
Mika V. Mäntylä. 2005. An experiment on subjective evolvability evaluation of
objectoriented software: Explaining factors and interrater agreement. In: Proceedings
of the 4th International Symposium on Empirical Software Engineering (ISESE 2005).
Noosa Heads, Queensland, Australia. 1718 November 2005, 10 pages.

© 2005 IEEE

Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of Helsinki University of
Technology's products or services. Internal or personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubspermissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

mailto:pubs-permissions@ieee.org

An Experiment on Subjective Evolvability Evaluation of Object-Oriented
Software: Explaining Factors and Interrater Agreement

Mika V. Mäntylä
Helsinki University of Technology, Software Business and Engineering Institute

P.O. Box 9210, FIN-02015 HUT, Finland
mika.mantyla@hut.fi

Abstract

Recent trends in software development have empha-
sized the importance of refactoring in preserving soft-
ware evolvability. We performed two experiments on
software evolvability evaluation, i.e. evaluating the
existence of certain code problems called code smells
and the refactoring decision. We studied the agreement
of the evaluators. Interrater agreement was high for
simple code smells and low for the refactoring deci-
sion. Furthermore, we analyzed evaluators’ demo-
graphics and source code metrics as factors explaining
the evaluations. The code metrics explained over 70%
of the variation regarding the simple code smell
evaluations, but only about 30% of the refactoring
decision. Surprisingly, the demographics were not use-
ful predictors neither for evaluating code smells nor
the refactoring decision. The low agreement for the
refactoring decisions may indicate difficulty in build-
ing tool support simulating real-life subjective refac-
toring decisions. However, code metrics tools should
be effective in highlighting straightforward problems,
e.g. simple code smells.

1. Introduction

Software evolvability – the ease of further developing
software – is an important quality attribute greatly dic-
tating the future potential of any software system. In
the past there was a strong emphasis on up-front-
design for ensuring software evolvability. However,
recent trends such as agile software development and
extreme programming have highlighted refactoring –
modifying the internal structure of software without
affecting its observable behaviour – as a key factor for
ensuring software evolvability. For example, Microsoft
has recognized the constant need to modify existing
software structure to ease future development. There-
fore, Microsoft’s Office division determined that 20%
of development effort should be budgeted to code
modification (pp. 280-281[3]).

An important issue concerning software evolvability

is the decision when to perform refactoring. It seems
likely that wrong refactoring decisions can do more
harm than good. Fowler and Beck have come up with a
term called code smell [4] to help software developers
in recognizing problematic code. These code smells are
general descriptions of bad code that are supposed to
help software developers decide when the code needs
refactoring. Fowler and Beck [4] claim that exact crite-
ria for refactoring decisions cannot be given: “no set of
metrics rivals informed human intuition”.

Thus, humans play an important role in making
software refactoring decisions. Still, most of the work
around refactoring has focused on tools and metrics,
see [11] for details. There are a limited number of em-
pirical studies and controlled experiments studying
subjective software evolvability evaluation, i.e. refac-
toring decisions and the evaluation of the existence of
code smells. We studied this topic at the source code
method level. Two experiments were made with a dif-
ferent set of students in each. The participants evalu-
ated the existence of certain code smells for each
method and then stated whether the method should be
refactored or not. Our first objective was to assess the
interrater agreement, i.e. the extent to which evaluators
agree. High interrater agreement is a positive indica-
tion of the reliability of the subjective evaluations.
Lack of interrater agreement can mean that some
evaluators are mistaken in their evaluations. The sec-
ond objective was to study how factors, such as the
evaluated code itself and the background of the evalua-
tors, affect the evaluations. An analysis of these factors
can help us find predictors for the code smell evalua-
tions and the refactoring decisions, which can be used,
e.g. in building tool support.

Section 2 summarizes the prior work on subjective
evaluation of software evolvability. Section 3 presents
the methodology. Section 4 introduces the results, and
Section 5 presents the discussion. Finally, Section 6
provides the conclusions and direction for future work.

2. Related work

Shneiderman et al. (pp. 134-138 [15]) reported results

from using peer reviews in software code quality
evaluation. They conducted three peer-review sessions
each having five professional programmers with simi-
lar background and experience. Each programmer pro-
vided one of their best programs, which was then
evaluated by the four other participants. The review
was performed by answering 13 questions on a seven
point ordinal scale. The questions varied from blank
line usage and the chosen algorithm to the ease of fur-
ther development of the program. The results showed
that in half of the evaluations three out of four pro-
grammers agreed on the subjective evaluations (an-
swers differed by one at most). However, in 43,1% of
the evaluations the range was two or less. The re-
searchers tried to explain this by speculating that the
subjects misunderstood the questions or the scale.
However, the study does not account for factors, such
as differences in developers’ opinions about the pro-
gram design, structure, and style that also might ex-
plain the results.

Kafura and Reddy [7] studied the relationship be-
tween software complexity metrics and software main-
tainability. Maintainability was measured using subjec-
tive evaluations by system experts. However, no details
are given on how these evaluations were collected
from the individuals, and no data is provided of the
evaluations. Therefore, it is difficult to assess the study
any further. Regardless, the researchers conclude that
the expert evaluations on maintainability were in con-
formance with the source code metrics.

Shepperd [14] validated the usefulness of informa-
tion flow metrics on software maintainability by col-
lecting the subjective opinions of the maintainers for
89 modules of aerospace software that totalled around
30 000 lines of code. Each developer of the mainte-
nance team was individually asked to classify each
module from one to four on an ordinal scale on the
perceived difficulty of a hypothetical maintenance task.
For 73% of the modules the range was one or less, and
thus the researchers concluded that there was a strong
correspondence between the individual evaluations.
However, as no detailed data is given, it is difficult to
assess the study in more detail.

Oman et al. [13, 16] report on the construction of a
maintainability index. In this work the researchers used
source code metrics to create polynomial regression
models that measured software maintainability. They
calibrated the maintainability models according to how
well they correlated with the subjective evaluations of
software maintainers. To do this the researchers ac-
quired source code and maintainers’ opinions on eight
industrial software systems, ranging from 1000 to 10
000 lines of code [13]. After calibration, they per-
formed a validation study where they again acquired
opinions and source code on six industrial systems. In

the validation study they also saw discrepancies where
one engineer was more lenient and other more critical
to the systems they were evaluating. Although the
study [13] does not directly report this, it seems that
there was only the opinion of a single individual per
software system that was used in the initial creation of
the metric and the validation performed. Therefore, it
is difficult to effectively study the differences in hu-
man maintainability evaluations. However, the re-
searchers continued in tuning their maintainability
measure and performing tests on several industrial sys-
tems. Finally, the researchers concluded that the auto-
matic assessment corresponds well to the perceived
view of the experts [16].

Kataoka et al. [8] studied the usefulness of improv-
ing the software quality with refactoring and report on
a comparison between human evaluation and software
metrics. According to the researchers, the subjective
evaluation of an expert on the effectiveness of refactor-
ings correlated quite well with the improvement in
coupling metrics. The drawback in the study is that the
data set consists only of five refactoring cases and that
only one developer evaluated the effectiveness of the
refactorings.

Genero et al. [6] studied the maintainability of
UML-class diagrams. The researchers show that sub-
jective evaluation of understandability, analyzability,
and modifiability of UML-diagrams correlated with
various class level metrics. In a follow-up study [5]
they show correlation between subjective complexity
evaluation and both the time required to understand the
UML-diagram (0,242), and objective code metrics
based diagram classification (0,539). However, these
studies are made with UML-diagrams and they also
lack results on the interrater agreement of the evalua-
tions.

Mäntylä et al. [10] studied code smell evaluations of
twelve industrial developers. They discovered the de-
velopers make conflicting evaluations of the source
code. They also discovered inconsistencies when com-
paring the evaluations to source code metrics. The
weaknesses of the study are that the developers’
evaluations were based on recollection of the modules
they had primarily worked with, and the large size of
the evaluated modules (between 15 and 65 thousand
lines of code).

Five out of the seven referred studies are not made
with object-oriented code, and there are drawbacks in
the two studies made with object-oriented software.
The drawback in [8] is that the data set consists only of
five refactorings and that only one developer evaluated
the effectiveness of the refactorings. In [10] there were
limitations with using module level evaluations and
basing the evaluations on recollections of the modules
the developers had primarily worked with. Thus, there

is ample research space to be filled.

3. Methodology

Section 3.1 presents the research problem. Section 3.2
presents the experimental setting. Section 3.3 intro-
duces the methods used to analyze the data.

3.1. Research problem and questions
The research problem of this study is: Do human
evaluations of software evolvability differ from one
another, and what are the explaining factors behind
the evolvability evaluations. First, the research problem
inquires whether there are differences between human
evolvability evaluations. Second, it seeks to explain the
factors behind the evolvability evaluations. Thus, the
research problem was further divided to two research
questions.

The first research question studies the interrater
agreement of the evolvability evaluations. Research
question 1: Is there an interrater agreement in subjec-
tive evolvability evaluation? When studying interrater
agreement we must first consider whether there should
be interrater agreement between evaluators. When ask-
ing people for the best way to spend their holiday, we
might not expect high interrater agreement as people
are likely to favour different holiday plans. However,
we might expect high interrater agreement when we
look at the judges of figure skating contests. Thus, the
purpose of interrater agreement analysis is to study the
amount of agreement between evaluators’ evolvability
evaluations. The hypothesis is high interrater agree-
ment for all the three code smells evaluated and for the
refactoring decision.

The second research question studies possible fac-
tors explaining the evolvability evaluations. In this
study we have focused on factors from two primary
sources: code metrics and evaluators’ demographics.
Research question 2: How much of the evolvability
evaluation of a software element can be explained by
the measurable characteristics of the software element
and the evaluator demographics? The hypothesis is
that characteristics of the evaluated element and the
evaluators’ demographics can explain most of the
variation in the evaluations. The software element
characteristics are expected to have greater impact than
the demographic data.

3.2. Experimental setting
Two experiments with some differences were made.
We refer to them as Experiments A and B. Experiment
A was made first and Experiment B was performed a
year later. Both experiments had identical software and
documentation on which the evaluators based their
evaluations.

3.2.1. Software under study. A small Java application
with nine classes and 1000 NLOC of code was created
for these experiments. To ensure fluctuation in the
evaluations, some pieces of the software were pro-
grammed poorly on purpose. The application was a
family tree modelling software operating on relation-
ships like spouse, parent, and child. Family tree model-
ling was chosen because the domain knowledge re-
quired in understanding the application is pretty sim-
ple. Ten methods were selected as the software ele-
ments for the evaluation.

3.2.2. Viewpoints of subjective evaluations
Experiment A. Four questions of each method were
presented to get different viewpoints of the subjective
evaluations. Three of the four questions focused on the
existence of the following code smells [4]: Long
Method, Long Parameter List, and Feature Envy,
which were chosen because they can be studied at the
method level. The fourth question asked if the method
should be refactored to remove the smells.

Long method means that a method is too long and
tries to perform many possibly unrelated operations.
This means that the method has low cohesion which
makes it difficult to reuse. Long parameter list means
that a method is taking too many parameters. Long
parameter lists are difficult to understand and they are
continuously changing, as the data needed by the
method is varying. Feature envy means that a method
is more interested in other classes than the class it is
currently located in. A method with the Feature Envy
smell should be moved to a class that the method is
mainly operating with.

Experiment B. In the second experiment no prede-
termined viewpoints for subjective evolvability evalua-
tions were given, i.e. the existence of the smells was
not asked. Instead the evaluators were asked only if the
method was in such a state that it should be refactored.

3.2.3. Evaluators. The evaluators of both experiments
were students of the Software Testing and Quality As-
surance course at Helsinki University of Technology
(HUT) in fall semesters 2003 and 2004. Thus, both
experiments had a unique set of similar evaluators. The
evaluators of both experiments are introduced below.
Table 1 summarizes the most important demographic
variables and shows that the evaluators in the experi-
ments were similar.

Experiment A. In fall 2003, the course had 82 stu-
dents, and 51 of them participated in the experiment.
We rewarded the participants by extra points. Five
outlier evaluators were removed from these 51 students
based on their answers, e.g. one evaluator acclaimed
that there was a lot of Long Parameter List smell when

the method had no parameters.
The evaluators were studying for a M.Sc. degree

that requires a minimum of 180 credits. The study
times at HUT fluctuate greatly. Thus, we measured the
number of credits rather than number of years studied.
On average the students had 115 credits indicating they
had completed approximately two thirds of their stud-
ies. 89,1% (41/46) of the students had between 70 and
158 credits.

Many HUT students also work in the software in-
dustry during their studies. Therefore, the work experi-
ence in software development was asked. 13 evaluators
(28,3%) had no software development work experi-
ence, but 27 (58,7%) of the evaluators had a year or
more work experience in software development.

Other demographic data collected was: number of
years studied, department and main subject of study,
subjective evaluation of their knowledge of Java and
UML, subjective evaluation of programming ability
against other HUT students, and the perceived impor-
tance of good program structure.

Experiment B. In fall 2004 37 students participated
in the experiment. The students were given extra points
based on the quality of the rationales they provided in
the experiment. One outlier student was removed based
on the non-sense rationales given.

The evaluators had an average of 124 credits. 86,1%
(31/36) of the students had between 80 and 160 credits.
The mean programming related work experience was
1,8 years. Eight students (22,2%) had no work experi-
ence, but 21 students (58,3%) had a year or more pro-
gramming work experience.

Additional demographics collected were: grades of
programming courses, subjective evaluation of their
knowledge of Java and UML, subjective evaluation of
programming ability against other HUT students, ex-
perience in software maintenance, and the perceived
importance of good program structure.

Table 1 Evaluators of the experiments
 Experiment A Experiment

B
N 46 36
One year or more software
development work experience 58,7% 58,3%

Credits (mean (std. dev) /
min-max)

115 (31,2) /
34-187,5

125 (38,3) / 6-
199

Years of work experience
(mean (std. dev) / min-max)

1,6 (1,76) / 1 /
0-7

1,9 (2,91) / 1 /
0-15

3.2.4. Source code metrics. We selected source code
metrics to analyze the software elements based on suit-
ability to measure the studied smells and their recogni-
tion in the literature. From size metrics we calculated
Lines of Code (LOC), Number of Parameters (Par) and
Cyclomatic Complexity (CC). We measured coupling

with the Number of Remote Methods called (NR) and
the number of couplings between a method and objects
(CBO). Finally, we measured fan-out (FO) that is the
number of reference types used in formal parameters,
throws declaration, and local variables. The results are
in Table 2.

Table 2. Code metrics of the methods
Method Metrics

 LOC Par CC CBO NR FO
DiskManager.readFromDisk 67 1 11 5 16 4
DiskManager.writeToDisk 48 1 7 6 23 7
FamilyFrame.addRelationClicked 20 3 6 4 6 1
FamilyFrame.FamilyFrame 84 0 1 13 17 3
Person.dateOfBirthEquals 24 1 2 1 3 1
Person.getChildren 9 0 3 4 7 3
Person.illegalRelation 46 1 12 5 8 3
PersonTableModel.
applyChangesToPerson 11 4 1 2 5 1

PersonTableModel.personMatch 19 6 1 1 6 2
PersonTableModel.searchPersons 21 5 3 2 5 4

3.2.5. Experiment material and evaluation session.
Experiment A. The responses were collected with a
survey form containing the methods under evaluation.
All the survey forms were unique as the methods were
placed in random order for each. Additionally, descrip-
tions of the smells and a UML-diagram of the software
were handed out.

The evaluators evaluated how much of each smell
existed in each of the methods. The question was Do
these smells exist in the method below? and it was
evaluated with a seven point ordinal scale with one
standing for Not at all and seven standing for Yes very
much. A question about refactoring was also presented;
Would you refactor the method to remove the smells (in
order to keep the software easy to understand and de-
velop further). This was answered with the following
five point ordinal scale: 1-No, 2-Unlikely, 3-Maybe in
the future, 4-Yes if the method needs further develop-
ment, 5-Yes, immediately.

The experiment was run as a single lecture session,
which took altogether about 70 minutes. It began with
a 20-minute introduction lecture that covered general
information about the subjective evaluations, ideas
why good software structure is important, the exercise
organization, and an explanation of the smells under
evaluation. To guarantee that all the evaluators used
the same amount of effort in evaluating each method,
the evaluation time was restricted to five minutes, i.e.
the evaluators were not allowed to proceed until they
were instructed to do so.

Experiment B. Experiment B was entirely web

based. The instructions of the experiment consisted of
the following: the task, explanation of refactoring and
its benefits, the grading of the assignment, the esti-
mated effort required, the description of the evaluated
software application with screen shots, the UML class
diagram, the source code, and the executable applica-
tion. First, there was a set of demographic questions.
Then the methods were presented with the question
Would you refactor the method <in question> in order
to keep the software easy to understand and develop
further? For the answers there were five options 1-No,
2-Unlikely, 3-Maybe 4-Yes, later when the method
needs further development, 5-Yes, immediately. In con-
nection with the questions there was a hyperlink to the
source code of the method. The rationale for the
evaluation was asked using a question: Explain your
choice? If refactoring is needed, explain what and how
the method should be refactored. If the method is OK,
explain what desirable qualities the method possesses.
If you answered Maybe also give your rationale.

Experiment B did not have a lecture before the
evaluators made their evaluations. The evaluators had
received information about the software to be studied
and the benefits of refactoring from a web page. Ex-
periment B did not ask the evaluators to search for
smells or any other evolvability flaws in the software.
Each evaluator participated in the experiment through a
web-based survey, where they were able to browse
back and forth while answering. The time spent to
complete the survey was tracked by the web-based
survey system.

3.3. Data analysis
This section presents the methods used to analyze the
interrater agreement and the factors explaining the
evaluations.

3.3.1. Interrater agreement. The Kendall coefficient
of concordance [9] which is referred to as W or Kend-
all’s W, can be used to study the agreement between
three or more raters on several related samples. Other
measures such as Kappa and Kendall’s Tau, can meas-
ure interrater agreement only between two raters and,
therefore, were not applicable.

Kendall’s W tells the amount of interrater agreement
by a number between 0 and 1. If all raters agree W=1
and W=0 implicates no agreement. Additionally, the
statistical significance of the agreement was studied.
High significance (p-value < 0.01) means at least par-
tial concordance among the raters.

Interrater agreement can also be studied in other
fields like ski-jumping. For a reference Kendall’s W
was calculated from the first round results of the ski
jumping world cup competition held in Oberstdorf,
Germany at 29th December 2004. On that occasion the

5 judges evaluating 50 jumps achieved Kendall’s W
0,888 and asymptotic significance p-value 0,000.

3.3.2. Factors explaining evaluations. Regression
analysis was used to study how the method characteris-
tics and the evaluators’ demographics affected the
evaluations. The data was in various scales (nominal,
ordinal, interval), and therefore could not be analyzed
using classical linear regression. The data was ana-
lyzed using categorical regression that is available in
the SPSS™ software. Categorical regression is
founded on optimal scaling, which turns nominal and
ordinal variables into linear variables [12].

Several regression models were created for each of
the predicted (dependent) variables that were the
evaluations of the existence of three code smells and
the refactoring decision. The first model (called the
MetDem model) used the source code metrics of the
methods and the demographics of the evaluators as
predictor (independent) variables. The second model
contained only the demographics and the third model
only the source code metrics of the method. In Ex-
periment A an additional model was constructed that
used the smell evaluations as predictor variables when
predicting the refactoring decision.

4. Results

This section shows the results of the study. Discussion
of the results and answers to the research questions are
presented in Section 5.

4.1. Interrater agreement
Table 3 shows the results of the interrater agreement
analysis. The evaluators had a high agreement on
evaluations concerning the Long Method and Long
Parameter List smells. The agreements concerning the
Feature Envy smell and the refactoring decisions are
considerably weaker. However, all W values are sig-
nificant indicating that the evaluators had at least some
level of agreement. W values of the refactoring deci-
sion for both experiments are close to each other. The
number of evaluations of evaluators varied from 44 to
46 in Experiment A. In Experiment B there were 36
evaluators’ evaluations. For all the cases the number of
evaluated objects was 10.

Table 3. Interrater agreement
Question N W Sig.
Exp A – Long Method 46 0,777 0,000
Exp A – Long Parameter List 46 0,816 0,000
Exp A – Feature Envy 44 0,238 0,000
Exp A – Refactoring 45 0,353 0,000
Exp B – Refactoring 36 0,397 0,000

4.2. Explaining factors - regression analysis
This section studies the factors explaining the evolva-
bility evaluations.

4.2.1. Long Method. Regression models for the Long
Method smell are in Table 4. From the table, we can
see that the MetDem model, consisting of the source
code metrics and evaluators’ demographics, explains
74,6% of the evaluations. The MetDem model details
revealed that the source code metrics were the most
important predictors. Also the model with just the met-
rics, namely the Metric model, predicts 71,2% of the
evaluations. However, the Demographic model, con-
taining the information about the evaluators’ back-
ground, is not able to effectively explain the evalua-
tions.

Table 4. Long Method regression models
Model Adj. R Square Sig.
MetDem 0,746 0,000
Metric 0,712 0,000
Demographic 0,012 0,231

As it seems that the metrics rather than the demo-

graphics explained most of the Long Method evalua-
tions it made sense to study them in more detail. In
Table 5 we can see the predictor variables of the Metric
model and their standardized betas, significance level
of the F-values, and the correlation with the predicted
variable.
Table 5. Predictors in the Metric model for the

Long Method smell evaluations
Predictor Std. β Sig. Correl.
Par -0,108 0,002 -0,509
LOC 0,738 0,000 0,815
CC 0,114 0,001 0,474
FO 0,008 0,866 0,480
NR 0,171 0,014 0,700
CBO -0,190 0,001 0,624

Table 5 shows Lines of Code as the most important

predictor in the model. The Lines of Code in this case
meant that a single line is a single line of code regard-
less of the space usage or comments in the method.
NLOC1 was also tested in the regression model, but it
performed slightly poorer, although the difference was
marginal. Other metrics had only a subsidiary effect in
the Metric model, but most of them had a high correla-
tion with the Long Method evaluations. This indicates
that a reasonably good regression model could be cre-
ated even without the lines of code metric, and when
this was tested the Metric model without Lines of Code
was able to explain 61,8% of the evaluations. In that
model number of remote methods (std. beta 0,531),

1 lines of code without comments and blank lines

cyclomatic complexity (std. beta 0,335), and coupling
between objects (std. beta 0,255) were the best predic-
tors.

4.2.2. Long Parameter List. The regression models
for the Long Parameter List smell are in Table 6. The
results are similar to the results of the Long Method
smells. The MetDem model explained 77,6% of the
evaluations, and the Metric model was almost as good
explaining 76,1% of the evaluations.

Table 6. Long Parameter List regression
Model Adj. R Square Sig.
MetDem 0,776 0,000
Metric 0,761 0,000
Demographic 0,054 0,003

Further analysis of the Metric model in Table 7

shows that the Number of Parameters is the most im-
portant predictor. It has very high correlation with the
predicted variable. Number of Remote Methods and
Fan Out also have some impact in the regression
model. However, it seems likely that the effect was
caused more by the limited amount of methods evalu-
ated rather than by real effect. Additionally, only the
Number of Parameters metric has a positive correlation
with the predicted variable.

Table 7. Predictors in the Metric model for
Long Parameter List smell evaluations

Predictor Std. β Sig. Correl.
Par 0,807 0,000 0,857
LOC 0,095 0,074 -0,466
CC -0,170 0,000 -0,424
FO 0,229 0,000 -0,228
NR -0,287 0,000 -0,441
CBO 0,061 0,246 -0,494

4.2.3. Feature Envy. Regression models for the Fea-
ture Envy smell are in Table 8. The MetDem model
was able to explain only 29,8% of the evaluations. The
Metric Model explained only 9,8% of the evaluations.
Thus, with Feature Envy it appears that the predictors
failed in predicting the Feature Envy smell evaluations.
Consequently, there is no need to look at the individual
models any further.

Table 8. Feature Envy regression models
Model Adj. R Square Sig.
MetDem 0,298 0,000
Metric 0,098 0,000
Demographic 0,054 0,003

4.2.4. Refactoring decision. In refactoring decision
regression analysis there were data from both experi-
ments. The regression models of the refactoring deci-
sion can be seen in Table 9 and Table 10. In Table 9
we can see that the SmeMetDem model which consists

of smell evaluations, source code metrics and demo-
graphics, explained 66,5% of the evaluations. The most
significant contributors in the SmeMetDem model are
the smell evaluations. The Metric model explained
31,9% of the evaluations. Finally the Demographic
model was not effective, explaining only 8,7% of the
evaluations.
Table 9. Refactoring decision regression mod-

els in Experiment A
Model Adj. R Square Sig.

Exp A – SmeMetDem 0,665 0,000
Exp A – Smell 0,618 0,000
Exp A – MetDem 0,435 0,000
Exp A – Metric 0,319 0,000
Exp A – Demographic 0,087 0,000

Experiment B did not have a SmeMetDem or Smell

model because no questions concerning the code
smells were asked in that experiment. As can be seen
from Table 10, the MetDem model explained 28,4% of
the evaluations. Further analysis showed that most of
the explanative power came from the source code met-
rics. The Metric model explained 26,1% of the evalua-
tions alone while the demographic model failed to be
effective. The comparison to Experiment A shows that
the Demographic model in Experiment A performed
slightly better, but this is likely to be caused by the
larger set of demographic variables in Experiment A.

Table 10. Refactoring decision regression
models in Experiment B

Model Adj. R Square Sig.
Exp B – MetDem 0,284 0,000
Exp B – Metric 0,261 0,000
Exp B – Demographic 0,036 0,026

Details of the Smell Model from Experiment A can

be seen in Table 11. From the table we can see that all
the smell evaluations were important when predicting
the refactoring decision. The Long method smell
evaluations were the most considerable contributors,
but even the evaluations of the Feature Envy smell
contributed significantly to the Smell model.

Table 11. Predictors of the Refactoring deci-
sion in Smell Model in Experiment A

Predictor Std. β Sig. Correl.
Long Method 0,598 0,000 0,514
Long Parameter List 0,469 0,000 0,280
Feature Envy 0,360 0,000 0,518

In Table 12 we can see the predictors of the Metric

model predicting the refactoring decision in both ex-
periments. The lines of code measure had the highest
beta in both regression equations, and it also had the
highest correlations with the refactoring decision. In
the regression models, Coupling between objects

(CBO) is a suppressor term, which traditionally would
indicate a reduction in the likelihood of refactoring.
However, this is more likely caused by the multicollin-
earity that source code metrics have with each other.
This is supported by the facts that CBO had positive
correlation with the refactoring decision and that Lines
of Code and CBO also had high correlation with each
other (Person correlation 0,830 p-value 0,000). This
indicates that in fact increase in CBO does not decrease
the refactoring need.

Table 12. Predictors of the Refactoring deci-
sion in Metric model in Experiments A and B

Experiment A Experiment B Predic-
tor Std. β Sig. Correl. Std. β Sig. Correl.
Par 0,397 0,000 0,130 -0,133 0,032 -0,230

LOC 0,805 0,000 0,381 0,923 0,000 0,453
CC -0,003 0,957 0,157 -0,073 0,230 0,233
FO 0,063 0,417 0,215 0,057 0,534 0,168
NR 0,011 0,916 0,157 -0,162 0,197 0,277

CBO -0,299 0,001 0,272 -0,500 0,000 0,246

5. Discussion

This section provides the discussion where we first
examine the answers to the research questions. Second,
the limitations of the study are addressed.

5.1. Answers to the research questions
Research Question 1: Is there an interrater agreement
in subjective evolvability evaluation? This research
question was studied in Section 4.1. Kendall’s coeffi-
cient of concordance (Kendall’s W) was used to meas-
ure the agreement between evaluators.

In the evolvability evaluations we saw that code
smells Long Method and Long Parameter List pro-
duced a high agreement between raters having Kend-
all’s W of 0,777 and 0,816 respectively. The high
agreement on these smells is not surprising, since both
of them should be easy to evaluate and rank. Long Pa-
rameter List can be clearly seen by looking at how
many parameters are passed to the method. Long
Method could be a little more difficult since the defini-
tion given told that such methods have low cohesion,
are long, and difficult to understand and reuse. Still,
the evaluators had very high agreement on the Long
Method smell.

The Feature Envy smell had the lowest coefficient
of concordance with 0,238. However, from the feed-
back of the experiment we learned that some evalua-
tors (3/46) felt that they did not completely understand
what was meant by the Feature Envy smell. This can
partly explain the low interrater agreement in this case.

The Kendall’s W of the refactoring decision in Ex-
periment A was 0,353 and in Experiment B 0,397. This
was considerably lower than on code smells Long

Method and Long Parameter List. W values in the
refactoring question in both experiments were very
close to each other (only a difference of 0,044). This
indicates that the level of interrater agreement is not
affected by the different setups in the experiments.
However, one might expect the agreement on the refac-
toring decision to be higher in Experiment A where the
evaluators had the smell descriptions available to help
them in making the refactoring decision.

The refactoring question really is the key of the ex-
periments because it asked if the method is in such
condition that it should be improved to make it more
evolvable. The result seems to indicate that there are
differences in people’s opinions on whether a certain
piece of code should be refactored or not.

Based on the data the answer to research question 1
is two-folded. For simple code smells Long Method
and Long Parameter List there was a high agreement
between the evaluators. For the refactoring decision
and the Feature Envy smell the level of agreement was
considerably lower. Since all evaluations are signifi-
cant we must conclude that there is partial concordance
among the evaluators in all evaluations. However, the
level of agreement is not satisfactory in all cases.

Comparison to prior work [7, 8, 14-16] is challeng-
ing due to lack of proper representation of the evalua-
tion data [13, 14, 16], lack of statistical power [8, 10],
and use of non-standard statistical methods2 [10, 14,
15]. All prior work lacks calculation of statistical sig-
nificance on the interrater agreement and Kendall’s W
making it impossible to tell whether the raters really
were in agreement on the evaluated software or not.

Research Question 2: How much of the evolvabil-
ity evaluation of a software element can be explained
by the measurable characteristics of the software ele-
ment and the evaluator demographics? This research
question was studied in Section 4.2. This research
question was studied using categorical regression
founded on optimal scaling making it possible to use
continuous and non-continuous variables as both de-
pendent and independent variables.

We saw that the evaluations on code smells Long
Method and Long Parameter List could be predicted
with good accuracy by the regression models. In the
Long Method smell 71,2% of the evaluations could be
explained by the regression model consisting of source
code metrics. As expected, the lines of code metric was
the most important predictor for the Long Method
evaluations. However, the Metric model without the
lines of code metric explained 61,8% of the evalua-
tions. This is caused by the correlation the source code
metrics have with each other. In Long Parameter List

2 The researchers have calculated the percentage of answers that

were off by n steps in their ordinal scale, or they calculated averages
and standard deviations from the ordinal scale..

evaluations the Metric model explained 76,1% of the
evaluations. The most important predictor in the model
was the number of parameters, and unlike in the Long
Method evaluations there was no substitute for this
predictor which is not surprising.

The explanation power of the code metric based re-
gression models diminished when we studied the refac-
toring decision and the Feature Envy code smell
evaluations. The source code metrics explained only
9,8% of the Feature Envy smell evaluations. For the
refactoring decision the percentage of the evaluations
explained by the Metric models was 31,9% in Experi-
ment A and 26,1% in Experiment B. In Experiment A
we were able to use the smell evaluations of each
evaluator to create another regression model that ex-
plained 61,8% of the refactoring decision.

We also studied demographic variables as predictors
for a refactoring decision, but their explanatory power
was low. We even tried to improve the gathering of
demographic data in Experiment B grounded on Ex-
periment A, but still the background variables had only
minor explanatory power. In fact the demographic
variables performed slightly better in Experiment A,
but this was likely affected by having more demo-
graphics variables in Experiment A rather than a real
improvement in the data variables.

Comparing these results to the results of research
question 1 reveals us that both the interrater agreement
and the metric regression models have a similar two-
folded structure. Both perform well on Long Method
and Long Parameter List smell evaluations. Similarly
both the interrater agreement and the regression models
have low values when it comes to the refactoring deci-
sions and especially Feature Envy evaluations. There is
a connection between these two, and it is caused by the
fact that the source code metrics of any method will
remain the same even if there is disagreement between
raters. Thus, if there is disagreement whether a certain
method should be refactored, it automatically means
that the code metrics of that method cannot make up a
strong regression model that would predict the refac-
toring decision because there is a disagreement on the
issue. Naturally this does not affect the regression
model created from the smell evaluations because the
possible disagreement in the refactoring decision is
likely to be reflected in the smell evaluations.

Comparison to prior studies is not clear cut because
they have not utilized regression analysis. Regardless,
we can try to make some comparisons. Kafura and
Reddy [7] concluded that the expert evaluations on
evolvability were in conformance with the complexity
source code metric. This conflicts with our results
since we showed that metrics were not sufficient pre-
dictors of the refactoring decision i.e. the evolvability
improvement need. However, their results are based

on interviews on software maintainability while we
used the refactoring decisions on an ordinal scale sur-
vey. Oman et al. [13, 16] used subjective evaluations to
create a metrics based maintainability measure. It is
therefore quite natural that their metrics correlated well
with subjective evaluations.

Our prior work [10], which studied code smell
evaluations at the module level in an industrial setting,
concluded that source code metrics and code smell
evaluations did not correlate. However, this study
shows that simple code smells and source code metrics
have a relationship. The difference is likely to stem
from three limitations in our prior study. First, in our
prior work we used higher (module) level evaluations.
Second, the evaluations were based on recollection.
Third, the evaluators had been working with the soft-
ware modules and, thus, had a more personal bond
with the software under evaluation. We think that these
dissimilarities can explain the different results.

5.2. Limitations
This section assesses the limitations of the study.
Threats to internal and external validity are studied
based on [1, 2], and improvements to the experimental
design are proposed.

5.2.1. Threats to internal validity. In Experiment B
the reliability of the respondents’ procedures was ques-
tionable since it was done as a web survey, and there
was no control over the respondents. However, a simi-
lar situation could have occurred in Experiment A,
because we had no means to make sure that the evalua-
tors actually paid attention to the introduction lecture
they were given prior to the experiment.

Experiment B lacked the randomization of the
methods evaluated. The evaluation order of the meth-
ods could have caused bias to the evaluation results. In
Experiment B the evaluators had the possibility to go
back and forth in their answers if they wanted to check
or change something in their prior answers. This
should have limited the effect cause by the lack of ran-
domization.

5.2.2. Threats to external validity. There could be
interaction between the selection of evaluators and the
issue studied in the experiments. In both experiments
the population was the students participating in the
course. However, proper sampling was not done to
select the individuals who would become the evalua-
tors of the experiment. Instead, the evaluators were
those interested in receiving the extra credit for their
course grade. This sampling method could have caused
bias. It is possible that students who were more inter-
ested in this topic participated in the experiment. Based
on the course grades there actually was a slight bias in

both experiments towards better performing students.
Another threat to external validity comes from the

population. Generalizing the results obtained using
students to developers in industry might not be possi-
ble. We may argue that students are a too homogenous
group, and, therefore, the results are too good. Fur-
thermore, one may argue that as the evaluators had a
varying amount of industrial programming experience
(from zero to fifteen years), the population is too het-
erogeneous. However, also teams of industrial devel-
opers can have fluctuating levels of homogeneity.

The selection of the evaluated software elements is
another threat to external validity. It is possible that
with a different set of software elements different re-
sults could be obtained.

The source code metrics used to measure the evalu-
ated methods were limited to six different metrics,
which were introduced in Section 3.2.4. With a differ-
ent set of metrics the results could have been different.
However, it must be pointed out that the goal was not
to discover the best metrics to predict refactoring deci-
sions, but to test how a few widely used measures per-
form in predicting the evaluations.

It is possible that the results represent more the ef-
fect of the experimental setting than what it would be
in the real world. One may argue that in the real world
the agreement between raters would be better since the
raters would understand and study the evaluated piece
of software longer and more thoroughly.

5.2.3. Improvements to the experiment design. This
section provides a brief list of how the experiment
should be improved.
1. The selection of the evaluators should be random.
2. The population should be more diverse.
3. More software elements should be used for evalua-

tion to reduce the possible bias.
4. More source code metrics not suffering from multi-

collinearity should be measured.
5. The list of code smells should be longer to allow

better comparison between the evaluations.
6. There should be several questions describing each

smell to allow assessing reliability of answers.
7. A pre-exam should be held to see how well the

evaluators understand the issues to be evaluated.

6. Conclusions and future work

This paper investigates subjective evaluation of soft-
ware evolvability by assessing interrater agreement and
factors explaining the evaluations. We have seen that
the interrater agreement is high on the simple code
smells Long Method and Long Parameter List, but
considerably lower on the refactoring decision and the
Feature Envy code smell. Regression models based on

source code metrics explained over 70% of the evalua-
tions of Long Method and Long Parameter List smells,
but explained only about 30% of the refactoring deci-
sion. The best predictors of the refactoring decision
were the evaluations of the code smells explaining
more than 60% of the decisions.

High interrater agreement on the simple code smells
implies reliability of the smell evaluations. Thus, there
should be no need to double check the evaluations of
those smells by tools or another developer. Addition-
ally, for the simple code smells the prediction by the
code metrics based regression model was also quite
accurate. This suggests code metrics tools usage as an
effective approach in highlighting straightforward
problems in the code.

Lower interrater agreement of the refactoring deci-
sion indicates a possible unreliability in the developers’
evaluations. To compensate this it seems advisable to
double check the evaluation at least from time to time
because false judgments may lead to poorly evolvable
software. The lower interrater agreement also raises a
topic to be addressed in our future work concerning the
causes explaining the differences in the refactoring
decision evaluations. Additionally, metrics-based re-
gression models were only able to explain 30% of the
refactoring decisions. This indicates difficulties in
building tool support to simulate real-life subjective
refactoring decisions.

In the future we will analyze the rationales provided
by the evaluators in Experiment B. This allows us to
study the qualitative elements, i.e. the real reasons be-
hind the refactoring decisions and the proposed chang-
es to the source code. In the future one could also study
the effect of coding standards and team context to
evolvability evaluations. Presumably, a team with a
coding standard should have higher interrater agree-
ment compared to a group of students. Finally, a path
that should be pursued is the investigation of using
machine learning techniques to identify poorly evolv-
able software according to evolvability evaluations.
However, for this to be feasible the interrater agree-
ment must be sufficient and we must also understand
the rationales behind the evolvability evaluations.

References

[1] D.T. Campbell and J.C. Stanley, Experimental and quasi-
experimental design for research, Chicago, USA: Rand
Mcnally College Publishing Company, 1966.

[2] T.D. Cook and D.T. Campbell, Quasi-experimentation:
Design and analysis issues for field settings, Chicago, USA:
Rand Mcnally College Publishing Company, 1979.

[3] M.A. Cusumano and R.W. Selby, Microsoft Secrets,

USA: The Free Press, 1995.

[4] M. Fowler and K. Beck, "Bad Smells in Code," in Refac-
toring: Improving the Design of Existing Code, 1st ed., Bos-
ton: Addison-Wesley, 2000, pp. 75-88.

[5] M. Genero, M. Piatini and E. Manso, "Finding "early"
indicators of UML class diagrams understandability and
modifiability," in Proceedings of International Symposium
on Empirical Software Engineering, 2004, pp. 207-216.

[6] M. Genero, M. Piattini and C. Calero, "Empirical valida-
tion of class diagram metrics," in Proceedings of the Interna-
tional Symposium on Empirical Software Engineering, 2002,
pp. 195-203.

[7] D.G. Kafura and G.R. Reddy, "The Use of Software
Complexity Metrics in Software Maintenance," IEEE Trans.
Software Eng., vol. 13, no. 3, 1987, pp. 335-343.

[8] Y. Kataoka, T. Imai, H. Andou and T. Fukaya, "A Quan-
tative Evaluation of Maintainability Enhancement by Refac-
toring," in Proceedings of the International Conference on
Software Maintenance, 2002, pp. 576-585.

[9] M. Kendall Sir, "The problem of m ranking," in Rank
Correlation Methods, 5th ed., J.D. Gibbons Ed. London:
Edward Arnold, 1948, pp. 117-143.

[10] M.V. Mäntylä, J. Vanhanen and C. Lassenius, "Bad
smells - Humans as code critics," in Proceedings.20th IEEE
International Conference on Software Maintenance, 2004.
2004, pp. 399-408.

[11] T. Mens and T. Tourwe, "A survey of software refactor-
ing," IEEE Trans. Software Eng., vol. 30, no. 2, 2004, pp.
126-139.

[12] J.J. Meulman, "Optimal scaling methods for multivariate
categorical data analysis," SPSS., Tech. Rep. SPSS White
Paper, 1998.

[13] P.W. Oman and J. Hagemeister, "Constructing and test-
ing of polynomials predicting software maintainability,"
Journal of Systems and Software, vol. 24, no. 3, 1994, pp.
251-266.

[14] M.J. Shepperd, "System architecture metrics for control-
ling software maintainability," in IEE Colloquium on Soft-
ware Metrics, 1990, pp. 4/1-4/3.

[15] B. Shneiderman, Software Psychology: Human factors
in Computer and Information Systems, Cambridge, Massa-
chusetts, USA: Winthrop Publishers, 1980.

[16] K.D. Welker, P.W. Oman and G.G. Atkinson, "Devel-
opment and application of an automated source code main-
tainability index," Journal of Software Maintenance: Re-
search and Practice, vol. 9, no. 3, 1997, pp. 127-159.

