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Abstract 

Recent trends in software development have empha-
sized the importance of refactoring in preserving soft-
ware evolvability. We performed two experiments on 
software evolvability evaluation, i.e. evaluating the 
existence of certain code problems called code smells 
and the refactoring decision. We studied the agreement 
of the evaluators. Interrater agreement was high for 
simple code smells and low for the refactoring deci-
sion. Furthermore, we analyzed evaluators’ demo-
graphics and source code metrics as factors explaining 
the evaluations. The code metrics explained over 70% 
of the variation regarding the simple code smell 
evaluations, but only about 30% of the refactoring 
decision. Surprisingly, the demographics were not use-
ful predictors neither for evaluating code smells nor 
the refactoring decision. The low agreement for the 
refactoring decisions may indicate difficulty in build-
ing tool support simulating real-life subjective refac-
toring decisions. However, code metrics tools should 
be effective in highlighting straightforward problems, 
e.g. simple code smells. 

 

1. Introduction 

Software evolvability – the ease of further developing 
software – is an important quality attribute greatly dic-
tating the future potential of any software system. In 
the past there was a strong emphasis on up-front-
design for ensuring software evolvability. However, 
recent trends such as agile software development and 
extreme programming have highlighted refactoring – 
modifying the internal structure of software without 
affecting its observable behaviour – as a key factor for 
ensuring software evolvability. For example, Microsoft 
has recognized the constant need to modify existing 
software structure to ease future development. There-
fore, Microsoft’s Office division determined that 20% 
of development effort should be budgeted to code 
modification (pp. 280-281[3]). 

An important issue concerning software evolvability 

is the decision when to perform refactoring. It seems 
likely that wrong refactoring decisions can do more 
harm than good. Fowler and Beck have come up with a 
term called code smell [4] to help software developers 
in recognizing problematic code. These code smells are 
general descriptions of bad code that are supposed to 
help software developers decide when the code needs 
refactoring. Fowler and Beck [4] claim that exact crite-
ria for refactoring decisions cannot be given: “no set of 
metrics rivals informed human intuition”.  

Thus, humans play an important role in making 
software refactoring decisions. Still, most of the work 
around refactoring has focused on tools and metrics, 
see [11] for details. There are a limited number of em-
pirical studies and controlled experiments studying 
subjective software evolvability evaluation, i.e. refac-
toring decisions and the evaluation of the existence of 
code smells. We studied this topic at the source code 
method level. Two experiments were made with a dif-
ferent set of students in each. The participants evalu-
ated the existence of certain code smells for each 
method and then stated whether the method should be 
refactored or not. Our first objective was to assess the 
interrater agreement, i.e. the extent to which evaluators 
agree. High interrater agreement is a positive indica-
tion of the reliability of the subjective evaluations. 
Lack of interrater agreement can mean that some 
evaluators are mistaken in their evaluations. The sec-
ond objective was to study how factors, such as the 
evaluated code itself and the background of the evalua-
tors, affect the evaluations. An analysis of these factors 
can help us find predictors for the code smell evalua-
tions and the refactoring decisions, which can be used, 
e.g. in building tool support. 

Section 2 summarizes the prior work on subjective 
evaluation of software evolvability. Section 3 presents 
the methodology. Section 4 introduces the results, and 
Section 5 presents the discussion. Finally, Section 6 
provides the conclusions and direction for future work.  

2. Related work 

Shneiderman et al. (pp. 134-138 [15]) reported results 



 

from using peer reviews in software code quality 
evaluation. They conducted three peer-review sessions 
each having five professional programmers with simi-
lar background and experience. Each programmer pro-
vided one of their best programs, which was then 
evaluated by the four other participants. The review 
was performed by answering 13 questions on a seven 
point ordinal scale. The questions varied from blank 
line usage and the chosen algorithm to the ease of fur-
ther development of the program. The results showed 
that in half of the evaluations three out of four pro-
grammers agreed on the subjective evaluations (an-
swers differed by one at most). However, in 43,1% of 
the evaluations the range was two or less. The re-
searchers tried to explain this by speculating that the 
subjects misunderstood the questions or the scale. 
However, the study does not account for factors, such 
as differences in developers’ opinions about the pro-
gram design, structure, and style that also might ex-
plain the results. 

Kafura and Reddy [7] studied the relationship be-
tween software complexity metrics and software main-
tainability. Maintainability was measured using subjec-
tive evaluations by system experts. However, no details 
are given on how these evaluations were collected 
from the individuals, and no data is provided of the 
evaluations. Therefore, it is difficult to assess the study 
any further. Regardless, the researchers conclude that 
the expert evaluations on maintainability were in con-
formance with the source code metrics. 

Shepperd [14] validated the usefulness of informa-
tion flow metrics on software maintainability by col-
lecting the subjective opinions of the maintainers for 
89 modules of aerospace software that totalled around 
30 000 lines of code. Each developer of the mainte-
nance team was individually asked to classify each 
module from one to four on an ordinal scale on the 
perceived difficulty of a hypothetical maintenance task. 
For 73% of the modules the range was one or less, and 
thus the researchers concluded that there was a strong 
correspondence between the individual evaluations. 
However, as no detailed data is given, it is difficult to 
assess the study in more detail.  

Oman et al. [13, 16] report on the construction of a 
maintainability index. In this work the researchers used 
source code metrics to create polynomial regression 
models that measured software maintainability. They 
calibrated the maintainability models according to how 
well they correlated with the subjective evaluations of 
software maintainers. To do this the researchers ac-
quired source code and maintainers’ opinions on eight 
industrial software systems, ranging from 1000 to 10 
000 lines of code [13]. After calibration, they per-
formed a validation study where they again acquired 
opinions and source code on six industrial systems. In 

the validation study they also saw discrepancies where 
one engineer was more lenient and other more critical 
to the systems they were evaluating. Although the 
study [13] does not directly report this, it seems that 
there was only the opinion of a single individual per 
software system that was used in the initial creation of 
the metric and the validation performed. Therefore, it 
is difficult to effectively study the differences in hu-
man maintainability evaluations. However, the re-
searchers continued in tuning their maintainability 
measure and performing tests on several industrial sys-
tems. Finally, the researchers concluded that the auto-
matic assessment corresponds well to the perceived 
view of the experts [16]. 

Kataoka et al. [8] studied the usefulness of improv-
ing the software quality with refactoring and report on 
a comparison between human evaluation and software 
metrics. According to the researchers, the subjective 
evaluation of an expert on the effectiveness of refactor-
ings correlated quite well with the improvement in 
coupling metrics. The drawback in the study is that the 
data set consists only of five refactoring cases and that 
only one developer evaluated the effectiveness of the 
refactorings. 

Genero et al. [6] studied the maintainability of 
UML-class diagrams. The researchers show that sub-
jective evaluation of understandability, analyzability, 
and modifiability of UML-diagrams correlated with 
various class level metrics. In a follow-up study [5] 
they show correlation between  subjective complexity 
evaluation and both the time required to understand the 
UML-diagram (0,242), and objective code metrics 
based diagram classification (0,539). However, these 
studies are made with UML-diagrams and they also 
lack results on the interrater agreement of the evalua-
tions. 

Mäntylä et al. [10] studied code smell evaluations of 
twelve industrial developers. They discovered the de-
velopers make conflicting evaluations of the source 
code. They also discovered inconsistencies when com-
paring the evaluations to source code metrics. The 
weaknesses of the study are that the developers’ 
evaluations were based on recollection of the modules 
they had primarily worked with, and the large size of 
the evaluated modules (between 15 and 65 thousand 
lines of code). 

Five out of the seven referred studies are not made 
with object-oriented code, and there are drawbacks in 
the two studies made with object-oriented software. 
The drawback in [8] is that the data set consists only of 
five refactorings and that only one developer evaluated 
the effectiveness of the refactorings. In [10] there were 
limitations with using module level evaluations and 
basing the evaluations on recollections of the modules 
the developers had primarily worked with. Thus, there 



 

is ample research space to be filled. 

3. Methodology 

Section 3.1 presents the research problem. Section 3.2 
presents the experimental setting. Section 3.3 intro-
duces the methods used to analyze the data.   

3.1. Research problem and questions 
The research problem of this study is: Do human 
evaluations of software evolvability differ from one 
another, and what are the explaining factors behind 
the evolvability evaluations. First, the research problem 
inquires whether there are differences between human 
evolvability evaluations. Second, it seeks to explain the 
factors behind the evolvability evaluations. Thus, the 
research problem was further divided to two research 
questions.  

The first research question studies the interrater 
agreement of the evolvability evaluations. Research 
question 1: Is there an interrater agreement in subjec-
tive evolvability evaluation? When studying interrater 
agreement we must first consider whether there should 
be interrater agreement between evaluators. When ask-
ing people for the best way to spend their holiday, we 
might not expect high interrater agreement as people 
are likely to favour different holiday plans. However, 
we might expect high interrater agreement when we 
look at the judges of figure skating contests. Thus, the 
purpose of interrater agreement analysis is to study the 
amount of agreement between evaluators’ evolvability 
evaluations. The hypothesis is high interrater agree-
ment for all the three code smells evaluated and for the 
refactoring decision.  

The second research question studies possible fac-
tors explaining the evolvability evaluations. In this 
study we have focused on factors from two primary 
sources: code metrics and evaluators’ demographics.   
Research question 2: How much of the evolvability 
evaluation of a software element can be explained by 
the measurable characteristics of the software element 
and the evaluator demographics? The hypothesis is 
that characteristics of the evaluated element and the 
evaluators’ demographics can explain most of the 
variation in the evaluations. The software element 
characteristics are expected to have greater impact than 
the demographic data.  

3.2. Experimental setting 
Two experiments with some differences were made. 
We refer to them as Experiments A and B. Experiment 
A was made first and Experiment B was performed a 
year later. Both experiments had identical software and 
documentation on which the evaluators based their 
evaluations.  

 
3.2.1. Software under study. A small Java application 
with nine classes and 1000 NLOC of code was created 
for these experiments. To ensure fluctuation in the 
evaluations, some pieces of the software were pro-
grammed poorly on purpose. The application was a 
family tree modelling software operating on relation-
ships like spouse, parent, and child. Family tree model-
ling was chosen because the domain knowledge re-
quired in understanding the application is pretty sim-
ple. Ten methods were selected as the software ele-
ments for the evaluation.  
 
3.2.2. Viewpoints of subjective evaluations 
Experiment A. Four questions of each method were 
presented to get different viewpoints of the subjective 
evaluations. Three of the four questions focused on the 
existence of the following code smells [4]: Long 
Method, Long Parameter List, and Feature Envy, 
which were chosen because they can be studied at the 
method level. The fourth question asked if the method 
should be refactored to remove the smells.  

Long method means that a method is too long and 
tries to perform many possibly unrelated operations. 
This means that the method has low cohesion which 
makes it difficult to reuse. Long parameter list means 
that a method is taking too many parameters. Long 
parameter lists are difficult to understand and they are 
continuously changing, as the data needed by the 
method is varying. Feature envy means that a method 
is more interested in other classes than the class it is 
currently located in. A method with the Feature Envy 
smell should be moved to a class that the method is 
mainly operating with. 

Experiment B. In the second experiment no prede-
termined viewpoints for subjective evolvability evalua-
tions were given, i.e. the existence of the smells was 
not asked. Instead the evaluators were asked only if the 
method was in such a state that it should be refactored.  

 
3.2.3. Evaluators. The evaluators of both experiments 
were students of the Software Testing and Quality As-
surance course at Helsinki University of Technology 
(HUT) in fall semesters 2003 and 2004. Thus, both 
experiments had a unique set of similar evaluators. The 
evaluators of both experiments are introduced below. 
Table 1 summarizes the most important demographic 
variables and shows that the evaluators in the experi-
ments were similar. 

Experiment A. In fall 2003, the course had 82 stu-
dents, and 51 of them participated in the experiment. 
We rewarded the participants by extra points. Five 
outlier evaluators were removed from these 51 students 
based on their answers, e.g. one evaluator acclaimed 
that there was a lot of Long Parameter List smell when 



 

the method had no parameters.      
The evaluators were studying for a M.Sc. degree 

that requires a minimum of 180 credits. The study 
times at HUT fluctuate greatly. Thus, we measured the 
number of credits rather than number of years studied.  
On average the students had 115 credits indicating they 
had completed approximately two thirds of their stud-
ies. 89,1% (41/46) of the students had between 70 and 
158 credits.  

Many HUT students also work in the software in-
dustry during their studies. Therefore, the work experi-
ence in software development was asked. 13 evaluators 
(28,3%) had no software development work experi-
ence, but 27 (58,7%) of the evaluators had a year or 
more work experience in software development.  

Other demographic data collected was: number of 
years studied, department and main subject of study, 
subjective evaluation of their knowledge of Java and 
UML, subjective evaluation of programming ability 
against other HUT students, and the perceived impor-
tance of good program structure.   

Experiment B. In fall 2004 37 students participated 
in the experiment. The students were given extra points 
based on the quality of the rationales they provided in 
the experiment. One outlier student was removed based 
on the non-sense rationales given.   

The evaluators had an average of 124 credits. 86,1% 
(31/36) of the students had between 80 and 160 credits. 
The mean programming related work experience was 
1,8 years. Eight students (22,2%) had no work experi-
ence, but 21 students (58,3%) had a year or more pro-
gramming work experience. 

Additional demographics collected were: grades of 
programming courses, subjective evaluation of their 
knowledge of Java and UML, subjective evaluation of 
programming ability against other HUT students, ex-
perience in software maintenance, and the perceived 
importance of good program structure.  

Table 1 Evaluators of the experiments 
 Experiment A Experiment 

B 
N 46 36 
One year or more software 
development work experience 58,7% 58,3% 

Credits (mean (std. dev) / 
min-max)  

115 (31,2) / 
34-187,5 

125 (38,3) / 6-
199 

Years of work experience 
(mean (std. dev) / min-max) 

1,6 (1,76) / 1 / 
0-7 

1,9 (2,91) / 1 / 
0-15 

 
3.2.4. Source code metrics. We selected source code 
metrics to analyze the software elements based on suit-
ability to measure the studied smells and their recogni-
tion in the literature. From size metrics we calculated 
Lines of Code (LOC), Number of Parameters (Par) and 
Cyclomatic Complexity (CC). We measured coupling 

with the Number of Remote Methods called (NR) and 
the number of couplings between a method and objects 
(CBO). Finally, we measured fan-out (FO) that is the 
number of reference types used in formal parameters, 
throws declaration, and local variables. The results are 
in Table 2.  

Table 2. Code metrics of the methods  
Method Metrics 

 LOC Par CC CBO NR FO
DiskManager.readFromDisk 67 1 11 5 16 4 
DiskManager.writeToDisk 48 1 7 6 23 7 
FamilyFrame.addRelationClicked 20 3 6 4 6 1 
FamilyFrame.FamilyFrame 84 0 1 13 17 3 
Person.dateOfBirthEquals 24 1 2 1 3 1 
Person.getChildren 9 0 3 4 7 3 
Person.illegalRelation 46 1 12 5 8 3 
PersonTableModel. 
applyChangesToPerson 11 4 1 2 5 1 

PersonTableModel.personMatch 19 6 1 1 6 2 
PersonTableModel.searchPersons 21 5 3 2 5 4 
 
3.2.5. Experiment material and evaluation session. 
Experiment A. The responses were collected with a 
survey form containing the methods under evaluation. 
All the survey forms were unique as the methods were 
placed in random order for each. Additionally, descrip-
tions of the smells and a UML-diagram of the software 
were handed out. 

The evaluators evaluated how much of each smell 
existed in each of the methods. The question was Do 
these smells exist in the method below? and it was 
evaluated with a seven point ordinal scale with one 
standing for Not at all and seven standing for Yes very 
much. A question about refactoring was also presented; 
Would you refactor the method to remove the smells (in 
order to keep the software easy to understand and de-
velop further). This was answered with the following 
five point ordinal scale: 1-No, 2-Unlikely, 3-Maybe in 
the future, 4-Yes if the method needs further develop-
ment, 5-Yes, immediately.   

The experiment was run as a single lecture session, 
which took altogether about 70 minutes. It began with 
a 20-minute introduction lecture that covered general 
information about the subjective evaluations, ideas 
why good software structure is important, the exercise 
organization, and an explanation of the smells under 
evaluation. To guarantee that all the evaluators used 
the same amount of effort in evaluating each method, 
the evaluation time was restricted to five minutes, i.e. 
the evaluators were not allowed to proceed until they 
were instructed to do so. 

Experiment B. Experiment B was entirely web 



 

based. The instructions of the experiment consisted of 
the following: the task, explanation of refactoring and 
its benefits, the grading of the assignment, the esti-
mated effort required, the description of the evaluated 
software application with screen shots, the UML class 
diagram, the source code, and the executable applica-
tion. First, there was a set of demographic questions. 
Then the methods were presented with the question 
Would you refactor the method <in question> in order 
to keep the software easy to understand and develop 
further?  For the answers there were five options 1-No, 
2-Unlikely, 3-Maybe 4-Yes, later when the method 
needs further development, 5-Yes, immediately. In con-
nection with the questions there was a hyperlink to the 
source code of the method. The rationale for the 
evaluation was asked using a question: Explain your 
choice? If refactoring is needed, explain what and how 
the method should be refactored. If the method is OK, 
explain what desirable qualities the method possesses. 
If you answered Maybe also give your rationale.  

Experiment B did not have a lecture before the 
evaluators made their evaluations. The evaluators had 
received information about the software to be studied 
and the benefits of refactoring from a web page. Ex-
periment B did not ask the evaluators to search for 
smells or any other evolvability flaws in the software. 
Each evaluator participated in the experiment through a 
web-based survey, where they were able to browse 
back and forth while answering. The time spent to 
complete the survey was tracked by the web-based 
survey system. 

3.3. Data analysis 
This section presents the methods used to analyze the 
interrater agreement and the factors explaining the 
evaluations.  
 
3.3.1. Interrater agreement. The Kendall coefficient 
of concordance [9] which is referred to as W or Kend-
all’s W, can be used to study the agreement between 
three or more raters on several related samples. Other 
measures such as Kappa and Kendall’s Tau, can meas-
ure interrater agreement only between two raters and, 
therefore, were not applicable.  

Kendall’s W tells the amount of interrater agreement 
by a number between 0 and 1. If all raters agree W=1 
and W=0 implicates no agreement. Additionally, the 
statistical significance of the agreement was studied. 
High significance (p-value < 0.01) means at least par-
tial concordance among the raters.  

Interrater agreement can also be studied in other 
fields like ski-jumping. For a reference Kendall’s W 
was calculated from the first round results of the ski 
jumping world cup competition held in Oberstdorf, 
Germany at 29th December 2004. On that occasion the 

5 judges evaluating 50 jumps achieved Kendall’s W 
0,888 and asymptotic significance p-value 0,000.  
 
3.3.2. Factors explaining evaluations. Regression 
analysis was used to study how the method characteris-
tics and the evaluators’ demographics affected the 
evaluations. The data was in various scales (nominal, 
ordinal, interval), and therefore could not be analyzed 
using classical linear regression. The data was ana-
lyzed using categorical regression that is available in 
the SPSS™ software. Categorical regression is 
founded on optimal scaling, which turns nominal and 
ordinal variables into linear variables [12].  

Several regression models were created for each of 
the predicted (dependent) variables that were the 
evaluations of the existence of three code smells and 
the refactoring decision. The first model (called the 
MetDem model) used the source code metrics of the 
methods and the demographics of the evaluators as 
predictor (independent) variables. The second model 
contained only the demographics and the third model 
only the source code metrics of the method. In Ex-
periment A an additional model was constructed that 
used the smell evaluations as predictor variables when 
predicting the refactoring decision.  

4. Results 

This section shows the results of the study. Discussion 
of the results and answers to the research questions are 
presented in Section 5.   

4.1. Interrater agreement  
Table 3 shows the results of the interrater agreement 
analysis. The evaluators had a high agreement on 
evaluations concerning the Long Method and Long 
Parameter List smells. The agreements concerning the 
Feature Envy smell and the refactoring decisions are 
considerably weaker. However, all W values are sig-
nificant indicating that the evaluators had at least some 
level of agreement. W values of the refactoring deci-
sion for both experiments are close to each other. The 
number of evaluations of evaluators varied from 44 to 
46 in Experiment A. In Experiment B there were 36 
evaluators’ evaluations. For all the cases the number of 
evaluated objects was 10.  
 

Table 3. Interrater agreement 
Question N W Sig. 
Exp A – Long Method 46 0,777 0,000 
Exp A – Long Parameter List 46 0,816 0,000 
Exp A – Feature Envy 44 0,238 0,000 
Exp A – Refactoring 45 0,353 0,000 
Exp B – Refactoring 36 0,397 0,000 



 

4.2. Explaining factors - regression analysis 
This section studies the factors explaining the evolva-
bility evaluations. 
 
4.2.1. Long Method. Regression models for the Long 
Method smell are in Table 4. From the table, we can 
see that the MetDem model, consisting of the source 
code metrics and evaluators’ demographics, explains 
74,6% of the evaluations. The MetDem model details 
revealed that the source code metrics were the most 
important predictors. Also the model with just the met-
rics, namely the Metric model, predicts 71,2% of the 
evaluations. However, the Demographic model, con-
taining the information about the evaluators’ back-
ground, is not able to effectively explain the evalua-
tions.  

Table 4. Long Method regression models 
Model Adj. R Square Sig. 
MetDem  0,746 0,000 
Metric  0,712 0,000 
Demographic  0,012 0,231 

 
As it seems that the metrics rather than the demo-

graphics explained most of the Long Method evalua-
tions it made sense to study them in more detail. In 
Table 5 we can see the predictor variables of the Metric 
model and their standardized betas, significance level 
of the F-values, and the correlation with the predicted 
variable.  
Table 5. Predictors in the Metric model for the 

Long Method smell evaluations 
Predictor Std. β Sig. Correl. 
Par -0,108 0,002 -0,509 
LOC 0,738 0,000 0,815 
CC 0,114 0,001 0,474 
FO 0,008 0,866 0,480 
NR 0,171 0,014 0,700 
CBO  -0,190 0,001 0,624 

 
Table 5 shows Lines of Code as the most important 

predictor in the model. The Lines of Code in this case 
meant that a single line is a single line of code regard-
less of the space usage or comments in the method. 
NLOC1  was also tested in the regression model, but it 
performed slightly poorer, although the difference was 
marginal. Other metrics had only a subsidiary effect in 
the Metric model, but most of them had a high correla-
tion with the Long Method evaluations. This indicates 
that a reasonably good regression model could be cre-
ated even without the lines of code metric, and when 
this was tested the Metric model without Lines of Code 
was able to explain 61,8% of the evaluations. In that 
model number of remote methods (std. beta 0,531), 

                                                           
1 lines of code without comments and blank lines  

cyclomatic complexity (std. beta 0,335), and coupling 
between objects (std. beta 0,255) were the best predic-
tors.   
 
4.2.2. Long Parameter List. The regression models 
for the Long Parameter List smell are in Table 6. The 
results are similar to the results of the Long Method 
smells. The MetDem model explained 77,6% of the 
evaluations, and the Metric model was almost as good 
explaining 76,1% of the evaluations.  

Table 6. Long Parameter List regression  
Model Adj. R Square Sig. 
MetDem 0,776 0,000 
Metric 0,761 0,000 
Demographic 0,054 0,003 

 
Further analysis of the Metric model in Table 7 

shows that the Number of Parameters is the most im-
portant predictor. It has very high correlation with the 
predicted variable. Number of Remote Methods and 
Fan Out also have some impact in the regression 
model. However, it seems likely that the effect was 
caused more by the limited amount of methods evalu-
ated rather than by real effect. Additionally, only the 
Number of Parameters metric has a positive correlation 
with the predicted variable.   

Table 7. Predictors in the Metric model for 
Long Parameter List smell evaluations 

Predictor Std. β Sig. Correl. 
Par 0,807 0,000 0,857 
LOC 0,095 0,074 -0,466 
CC -0,170 0,000 -0,424 
FO 0,229 0,000 -0,228 
NR -0,287 0,000 -0,441 
CBO  0,061 0,246 -0,494 

 
4.2.3. Feature Envy. Regression models for the Fea-
ture Envy smell are in Table 8. The MetDem model 
was able to explain only 29,8% of the evaluations. The 
Metric Model explained only 9,8% of the evaluations. 
Thus, with Feature Envy it appears that the predictors 
failed in predicting the Feature Envy smell evaluations. 
Consequently, there is no need to look at the individual 
models any further.   

Table 8. Feature Envy regression models 
Model Adj. R Square Sig. 
MetDem  0,298 0,000 
Metric  0,098 0,000 
Demographic 0,054 0,003 

 
4.2.4. Refactoring decision. In refactoring decision 
regression analysis there were data from both experi-
ments. The regression models of the refactoring deci-
sion can be seen in Table 9 and Table 10. In Table 9 
we can see that the SmeMetDem model which consists 



 

of smell evaluations, source code metrics and demo-
graphics, explained 66,5% of the evaluations. The most 
significant contributors in the SmeMetDem model are 
the smell evaluations. The Metric model explained 
31,9% of the evaluations. Finally the Demographic 
model was not effective, explaining only 8,7% of the 
evaluations. 
Table 9. Refactoring decision regression mod-

els in Experiment A 
Model Adj. R Square Sig. 

Exp A – SmeMetDem 0,665 0,000 
Exp A – Smell  0,618 0,000 
Exp A – MetDem 0,435 0,000 
Exp A – Metric  0,319 0,000 
Exp A – Demographic  0,087 0,000 

 
Experiment B did not have a SmeMetDem or Smell 

model because no questions concerning the code 
smells were asked in that experiment. As can be seen 
from Table 10, the MetDem model explained 28,4% of 
the evaluations. Further analysis showed that most of 
the explanative power came from the source code met-
rics. The Metric model explained 26,1% of the evalua-
tions alone while the demographic model failed to be 
effective. The comparison to Experiment A shows that 
the Demographic model in Experiment A performed 
slightly better, but this is likely to be caused by the 
larger set of demographic variables in Experiment A.  

Table 10. Refactoring decision regression 
models in Experiment B 

Model Adj. R  Square Sig. 
Exp B – MetDem 0,284 0,000 
Exp B – Metric  0,261 0,000 
Exp B – Demographic  0,036 0,026 

 
Details of the Smell Model from Experiment A can 

be seen in Table 11. From the table we can see that all 
the smell evaluations were important when predicting 
the refactoring decision. The Long method smell 
evaluations were the most considerable contributors, 
but even the evaluations of the Feature Envy smell 
contributed significantly to the Smell model. 

Table 11. Predictors of the Refactoring deci-
sion in Smell Model in Experiment A 

Predictor Std. β Sig. Correl. 
Long Method 0,598 0,000 0,514 
Long Parameter List 0,469 0,000 0,280 
Feature Envy 0,360 0,000 0,518 

 
In Table 12 we can see the predictors of the Metric 

model predicting the refactoring decision in both ex-
periments. The lines of code measure had the highest 
beta in both regression equations, and it also had the 
highest correlations with the refactoring decision. In 
the regression models, Coupling between objects 

(CBO) is a suppressor term, which traditionally would 
indicate a reduction in the likelihood of refactoring. 
However, this is more likely caused by the multicollin-
earity that source code metrics have with each other. 
This is supported by the facts that CBO had positive 
correlation with the refactoring decision and that Lines 
of Code and CBO also had high correlation with each 
other (Person correlation 0,830 p-value 0,000). This 
indicates that in fact increase in CBO does not decrease 
the refactoring need.  

Table 12. Predictors of the Refactoring deci-
sion in Metric model in Experiments A and B 

Experiment A Experiment B Predic-
tor Std. β Sig. Correl. Std. β Sig. Correl.
Par 0,397 0,000 0,130 -0,133 0,032 -0,230

LOC 0,805 0,000 0,381 0,923 0,000 0,453 
CC -0,003 0,957 0,157 -0,073 0,230 0,233 
FO 0,063 0,417 0,215 0,057 0,534 0,168 
NR 0,011 0,916 0,157 -0,162 0,197 0,277 

CBO -0,299 0,001 0,272 -0,500 0,000 0,246 

5. Discussion 

This section provides the discussion where we first 
examine the answers to the research questions. Second, 
the limitations of the study are addressed.   

5.1. Answers to the research questions 
Research Question 1: Is there an interrater agreement 
in subjective evolvability evaluation? This research 
question was studied in Section 4.1. Kendall’s coeffi-
cient of concordance (Kendall’s W) was used to meas-
ure the agreement between evaluators.  

In the evolvability evaluations we saw that code 
smells Long Method and Long Parameter List pro-
duced a high agreement between raters having Kend-
all’s W of 0,777 and 0,816 respectively. The high 
agreement on these smells is not surprising, since both 
of them should be easy to evaluate and rank. Long Pa-
rameter List can be clearly seen by looking at how 
many parameters are passed to the method. Long 
Method could be a little more difficult since the defini-
tion given told that such methods have low cohesion, 
are long, and difficult to understand and reuse. Still, 
the evaluators had very high agreement on the Long 
Method smell.  

The Feature Envy smell had the lowest coefficient 
of concordance with 0,238. However, from the feed-
back of the experiment we learned that some evalua-
tors (3/46) felt that they did not completely understand 
what was meant by the Feature Envy smell. This can 
partly explain the low interrater agreement in this case.   

The Kendall’s W of the refactoring decision in Ex-
periment A was 0,353 and in Experiment B 0,397. This 
was considerably lower than on code smells Long 



 

Method and Long Parameter List. W values in the 
refactoring question in both experiments were very 
close to each other (only a difference of 0,044). This 
indicates that the level of interrater agreement is not 
affected by the different setups in the experiments. 
However, one might expect the agreement on the refac-
toring decision to be higher in Experiment A where the 
evaluators had the smell descriptions available to help 
them in making the refactoring decision. 

The refactoring question really is the key of the ex-
periments because it asked if the method is in such 
condition that it should be improved to make it more 
evolvable. The result seems to indicate that there are 
differences in people’s opinions on whether a certain 
piece of code should be refactored or not.  

Based on the data the answer to research question 1 
is two-folded. For simple code smells Long Method 
and Long Parameter List there was a high agreement 
between the evaluators. For the refactoring decision 
and the Feature Envy smell the level of agreement was 
considerably lower. Since all evaluations are signifi-
cant we must conclude that there is partial concordance 
among the evaluators in all evaluations. However, the 
level of agreement is not satisfactory in all cases.   

Comparison to prior work [7, 8, 14-16] is challeng-
ing due to lack of proper representation of the evalua-
tion data [13, 14, 16], lack of statistical power [8, 10], 
and use of non-standard statistical methods2 [10, 14, 
15]. All prior work lacks calculation of statistical sig-
nificance on the interrater agreement and Kendall’s W 
making it impossible to tell whether the raters really 
were in agreement on the evaluated software or not.  

Research Question 2: How much of the evolvabil-
ity evaluation of a software element can be explained 
by the measurable characteristics of the software ele-
ment and the evaluator demographics? This research 
question was studied in Section 4.2. This research 
question was studied using categorical regression 
founded on optimal scaling making it possible to use 
continuous and non-continuous variables as both de-
pendent and independent variables.  

We saw that the evaluations on code smells Long 
Method and Long Parameter List could be predicted 
with good accuracy by the regression models. In the 
Long Method smell 71,2% of the evaluations could be 
explained by the regression model consisting of source 
code metrics. As expected, the lines of code metric was 
the most important predictor for the Long Method 
evaluations. However, the Metric model without the 
lines of code metric explained 61,8% of the evalua-
tions. This is caused by the correlation the source code 
metrics have with each other. In Long Parameter List 

                                                           
2  The researchers have calculated the percentage of answers that 

were off by n steps in their ordinal scale, or they calculated averages 
and standard deviations from the ordinal scale..   

evaluations the Metric model explained 76,1% of the 
evaluations. The most important predictor in the model 
was the number of parameters, and unlike in the Long 
Method evaluations there was no substitute for this 
predictor which is not surprising.  

The explanation power of the code metric based re-
gression models diminished when we studied the refac-
toring decision and the Feature Envy code smell 
evaluations. The source code metrics explained only 
9,8% of the Feature Envy smell evaluations. For the 
refactoring decision the percentage of the evaluations 
explained by the Metric models was 31,9% in Experi-
ment A and 26,1% in Experiment B. In Experiment A 
we were able to use the smell evaluations of each 
evaluator to create another regression model that ex-
plained 61,8% of the refactoring decision.  

We also studied demographic variables as predictors 
for a refactoring decision, but their explanatory power 
was low. We even tried to improve the gathering of 
demographic data in Experiment B grounded on Ex-
periment A, but still the background variables had only 
minor explanatory power. In fact the demographic 
variables performed slightly better in Experiment A, 
but this was likely affected by having more demo-
graphics variables in Experiment A rather than a real 
improvement in the data variables.  

Comparing these results to the results of research 
question 1 reveals us that both the interrater agreement 
and the metric regression models have a similar two-
folded structure. Both perform well on Long Method 
and Long Parameter List smell evaluations. Similarly 
both the interrater agreement and the regression models 
have low values when it comes to the refactoring deci-
sions and especially Feature Envy evaluations. There is 
a connection between these two, and it is caused by the 
fact that the source code metrics of any method will 
remain the same even if there is disagreement between 
raters. Thus, if there is disagreement whether a certain 
method should be refactored, it automatically means 
that the code metrics of that method cannot make up a 
strong regression model that would predict the refac-
toring decision because there is a disagreement on the 
issue. Naturally this does not affect the regression 
model created from the smell evaluations because the 
possible disagreement in the refactoring decision is 
likely to be reflected in the smell evaluations.  

Comparison to prior studies is not clear cut because 
they have not utilized regression analysis. Regardless, 
we can try to make some comparisons. Kafura and 
Reddy [7] concluded that the expert evaluations on 
evolvability were in conformance with the complexity 
source code metric. This conflicts with our results 
since we showed that metrics were not sufficient pre-
dictors of the refactoring decision i.e. the evolvability 
improvement need.  However, their results are based 



 

on interviews on software maintainability while we 
used the refactoring decisions on an ordinal scale sur-
vey. Oman et al. [13, 16] used subjective evaluations to 
create a metrics based maintainability measure. It is 
therefore quite natural that their metrics correlated well 
with subjective evaluations.  

Our prior work [10], which studied code smell 
evaluations at the module level in an industrial setting, 
concluded that source code metrics and code smell 
evaluations did not correlate. However, this study 
shows that simple code smells and source code metrics 
have a relationship. The difference is likely to stem 
from three limitations in our prior study. First, in our 
prior work we used higher (module) level evaluations. 
Second, the evaluations were based on recollection. 
Third, the evaluators had been working with the soft-
ware modules and, thus, had a more personal bond 
with the software under evaluation. We think that these 
dissimilarities can explain the different results.   

5.2. Limitations 
This section assesses the limitations of the study. 
Threats to internal and external validity are studied 
based on [1, 2], and improvements to the experimental 
design are proposed.  
 
5.2.1. Threats to internal validity. In Experiment B 
the reliability of the respondents’ procedures was ques-
tionable since it was done as a web survey, and there 
was no control over the respondents. However, a simi-
lar situation could have occurred in Experiment A, 
because we had no means to make sure that the evalua-
tors actually paid attention to the introduction lecture 
they were given prior to the experiment.  

Experiment B lacked the randomization of the 
methods evaluated. The evaluation order of the meth-
ods could have caused bias to the evaluation results. In 
Experiment B the evaluators had the possibility to go 
back and forth in their answers if they wanted to check 
or change something in their prior answers. This 
should have limited the effect cause by the lack of ran-
domization.  
 
5.2.2. Threats to external validity. There could be 
interaction between the selection of evaluators and the 
issue studied in the experiments. In both experiments 
the population was the students participating in the 
course. However, proper sampling was not done to 
select the individuals who would become the evalua-
tors of the experiment. Instead, the evaluators were 
those interested in receiving the extra credit for their 
course grade. This sampling method could have caused 
bias. It is possible that students who were more inter-
ested in this topic participated in the experiment. Based 
on the course grades there actually was a slight bias in 

both experiments towards better performing students.    
Another threat to external validity comes from the 

population. Generalizing the results obtained using 
students to developers in industry might not be possi-
ble. We may argue that students are a too homogenous 
group, and, therefore, the results are too good. Fur-
thermore, one may argue that as the evaluators had a 
varying amount of industrial programming experience 
(from zero to fifteen years), the population is too het-
erogeneous. However, also teams of industrial devel-
opers can have fluctuating levels of homogeneity.   

The selection of the evaluated software elements is 
another threat to external validity. It is possible that 
with a different set of software elements different re-
sults could be obtained.  

The source code metrics used to measure the evalu-
ated methods were limited to six different metrics, 
which were introduced in Section 3.2.4. With a differ-
ent set of metrics the results could have been different. 
However, it must be pointed out that the goal was not 
to discover the best metrics to predict refactoring deci-
sions, but to test how a few widely used measures per-
form in predicting the evaluations.  

It is possible that the results represent more the ef-
fect of the experimental setting than what it would be 
in the real world. One may argue that in the real world 
the agreement between raters would be better since the 
raters would understand and study the evaluated piece 
of software longer and more thoroughly.   
 
5.2.3. Improvements to the experiment design. This 
section provides a brief list of how the experiment 
should be improved.  
1. The selection of the evaluators should be random.  
2. The population should be more diverse.  
3. More software elements should be used for evalua-

tion to reduce the possible bias. 
4. More source code metrics not suffering from multi-

collinearity should be measured.  
5. The list of code smells should be longer to allow 

better comparison between the evaluations.   
6. There should be several questions describing each 

smell to allow assessing reliability of answers.  
7. A pre-exam should be held to see how well the 

evaluators understand the issues to be evaluated.    

6. Conclusions and future work 

This paper investigates subjective evaluation of soft-
ware evolvability by assessing interrater agreement and 
factors explaining the evaluations. We have seen that 
the interrater agreement is high on the simple code 
smells Long Method and Long Parameter List, but 
considerably lower on the refactoring decision and the 
Feature Envy code smell. Regression models based on 



 

source code metrics explained over 70% of the evalua-
tions of Long Method and Long Parameter List smells, 
but explained only about 30% of the refactoring deci-
sion. The best predictors of the refactoring decision 
were the evaluations of the code smells explaining 
more than 60% of the decisions.  

High interrater agreement on the simple code smells 
implies reliability of the smell evaluations. Thus, there 
should be no need to double check the evaluations of 
those smells by tools or another developer. Addition-
ally, for the simple code smells the prediction by the 
code metrics based regression model was also quite 
accurate. This suggests code metrics tools usage as an 
effective approach in highlighting straightforward 
problems in the code.      

Lower interrater agreement of the refactoring deci-
sion indicates a possible unreliability in the developers’ 
evaluations. To compensate this it seems advisable to 
double check the evaluation at least from time to time 
because false judgments may lead to poorly evolvable 
software. The lower interrater agreement also raises a 
topic to be addressed in our future work concerning the 
causes explaining the differences in the refactoring 
decision evaluations. Additionally, metrics-based re-
gression models were only able to explain 30% of the 
refactoring decisions. This indicates difficulties in 
building tool support to simulate real-life subjective 
refactoring decisions.  

In the future we will analyze the rationales provided 
by the evaluators in Experiment B. This allows us to 
study the qualitative elements, i.e. the real reasons be-
hind the refactoring decisions and the proposed chang-
es to the source code. In the future one could also study 
the effect of coding standards and team context to 
evolvability evaluations. Presumably, a team with a 
coding standard should have higher interrater agree-
ment compared to a group of students. Finally, a path 
that should be pursued is the investigation of using 
machine learning techniques to identify poorly evolv-
able software according to evolvability evaluations. 
However, for this to be feasible the interrater agree-
ment must be sufficient and we must also understand 
the rationales behind the evolvability evaluations.   
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