
Mika Mäntylä, Jari Vanhanen, and Casper Lassenius. 2003. A taxonomy and an initial
empirical study of bad smells in code. In: Proceedings of the 19th International
Conference on Software Maintenance (ICSM 2003). Amsterdam, The Netherlands.
22­26 September 2003, pages 381­384.

© 2003 IEEE

Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of Helsinki University of
Technology's products or services. Internal or personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs­permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

mailto:pubs-permissions@ieee.org

A Taxonomy and an Initial Empirical Study of Bad Smells in Code

Mika Mäntylä, Jari Vanhanen, Casper Lassenius

Helsinki University of Technology
Software Business and Engineering Institute

P.O. Box 9600, FIN-02015 HUT, Finland
mika.mantyla@soberit.hut.fi, jari.vanhanen@hut.fi, casper.lassenius@hut.fi

Abstract

This paper presents research in progress, as well as
tentative findings related to the empirical study of so
called bad code smells. We present a taxonomy that cate-
gorizes similar bad smells. We believe the taxonomy
makes the smells more understandable and recognizes the
relationships between smells. Additionally, we present our
initial findings from an empirical study of the use of the
smells for evaluating code quality in a small Finnish
software product company. Our findings indicate that the
taxonomy for the smells could help explain the identified
correlations between the subjective evaluations of the
existence of the smells.

1. Introduction

Software system quality typically degenerates as the
system is subjected to changes during the course of its
lifetime. Successfully maintaining such a system demands
that in addition to adding new functionality, existing code
must be continuously refactored, i.e., improved without
adding functionality.

The importance of refactoring has been recognized in
the software product business. In [5] the researchers de-
scribe how Microsoft uses 20% of its development effort
to re-develop the code base of its products. In [6] we can
learn how Netscape’s inability to refactor their code base
hindered their software development, and how Micro-
soft’s redesign efforts in Internet Explorer 3.0 project
later paid off.

As an aid in identifying problematic code in object-
oriented (OO) context, Fowler and Beck introduced 22
software structures as indicators of bad code, which they
called “bad smells” [9]. These bad smells are supposed to
help software developers in deciding when software needs
refactoring.

To our knowledge no studies have been published in
which bad smells would have been used as a basis for

subjective code evaluation. Development level Anti-
Patterns [2], which have some overlap with bad code
smells, also seem to be lacking academic research.

In this paper we describe our initial efforts at empiri-
cally studying the bad smells. Thus, despite the very ten-
tative findings of this paper, we hope that it helps stimu-
late more empirical research aiming at critically evaluat-
ing, validating and improving our understanding of sub-
jective indicators of bad code quality.

2. Related work

Despite the fact that we found no studies directly
studying the 22 bad smells presented in [9], earlier work
has looked at several related topics. These are briefly
summarized below.

The link between the structure of the software and
maintainability is established in [14]. The study shows
that software structure, which was measured using source
code metrics, could predict maintainability of the soft-
ware. Another study also shows that source code metrics
and perceived maintainability have a correlation [10]. A
study on measuring maintainability of OO systems shows
that OO measures can predict maintainability [12]. Impor-
tant work regarding software systems maintainability is
also the construction of the maintainability index [3,4],
which combines source code metrics and developers’
opinions.

Some work has been done to automatically detect
structures in the system that need refactoring. Some stud-
ies have focused strictly on clone detection or reduction,
see [1,8] for more references. In [15] the researchers fo-
cused on automatically detecting and visualizing low co-
hesion in methods, attributes or classes, which act as a
motivation for four refactorings. Katoka et al. [11] use an
invariant detection tool to find the candidate spots for four
possible refactorings. Touwré and Mens [17] use meta
logic programing to find two code smells, which they
called Obsolete Parameter and Inappropriate Interfaces.
Some studies [7,13] have also used the historical data to

identify the spots, where programmers have made
changes or refactorings to the software.

3. Smell taxonomy

This chapter briefly introduces the bad code smells
identified by Fowler and Beck [9] and proposes a higher
level taxonomy for classifying them. The original authors
present the 22 bad smells in a single flat list and do not
provide any classification of the smells. Since several
smells are closely related and the number of the smells is
quite high, we feel that this taxonomy, which categorizes
similar bad smells, is beneficial. We believe that the tax-
onomy makes the smells more understandable and recog-
nizes the relationships between the smells. The classes we
propose are: bloaters, object-orientation abusers, change
preventers, dispensables, encapsulators, couplers, and
others.

3.1. Bloaters
Bloaters represent something in the code that has

grown so large that it cannot be effectively handled. The
smells in the Bloater category are: Long Method, Large
Class, Primitive Obsession, Long Parameter List, and
Data Clumps. In general it is more difficult to understand
or modify a single long method than several smaller
methods. The same kind of argument holds also for Long
Parameter List and Large Class. Primitive Obsession does
not actually represent a bloat, but is a symptom causing
bloats, because it refers to situations in which the logic
handling the data appears in large classes and long meth-
ods. For Data Clumps we could also argue that it should
be in the Object-Orientation Abusers, because in theory a
class should be created from each Data Clump. However,
since Data Clumps often appear with the Long Parameter
List smell we have decided to include it in this category.

3.2. Object-Orientation Abusers
The smells in the Object-Orientation Abuser category

are: Switch Statements, Temporary Field, Refused Be-
quest, Alternative Classes with Different Interfaces, and
Parallel Inheritance Hierarchies. This category of smells
is related to cases where the solution does not fully ex-
ploit the possibilities of OO design. In Switch Statements
smell type codes are used and detected using switch state-
ments. In OO software design the need for type codes
should, however, be handled by creating subclasses. The
Parallel Inheritance Hierarchies and Refused Bequest
smells lack proper inheritance design, which is one of the
key elements in OO programming. The Alternative
Classes with Different Interfaces smell lacks a common
interface for closely related classes, so it can also be con-
sidered a certain type of inheritance misuse. The Tempo-
rary Field smell means a case where a variable is in the
class scope, when it should be in the method scope. This

violates the information hiding principle.

3.3. Change Preventers
The third category of smells refers to code structures

that considerably hinder the modification of the software.
The smells in the Change Preventers category are: Diver-
gent Change and Shotgun Surgery. The key is that accord-
ing to [9] the classes and the possible changes need to
have a one-to-one relationship, e.g., one class that is
modified when a database is changed, another class which
is modified when new sorting algorithms are added. The
smells in this category violate this principle. The Diver-
gent Change smell means that we have a single class that
is modified in many different types of changes. The Shot-
gun Surgery smell is the opposite. There we need to mod-
ify many classes when making a single change to a sys-
tem.

3.4. Dispensables
The smells in the Dispensables category are Lazy

Class, Data Class, Duplicate Code, and Speculative Gen-
erality.
These smells represent something unnecessary that should
be removed from the code. Classes that are not doing
enough need to be removed or their responsibility needs
to be increased. Data Class and Lazy Class represent such
smells. Also unused or redundant code needs to be re-
moved, which is the case with Duplicate Code and Specu-
lative Generality.

Interestingly, Fowler and Beck [9] do not present a
smell for dead code. We find this quite surprising, since in
our experience it is a quite common problem. Dead code
is code that has been used in the past, but is currently
never executed. Dead code hinders code comprehension
and makes the current program structure less obvious.

3.5. Encapsulators
The Encapsulators deal with data communication

mechanisms or encapsulation. The smells in the Encapsu-
lators category are Message Chains and Middle Man. The
smells in this category are somewhat opposite, meaning
that decreasing one smell will cause the other to increase.
Removing the Message Chains smell does not always
cause the Middle Man smell and vice versa, since the best
solution is often to restructure the class hierarchy by mov-
ing methods or adding subclasses. Naturally, one could
argue that the Message Chains smell belongs in the Cou-
plers group and that the Middle Man smell belongs in the
Object-Orientation Abusers. We believe that in order to
get a better understanding of these smells they should be
introduced together, because they both deal with the way
objects, data, or operations are accessed.

3.6. Couplers
There are two coupling related smells, which are Fea-

ture Envy and Inappropriate Intimacy. The Feature Envy
smell means a case where one method is too interested in
other classes, and the Inappropriate Intimacy smell means
that two classes are coupled tightly to each other. Both of
these smells represent high coupling, which is against the
OO design principles. Of course, here we could make an
argument that these smells should belong in the Object-
Orientation Abusers group, but since they both focus
strictly on coupling, we think it is better if they are intro-
duced in their own group.

3.7. Others
This class contains the two remaining smells Incom-

plete Library Class, and Comments that do not fit into any
of the categories above.

4. Empirical study

This section describes an initial empirical study on the
use of the bad smells for evaluating code quality, and
shows how the results support the presented taxonomy.

4.1. Description of the survey
We tested the use of the smells in practice by perform-

ing a survey directed at the developers of a small Finnish
software product company. In the survey we asked the
developers to evaluate the degree to which they thought
the smells existed in the different modules of the com-
pany’s software products. The size of the software mod-
ules varied between 15 and 80 KLOC, their age was 0-8
years and the language used was Delphi/Kylix. We used a
seven point Likert scale, with one indicating that a par-
ticular smell did not exist in the module at all and seven
representing a lot of the smell in the module. Of 18 devel-
opers, 8 regular developers and 4 lead developers re-
sponded to the survey. We received totally 37 module-
smell evaluations, i.e., data points where a developer had
evaluated a module. The average number of modules
evaluated by a developer was 3,08, varying from 2 to 6.

4.2. Correlations between smells
It seems natural that the existence of some smells

would correlate positively with some other smells while
others would have a negative correlation. In our small-
sample study we found negative correlations only with the
Primitive Obsession smell. Figure 1 shows only the
strongest (r > 0,575) and the most significant (p < 0,01)
correlations between the smells. Figure 1 also maps the
proposed taxonomy to the correlations.

It seems that Inappropriate Intimacy hooks the Change
Preventer smells together, since it has a strong correlation
with both of them. Change Preventers are also correlated
with each other, but the correlation is not as strong as the
correlation between them and the Inappropriate Intimacy

smell.
The Message Chains smell correlates with its opposite

smell Middle Man. This could be due to that both smells
indicate encapsulation or lack of it between objects and
can therefore be easily confused.

The Object-Orientation Abusers have high in-group
correlation. It would seem natural that Parallel Inheritance
Hierarchies causes Refused Bequest (a smell in which a
class does not support everything it has inherited), which
again explains the need to detect type codes with Switch
Statements. However, we can offer no explanation for the
very high correlation between Refused Bequest and
Primitive Obsession.

Long Method

Large Class

Primitive Obsession

Long Parameter List

Switch Statements Temporary Field

Divergent Change Shotgun Surgery

Lazy Class

Data Class

Message Chains

Middle Man

Feature Envy

Inappropriate Intimacy

Incomplete Library Class

Comments

0,751

0,586

0,593

0,583

0,672

0,715

0,626

0,645

0,690

0,664

Bloaters Couplers
Object-Orientation

Abusers
Change Preventers

Encapsulators

0,613

0,594

0,578

0,596

 - 0,736

0,612

Dispensables Others

Parallel Inheritance
Hierarchies

Alternative Classes with
Different Interfaces

Speculative
Generality

Duplicate Code

Dead Code

Data Clumps

Refused
Bequest

Figure 1. Spearman correlations between smells

(r > 0,575 and p < 0,01) and the taxonomy
No support for the claims in [9] about the correlation

of the Large Class and Duplicate Code smells was found.
However, we must bear in mind that Duplicate Code is
difficult to spot and that the developers’ opinions might
be biased.

In Figure 1, we can identify two more distinct groups.
One is formed around the Couplers and the Large Class
smell. The other group seems to be formed around the OO
abusers and dispensable classes. One could speculate that
large classes and an inability to minimize coupling could
cause the first group. The second group seems to focus
around poor inheritance usage and dispensable classes.
This indicates that understanding when and how to use
inheritance and remembering the two basic principles of
minimizing coupling and maximizing cohesion [16] helps
prevent smells.

It also appears that the taxonomy helps to capture
strong correlations within groups. Figure 1 shows that 8
correlations are within the proposed groups but there are
also 8 correlations between groups. Since we had 23

smells in our survey (22 from [9] and Dead Code that was
discussed in Section 3.4), this results to 253 correlations
between all the smells. The total number of correlations
within all groups is 34. The total number of between
group correlations is naturally 253-34= 219. This means
that 23,53% (8/34) of the total amount of within-group
correlations are strong, whereas only 3,65% (8/219) of
between-group correlations are among the strongest. This
result seems to indicate that the theoretical taxonomy is
also supported by the correlations between the code
smells.

5. Conclusions and future work

This paper makes two contributions. First, it proposes
a subjective taxonomy that categorizes similar bad smells.
We feel that this taxonomy makes the smells more under-
standable than the single flat list of 22 bad code smells
that was presented in [9]. The taxonomy also helps to
recognize the relationships between smells. This taxon-
omy is initial, so it probably has weaknesses and needs to
be improved in the future. For instance, one could group
the smells based on the structure that the smells effect,
i.e., some smells exist on the methods (e.g. Long Method,
Feature Envy), while others exist in classes (e.g. Large
Class, Lazy Class), and some smells appear in the rela-
tionships between classes (Message Chains, Inappropriate
Intimacy). This type of approach would probably result in
a different taxonomy than the one proposed here.

The second contribution comes from the empirical
study, which provides initial correlations between the
smells. These correlations can help us understand how
different smells are connected to each other. Also, since
some smells can be measured with tools, the correlations
could be useful in indicating the presence of the smells
that cannot be discovered automatically. The taxonomy
for the bad code smells, which is based on subjective but
logical groups, seems to be useful in analyzing the smell
correlations. This paper also shows that a much greater
deal of within group correlations are strong, when com-
pared to between-group correlations.

This paper has described ongoing research on bad code
smells. In the future we plan to study how the demo-
graphic data explains the smell evaluations, and the corre-
lation between various source code metrics and smell
evaluations. We feel that controlled experiments are also
needed with smaller and pre-examined software modules,
because in some cases there were great fluctuations be-
tween the smell evaluations of different people for the
same module.

References

 [1] Balazinska, M., Merlo, E., Dagenais, M., Lague, B., and
Kontogiannis, K., "Advanced clone-analysis to support object-

oriented system refactoring", IEEE, Proceedings of Seventh
Working Conference on Reverse Engineering, 23.11.2000, pp.
98-107.

 [2] Brown, W. J., Malveau, R. C., McCormick, H. W., and
Mowbray, T. J., AntiPatterns Refactoring Software, Architec-
tures, and Projects in Crisis, New York: Wiley, 1998.

 [3] Coleman, D., Ash, D., Lowther, B., and Oman, P. W.,
"Using Metrics to Evaluate Software System Maintainability,"
Computer, vol. 27, no. 8, 1994, pp. 44-49.

 [4] Coleman, D., Lowther, B., and Oman, P. W., "The Applica-
tion of Software Maintainability Models in Industrial Software
Systems," Journal of Systems and Software, vol. 29, no. 1, 1995,
pp. 3-16.

 [5] Cusumano, M. A. and Selby, R. W., Microsoft Secrets, USA:
The Free Press, 1995.

 [6] Cusumano, M. A. and Yoffie, D. B., Competing on Internet
Time, New York, USA: The Free Press, 1998.

 [7] Demeyer, S., Ducasse, S., and Nierstrasz, O., "Finding
refactorings via change metrics", ACM Press, Proceedings of
the conference on Object-oriented programming, systems, lan-
guages, and applications, 15.10.2000, pp. 166-177.

 [8] Ducasse, S., Rieger, M., and Demeyer, S., "A language
independent approach for detecting duplicated code", Proceed-
ings of the International Conference on Software Maintenance,
30.8.1999, pp. 109-118.

 [9] Fowler, M. and Beck, K., "Bad Smells in Code," Refactor-
ing: Improving the Design of Existing Code Addison-Wesley,
2000, pp. 75-88.

 [10] Kafura, D. G. and Reddy, G. R., "The Use of Software
Complexity Metrics in Software Maintenance," IEEE Transac-
tions on Software Engineering, vol. 13, no. 3, 1987, pp. 335-
343.

 [11] Kataoka, Y., Ernst, M. D., Griswold, W. G., and Notkin,
D., "Automated support for program refactoring using invari-
ants", IEEE, Proceedings of International Conference on Soft-
ware Maintenance, 7.11.2001, pp. 736-743.

 [12] Li, W. and Henry, S. M., "Object-Oriented Metrics that
Predict Maintainability," Journal of Systems and Software, vol.
23, no. 2, 1993, pp. 111-122.

 [13] Maruyama, K. and Shima, K., "Automatic method refactor-
ing using weighted dependence graphs", IEEE, Proceedings of
the 1999 International Conference on Software Engineering,
16.5.1999, pp. 236-245.

 [14] Rombach, D. H., "Controlled Experiment on the Impact of
Software Structure on Maintainability," IEEE Transactions on
Software Engineering, vol. 13, no. 3, 1987, pp. 344-354.

 [15] Simon, F., Steinbruckner, F., and Lewerentz, C., "Metrics
based refactoring", IEEE, Proceedings Fifth European Confer-
ence on Software Maintenance and Reengineering, 14.3.2001,
pp. 30-38.

 [16] Stevens, W., Myers, G., and Constantine, L., "Structured
Design," IBM Systems Journal, vol. 13, no. 2, 1974, pp. 115-
139.

 [17] Touwré, T. and Mens, T., "Identifying refactoring opportu-
nities using logic meta programming", IEEE, Proceedings of
the Seventh European Conference on Software Maintenance and
Reengineering, 2003, 26.3.2003, pp. 91-100.

