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Abstract

In this paper, we study experimentally the performance of the finite element method when approximating the characteristic shell layers
that arise from boundaries and load irregularities in a thin shell. For that purpose we introduce a set of model problems where the shell is
under a certain periodic and self-balancing point load distribution. We use a simplified shallow shell model with constant coefficients for
a thin, linearly elastic shell and apply Fourier techniques to obtain the ‘‘exact’’ displacement and strain fields in different geometries.
� 2006 Published by Elsevier B.V.
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1. Introduction

The finite element modelling of shells is known to be a
very demanding task because of the numerous parametric
error amplification or locking phenomena. There seems
to be two main strategies to circumvent locking in the
state-of-the-art finite element models of thin shells. The tra-
ditional engineering approach is the construction of effi-
cient but simple low-order shell elements whereas the
more recent alternative is the so-called hp-version of the
standard finite element scheme. In the present work, we will
touch both aspects of the methodology.

The use of high-degree polynomials in shell modelling
has been previously advocated in [1–4]. In the hp-methods,
convergence is obtained by combining proper mesh-refine-
ment and an increase of the degree of the polynomials.
Especially the error analysis is then rather straightforward
since the energy principle remains intact and even exponen-
tial convergence rates may be obtained. Although it is
impossible to completely avoid locking, the effects are often
0045-7825/$ - see front matter � 2006 Published by Elsevier B.V.
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mild enough considering practice when the polynomial
degree is sufficiently high. The notable benefit of standard
finite elements of high order is their ability to capture dif-
ferent shell deformations efficiently. To achieve the same
level of reliability with a single low-order formulation has
proven to be a major challenge. Nevertheless, there are
promising attempts like the MITC-type elements that have
been very successful in plate-bending problems. We con-
sider here the MITC4 shell element and rely on the results
of [5,6], where the original geometrically incompatible 3D
formulation is connected to classical shell models. Indeed,
the approximation of the shell geometry may be under-
stood as purely numerical modifications of the membrane
strains associated with the standard bilinear scheme for
the shallow shell model. The influence of these modifica-
tions (abbreviated here as MITC4-S) is not completely ana-
lysed yet, but some results are available. It is shown in [7,8]
that at least under some favourable conditions the method
is relatively free of locking.

Our focus is on the locking effects of the layer compo-
nents since these are not so well understood and also very
harmful for an engineer when trying to resolve accurately
e.g. the local stress maxima. In order to investigate the
effects, we present a model problem with a concentrated
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point load so that a point layer (‘‘hot spot’’) is generated at
the load application point. If the shell geometry is of para-
bolic or hyperbolic nature, then also strong line layers
appear decaying from the characteristic lines through the
hot spot. Utilizing Fourier techniques, we then give a pro-
cedure to obtain reference solutions of arbitrary precision.
In particular, we analyze numerically the performance of
standard high-order finite elements and the MITC4-S
formulation in model cases involving different shell geom-
etries. The results confirm the robustness of standard
high-order finite elements and show that the numerical
modifications in MITC4-S improve the standard bilinear
scheme considerably also when approximating layers. We
point out that in our experiments, the underlying mathe-
matical model is exactly the same for the analytical and
finite element solutions.

The paper is organized as follows. In Section 2 we spec-
ify the simplified shallow shell model and give a brief
review of the existing theory of the numerical locking
effects in the FEM approximation of shell deformations.
The model problem is introduced and analyzed in Section
3 whereas Section 4 is devoted to benchmark computations
in selected test cases.

2. The linear shell problem

The starting point for our study is a dimensionally
reduced linear shell model of Reissner–Naghdi type for a
shell consisting of homogeneous isotropic material with
Poisson ratio m. The deformation of the shell is described
in terms of a displacement field u = (u,v,w,h,w) defined
on the shell midsurface x. In addition to the tangential
displacements u, v and the transverse displacement w, the
vector field u consists of the dimensionless rotations h, w
related to the transverse shear deformations.

2.1. The mathematical shell model

In our model the scaled strain energy of the shell with a
constant thickness t may be expressed as

Aðu; uÞ ¼Amðu; uÞ þAsðu; uÞ þ t2Abðu; uÞ: ð1Þ

The different bilinear forms represent the portions of en-
ergy stored in membrane, transverse shear and bending
deformations. They are defined as

Amðu; uÞ ¼
Z

x
mðb11 þ b22Þ

2 þ ð1� mÞðb2
11 þ 2b2

12 þ b2
22Þ

n o
dx;

Asðu; uÞ ¼
1� m

2

Z
x

q2
1 þ q2

2

� �
dx;

Abðu; uÞ ¼
1

12

Z
x

mðj11 þ j22Þ2 þ ð1� mÞðj2
11 þ 2j2

12 þ j2
22Þ

n o
dx;

ð2Þ
where bij, qi, and jij are the membrane, transverse shear,
and bending strains, respectively.

In the following we will simplify the model by assuming
that x is a rectangular domain expressed in the coordinates
x and y. Furthermore, we assume that the curvature tensor
{bij} of the midsurface is constant and write a = b11,
b = b22, and c = b12 = b21. The shell is then called elliptic
when ab � c2 > 0, parabolic when ab � c2 = 0, and hyper-
bolic when ab � c2 < 0.

The above assumptions are valid for example when the
shell is shallow, i.e. the midsurface differs only slightly from
a plane. In general the strain fields in Eq. (2) depend on the
geometry of the shell. In the simplest case one may set
dx = dx dy and write the relation between the strain and
the displacement fields as

b11 ¼
ou
ox
þ aw; b22 ¼

ov
oy
þ bw; b12 ¼

1

2

ou
oy
þ ov

ox

� �
þ cw;

q1 ¼ h� ow
ox
; q2 ¼ w� ow

oy
;

j11 ¼
oh
ox
; j22 ¼

ow
oy
; j12 ¼

1

2

oh
oy
þ ow

ox

� �
:

ð3Þ
It turns out that this simplified model preserves all the basic
features of the shell problem from the numerical modelling
point of view. For more details (and a rigorous justifica-
tion) of the model, see [9].

If L is a linear functional corresponding to the potential
energy of the external load, then according to the energy
principle the deformation of the shell is obtained by mini-
mizing the total energy

FðuÞ ¼ 1

2
Aðu; uÞ �LðuÞ ð4Þ

over the kinematically admissible displacements u 2 U.
The energy space U consists of displacement fields u such
that the strain energy of the shell is finite and the given
kinematic constraints are satisfied. The problem is then
well-posed provided that u, v, w, h, w along with the first
partial derivatives are square integrable, L is bounded
on U, and the kinematic constraints are strong enough to
prevent rigid body motions.

2.2. Shell asymptotics and layer effects

A study of shell asymptotics is necessary to shed some
light on the various locking phenomena observed in the
numerical modelling of thin shell structures. The asymp-
totic behaviour of shells is known to be very case-specific
depending on the geometry of the shell, the kinematic con-
straints, and the applied load. Shell problems are usually
classified based on which type of deformation energy (if
any) becomes dominant at the asymptotic limit t! 0 when
the load is fixed. As the transverse shear energy is known
to vanish asymptotically, there are two main states of de-
formation, namely, a membrane-dominated and a bending-

dominated deformation state. The contrast between these
two states is extremely sharp from the numerical point of
view.

A bending-dominated deformation is kinematically
possible if the boundary conditions are weak enough to
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allow inextensional displacements u that satisfy the mem-

brane constraints

b11ðuÞ ¼ b22ðuÞ ¼ b12ðuÞ ¼ 0: ð5Þ
If the external load is able to excite such displacements, the
asymptotic solution at t = 0 is also inextensional. For a
small t > 0 the shell problem is then close to a constrained
minimization problem subject to the membrane constraints
(5) and to the more usual shear constraints

q1ðuÞ ¼ q2ðuÞ ¼ 0: ð6Þ
In engineering shell structures pure bending is often pre-
vented by the boundary conditions regardless of the exter-
nal load. The asymptotic behaviour of the shell is then
mainly characterized by the so-called membrane theory,
which is obtained by setting qi = jij = 0 in the energy for-
mulation. However, in order for the shell to control the
external load by means of membrane deformations only,
the regularity conditions on u must be consequently re-
laxed. When the asymptotic solution does not obey the ori-
ginal boundary conditions, the solution at a small t > 0
contains a boundary layer. The situation is similar with
concentrated point or line loads.

In a general problem setting it is useful to assume a
splitting of the form

u ¼ ub þ um þ ul; ð7Þ
where ub, um are bending- and membrane-dominated fields
and ul is the layer term. The fields ub, um are considered to
be uniformly smooth with respect to t whereas the specific
nature of ul is quite complicated and depends on the shell
geometry. The layer effects are analyzed in the context of
the mathematical shell model by a Fourier mode analysis
in [9]. The main layer modes appear as exponentially
decaying solutions to the homogeneous shell equations,
the length scale of decay varying as

L � t1=n; n 2 f1; 2; 3; 4g: ð8Þ
The case n = 1 is actually present also in the Reissner–
Mindlin plate-bending model whereas the larger length
scales are results of curvature effects. The case n = 2 may
occur in all shell geometries and is often cited as ‘‘the sim-
ple edge effect’’ in the engineering literature. The length
scales with n = 3 and n = 4 are possible only in hyperbolic
and parabolic geometries, respectively, when the layer
decays from a characteristic line of the shell midsurface.

2.3. The standard finite element scheme

In the standard finite element scheme one minimizes the
total energy (4) as given in a finite-dimensional subspace of
U. The most natural error indicator is then the relative
error in the energy norm

EðuÞ ¼ jjju� uh;pjjj
jjjujjj ; ð9Þ

where uh,p denotes the finite element approximation of u
with maximal mesh spacing h and polynomial degree p.
When resolving smooth deformations in the length scale
L, the optimal error bound is then EðuÞ ¼ Oððh=LÞpÞ by
the standard finite element theory. In the present situation
the error may, however, be amplified by a locking factor

K(u) as the energy norm contains a strong dependence of
the thickness parameter t. The factor K is case-specific
and it may even grow without a limit as t! 0.

The exact value of K is well known when approximating
smooth bending- or membrane-dominated deformations.
We may assume that in the splitting (7) the components
ub and um are smooth e.g. in the curvature length scale
R = (a2 + b2 + 2c2)�1/2, in which case we have [1–3]

KðubÞ �
R
t
; KðumÞ � 1: ð10Þ

The standard finite element scheme is thus indeed an opti-
mal scheme in the case of a smooth membrane-dominated
deformation. On the other hand, the performance deterio-
rates tremendously when a bending-dominated defor-
mation is considered. This occurs because as t! 0, the
constraints (5) and (6) are gradually forced in the finite
element subspace causing degradation of accuracy.

Perhaps less known is that significant error amplification
can take place also when resolving the various boundary or
interior layer components. These locking effects may be
analyzed by a proper scaling of the coordinates and the dis-
placement amplitudes so that the layer mode is seen essen-
tially as a smooth function in the unit scale. The parametric
dependence appears then more transparently as coefficients
in the (scaled) energy density. The scaling is performed in
[9] and it is also shown that when approximating any of
the main layer modes, the error is amplified by a factor

KðulÞ �
L
t
; ð11Þ

where L is one of the length scales of decay given by Eq. (8)
characteristic to the layer mode.

The parametric error amplification is most harmful to
the simplest linear or bilinear finite element schemes as
the convergence is typically totally ruined also for practical
values of t. But, then again, even a modest raising of the
polynomial degree p can substantially reduce the need for
mesh-refinement.

2.4. The reduced strain finite element scheme

In the low-order approach to numerical modelling of
shell structures one tries to prevent locking by a clever
modification of the bilinear form A. We assume here that
the finite element mesh is a rectangular subdivision of x
aligned with the coordinates and modify the membrane
strains as

b11,!Pxb11; b22,!Pyb22; b12,!Pxyb12; ð12Þ

and the shear strains as

q1,!Pxq1; q2,!Pyq2: ð13Þ
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The reduction operators Px, Py, Pxy are defined element-
wise as averaging operators in the coordinate direction
indicated by the subscript. In the finite element model,
there are many other interpretations as well. The reduc-
tions may be carried out by applying appropriate interpo-
lation or selective underintegration when evaluating the
Fig. 1. Periodic point loading: (d) � ‘upwards’, (�) � ‘downwards’.

Fig. 2. The transverse displacement of a shell midsurface near a point
load.

Fig. 3. Different shell geometries: parabolic (Case 1),

Fig. 4. Uniform mesh.
integrals involved in the forms Am and As. In fact, the
above variational crime was analyzed in the case of a bend-
ing-dominated cylindrical shell already in [1]. In [6], it is
shown that the modifications (12) and (13) lead more gen-
erally to a scheme which is (nearly) equivalent to the
MITC4 shell element of Bathe and Dvorkin, see also [10]
and the references therein.

In the convergence analysis of the method, the error
indicator (9) is redefined as

EhðuÞ ¼
jjju� uhjjjh
jjjujjj ; ð14Þ

where jjjÆjjjh denotes the modified energy seminorm. The re-
sults of [7,8] show then that the optimal convergence rate
Oðh=LÞ (with respect to the indicator (14)) is achievable
when resolving smooth bending- or membrane-dominated
deformations. However, this requires strong assumptions
on the mesh, boundary conditions, and the regularity of
the exact solution. Moreover, when the layers are taken
into account, the performance of the algorithm is not so
clear.

3. The model problem

3.1. The point load problem

We consider a model problem such that the shell is
loaded in the transverse direction with a periodic and
self-balancing point load of the form

f ¼ �F
X

i;j

ð�1Þiþjdðx� 2iÞdðy � 2jÞ; ð15Þ
hyperbolic (Cases 2A, B, C), and elliptic (Case 3).



Table 1
Convergence of the membrane energy in eE with respect to p

(p,N) Case 1 Case 2A Case 2B Case 2C Case 3

(1,32) 7.950 · 10�1 7.225 · 10�1 4.298 · 100 6.592 · 10�1 6.804 · 10�1

(2,18) 7.967 · 10�2 1.267 · 10�1 4.473 · 10�1 1.371 · 10�1 1.673 · 10�1

(4,11) 1.581 · 10�2 3.488 · 10�2 1.691 · 10�2 2.257 · 10�2 4.520 · 10�2

(8,6) 2.235 · 10�3 5.451 · 10�3 1.938 · 10�3 4.086 · 10�3 7.670 · 10�3

Table 2
Convergence of the bending energy in eE with respect to p

(p,N) Case 1 Case 2A Case 2B Case 2C Case 3

(1,32) 9.350 · 10�1 9.353 · 10�1 9.816 · 10�1 9.264 · 10�1 9.215 · 10�1

(2,18) 2.758 · 10�1 4.124 · 10�1 6.190 · 10�2 4.205 · 10�1 5.254 · 10�1

(4,11) 1.221 · 10�1 1.885 · 10�1 1.817 · 10�2 2.103 · 10�1 2.616 · 10�1

(8,6) 8.176 · 10�2 1.290 · 10�1 1.206 · 10�2 1.409 · 10�1 1.797 · 10�1

Fig. 5. The strain field e12 in the Case 1.
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where the load amplitude F > 0 is a constant (Fig. 1). The
corresponding linear functional is then given by

LðuÞ ¼ �F
X

i;j

ð�1Þiþjwð2i; 2jÞ: ð16Þ

The proposed problem may be regarded as a generalization
of the classical pinched cylinder benchmark test where two
normal and equal point loads are applied centrally at the
opposite sides of a cylindrical surface. The quality of
approximate solutions is often measured by only compar-
ing the transverse displacement under the point load to
some reference value. We would like to point out that this
can be misleading since the exact value of the transverse
deflection is infinite at the load application points if Reiss-
Fig. 6. The strain field
ner–Mindlin type kinematical assumption is made in the
underlying shell model. Indeed, in our case the solution
may be splitted as

u ¼ u0 þ u1; ð17Þ

where u1 = (0, 0,w1,0,0) satisfies (in the distributional
sense)

� 1� m
2

Dw1 ¼ f ; ð18Þ

so that w1 contains a logarithmic singularity at each load
application point. This pinch-through is associated to lo-
cally infinite shear energy as the gradient $w1 is not square
e12 in the Case 2A.



Fig. 7. The strain field e12 in the Case 2B.
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integrable. The remaining part u0 is more regular and
solves the minimization problem

1

2
Aðu; uÞ �Amðu1; uÞ þ

1� m
2

Z
x

$w1 � hdxdy ¼ min !;

ð19Þ
where we have denoted h = (h,w). The field u0 is actually
closely related to the classical solution according to Koiter
model neglecting transverse shear strains. With this simpli-
fication the bending strain expressions are reduced to

j11 ¼
o2w
ox2

; j22 ¼
o2w
oy2

; j12 ¼
o2w
oxoy

;

and the strain energy is given by (1) and (2) with
q1 = q2 = 0 and bij as in (3).
To get a mental picture of the solution near a point load,
we write down the Euler equations of the energy minimiza-
tion for the Koiter model as

0 ¼ � ob11

ox
� m

ob22

ox
� ð1� mÞ ob12

oy
;

0 ¼ �m
ob11

oy
� ob22

oy
� ð1� mÞ ob12

ox
;

f ¼ ðaþ mbÞb11 þ ðmaþ bÞb22 þ 2ð1� mÞcb12 þ t2

12
D2wK ;

8>>>>><
>>>>>:

ð20Þ
and expand the transverse displacement near the origin for-
mally as

wK ¼ �
3r2

2pt2
log r þ r6

32pR2
eff t

4
log r þ � � � ð21Þ



Fig. 8. The strain field e12 in the Case 2C.
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Here r denotes the distance from the origin and the
dropped terms are of higher order in r. The first term in this
expansion is actually the same for a flat plate and the shell
geometry manifests itself in the second term as the effective

curvature

Reff ¼ fa2 þ b2 þ 2c2 þ 2mðab� c2Þg�1=2
: ð22Þ

This reasoning suggests that a shell under a point load
behaves essentially like a plate at distances r�

ffiffiffiffiffiffiffiffiffi
Reff t
p

whereas the curvature effects kick in at r �
ffiffiffiffiffiffiffiffiffi
Reff t
p

. The spe-
cific geometry of the shell starts to play a more decisive role
when r�

ffiffiffiffiffiffiffiffiffi
Reff t
p

, see the sections ahead.
What comes to the displacement amplitudes, we observe

that wK produces a depression of order Oð1=tÞ to the trans-
verse displacement profile. The relative supplement arising
from the singular part w1 is thus only of order t logh in a
bilinear finite element model so that the ‘singularity’ is
practically invisible.

We sum up the above development in the schematic
Fig. 2 where the profile of the transverse displacement near
a point load is shown and note that resolving the local
behaviour of the solution exactly is an interesting mathe-
matical problem perhaps worth a further study.

3.2. The exact solution

Taking into account the strain expressions (3) and the
specific nature of the load potential (16), we conclude that
in general the displacement field is of the form



Fig. 9. The strain field e12 in the Case 3.

Table 3
Convergence of the membrane energy in eE using the MITC4-S formulation

N Case 1 Case 2A Case 2B Case 2C Case 3

4 2.886 · 10�1 3.315 · 10�1 5.729 · 10�1 3.737 · 10�1 4.457 · 10�1

8 5.623 · 10�2 1.618 · 10�1 2.848 · 10�1 1.666 · 10�1 2.277 · 10�1

16 6.571 · 10�3 8.316 · 10�2 1.380 · 10�1 7.684 · 10�2 1.106 · 10�1

32 8.097 · 10�3 4.157 · 10�2 6.795 · 10�2 3.637 · 10�2 5.416 · 10�2

Table 4
Convergence of the bending energy in eE using the MITC4-S formulation

N Case 1 Case 2A Case 2B Case 2C Case 3

4 2.328 · 10�1 5.694 · 10�1 1.174 · 10�1 7.245 · 10�1 7.078 · 10�1

8 2.409 · 10�1 3.884 · 10�1 5.239 · 10�2 5.064 · 10�1 5.170 · 10�1

16 1.497 · 10�1 2.329 · 10�1 2.280 · 10�2 2.975 · 10�1 3.201 · 10�1

32 8.523 · 10�2 1.323 · 10�1 9.680 · 10�3 1.651 · 10�1 1.834 · 10�1
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Fig. 11. The strain field e12 in all model cases calculated using the MITC4-S formulation with a uniform 16 · 16 mesh.
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uðx; yÞ ¼
P
m;n

U A
mn sin

mpx
2

cos
npy

2
þU B

mn cos
mpx

2
sin

npy
2

n o
;

vðx; yÞ ¼
P
m;n

V A
mn cos

mpx
2

sin
npy

2
þ V B

mn sin
mpx

2
cos

npy
2

n o
;

wðx; yÞ ¼
P
m;n

W mn cos
mpx

2
cos

npy
2
;

hðx; yÞ ¼
P
m;n

Hmn sin
mpx

2
cos

npy
2
;

wðx; yÞ ¼
P
m;n

Wmn cos
mpx

2
sin

npy
2
:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð23Þ
We also observe that the load is not able to excite Fourier
modes with m or n even. Consequently, we have to sum over
odd indices only in the above expressions. In addition, the
coefficients U B
mn, V B

mn vanish if x and y are the principal cur-
vature coordinates which is the case when c = 0 in (3). Sim-
ilarly, UA

mn, V A
mn are dropped when a = b = 0, i.e. x and y are

the principal curvature coordinates rotated by 90 degrees.
To determine the unknown coefficients, we substitute

the Ansatz (23) directly into the expression (4) for the total
energy and integrate the strain energy density over one per-
iod x̂ as indicated by the dash line in Fig. 1. The solution is
then obtained by choosing

zmn ¼ fU A
mnV A

mnU B
mnV B

mnW mnHmnWmng; ð24Þ

to make

Fðu; v;w; h;wÞ ¼ 1

2

X
m;n

zT
mnAmnzmn �

X
m;n

zT
mnb ¼ min ! ð25Þ
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The symmetric matrix Amn is also positive definite and the
load vector b is defined as

b ¼ �4F f0 0 0 0 1 0 0g: ð26Þ
The minimum is achieved if and only if zmn is the solution
of the equation

Amnzmn ¼ b ð27Þ
for every m and n.

We evaluated by symbolic computation the entries of
the matrix Amn as functions of the indices m, n and the
parameters m, t, a, b, c. Symbolic expansion of the solution
zmn is also in the realms of possibility but the expressions
become so complicated that their applicability is question-
able. However, the numerical values of the Fourier coeffi-
cients are easily obtained by giving some values to the
parameters and choosing suitable stopping indices for m

and n.

4. The case studies

We turn now to numerical experiments and fix the val-
ues of the Poisson ratio, shell thickness and the load ampli-
tude by setting

m ¼ 0:3; t ¼ 0:01; F ¼ 1: ð28Þ
We choose as demonstrative examples the following combi-
nations of the geometry parameters (a,b,c):

Case 1: (1, 0, 0)
Case 2A: (0, 0, 1)
Case 2B: (1, �1, 0)
Case 2C: (2, �1, 0)

Case 3: (1, 1, 0)

We note that all geometric categories of a shell (Fig. 3) are
represented in the above model problems: Case 1 is essen-
tially the pinched cylinder problem whereas Cases 2A, B, C
stand for hyperbolic geometry with different alignments of
the characteristic lines of the midsurface. Finally, Case 3 is
an example of an elliptic shell (with no characteristic lines).

In the finite element computations, we model numeri-
cally only the unit square x = (0, 1) · (0, 1) and restrict
u = (u,v,w,h,w) on the boundary by the symmetry/anti-
symmetry conditions

u ¼ h ¼ 0 at x ¼ 0;

v ¼ w ¼ w ¼ 0 at x ¼ 1;

v ¼ w ¼ 0 at y ¼ 0;

u ¼ w ¼ h ¼ 0 at y ¼ 1;

8>>><
>>>: ð29Þ

in the Cases 1, 2B, 2C, 3 and by

v ¼ h ¼ 0 at x ¼ 0;

u ¼ w ¼ w ¼ 0 at x ¼ 1;

u ¼ w ¼ 0 at y ¼ 0;

v ¼ w ¼ h ¼ 0 at y ¼ 1;

8>>><
>>>: ð30Þ
in the Case 2A. All numerical experiments will be per-
formed with uniform meshes (Fig. 4).

As a global error indicator we choose

eE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjjujjj2 � jjjuhjjj2h

jjjujjj2

�����
�����

vuut ; ð31Þ

which is very easy to compute and one of the most
extensively used (cf. [11,12]). For a standard method
jjjÆjjjh = jjjÆjjj and eE is equal to the relative error in the
energy norm. In case of modified bilinear forms the inter-
pretation can become more complicated, see [12].
Nevertheless, this error measure clearly reflects the quality
of approximate solutions to some extent in any case.

As discussed above, the exact value for the shear energy
(and hence also for the total energy) is infinity in our
benchmark problem. In the numerical convergence studies
that follow, we consider only membrane and bending ener-
gies by replacing jjjÆjjj in Eq. (31) with the square root of
membrane or bending energy for which the reference val-
ues are well-defined.

4.1. Experiments with the hp-approach

The following experiments are based on uniform N · N

rectangular subdivisions of x. In Tables 1 and 2 we mea-
sure the relative errors in membrane and bending energies
with p ranging from 1 to 8. Here, the total amount of
degrees of freedom is kept roughly the same by decreasing
N simultaneously. The results illustrate once again very
clearly the much better behaviour of standard high-order
elements in contrast to low-order ones.

This fact is emphasized even further in Figs. 5–9, where
the quality of strain approximations is examined. We show
as an example the tangential shear strain e12 ¼ b12 � t

2
j12
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obtained with p-FEM on a uniform 8 · 8-mesh along with
the reference fields according to the series solution. We
conclude that the strains (and also the stresses) are approx-
imated with a feasible accuracy already when p = 4, while
the usability of the results is questionable when p = 1,2.
Eventually, when p = 8, there arises no discrepancies
between the reference and the finite element solution.

Also the theoretical predictions about the layer behav-
iour are reflected in these results. Strong line layers decay
from the characteristic lines of the midsurface in the Cases
1, 2A, 2B and 2C whereas only a ‘‘hot spot’’ around the
point load is present in the elliptic Case 3. However, the
Case 2B is qualitatively different from the others because
the deformation happens to be bending-dominated in that
case. Indeed, the load is able to excite non-trivial Fourier
Fig. 13. The strain field e12 in all model cases calculated using
modes satisfying the membrane constraints (5) as is easily
verified. In the other model cases this is not possible and
the strain energy is concentrated asymptotically in the lay-
ers, cf. [2].

We finally note that in all our model cases (except in the
bending-dominated Case 2B), the displacement field u is
approximated very accurately already when p = 2. Conse-
quently, it is important to use also other error measures
than pointwise displacements in a benchmark situation like
this.

4.2. Experiments with the MITC4-S algorithm

We determine next what is the response of the best
known reduced strain scheme to the model problem. We
the plate-membrane element with a uniform 16 · 16 mesh.
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compute the membrane and bending energies on a uniform
N · N-mesh with N = 4,8,16,32 and check the conver-
gence behaviour with respect to the error indicator eE.
The results are shown in Tables 3 and 4 and visualized
on a logarithmic scale in Fig. 10.

Best accuracy is obtained in the pure bending situation
2B. This is to be expected, since the modifications (12)
and (13) are aimed for preventing membrane and shear
locking caused by the asymptotic constraints (5) and (6)
in the first place. In case of the layer modes, the asymptotic
constraints are of more complicated nature as they are
enforced anisotropically depending on the direction of
the decay of the layer mode [9]. Nevertheless, the strain
reductions seem to improve accuracy considerably in any
case and the results are competitive even against the hp-
approach. This is confirmed also in Fig. 11 where we show
again the strain field e12 in the model cases, but now com-
puted with the MITC4-S algorithm on a 16 · 16-mesh.

4.3. Does the plate-membrane element work?

Let us finally examine whether it is possible to approxi-
mate the layer modes accurately without modifying the
membrane strains bij. This question is motivated also by
the analysis of [9] which shows that the dominant locking
effects are due to the shear constraints (6) as regards to
the main layer modes. In fact, membrane constraints do
not arise at all in the most common layer mode with
n = 2, so one might expect that at least in that case the
plate-membrane element would work as well as MITC4-
S, or perhaps better.

So let us compute once more the strain field e12, this time
leaving the membrane strains untouched (Fig. 13). The
conclusion from the experiments is that when approximat-
ing the line layers with n = 3,4 in parabolic and hyperbolic
geometries, merely the shear modification (13) is not suffi-
cient to unlock the standard bilinear scheme. In the bend-
ing-dominated situation 2B a complete failure results as
expected.
Case 3 is now the most interesting one since the defor-
mation field consists almost purely of a point layer decay-
ing radially from the load application point. Even here
MITC4-S still produces a solution of slightly better quality
– somewhat unexpectedly. On the other hand, the conver-
gence rate with respect to the error indicator (31) seems
to be better when the membrane strains are left unmodified
as indicated by Fig. 12.
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