and belonging
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X KN

ki=4 ki=4 ki=4 li=2
ci=0 ci=1/6 ci=1

Figure 2.1: (a) Clustering coefficienf = ——-— of nodei with degreek;

ki(ki—1)/2
and participating irZ; (undirected) triangles. (b) %hortest path lengjtbetween
nodesi andj.

to T; triangles, the clustering coefficient is defined as

1;

=12 1)

C; =
where the denominatdr; (k; — 1)/2 expresses the maximum possible number of
triangles to whichi could belong given its degree. The clustering coefficient is
not defined for nodes with degréde < 2. The average clustering coefficient,
averaged over all nodes with> 2 in the network, is denote¢). ¢(k) denotes
the average clustering coefficient of nodes having degre@he curvec(k) is
called theclustering spectrum

Note that a high average clustering coefficient is not alvay#dication of
modular structure. For example, a regular 2-dimensiortatéawith each node
having eight nearest neighbors has a high clustering ceftialthough its struc-
ture is homogeneous.

Assortativity.

Social networks typically show a positive correlation ¢atslled assortativ-
ity) between the degrees of adjacent nodes (degree-degnedations), 'popular
people know other popular people’. Networks with negativeedations between
degrees of adjacent nodes, which is typical for networkgydes for the flow of
information or traffic, are called dissortative. One way afqtifying this effect
is using the Pearson correlation coefficient, also calle@s$isortativity coefficient
r @) ,

Ze klk]/L B [Ze %(kl + kj)] /L2
S bk +K/L— [, g(ki + k)] /12
where L is the total number of links in the network, afd, denotes summing
over all links. A positive value of the assortativity coeffict signifies that the
nodes with a large number of ties are connected to one anatbex likely than
would be expected by chance, and nodes with a small numbiesaifre connected
more likely with one another. A negative value signifies timaistly nodes with
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small degree are connected to the large connectors, whechoardirectly linked
between themselves. Assortativity can also be quantifiedyube measurav-
erage nearest neighbor degrég,,(k)), found by taking all nodes with degree
k, and averaging the degrees of their neighbors. If the clkyg(k)) plotted
againstk has a positive trend, nodes with high degree typically abaehigh-
degree neighbors, hence the network is assortative. Ingsstrtativity could be
explained by the fact that a social network typically comsacommunities of dif-
ferent sizes, and the average degree of the individualscin isdikely to depend
on community size. Hence, connected individuals would tentlave similar
degree.

Overlap. Several measures from network sociology describe the aqved
the neighborhoods of two nodes. The predecessor of suctunesds the Jaccard
coefficient dating from 190]]__(133), which does not concerrwoéts but deals
with the overlap of features of two actors. The dyad-wisaeth@artners (DSP)
measure|E2) simply counts the common neighbors of all difatlse network.
The edge-wise shared partners (ESP) meade (32) is slmil@nly takes into
account connected dyads. Another definition from the saméyfaf measure-
ments, presented i|E|(4), examines the fraction of all pssitangles between
two adjacent nodesand;j based on their degree, taking into account that part of
their degree is spent on the mutual link. This measure,calerlapO;;, varies
betweerD and1 and is defined as
nij
O =D+ (b~ D=y
wheren;; is the number of neighbors common to both nodlasd;, andk; and
k; are their degrees (see Fig.J2.2). Overlap is defined for edgbsat least one
end having degreé > 1. Within a cluster, adjacent nodes tend to share many
neighbors, and thus overlap is high, while edges betweemmuonities will often
have low or zero overlap values.

0;=0 0i=3/5 O;5=1

2.2)

Figure 2.2: Overlag);;.

Communities. A particular feature of social networks is that they are or-
ganized into groups of densely interlinked individuals, communities. Fig-
ure[Z3B(a) illustrates the community concept with a welhkn example, the
Zachary's Karate Clumetwork @4), which is a social network of friendships
between 34 members of a karate club at a US university in ti8.1%wo com-
munities can be discerned by eye in the graph, each of whisttéxain leader
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individuals that are linked to most of the others in the comityu One of the sub-
groups eventually broke apart from the club due to interisdatd. This small
network with relatively clear community structure is oftesed as a benchmark
test for community detection methods.

A large variety of algorithms exist for detecting commugstiin a network,
along with a plethora of often implicit definitions of whatramunities areﬂﬂG;
;@;?I(b;@; HZDEB&GEG@@ 69). Perhaps thelsist possible
measure of community structure is the number of cliques,ltyr Eonnected sub-
graphs, of different sizes in the network. Other definitians less strict. A local
deterministic method for detecting communities, calididue percolationdﬂ),
allows some links to be missing from a group of nodes, and eégftommunities
as overlapping chains of smaller cliques. Radicchi et alviged a precise def-
inition of the intuitive idea that a community is a subnetkwan which internal
connections are denser than external connectlos (11)a Rodei in subgraph
V, they use the terrm-degreeto signify the number of links fromto other nodes
within V', andout-degredo signify the number of links fronito nodes not irl/.
Note that these terms do not refer to directed networks. They define that
a subgraph/ is a communityin the strong sens# the in-degree exceeds out-
degree foreverynode within the community, i.e. #"(V) > k24(V) Vie V
(see FigCZB(d) for an example). Theakdefinition requires that in-degree ex-
ceeds out-degree onbn averagea subgraply’ is a community in the weak sense
if > ey KM(V) > 3,0y k9UH(V) (Fig.Z3(d)).

Many heuristic algorithms are based on the intuitive idest tommunities
have a large number of internal connections compared to thebar of links
leading to nodes outside the community. A popular critefarthe partition of a
network into communities isvodularity(13), which favors grouping together sub-
sets of nodes that are densely connected and between wikistalie sparge This
criterion has, however, been shown to be unable to detedt somamunities Eb).
The search continues for valid definitions of communities fan reliable and fast
methods for their detection.

*Modularity @ is defined a€) = 2 3™  (Iss — [Lss]), whereK is the degree sum of the
network, m is the number of communitieg, is the number of links in community, [Lss] =
K? /2K is the expected number of links within communityor a random network with the same
degree sequence, aid; is the sum of degrees within
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(b)

3-clique  4-clique  5-clique
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(c)

3-cluster 4-cluster
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Figure 2.3: (a) Community structure in tBachary’s Karate Clulmetwork [(64),
visualized using HimmelilL(71). (b) Cliques (fully connedtsubgraphs). (c)
Two examples ofc-clusters g-cliqgue-communities) as defined in tleclique-
percolation methoad_(14): a-cluster with7 nodes and a-cluster with5 nodes.
(d) and (e) Examples of communities in the strong sense @aak sense (e)
as defined by Radicchi et al. (11).
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Table 2.1: Properties of several large empirical socialiasgance networks.

Network N L <k> <c> <r> <I> P(k) c(k)
MSN (1) 1.8 x 10 1.34 x 107 14.9 0.137 6.6 pow law with exp cutoff =037
MCG (4) 3.9 x 10 6.5 x 106 3.3 0.26 0.23 145  pow law with exp cutoff k!
MCG (58) 2.5 x 10° 5.4 x 10° 43 pow law

lastfm-fin (72) 8003 1.7 x 104 4.2 0.31 0.22 7.4 lognormal
email (51) 1133 5.5 x 10° 9.6 0.22 0.08 3.6 exponential

2.2 The TOSHK model for social networks and further
developments

It has long been known that social networks are charactklyehort path lengths
dﬂ) as well as a high prevalence of transitivﬂ/ (6), meaduby triangle count or
the average clustering coefficient. Recently gathered rapdata on large scale
social networks, such as those based on communication iderghone E]4[|5)
and Microsoft Messengeﬂ(l), has revealed among othersHimat the degree
distributions are surprisingly broad, often charactetias power laws with expo-
nential cutoff Eh[ll) (TableZZ12). Moreover, in contrastéahinological or biolog-
ical networks, social networks tend to have positive deglegree correlations,
i.e. they are assortativE[GE;] 47). Importantly, socialwoeks tend to consist of
tightly clustered groups of nodes. Tabl€l2.2 lists propertif a few of the recently
obtained large scale empirical data on social networks.Miceosoft Messenger
network (MSN) EIL) is based on communication in Messengere fiobile call
graph (MCG) by Onnela et aﬂ(4) consists of the largest carepbof the net-
work of reciprocated pairs of phone calls. The other moblierg call data is
from Lambiotte et al..(58). Thiastfm-finnetwork is the friendship network col-
lected from the web siterww.last.frrby the author and colleagues. The properties
of theemailnetwork are calculated for the largest component of a nétwased
on email communication at a Spanish university (51).

Despite long-time efforts in the analysis and modeling afialonetworks,
when this work was begun four years ago there was still a aotiat lack of
models for large scale social networks. Apart from a spat@diel by Wong et al,
published in 2005, the author is aware of no other modelshieais large scale
that would have produced community structure. Some of thg sacial network
models presented by physicists were designed to produbeakigyage clustering
coefficients EggllﬁO), but even they did not pay attentdocommunity struc-
ture. High clustering had already been achieved by an ealjieamical model
based on triangle formation (the DEB modm(40)) but it didl seem to produce
much community structure. Another model that produced luigistering (the
MVS model, @1)) in turn produced only relatively weakly agative networks.
These models are discussed in Sediloh 2.3 and in Publidati@nother univer-
sal feature of social networks that was only addressed bydftiaof models is
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assortativity @7[]2). In order to respond to the need forewealistic models
for social networks, the author and colleagues set out tigil@smodel that could
produce community structure and assortative networksrgelacale. Our model
is discussed in Publication I, and further developmentsuiliPation IlI.

In developing the TOSHK modeﬂ73) for social networks we edhat repro-
ducing many of the features observed in empirical socialoeds, while keeping
the model as simple as possible. Most importantly, the mebelld produce
networks structured into communities, i.e. densely cotatesubgroups with few
connections between them. It was also required that thedelystribution should
have a broad tail, and that the networks should exhibit higiagye clustering co-
efficients and assortativity, and that average path lergitbald grow slowly with
network size in accordance with the small world phenomenon.

A growing model was selected to enable analytical deriwatiof some of the
network characteristics. A growing model can be motivated anodel for social
networks in several contexts. For example, in a network eduathorship based
on publication records, new links form but old ones remaimil&rly, in online
social networking systems people rarely remove links, avdusers keep joining
the network. The growth mechanisms of the TOSHK model aszgsd to imitate
the way people might join an already established social otwThe model is
not intended to simulate the evolution of a social networkn@t. The algorithm
grows by adding at each time step a new node that links to ttveorle via two
processes (Fif.3.4): (1) linking to one or more initial @ats selected uniformly
randomly, and (2) possibly linking to one or more neighbdr&he initial contact.
Following a random edge is likely to lead to a node with a largember of links,
which implies that the local search causes the new node klieferentially to
high degree nodes. However, the preference is not exaotadiin degree, both
because the edge that is followed is not uniformly randoralgcted, and because
the positive degree-degree correlations in the networlyirti@mt the neighbors
of small degree nodes also tend to have small degree. Rosgelking, the
neighborhood connections contribute to the formation ehcwnities, while the
new node acts as a bridge between communities if more thainiia contact
was chosen.

The local nature of the second process gives rise to higlecing, assorta-
tivity and community structure. The TOSHK model showed theal attachment
could indeed produce community structure. Very large e#are not observed,
however, if the maximum number of triangle formation stepsif an initial con-
tact is kept small. In the comparative study of Publicatiriie TOSHK model
did not fare particularly well, partly because adaptapilitas restricted by our
choice of keeping to the uniformly random distribution faetnumber of links
from each initial contact. With this choice, low link densforced the number of
triangle formation steps to be very low.

Further research has shown that including link weights lexsabe formation
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Figure 2.4: Growth process of the TOSHK network. A new nodimks to one
or more randomly chosen initial contacts (hérg) and possibly to some of their
neighbors (heré, ). Figure taken from Publication I.
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Figure 2.5: A network withV = 500 nodes produced by the TOSHK model
shows communities of various sizes. Figure taken from Batin .

of much clearer community structure, demonstrated by th&KK model Eh;
|ﬂ). In the KOSKK model, internal links within communitiesatrong, and weak
links connect the communities to one another, in agreeméht @ranovetter’'s
weak ties hypothesiﬂm). This weighted model has beenayrglby the author
to study how the correlations between link weights and togplaffect opinion
formation dynamics; this is discussed in Secfion 3.3.
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2.3 Modeling approaches

One of the major approaches to modeling social network®xpenential random
graph models (ERGMs), were mentioned in the introductioflRGIs can be
broadly described as probabilistic models of network $tmec ERGM models
can be used to pose questions about correlations betweetustd features. For
example, if structures of typé are present more often than would be expected by
random, are also structures of tyBegresent more often? ERGM models can also
identify characteristics of the agents (actor attributbaj could explain observed
network structures. For example, does homophily by racéagxphe network
structure to a significant extent?

Our work takes an alternative approach with focus on netwodtution. We
mainly focus on models that we categorize in Publicationslinatwork evolu-
tion models (NEMs) in which the network evolves according &pecified set of
(mainly local) rules concerning the addition and deletibnades and/or links in
the network (Fig[Z2Z17). Network evolution models attempanswer the question
of whether the universal properties of social networks aambdeled with simple
local rules that the individuals follow. How could the stiwres observed in real
networks emerge from the actions of individuals? Publicati presents NEMs
and ERGMs alongside each other for the first time in the samerpahich we
hope will promote understanding and discussion betweerarekers following
each of the two approaches. NEMs can be further divided lestgg@wing mod-
els in which links and nodes are simply added until the netwak the desired
numberN of nodes, andlynamical modelsn which the steps for adding and re-
moving ties on a fixed set of nodes are repeated until thetateiof the network
no longer statistically changes.

A third categorynodal attribute model@NAMS), consists of models in which
link probabilities depend only on nodal attributes, tyflicaia homophily E‘S),
the tendency for like to interact with like. This categorgaincludes any ERGM
models that do not incorporate structural dependencies.

FigureZ® places in these categories the models that weistédiblication I1.
We include two nodal attribute models (WF1E|(77) and BPDA ).78hree of the
network evolution models are dynamical (DEIEE(40), WE! (4)d KOSKK Eh)),
and two are growing (Vaz and TOSHK). All of the network evauatmodels we
study are based on a combination of triadic closlirk (24) dowilohy connections.
There are also other models that fall into the category ook evolution mod-
els but are based on different ideas than triadic closureh as the networked
Seceder|ﬂ9) model, in which each individual seeks to ddégemuch from the
average as possible. Models in which the network topologgwvaives together
with the nodal attributes have also been proposed (see &onghe Ebml 2)).
The descriptions of the various network models in Publicati will hopefully
serve as a useful reference.
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Figure 2.6: Categories of social network models: Networ&l@ion models
(NEMSs), nodal attribute models (NAMs), and exponentiald@n graph models
(ERGMs).

The network structures produced by the models are examimddtail. Al-
though some were designed mainly to produce high clusteiingrder to get a
better picture of the models we also consider several otharacteristics. The
models are compared systematically by unifying some of tairage properties,
and then comparing the resulting higher order statistich s1$ degree distribu-
tions, clustering spectra, geodesic path lengths, and contyrstructure. Assess-
ing the adaptability of the NEMs to data in this extent hadlvesn done before,
although for the ERGMs it has been common practice. This lidypexplained
by the different approaches - the ERGMs attempt to makednfays based on
specific data sets, whereas the NEMs attempt to test whedmara structural
characteristics can be produced by an assumed networktiievolnechanism.

We find that many of the NEMs based on triadic closure and ¢lotanec-
tions produce degree distributions and clustering spéuaitamatch empirical data
fairly well, but not very high assortativity nor very clepdlustered structure. The
NEM that includes edge weights, KOSKK, is an exception initrgenerates very
clear community structure. On the other hand, the nodabatér models success-
fully produce highly clustered and assortative networks @istructure of loosely
connected, relatively dense clusters, but not very réaligigree distributions nor
clustering spectra. High average clustering coefficiense én both types of mod-
els by design.

To complement the comparison of the models, we compare &il det differ-
ent mechanisms for creating and deleting links in the setedynamical NEMs
(Fig.[Z1). The triangle formation step of linking two nodesgeodesic distance
two can be implemented in different ways, two of which are pamd here (T1
and T2, see Fid—2.7). Link deletion (LD) refers to deletimpdomly chosen
links; node deletion (ND) implies that all of the links of adeare removed at
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Figure 2.7: Methods of link addition and deletion in dynaahicetwork evolution
models (dynamical NEMs) based on triadic closure and globahections.

the same time. This could be interpreted as an individu&ingathe network and
a newcomer without any links taking its place. We implemdht@mbinations
as variants of the simplest dynamical NEM (the DEB model)taidein the em-
ployed mechanisms affect the resulting distributions @frde and clique sizes as
well as assortativity.

Many of the models produce structures surprisingly closentpirical ob-
servations. Even models with only two parameters are abfegmduce many
features of empirical social networks such as high clustgrssortativity, some-
times even a very reasonable distribution of clique sizes.tt@ other hand, it
must be admitted that none of the models are able to faishadapt to all the
selected features of the data, nor match all potentialgvesit higher order struc-
tures.
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Chapter 3

Modeling dynamics of competing
options

This chapter presents an overview of a subset of the vastdfeddcial dynam-
ics that relates to peer pressure and competing optionscietgo We begin in
SectionZ1L by highlighting the usefulness of agent basedetimg in the study
of social systems, and then briefly review various types ofi@sof competing
options. Sectiofi 312 discusses the role of the interactewark in social dy-
namics. Sectiof-3 3 focuses on the work by the author andamplles on specific
dynamical models that can be interpreted as opinion foomatodels or lan-
guage competition. These are explored in complex socialarks, with focus on
the effects of the mesoscopic structure of the interactework on the dynamics.

3.1 Overview of social dynamics

Agent based modeling allows us to perform thought experisjeand can give
us insights that would otherwise be difficult to obtain. Asexample, let us
consider one of the early agent based models from sociojmggented by the
Nobel prize-winning economist Thomas Schelling in 197 &t toncerns residen-
tial segregation. Individuals often favor living among et belonging to their
own ethnic group. The various motivations include attaahinte group identity
and group culture, as well as stereotypes and expectatiahpeople of the same
ethnic would be more likely to provide mutual support and lmerwelcoming.
For modeling the effect of such preferences on the distabubf members of
different ethnic groups in residential areas, the detaikases of the preferences
are unimportant. Schelling’s simple agent based model o$ing tests the out-
come of such preferences (83). Schelling simplified the lprolby representing
the city with a checkerboard of households, either black bitevor empty, and
let individual households move to free locations accordmgheir preferences.
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If too many of the neighbors of a household were of a diffex@ibr, it would
relocate to a new site. What Schelling observed was that @veitd preference
for residing among the same ethnic group could be amplifiethbydynamics
of relocation, and cause highly segregated residentialsaiee form. Simply the
desire to avoid becoming a small minority could lead to sgatien, giving the
impression of racist attitudes.

Another interesting example of applied social dynamics esifinrom a polit-
ical scientist dealing with the study of cooperation. Roleelrod @1;@5) has
experimented extensively with agent based models of sditd@hmas, situations
in which the individually optimal choice is not best for thenamon outcome.
Such situations can be modeled by a game called the Prisatiemma (PD), in
which two players have to make a choice either to cooperate defect, with-
out knowing what the other player will do. For each individpkayer, defection
is the best option regardless of what the other person chpbsé both players
will end up collectively worse off if they choose to followetn optimal strategies.
Axelrod has called the Prisoner’s dilemma game the “E. adfiiocial sciences,
because it can be used to model a large variety of situatranging from live-
and-let-live strategies in trench warfare to success iaqre reIationsIEBSl).
In order to determine which kind of strategies would be maostessful in re-
peated interactions of two players, Axelrod arranged twomater tournaments
in which contestants were asked to send in strategies foitdreted PD game,
that would be played against one another. The entry that wtimtournaments,
called TIT-FOR-TAT, employed a strategy that combinedpegity and retalia-
tion - starting out nice, but thereafter retaliating for al@fection, and responding
to cooperation with cooperation. One might argue that elagryexperience or
empirical studies could have told us that reciprocity andighiment for nonco-
operation are useful in promoting cooperation, and that &ne also widely used
in various social situations. But simulation helped in iifging a simple and
effective implementation of these concepts. Another bepéfsimulation here
is related to validation: Among the strategies sent to theest, the very sim-
ple TIT-FOR-TAT strategy was generally superior to more pboated and less
forgiving strategies. Later, by employing genetic alduris for generating a vast
number of random strategies and playing them against orex, oMxelrod was
able to validate that combinations of reciprocity and rfatan similar to those
employed in TIT-FOR-TAT are in fact generally very efficiesttategies, and the
success of TIT-FOR-TAT was not dependent on human factaseapectations
behind the strategies submitted to the tournaments.

The dynamics studied in this thesis are based on the phemonursocial
influence or peer pressure. The fact that group opinion infleg individual deci-
sions has been verified in many experiments that often amgiysiemonstrate the

lvarious social situations can also be described by othenufita games, see for exampllel (86).
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willingness of people to make ridiculous claims or do sillings in order to avoid
differing from others. Apparently we humans have a strongeé®acy to think that
what a large number of people are doing must be reasonabtedBrspeaking,
models in which agents choose between options and areeffbgtpeer pressure
can be categorized as opinion formation models. They aleaiyp very general
and abstract, and are therefore applicable to many diffesitrations. A recent
review of social dynamicsl?(h?) divides the research agtsiincerning such pro-
cesses into three major branches, namely opinion dynamidisiral dynamics
and language dynamics. The distinction is often subtle abitrary, and in fact
we will discuss a model in terms of opinion formation that virespired by lan-
guage competition. The options from which the agents choasebe thought of
as opinion, but often equally, one could imagine any compgetiptions - response
to a political question, set of cultural features, or a cgpmdence between ob-
jects and words.

In the real world we are often faced with discrete choicegingofor one of a
limited number of candidates, or buying computer with eith&Vindows, Linux
or Mac operating system are examples of such choices. Omioogion complex
issues, such as whether to accept the use of nuclear energy, lwe uncertain
and vary over time based on many factors. Such opinions dmultbnsidered as
a continuous variable (until a choice has to be made). In emagttical modeling,
opinions are represented by numbers, either discrete ¢incons. Here, we will
focus on discrete opinions.

Everyday experience confirms that the opinions of thoseididals with whom
you have lately discussed an issue easily affect individpalions. Generally, in
opinion formation models, the agents choose an option i@pjrirom a small set
of variables, based on the influence of their peers. As ageatsct, they gener-
ally tend to become more alike. With repeated interactiagents begin to form
homogeneous groups, eventually leading either to consemga a fragmentation
of society in which homogeneous groups exist that no longgeract. This pro-
cess of consensus formation, or the reaching of agreensetfig focus of many
opinion formation models, and also a central topic in thest.

Some of the opinion formation models that have receivedeqaitot of at-
tention in the physics literature include Voter type mo@;@), majority rule
models |(_—8bEO), the Sznajd modE|(91), and bounded conﬁﬂmxdels@ﬂZ).
In Voter type models@ 7), some of which are discussed anendetail in
section 3.2, an individual is likely to adopt the opinion bé&tmajority of its ac-
guaintances, but can also occasionally be convinced by therity. Majority
models |(_—8|9@O) are based on the idea that as people disongi @ntgroups, the
participants will be influenced by the majority opinion othhemporary group.
The Sznajd model dynamicE[9l) in turn rests on the idea thatacquainted
individuals who agree on an issue will be able to convincdr tiends on that
issue as well. All of these models are based on differentcasjod the the persua-
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sive power of agreeing groups. Bounded confidence modelthadelement that
individuals are less likely to interact with others that are different from them-
selves. Many variants of each of these types of models ekiss work focuses
on variants of the Voter model.

One of the above examples concerned a large number of abantsdre free
to move about in a lattice (checkerboard) representing rggbical space. The
second concerned a single pair of agents, repeatedly étitegavith one another.
In the rest of this chapter, we will focus on dynamical modelsvhich agents
are part of a network of interactions that is thought to behanging (either a
lattice or a complex network), and are repeatedly intemgctith their network
neighbors. The following section discusses the role ofititeraction network in
social dynamics.

3.2 The role of the interaction network

Little is known to date about how the mesoscopic structursazial networks
affects the processes taking place in them. Some studiesfbenrsed on macro-
scopic structural features that have been observed in oeal shetworks, such
as the small-world phenomendﬂ(ﬁ 03 bd; 95) or the skevegdeg distribu-
tion @;@;@), but the mesoscopic structure of socialvoets has received
little attention. Until very recently, such analyses intfhave not been possible
due to a lack of data and models of the community structurargel scale social
networks. Hence, at the time when the work leading to thisishe@as begun, no
studies on opinion formation models or other social dynanmcnetworks with
community structure existed. A handful of studies have apein the past cou-
ple of years that deal with the effect of community structonedynamics. We
will review their findings here.

A 2007 study by Lambiotte et alﬂOG) examines a two-stateoritgjmodel,
in which agents meet in groups of three mutually acquaintetividuals, and
all three adopt the current majority opinion of the group.e Buthors posed the
guestion of whether clusters of individuals can hold dédfaropinions indefinitely
if the clusters are not very strongly interconnected. Sooasniable analytical
derivations, they represented the networked social streidiy only two cliques
of equal size that share a fraction of their nodes. Theirffigavas that for large
cliques (with clique size tending to infinity), there is irdia limit for the fraction
of shared nodesv(= Ny/N, where Ny is the number of nodes shared by the
two cliques) below which each community will hold on to itsimpn, and no
system-wide consensus will be reach@(lOG). This studgesig a manner of

2Dynamics sensitive to community structure have also beguia@md foridentifyingcommu-
nities. Such dynamics include various spin systems such tilsing model(9d:_1D0), the Potts
model [101[1d2), and models of random W&l]@ 104} 105).
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incorporating the community structure

An extensive study on mobile communication networks by Qmeeal. pub-
lished the same year verified in large scale networks the dvedter hypothe-
sis [Zh) which states that tie strengths between agent<ial s@tworks correlate
with the overlap of their neighborhoods, and explored tliecebf this coupling
on the diffusion of information[t3). It was seen that infottioa spreads rapidly
within communities but passes to other communities witfiadilty. In the early
stages of simulated spreading, the number of nodes thatetai/ed the infor-
mation rose rapidly each time that the information reacheevacommunity, but
plateaus between such steep rises showed that the informvedis not frequently
passed on to a new community. The synchronization of osmilacoupled via a
complex network is known to progress analogously, suchithaetworks with
mesoscopic structure, synchronization takes place firgtinvhighly intercon-
nected local structures, and synchronized domains expendhtercommunity
connections@ﬁbﬂdﬂ iI;_lllZ).

An interesting study by Lozano, Arenas and Sanchez from 28p&red the
effect of community structure on cooperatiﬂllB). Théharg employed the
same prototypical model for social dilemmas that Axelrodked with, namely
the Prisoner’s dilemma (PD). In the network-based formmtadf the game, at
each time step each agent interacts locally with all of ifghn®ors using its se-
lected strategy, (C)ooperate or (D)efect, obtaining aestbat sums up all the
interactions. The agents learn by imitation, adopting tinategy (C or D) of
the neighbor that scored highest. This dynamics involvoality and imitation
has been generally seen to promote cooperation, indicgtedidrge fraction of
the population using the C strategy, due to clusters of aabpes that can out-
compete defectors (114). Using two real world social nekw@s substrates for
the dynamics, the authors @13) identified features ottdmmunity structure,
related both to the internal structure of the communitiestartheir interconnec-
tions, that affect cooperation levels in the system as asvhol

The work on social simulation presented in this thesis dedlssimilar ques-
tions. In particular, we pose the question of how the comigstiucture of social
networks affects the prevalence of different opinions agrtbie agents. This ques-
tion is approached using various models of social netwatictire. Section 3.2
discusses the employed models and networks, and revievisidiegs.

3.3 Models of competing options

This section deals with the work of the author and colleaguesodels of com-
peting options. The models are motivated by language cotigmeand opinion

formation, which are discussed first. Sectiod 3.3 introduzdew concepts and
measures that will be used in the following discussions.nTte introduce mod-
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els inspired by language competition that can be seen aawsuaf the prototypi-
cal Voter model, and finally a weighted model that takes ictmant the intensity
of each interaction.

Itis impossible to know precisely how individuals form thepinions or influ-
ence others. Therefore any modeling of social agents iegodvgreat simplifica-
tion of the problem. Defining realistic microscopic modeis dpinion formation
is a difficult task. This is not to say that simple models condd capture the
essence of some forms of social interaction, as demorgtogtthe two examples
that began this chapter - the Prisoner’s dilemma seems fotdggpropriately a
multitude of social situations. Simplification is not hauhiput instead beneficial,
as long as the essential factors of the interaction are tiakeraccount. We have
worked under the hypothesis that peer pressure is relevdiné tactual processes
of opinion formation in society, and chosen the models atingrto the principle
of simplicity.

In all the agent based models discussed in this section, emt &agll change
its option with a probability that depends on the optiongdhgy its neighbors
(peer pressure). The probabilities depend on the fractioreighboring agents
holding each option, and the intensity of each interacti@picted by link weight.
However, in most cases link weights are ignored, and all odtweighbors are
considered to have an equal influence upon the agent. In ltbeiiog, to denote
the state of a node, the concepts of option, opinion, languaigd state are used
interchangeably depending on the context. The models veeigishere concern
discrete options, labeled, B, andAB.

Characterizations of the dynamics

Let us first define a few measures and concepts that will beiufsefdiscussing
the dynamics in the following sections.

Local density. The fraction of first neighbors in state (B, AB) of an agent
is called thdocal densityof A (B, AB), and denoted by 4 (o5, 04B).

Interface density. The degree of ordering in a system can be characterized
by the fraction of links joining agents in different statekhis fraction is called
theinterface density. The interface density decreases as homogenized domains
grow in size, and eventually disappears if one of the optiains over. In a regular
network topology, the interface density indicates the agersize of domains, and
in complex networks it can be used to describe domain growgraximately,
such that low interface density implies a high degree of inde The interface
density is used to study the formation of domains in indiaidrealizations of
the stochastic dynamics, and the average behavior of thiensyis described by
the average interface density), where the average is taken over an ensemble of
realizations starting from different random initial cotnoins.
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Absorbing state The system of interacting agents has reacheabsorbing
statewhen agents can no longer change their state and the dynhaiissIn the
dynamics treated in this work, absorbing states are thoséiich all agents are in
the same statd or B, because in the absence of neighbors in a different state the
probability of a node changing its state becomes zero. Aeaystith all agents in
the AB state is not in an absorbing state, becadéeagents can spontaneously
change their state td or B in the dynamics described later in this section.

Coarsening The termcoarseningsignifies the formation and growth of ho-
mogeneous domains. It is indicated by a decrease in ineedeasity, because
this corresponds to a growth in the average domain sizedpireg any decrease
related to random fluctuations that eventually lead to aoriirsg state in finite
systems).

Metastable states Metastable statei physics and chemistry are described
by the Encyclopedia Britannicmw) as “a particular edistate of an atom,
nucleus, or other system that has a longer lifetime thanntieary excited states
and that generally has a shorter lifetime than the lowetnaftable, energy state.
A metastable state may thus be considered a kind of temperangy trap or a
somewhat stable intermediate stage of a system the enevgyiai may be lost in
discrete amounts.” Here, the term is used for a dynamic#tsys describe states
that last particularly long, but where the system has notgathed an absorbing
state. In the following dynamics, we will encounter varidyges of metastable
statesdynamicalandtrapped which will be described later.

With the concepts clarified, let us move on to discuss modetompeting
options.

Background in language competition

The languages and cultures of the world are in a constarg efdtux. Yet, it
has periodically taken place in history that one culture Emdjuage becomes
dominant over others and practically supersedes all atlieven today, English
is becoming the new lingua franca, and of the roughly 6009uages spoken in
the world, Between 50 to 90 percent are estimated to becotireeRy the end
of the 21st century. Although the causes for such cyclesehttimogenization
and fragmentation of culture and language are varied, thagbt also exist some
fundamental properties of the system (here, the culturéseofvorld) that drive it
towards order and eventually again into disorder. The doweards homogeneity
could be in part caused by the tendency of individuals, wioirmrcontact with
one another, to become alike. On the other hand, isolateggraf people tend to
develop different views and cultures. Although obvioudigoaother factors than
interactions at the individual level are at play in the hoertigation of opinions,
culture or language, the models presented here make afoaitin and focus on
individual level interactions.
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We present first a model of competing options concerningdagg endanger-
ment ) that has inspired many other models, includingetstudied in this
thesis. In an article published in Nature in 2003, Abrams @trdgatz analysed
the decay of minority languages during the 20th century imeg¢ons of Europe
and South America, including languages such as Quechuaigmed by Span-
ish) and Welsh (threatened by English). They employed asystf differential
equations to describe how the fraction of the populatiorakiog each of the two
languages changed over time. In their model, the probgbifiadopting language
A increases with the fractiom of the population speaking language because
the speakers are motivated to adopt a language spoken byatiarg. The rest
of the population, the fractiop = 1 — z, speak language B. The deviation from a
linear dependence anandy is described by an by an exponenthat was unex-
pectedly found to be roughly constant across cultures,tabeul.31+0.25. Fur-
thermore, the benefits of learning to speak each languagie astincreased access
to education or jobs, are incorporated in the model throughrametes, called
the prestigeor social statusof a language. The transition probabilities between
languagesA and B are thus represented by the equatipps. 4(x, s) = cx®s of
andpa_p(z,s) = ¢(1 —z)%(1 — s), and the fraction of the population speaking
languageA changes as

d(l?/dt = ypB—»A(xv 8) - pr—»B(xv 8)' (31)

The data were surprisingly well fitted by this very simple relodThe Abrams-
Strogatz (AS) model does not take into account spatial aaksttucture however,
and all speakers are assumed to learn only one of the two ¢mgpanguages.
Later modifications have added these features.

The original AS-model predicts that the language with senglfestige always
dies out. It is natural to pose the question of whether it ssfale to prevent the
extinction of the less prestigious language, and which ouitould be employed
to that end. For example, Patriarca and Leppé@ (117) d=rated with an
analytical model that if each language is only influentighivi a particular region,
e.g. due to political or geographical factors, two langsagan coexist despite
one of them having lower status. Could the structure of $aeitavorks also aid in
preserving a language? How does it affect the dynamics gliage competition?
This is explored in agent based versions of the AS-modeltandriants that take
into account the structure of social interaction.

The Voter model and the microscopic Abrams-Strogatz model

In order to incorporate social or geographical constraiateh that not every-
one is in contact with everyone else, Stauffer et al. reféabed the AS-model
of language competition as agent-ba&l.e_d.|(118). In this ftation, called themi-
croscopic Abrams-Strogatz mod@ehAS), each agent holds one of two options,
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Figure 3.5: The social influencg model in community networks with weight-
topology correlations (black circles), in weight-randaed networks with com-
munity structure (light gray squares), and in fully randped networks (gray
crosses). Figure taken from Publication III.
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Chapter 4

Summary of results and
discussion

This thesis has dealt with modeling the structure of socvorks, as well as
with models of competing options that form a subset of satyalmics.

The author and colleagues produced a useful comparativgsanaf social
network models (Publication II), categorizing them andntiag out similarities
and differences in the underlying mechanisms in the modelsrathe resulting
network structures. The comparison shows that the meahanig triadic clo-
sure, or linking to friends of friends, explains much of theisture of social net-
works, although in many models it alone fails to producedaggough clusters.
Homophily based on social or spatial attributes is seen toessfully produce
community structure, but when used alone, it produces nm&snvio which high
degree nodes have unrealistically high clustering coefiisi

In order to answer a clear need for large scale models of Isoetaorks,
we have proposed a new model (TOSHK) (Publication I) basesirople mecha-
nisms of random attachment combined with link formatiortwmthe local neigh-
borhood (connecting to “friends of friends”). This modeseen to produce many
of the universal structures observed across differenaboetworks. Interest in
the TOSHK model was expressed by many researchers who askitsl $ource
code.

The TOSHK model was immediately useful as a substrate fdystg the dy-
namics of competing options. It showed that the communitycstire of networks
can have a profound influence on dynamics of competing apsoch as forma-
tion of opinions in a networked population (Publication I¥)dynamical model
of three competing options, in which the intermediate aptescribes indecision
between the two opposing states, was seen to develop in t&#&KQopology
trapped metastable states that survive at all time scalég rdlative isolation
of groups of nodes corresponding to community structure seas to enable an
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opinion held by the minority to persist for a very long timeaatst the influence
of the rest of the network.

In a more detailed study of the same dynamics (Publicatidi, ¥mploy-
ing test networks with extremely clear community structuve characterized the
minimal criteria of the topologies that produce broad iifet distributions for
the metastable states: community structure alone was s#en be sufficient,
as demonstrated by randomly connected cliques with eqealasid equal num-
ber of outward connections. Instead, producing a broadsr &xponential life-
time distribution was seen to require heterogeneity indyieamical robustness
of the communities, a concept defined by the authors to desthie resistance
of network substructures against changing their staterumatside influence. A
weighted variant of the three-state model of competingomsti(Publication 111)
showed that the correlations between topology and inferastrength in social
networks may further increase the chances of communitilerigpon to a minor-
ity opinion.

In the dynamics of competing options, we have worked undehtipothesis
that peer pressure is relevant to the actual processesrobogormation in soci-
ety, and chosen the models according to the principle of I&ityp This accords
with the guidelines for using ABMs in sociological modeljrggven by Macy and
Willer (19). They suggest tstart it simple stating that “a model that is as com-
plex as the phenomenon it attempts to represent is uselessplications should
be added one at a time, once full understanding of the sincplse is reached.”
The simplicity principle was followed during the course bétwork, attempting
to figure out the behavior of simpler models before addingenfieatures.

Macy and Willer also encourage tdést external validity If a model has
been successfully used to test a hypothesis, and shown tabhbsety researchers
need to think of ways in which the results could be tested lidatory or nat-
ural conditions.” The work of the author and colleagues omiop dynamics
has been useful for generating initial hypotheses on thecetif communities
on the formation of opinions, and could provide ideas foregkpentation. For
example, it would be very interesting and informative td tae assumptions of
opinion formation models in a laboratory setting. Aggregatitcomes such as
election results have been collected and studied; and antiadual level, it
is also known that peer pressure affects individual degssioThe intermediate
level between these extremes - collecting data on groupeinde, and interaction
between groups forming opinions, is still waiting expenita work.

An experiment can be imagined in which individuals are eagkrga dif-
ferent set of information on an issue on which they wouldrlaged to make a
choice, and decide upon either actidror action3. Some participants would be
given mostly facts against and for B, while others would receive information
that mostly supports the choicé instead ofB. Participants would be asked at
frequent intervals about their current opinion on the nnatiad the opinions of
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those that they have discussed with. Finally, the partitgahould vote on the fi-
nal action to be taken. In order to study explicitly the efffgfogroup structure, the
experiment could either monitor any groups that form ndluchuring the exper-

iment, or employ a predefined network of interaction with coumity structure.

Experiments such as these would provide experimentalatédia or disvalidation

of our models, and suggest more appropriate ones.

There is a clear need for verification of the models of sogfabanics against
empirical data. This has been successfully achieved in $ietds, such as pedes-
trian dynamics, while it is largely lacking in others, suchapinion formation.
Through discussion with experts in the relevant fields, wedn® consider the
fundamental questions of where the models are applicabtehaw they should
be modified to make them appropriate. ConsideringAliz model, for example,
it could be argued that the chosen language among bilingneskers is a prop-
erty of the link instead of an the agent (everyday experishosvs that a bilingual
person can use either one of his languages with differentactances).

Identifying general classes into which the various modésocial dynamics
fit would be beneficial to the research field. Thus far, the tstdading of the
general behavior of families of opinion formation models h&en incremented
through small studies of model variants, each of them a pieites bigger picture.

The excitement in studying networks showed by physicistg) have largely
been ignorant of the great amount of research that socgitofgave done on net-
works, has often been (partly deservedly) ridiculed. Havethere could be great
benefits in cooperation. What the "new science of networks' grovide to the
study of social systems is a set of tools and algorithms #abe used to analyse
large sets of data. Often researchers with a backgroundyisigghand mathe-
matics have developed algorithms that can determine ie lsegle some network
characterizations that were originally developed by datigentists. Established
measures can also find new applications; one of the benefiehwbrk methods is
indeed the wide applicability of relatively simple techués across various fields.
For example, centrality measures were developed by saistéoto describe the
status of individuals in a social network. Similar meastioesid a highly success-
ful application in the Google web search engine, in which i@aar centrality
measurement called page rank is used to identify amongsllof web sites the
most popular and most cited pagE[lBB). Another field in viietwork re-
search has provided fruitful insights is epidemics. Hegenities in contact rates
have been seen to have a large effect on the early stage ofl\HAIBS epi-
demic @). Woolhouse et al. found that the 80/20 rule thenall fraction of
hosts is responsible for a large fraction of all infectiopplaes to both vector-
borne parasites and sexually transmitted pathogens alilce suggested assess-
ment of whether degree-based interventions could be ingoiéed for higher cost-
effectiveness in prevention of their spreadiﬂl% . Aedl studies confirm
the efficiency of degree based immunization strategies)(1Qéer applications
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of network research range from viral marketi@ (57) to comimation protocols
for large distributed systems that scale well with incregsystem siz 7).

Some of the research on social dynamics has had direct @tiplhs to hu-
man safety and policies. Particularly useful results haentobtained in crowd
dynamicsl(138); modeling the turbulent flow of pedestrianan extremely dense
crowd during a religious ceremony attended by more than Bomibeople, Hel-
bing et al. were able to recommend maneuvers in the orgamizat the event
that helped the flow to become smoother, and likely saved lbxe preventing
trampling accidents. Agent based modeling has also prdvitgghts on pedes-
trian traffic concerning various phenomena such as the fitwmaf paths across
a campus lawn, the paths of people walking in opposing destin a corridor,
or the packing of a crowd attempting to exit a building in cate fire. While
the benefits of opinion dynamics thus far are not equallyctlitbere is hope that
they will find important applications in the future. Althdughe most immediate
applications are likely to be in marketing (for example cgatnerce sites are very
interested in making use of the friendship networks of thegtomers for inform-
ing potential customers of their products), the same mesieeds to be useful in
spreading information about beneficial causes, as exegtpbff the popularity of
applications that disseminate information on environraleand social causes on
Facebook.
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