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Abstract – Clonal Selection Algorithm (CSA) is one of the most 
widely employed immune-based approaches for handling opti-
mization tasks. Characterized with the similartaxis and dissimi-
lation properties, Mind Evolutionary Computation (MEC) is a 
new evolutionary computation method. In this paper, we pro-
pose a hybrid optimization algorithm based on the principles of 
the CSA and MEC to search for the optimal parameters (values 
of inductor and capacitor) of a passive filter in the diode full-
bridge rectifier. Simulation results demonstrate that our algo-
rithm can acquire the optimal LC parameters within the given 
criteria for power filter design. 
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I. INTRODUCTION

Artificial Immune System (AIS), based on the natural im-
mune systems, is considered as an emerging kind of biologi-
cally inspired computational intelligence methods, which 
have attracted considerable research interest from different 
communities over the past decade [1]-[5]. As an important 
partner of the AIS, Clonal Selection Algorithm (CSA) has 
been successfully applied to handle challenging optimization 
problems with superior performances over classical ap-
proaches [6] [7] [8]. Alternatively, Evolutionary Computa-
tion (EC) is another type of effective methods to deal with 
optimization tasks. Based on the analysis of human mind 
thinking principles, Sun proposed the Mind Evolutionary 
Computation (MEC) in order to overcome the premature 
drawback of conventional EC [9].  

In this paper, we first present a hybrid optimization algorithm 
combining both the CSA and MEC, which will be described 
in details in Section II. In Section III, we next discuss the 
parameter optimization problem of a full-bridge diode recti-
fier. Computer simulations are made in the following section. 
The performance comparison among the GA, CSA, and our 
hybrid optimization method is also made. Finally, in Section 
V, we conclude this paper with some remarks and conclu-
sions. 

II. HYBRID OPTIMIZATION ALGORITHM

A. Clonal Selection Algorithm (CSA) 

As aforementioned, the AIS is a new kind of computational 
intelligence methodologies inspired by the natural immune 

systems to cope with real-world problems [10]. The CSA is 
based on the Clonal Selection Principle (CSP), which ex-
plains how the immune response is mounted, when a non-self 
antigenic pattern is recognized by the B cells [11]. It is actu-
ally an evolutionary process in the natural immune systems, 
during which only the antibodies that can recognize intruding 
antigens (non-self cells) are selected to proliferate by cloning 
[12].  

B. Mind Evolutionary Computation (MEC) 

The Mind Evolutionary Computation (MEC) is an evolution-
ary optimization approach. In the MEC, all the individuals 
are grouped into either the superior set or temporary set [13]. 
The former holds the information of winners of global com-
petition, while the later keeps records on the procedure of 
global competition. At each generation, all the individuals of 
every group put their competition information on the local 
billboards. The global billboard, on the other hand, holds the 
information of every group, and records the winners during 
the global competition. Especially, similartaxis and dissimila-
tion are the two unique features of the MEC. The similartaxis 
is an iterative process, in which individuals compete against 
each other in a local area to search for the local optima. A 
group is considered matured, if there are no new winners 
being selected any longer. The dissimilation is another pro-
cedure, in which all the groups compete with each other to 
globally search for new possible candidates in the whole so-
lution space [14]. The similartaxis and dissimilation are two 
distinguished MEC characteristics during evolution. More 
information of the MEC can be found in [13].  

C. Hybrid Optimization Algorithm 

In this paper, we develop a hybrid optimization algorithm 
based on the ideas of the above CSA and MEC. The basic 
diagram of our hybrid optimization algorithm is illustrated in 
Fig. 1, which can be explained as follows: 

Step 1: Initialize the candidate pool including N groups. 

Step 2: Do similartaxis for each group. The best affinity is 
regarded as the record of the corresponding group, and will 
be used to compete with other groups. This process is, in fact, 
carried out by the CSA: 

1. Evaluate the fitness of all the individuals in the current 
population, and select the best candidates according to 
their fitness. 



2. Clone these best antibodies into a temporary pool (C).  

3. Generate a mutated antibody pool (C1). The mutation 
rate of each individual is inversely proportional to its fit-
ness.

4. Evaluate all the chromosomes in C1.

5. Re-select the individuals with better fitness from C1 to 
compose memory set M. Other improved individuals of C1
from mutation can replace certain members in the initial 
population to maintain the antibody diversity. 

Step 3: Select the groups with the best affinity, and randomly 
generate the supplementary groups to replace the matured 
ones. Actually, this step is equivalent to the dissimilation in 
the aforementioned MEC.  

Step 4: If the preset performance criteria is met, terminate the 
optimization procedure. Otherwise, go back to Step 2.  
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Fig. 1. Basic diagram of hybrid optimization algorithm.

Obviously, our hybrid optimization algorithm takes advan-
tage of both the CSA and MEC. In principle, the dissimila-
tion and similartaxis in the CSA are for the global and local 
optimal search, respectively. As we know, compared with the 
GA, the convergence speed of the CSA is relatively slow. 
However, in our hybrid optimization algorithm, the dissimi-
lation borrowed from the MEC can keep the candidate pool 
dynamical during iterations as well as explore larger solution 
space. Therefore, the common premature problem in the clas-

sical GA-based approaches can be efficiently handled. In 
addition, we employ a new mutation operator in Step 2, 
through which the mutated values of individuals are inversely 
proportional to their fitness by means of selecting different 
mutation variations. In other words, the better fitness the in-
dividual has, the less it changes by mutation. We should 
point out that the clone size in Step 2 is generally defined as 
either a monotonic function of the affinity measure or a con-
stant value [15]. Here, it is a constant. Based on our rules, the 
candidate pool tends to be more diverse. The hybrid optimi-
zation algorithm can, thus, avoid being trapped into local 
minima, and achieve an improved convergence speed. For 
the demonstration purpose, we employ this optimization al-
gorithm, CSA, as well as GA to deal with the minimization 
of the following test function [9], and compare their optimi-
zation results: 

22
1

22
2

2
1 1100 xxxy .                      (1) 

The simulation results are shown in Fig. 2. Some important 
parameters used are given in Table 1. Apparently, the con-
vergence speed of our hybrid optimization algorithm is much 
faster than those of the CSA and GA. Note, this hybrid algo-
rithm begins with a small initial population size. However, 
due to the embedded dissimilation operation, it can search for 
the global optimum in the solution space.  
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Fig. 2. Evolutionary behaviors of function optimization. 
Solid line: hybrid optimization algorithm. 

Dashed line: CSA. Dotted line: GA. 

Table 1. Parameters in Fig. 2. 

Parameter Value
Initial group 3 

Clonal size 2
Generations 100 

1x  range -1 ~ 1 

2x  range -1 ~ 1 
Mutation rate 0.01 



III. SINGLE-PHASE DIODE RECTIFIERS

In modern power electronics, it is advantageous to utilize 
inexpensive rectifiers with diodes to convert AC input into 
DC output in an uncontrolled manner. These rectifiers are 
widely applied in the majority of power electronics applica-
tions, such as switching DC power supplies and AC/DC mo-
tor drives [16]. A large capacitor as a filter at the DC side is 
used to charge a value close to the peak of the AC input volt-
age. Unfortunately, the deployment of this electrolytic stor-
age capacitor usually results in a poor Power Factor (PF) as 
well as highly distorted current of AC side from the utility. 
Generally, a power filter (active or passive) targets at shaping 
the input waveforms. It has been proved that by using the 
active filters, we can improve the PF to be very close to unity 
with small harmonic currents. However, such an approach 
increases the control complexity and circuit costs as well. 
Alternatively, passive filers are more attractive choices, be-
cause of their simple configuration, reliability, and easy im-
plementation, especially in case of a specific load power [17]. 
They have become an effective method for the tasks of PF 
correction and harmonic current reduction. Figure 3 illus-
trates a typical LC passive filter circuit topology for full-
bridge rectifiers. Conductor Ls and capacitor Cs can be de-
ployed in conjunction with the diode rectifier bridge to im-
prove the current waveforms. Actually, a large inductor has a 
negative impact on the associated post regulator control strat-
egy caused by the increased DC source voltage regulation. 
Thus, we have to select as small inductors as possible in our 
passive filter design [18]. The analysis of the single-phase 
diode full-bridge rectifier system is based on the following 
two assumptions. 

1. Capacitor Co is sufficiently large so that the output 
voltage is ripple free constant DC voltage. 

2. AC voltage and diodes D1, D2, D3, and D4 are ideal 
components. 

Fig. 3. A typical LC passive filter circuit topology for full-bridge rectifiers. 

It is well known that the performance of the passive filter is 
determined not only by its circuit topology but also the val-
ues of the inductor and capacitor involved. Numerous passive 
filter design methods have been introduced to optimize these 
LC parameters in order to obtain the best input current wave-
form. For example, two interesting schemes are advocated by 
Moo and Chen. Moo developed a computer program to create 

the contour maps of the PF, Total Harmonic Distortion 
(THD), and DC voltage in dimensioning the LC passive filter 
[17]. The optimal operation point can be selected under the 
practical considerations as well as required specifications. 
However, drawing such contour maps is always time-
consuming, and different loads require different maps to be 
drawn. On the other hand, instead of the traditional gradient 
descent-based methods, some promising optimization ap-
proaches have emerged during recent years, Chen introduced 
the GA to design the passive filter [19]. As discussed above, 
compared with the GA, our CSA can achieve both local and 
global search. In the next section, we investigate a new CSA-
based scheme to optimize the LC parameters of the diode 
full-bridge rectifier (as shown in Fig. 3) within the following 
three criteria: 

1. small inductor for LC input filter; 

2. large PF; 

3. low THD. 

Our hybrid optimization algorithm will also be used in this 
optimal LC filter design system, and its performance is com-
pared with that of the GA and CSA.  

IV. SIMULATIONS

The GA, CSA, and proposed hybrid optimization algorithm 
are applied here to optimize the parameters of the passive 
filter. Four kinds of software, i.e., MATLAB, SIMULINK, 
SimPowerSystems, and Piece-wise Linear Electrical Circuit 
Simulation (PLECS), are utilized in our computer simula-
tions.  

A. Simulation parameters 

Since both Ls and Cs of the passive filter are supposed to be 
optimized by the CSA, every antibody, in form of float num-
bers, includes two sub-segments that represent the values of 
Ls and Cs, respectively. Their search ranges should be ini-
tially chosen in the CSA. Based on certain prior knowledge, 
we set ]200mH 0,[sL  and sC [17]. The fitness 
(affinity) function has to be defined beforehand as well. Ac-
cording to the principles of the passive filter and other prac-
tical appreciations, two issues are considered here. 

]F20 ,0[

1. Maximal PF. 

2. As small Ls as possible. 

Obviously, a better fitness would lead to a larger PF and 
smaller inductor. The objective of employing the passive 
filter in the AC/DC rectifier is to obtain the maximal PF as 
well as minimal THD. As aforementioned, the higher the 
internal source Ls, the greater the voltage distortion. A small 
inductor is always desired, although this is not our major 
optimization goal. In other words, a smaller value of Ls is 
preferred, if it can achieve a slightly lower but acceptable PF. 



Therefore, the fitness of antibodies should be written as a 
weighted combination of Ls and PF [19]: 

sLkPFfitness 10log .                       (2) 

The user-defined coefficient k provides the degree of free-
dom to adjust the impact of Ls on the fitness and PF of the 
AC side. The memory set M in the CSA acts as a pool to 
accommodate the antibodies (possible Ls and Cs) with high 
affinity. In summary, all the parameters of our simulations 
are given in Table 2. It should be emphasized that to acceler-
ate the convergence of the CSA, the mutated value of anti-
bodies is inversely proportional to each individual’s affinity. 

Table 2. Parameters of CSA-based LC filter optimal design. 

Parameter Value
Population size 6

Clone size 2
Weight k 0.001 

Cs )F(  range 0 ~ 20 
Ls (mH) range 0 ~ 200 

B.  Simulation results 

For the diode full-bridge rectifier in Fig. 3 without the LC 
passive filter, the simulated input current Is and source volt-
age sv are illustrated in Figs. 4 (a) and (b) respectively. With-
out the passive LC filter, the PF of the AC mains is 0.62, and 
the input current THD is 115% for the load current 
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Fig. 4. Waveforms of Is and  in Fig. 3 without LC passive filter:  sv

(a) Is, and (b) .sv

The waveforms of Is and sv  with our CSA-optimized LC 
passive filter are shown in Figs. 5 (a) and (b), respectively. 
The corresponding parameters are provided in Table 3. The 
new Ls and Cs are 184 mH and , respectively. It is 
clearly visible the CSA can optimize both L

F 1.56 
s and Cs to 

achieve the desired power factor. Meanwhile, the THD has 
also been reduced to 21.9%. However, we should stress that 
all the optimization results are obtained only under ideal con-
ditions, i.e., the four diodes are assumed ideal, and values of 
inductor and capacitor are 100% accurate. 
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Table 3. CSA-optimized Co, Ls, Cs, PF, and THD. 

Parameter Value
Io (A) 0.4 

Co ( F) 220 
Ls (mH) 184 
Cs ( F) 1.56 

PF 0.96 
THD (%) 21.9 

To further demonstrate the optimization characteristics of 
our hybrid algorithm, we compare its evolutionary behaviors 
with those of the CSA and GA, as depicted in Fig. 6. For the 
hybrid optimization algorithm, after 50 generations, the PF 
has been improved to 0.958, and the THD reduced to 21.9%.  
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Fig. 6. Evolutionary behaviors in PF optimization of LC passive filter.  
Solid line: hybrid optimization algorithm. 

Dashed line: CSA. Dotted line: GA.  

We conclude that although initialized with a relatively small 
population, the proposed hybrid optimization algorithm can 
still overcome the harmful premature problem, and obtain 
satisfactory optimization results. Due to the integration of the 
CSA, another essential advantage of our method over other 
optimization approaches is that it takes the affinities of anti-
bodies into account during evolution, which can provide a 
group of different antibodies with the best affinity. Table 4 
illustrates such a pool accommodating various appropriate 
candidates with low self-affinity among themselves. All of 
the LC combinations in the table can improve the PF to be 
0.95 (Io=0.4A). The diversity of these candidates offers more 
flexible design choices. This distinguished property has sig-
nificant potentials in engineering 

Table 4. Hybrid optimization algorithm-optimized 
LC parameters with PF=0.95. 

Ls (mH) Cs ( F) THD (%) 
198.60 3.47 28.4% 
194.59 2.58 34.3% 
189.51 3.09 31.1% 
192.85 1.70 29.6% 
196.34 2.98 31.4% 
193.59 3.25 30.0% 
178.84 1.33 19.9% 
197.85 1.48 20.4% 
196.71 2.49 34.1% 
197.52 1.73 28.9% 
197.22 1.54 23.9% 

V. CONCLUSIONS

In this paper, a new hybrid optimization method inspired by 
the principles of the CSA and MEC is first discussed, and 
further employed to design the LC passive filter. Simulations 
demonstrate that the proposed approach can acquire the op-
timal LC parameters within certain given criteria, such as the 
desired PF and THD. The antibody diversity feature of the 
CSA as well as anti-premature function of the MEC are fully 
utilized in this algorithm so that it can be initialized with 
smaller size of population, and still achieve better optimiza-
tion performances. Our hybrid algorithm is not only an effec-
tive but also flexible optimization method for coping with 
various real-world problems. 
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