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Point load on a shell

Antti H. Niemi, Harri Hakula and Juhani Pitkaranta

Abstract We study the fundamental (normal point load) solution falkdw shells.
The solution is expressed as a Fourier series and its preparte analyzed both
at the asymptotic limit of zero shell thickness and when thiekhess has a small
positive value. Some results of benchmark computatiomgusdth high- and low-
order finite elements are also presented.

1 Introduction

According to the two-dimensional models of linear shellayethe deformation of
the middle surface of a thin shell under a given load is olegiby minimizing a
quadratic energy functional of the form

Z(U) = (U, U) + s(U,u) +t2a(u,u) — 22(u), (1)

wheret is the thickness of the shell andh, <%, t?.<4, and 2 correspond to the de-
formation energy due to stretching, deformation energytdusansverse shearing,
deformation energy due to bending and the external loadtifurad, respectively.
Further,u = (u,v,w, 8, ) is a vector field on the middle surfa€eof the shell that
defines the tangential displacemeunts and normal deflectiow of the middle sur-
face as well as the rotatiotss ( of its normal.

We consider here the problem of shell deformation under mabpoint load so
that the load functional is assumed to have the form

2(u) =F (%, w) = Fw(P), (2)
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whereP € [ is a point at the middle surface. The relevance of this praliseunde-
niable, as the solution is the fundamental solutionGoeen’s function, for normal
loads and so it has been studied widely in classical sheadkheee e.g. [1] and the
references therein. Anyway, it seems that closed form ismisihave been obtained
only for spherical shells and that the detailed behaviohefolution near poirR is
still an open problem when the thickndss small — especially in hyperbolic and
parabolic shell geometries.

Our aim here is to give some solutions to this problem and tbdirt how accu-
rately these solutions can be approximated with finite efem@®©ur starting pointis
a ‘shallow’ version of the classical shell model where dartgeometrical simplifi-
cations are assumed, see [6]. Within this simplified modelanalyze fundamental
solutions that can be expressed as Fourier series and fosusrfithe asymptotic
limit solution att = 0. In model cases this can be expressed explicitly in theesens
of distributions. We conclude that the transverse deflaatiof the asymptotic so-
lution has a term of the forrw ~ Fdp in all geometries. The remaining part wf
is smooth when the shell is elliptic, but in hyperbolic andgtelic shell geome-
tries there arises additional likedistributions along the characteristic lines of the
middle surface.

Concerning the more realistic situation where the thickhéas a small positive
value, we conclude as follows:

1. In all shell geometries the asymptotic tenm- F dp is spread into a ‘hot spot’ of
width ~ /Rt aroundP, whereRis the curvature length scale of the shell.

2. The line d-distributions in the hyperbolic and parabolic cases ameap to
‘ridges’ of width ~ v'R"-1t, wheren = 3 in the hyperbolic case ani= 4 in
the parabolic case.

We support these conclusions also by numerical experintsrgsd on truncated
Fourier series and finite element computations using bath-tand low-order ele-
ments.

2 Classical shell theory

For a shell consisting of homogeneous isotropic materigi Woisson ratia/, the
energy functionals in (1) are given by

“m(U,u) ://; [V(Bll+[322)2+(1—v)([5121+ 2[51224‘[5222)} dr,

s(u,u) = 1;2" /r (pf+p3) dr, 3)

1
ah(u,u) = 1—2/1_ [V(K1+ K22)? + (1 — V) (K + 2kEp + k)| d .
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In a general geometry, the straifis, oi andkij, i, j = 1,2 are related linearly to the
displacement componentsv,w, 8, ¢ via variable coefficients that depend locally
on the fundamental forms @f, see e.g. [1].

We assume here that the middle surface of the shell, in tlilhherhood of point
P, is represented in the form

1 1
Z(Xa y) = éaxz—i_ CXy + Ebyzv (4)

wherex andy are Cartesian coordinates in the tangent pl@neith origin P. The
leading terms of the strain expression®ahay then be written as

au ov 1/0u oJv
Bll—a_)(+awa ﬁ22—0—y+bV\L 312—5(0—y+0—)(>+CW,
ow ow
= _—— e —_— 5
pL=106 o = ' 5)
_d6 _ay _1/06 dy
Kll—ﬁa K22 = ay’ K12_2(0y+0x)'

The use of these expressions may be justified (formally,8j¢@llso in a neighbor-
hood ofP, in which the middle surfack is shallow with respect to the tangent plane
Q,i.e.r = /x2+y?is small compared witfR. One may then as well sét — Q
and d” — dxdy when evaluating the strain energy functionals (3).

The above model can be simplified further by neglecting trarse shear energy
which usually is small. This can be accomplished by elimitathe rotation9,
from the classicaKirchhoff-Love constraints

ow ow
pr=0-— =0 p2= oy ° (6)
The strain energy takes then the form
F(U) = Fm(u,u) +t224(u,u) — 2.2(u), 7)

where nowu = (u,v,w) and the bending strains are given by

WY W
11— axza 22 — ayza lz_axay-

The minimizer of (7) satisfies the Euler equations
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_ 0B OB . 0P
~ T ox Vo (2-v) ay ’
0= _yIPu_ 9P 9Pr2 @)

0y_0y_(_)c9x

t2
Fop = (a+vb)Bi1+ (va+b)Bao+2(1— v)cBro+ 1—2A2w,

dZ 02 . . . . .
whereA = 5t a2 1S the usual two-dimensional Laplacian. These equations to
gether constitute a system of total order eight and they eaxpressed equivalently
as thefundamental shell equation

t2
1—2A4W+ (1—v?)A2w=FA%%, (9)
whereAn, is a second order partial differential operator which repri's membrane
forces and is defined as
9° 9° 9°
Ap=a—=— +b=— —2c——.
M7 gy2 * ax2 axoy
In view of (4) and the usual classification of differentialeogtors, the operatd,
is called elliptic/hyperbolic/parabolic in accordancetwihe geometric nature of
the middle surface &. Note also that whea =b = c =0, Eq. (9) reduces to the
well known biharmonic equation representing the bending @it plate under a
concentrated load.
To get an understanding of the curvature effects that couplabrane and bend-
ing action in shell deformations, we analyze solutions 9ftf@t can be expanded
as Fourier series of the form

[ee]

w(xy) = 3 Wmcos((m—3)mx)cos((n—3)my). (10)

mn=1

Actually, this form was used already in [5], where we introdd a set of benchmark
problems for the numerical evaluation of finite element athms.
Assume now thal = (0,0) so that

Fop(xy) =F i cos((m— 2)mx) cos((n—3)my).

mn=1

By using the shorthand notatidi = (m— %)n andN = (n— %)n, we may write
formally A = —M? — N? andAn, = —aN? — bM? — 2cMN in (9); hence, the Fourier

coefficients of the transverse deflection are given by

12F (M2 4+ N?)?
(M2 4N2)4 4+ 12(1 — v2)(aN2 4+ bM2 4- 2cMN)2*

Won = (11)
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We consider three model cases where the curvature paraadier are chosen
as follows

1.a=b=1/R&c=0 (Elliptic shell)
2.c=1/R& a=b=0 (Hyperbolic shell, characteristic lings= 0 & y = 0)
3.b=1/R& a=c=0 (Parabolic shell, characteristic line= 0)

Let us study first the asymptotic limit solutions tat= 0. In the classical shell-
membrane theory one usually sets 0 in (8) and then solves the system of equa-
tions by carefully relaxing the boundary and regularityaitions onu. Here we do
nicely by expanding the Fourier coefficients (11) at 0 as follows:

1-v
_ FRZ (1, 1M%2 | 1N?
2. Won = 1= (§+ZW+ZM—

2. Wix.y) = £5, (33(x.Y) + Iyl — 1)8"(y) + (X — 1)5"(x)
3. W(xy) = ff,zz (3P (%,Y) + 3 (x| = 1)8"(y) + 75 (X3 — 3x*+2)8"(y))

Assume next that= ﬁ). We show in Figs. 1 and 2 contour plots of the deflec-
tion win the hyperbolic and parabolic cases with the parameteegadet aR = 1,

V= % andF = —1. These results have been obtained by truncating the Feeries
(10), (11) atm= n = 1000. We observe that in different shell geometries the main
features of the deformations are rather similar cloge, out highly different away
from P.

This behavior can be anticipated also from the Fourier ceffts (11). Namely,
the curvature effects do not interact significantly with Feumodes that vary in
length scales< /Rt ~ 0.03, but come into play wheh? 4+ N2 ~ & basically in
the same way in any shell geometry. Concerning longer lescgles, i.e. Fourier
modes withM,N < \/iﬁ, we may reason as follows. In the hyperbolic case one finds
that

12FM?2
t2M6 + 48(1 — v2)R-4’

whenN ~ R1 so thatWm grows withM until M ~ v/R-2t—T and the same holds
when the roles oM andN are exchanged. These properties are reflected in Fig. 1
as line layers decaying in the length scale VRt ~ 0.10 from the characteristic
lines. In the parabolic case we have

Wn'*nN

12FN4
t2N8 4+ 12(1— v2)R 6

Wn'*n"\-’

whenM ~ R™1 so that her&\i, grows withN until N ~ vR-3t1in accordance
with the line layer decaying in the length scéle- VR3t ~0.18in Fig. 2.
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3 Benchmark computations:h—FEM versus p—-FEM

In this section, we construct finite element approximattorthe fundamental solu-
tions in the hyperbolic and parabolic cases. Since the iitippof the Kirchhoff-
Love constraints (6) in a finite element space is rather cmatgld, we take the
5-field model (1)—(5) as our starting point here. We appr@téeach displacement
component separately in the same way by using a standarar $tate element
spacevh, , C H1(Q) associated to subdivision 6 = (—1,1) x (—1,1) into rect-
angular elements with side length at mbstnd shape functions spanning all poly-
nomials of given degrep, p > 1. On the boundaryg Q, we impose as kinematic
constraints the symmetry/antisymmetry conditions cqesling to (10), cf. [5].

We start by setting up two rectangular ‘macroelement’ mgsing2 based on the
specific structure of the solution in hyperbolic and parabodses, see Fig. 3. Our
goalis to find out which is more efficient way to increase thmuaacy of the approx-
imation: raising the polynomial degrgawithin each macroelement or decreasing
in the lowest-order cas@ & 1) by refining the mesh.
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Fig. 3 Macroelement meshes
for hyperbolic and parabolic
shells at = &

In the latter approach involvingilinear shape functions, we modify the trans-
verse shear strains as
p1— [xp1, p2— llypo,

whereflly andlly are defined elementwise as averaging operators in the cabedi
direction indicated by the subscript so as to awbiehr locking. Among the possible
numerical tricks aiming at avoidingembranelocking, we choose the one where the
membrane strains are computed using the plane elastinstai:

Br1— MxBr1+CRW,  Bop — IyBr2+ CRW,

Bio— % ( g8+ 0¥+ T, w+ cyw-+ aRw+ bRyw) .
Here Ry, R, are certain difference operators, see [2, 3, 4] for moreildeta this
formulation and its relation to current engineering preeti

We compare the above strategies by setfing 12 in the ‘p-version’ and by
subdividing each macroelement uniformly into 64 rectasgfethe h-version’ so
that we have approximately 12000 degrees of freedom in kastesc The results of
benchmark computations are reported in Figs. 4—6 showmgansverse deflection
along the linex = % as well as along the characteristic lige= 0 in hyperbolic
and parabolic shell geometries. The results show thattversion’ is here clearly
inferior to the ‘p-version’ — especially in resolving the line layer in hypelib

geometry. In view of the theoretical predictions in [4] &g not so surprising.
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-100 -1500
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
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Fig. 4 Hyperbolic & Parabolic shells: Comparison of different tnads along the ling = %
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Fig. 5 Hyperbolic shell: Comparison of different methods along ¢haracteristic ling = 0.
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Fig. 6 Parabolic shell: Comparison of different methods alongctieracteristic lingg = 0.
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