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ABSTRACT. The Harmony Search (HS) method is an emerging meta-heuristic optimization algo-
rithm. In this paper, we propose two modified HS methods to deal with the uni-modal and 
multi-modal optimization problems. The first modified HS method is based on the fusion of the HS 
and Differential Evolution (DE) technique, namely, HS-DE. The DE is employed here to optimize the 
members of the HS memory. The second modified HS method utilizes a novel HS memory manage-
ment approach, and it targets at handling the multi-modal problems. Several nonlinear functions are 
used to demonstrate and verify the effectiveness of our two new HS methods.  
Keywords: Harmony search, differential evolution, uni-modal optimization, multi-modal optimiza-
tion, hybrid optimization methods  

1. Introduction. Firstly proposed by Geem et al. in 2001 [1], the HS method is inspired by 
the underlying principles of the musicians’ improvisation of the harmony. During the recent 
years, it has been successfully applied in the areas of function optimization [2], mechanical 
structure design [3], and pipe network optimization [4]. Unfortunately, empirical study has 
shown that the original HS method sometimes suffers from a slow search speed [2], and it 
is not suitable for handling the multi-modal problems. To overcome these drawbacks, we 
propose two modified HS methods in this paper. The first modified HS method is a hy-
bridization of the HS and Differential Evolution (DE): HS-DE, which can accelerate the 
convergence procedure of the regular HS method. The DE technique is a simple but uni-
versal numerical optimizer [5]. The individuals in the DE are updated by an amount of the 
difference between two randomly chosen ones. The DE has the distinguishing advantages 
of computation simplicity as well as convergence efficiency. The second modified HS 
method is based on the employment of an effective diversity maintenance policy for the 
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members of the HS memory. Extensive computer simulations have shown that our two 
modified HS methods can outperform the original HS in attacking the uni-modal and 
multi-modal problems.  

The rest of this paper is organized as follows. We briefly introduce the essential principles 
of both the HS and DE methods in Sections 2 and 3, respectively. In Section 4, by merging 
the HS and DE together, we propose a new hybrid optimization method: HS-DE, in which 
the fitness of the HS memory members can be improved by the DE. The second modified 
HS method is presented and discussed in Section 5. Simulation examples of nonlinear func-
tions optimization are demonstrated in Section 6. Finally, in Section 7, we conclude our 
paper with some remarks and conclusions.  

2. Harmony Search Method. As we know, when musicians compose the harmony, they 
usually try various possible combinations of the music pitches stored in their memory. This 
kind of efficient search for a perfect harmony is analogous to the procedure of finding the 
optimal solutions to engineering problems. The HS method is inspired by the working prin-
ciples of the harmony improvisation [1]. Figure 1 shows the flowchart of the basic HS 
method, in which there are four principal steps involved. 

Step 1. Initialize the HS Memory (HM). The initial HM consists of a given number of ran-
domly generated solutions to the optimization problems under consideration. For an 
n-dimension problem, an HM with the size of N can be represented as follows: 
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where [ ]i
n

ii xxx ,,, 21 L  ( Ni ,,2,1 L= ) is a solution candidate. N is typically set to be between 

10 and 100.  

Step 2. Improvise a new solution [ ]nxxx ′′′ ,,, 21 L  from the HM. Each component of this so-

lution, jx′ , is obtained based on the Harmony Memory Considering Rate (HMCR). The 

HMCR is defined as the probability of selecting a component from the present HM mem-

bers, and 1-HMCR is, therefore, the probability of generating it randomly. If jx′  comes 

from the HM, it is chosen from the thj  dimension of a random HM member, and it can be 

further mutated according to the Pitching Adjust Rate (PAR). The PAR determines the 
probability of a candidate from the HM to be mutated. Obviously, the improvisation of 
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[ ]nxxx ′′′ ,,, 21 L  is rather similar to the production of the offspring in the Genetic Algorithms 

(GA) [6] with the mutation and crossover operations. However, the GA creates fresh chro-
mosomes using only one (mutation) or two (simple crossover) existing ones, while the 
generation of new solutions in the HS method makes full use of all the HM members.  
Step 3. Update the HM. The new solution from Step 2 is evaluated. If it yields a better fit-
ness than that of the worst member in the HM, it will replace that one. Otherwise, it is 
eliminated.   
Step 4. Repeat Step 2 to Step 3 until a preset termination criterion, e.g., the maximal num-
ber of iterations, is met.  
Similar to the GA and particle swarm algorithms [7]-[9], the HS method is a random search 
technique. It does not require any prior domain knowledge, such as the gradient informa-
tion of the objective functions. However, different from those population-based evolution-
ary approaches, it only utilizes a single search memory to evolve. Therefore, the HS 
method has the feature of algorithm simplicity. Note that the HS memory stores the past 
search experiences, and plays an important role in its optimization performance. In the next 
section, we employ the DE method to improve the fitness of all the members in the HS 
memory so that the overall convergence speed of the original HS method can be acceler-
ated.  

 
FIGURE 1. Harmony Search (HS) method 
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3. Modified HS Method for Uni-Modal Optimization. A. Differential Evolution (DE) 
method. The DE method is a robust population-based optimization technique firstly pro-
posed by Storn and Price [5] [10]-[12]. The principle of the DE is similar to that of other 
evolutionary computation methods, such as the GA. However, the unique idea of the DE is 
that it generates new chromosomes by adding the weighted difference between two random 
chromosomes to the third one. If the fitness of the resulting chromosome is better than that 
chromosome, this newly generated chromosome replaces the one with which it is compared. 
The simplest DE can be explained as the following. Suppose there are three chromosomes, 

)(1 kr , )(2 kr , and )(3 kr , in the current population, as shown in Figure 2. A trial update of 

)(3 kr , )1(3 +′ kr , is given: 

[ ])()()()1( 212313 krkrkrkr −+=+′ λλ ,                    (2) 

where 1λ  and 2λ  are two pre-determined weights. In order to further increase the diver-

sity of the chromosomes, a ‘crossover’ operator is employed to generate )1(3 +′′ kr  by ran-

domly combining those parameters of )(3 kr  and )(3 kr′  together. If )1(3 +′′ kr  yields a 

higher fitness than )(3 kr , we get: 

)1()1( 33 +′′=+ krkr .                          (3) 

Otherwise, )1(3 +′′ kr  is eliminated, and the above iteration procedure will restart. )(1 kr  

and )(2 kr  are normally randomly selected from the population, and should be mutually 

different from each other. Apparently, the update of the chromosomes in the DE method is 
similar to the crossover operator of the GA. As a matter of fact, the difference between two 
chromosomes is an estimation of the gradient information in that zone, where both chro-
mosomes belong to. Hence, the DE can be also considered as a gradient descent-based ran-
dom search method.  
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FIGURE 2. Differential Evolution (DE) method 

During the past decade, hybridization of evolutionary computing algorithms has gained 
considerable popularity, which can overcome their individual drawbacks while benefit from 
each other’s strengths [13]-[16]. As aforementioned, the DE method has the remarkable 
advantage of effective search. Thus, we propose a fusion of the HS and DE: HS-DE, which 
is capable of significantly outperforming the regular HS approach in the uni-modal optimi-
zation. 

B. Fusion of HS and DE: HS-DE 

It is well known that the HM storing the elite solutions acquired in the history has a central 
effect on the behavior of the HS method. Unfortunately, the update of the HS memory 
members is solely based on the past search experiences. In this section, we develop the 
HS-DE, in which the DE technique is applied to fine-tune the HM. More precisely, all the 
members of the HM are regarded as the DE individuals, and they can evolve together in the 

population of the DE. For example, [ ]nxxx ′′′ ,,, 21 L  is updated to [ ]nxxx ′′′′′′ ,,, 21 L  after a 

given number of the DE iterations. Every element in the HM needs to go through the above 
DE-based refinement procedure. Hence, the resulting HM members are expected to have 
better fitness than that of the original ones. Obviously, the updated HM can provide an im-
proved basis for the HS method.  
The proposed HS-DE has three interesting features. Firstly, the DE technique used takes 
full advantage of the information sharing and exchange among the members of the HM. 
This strategy can overcome the premature shortcoming of the regular HS method. Secondly, 
the DE-based update of the HM runs independently and in parallel with the search of the 
HS method. The DE is actually embedded into the HS method as a separate fine-tuning unit. 
Thirdly, the employment of the DE only moderately increases the computational complex-
ity of the HS method. In Section 5, we demonstrate that this HS-DE has a superior optimi-
zation performance over the original HS method in coping with the uni-modal problems. 

4. Modified HS Method for Multi-Modal Optimization. Optimization is referred to a 
process of finding the best solution or operating a system in the most effective way, par-
ticularly under some given constraints [17] [18]. Multi-modal optimization is an important 
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but challenging topic in the field of optimization [19]-[21]. Unfortunately, it is difficult for 
the HS method to locate all the global optima of the multi-modal problems, because the 
HM members can be easily stagnated into one or several of them during iteration. Thus, the 
key issue of applying the HS method for the multi-modal optimization is to effectively 
maintain the diversity of the HM members. The regular HM management policy is ex-
plained in Section 2. However, some additional approaches are needed to determine 
whether a solution from Step 2 can replace the worst member in the HM. Indeed, the quali-
fication of a solution candidate as a new HM member should be based on not only its fit-
ness but also its similarity to all the existing members. 
Inspired by the artificial fish swarm algorithm [22], we propose a new control mechanism, 
as shown in Figure 3, for updating the HM in our second modified HS method so as to at-
tack the multi-modal problems. Suppose the fitness of the current HM members is denoted 

as if  ( Ni ,,2,1 L= ). After a solution candidate, [ ]nxxx ′′′ ,,, 21 L , with the fitness, f ′ , is 

obtained, we first measure its distances, id  ( Ni ,,2,1 L= ), to all the HM members: 

[ ] [ ]i
n

ii
ni xxxxxxd ,,,,,, 2121 LL −′′′= ,                    (4) 

where  is an appropriately selected distance metric. Next, we calculate the number of 

the HM members, M , which are in the vicinity, V , of [ ]nxxx ′′′ ,,, 21 L . In other words, only 

the HM members, whose id  are smaller than V , are counted here. The average fitness of 

these ‘nearby’ HM members, F , is given as follows: 

M

f
F

M

i
i∑

== 1 .                              (5) 

Therefore, [ ]nxxx ′′′ ,,, 21 L  will replace the worst member of the HM, if it meets the follow-

ing three conditions: 

1. f ′  is greater than that of the worst HM member, 

2. M  is smaller than a preset threshold VM , 

3. f ′  is greater than F . 

It is concluded from the above explanations that our approach can prevent the harmful 
over-similarity among the HM members so that the diversity of the HS solutions is main-
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tained. That is to say, the modified HS method is well-suited for handing the multi-modal 
problems. Nevertheless, the proposed technique has two drawbacks. Firstly, the parameters 

V  and VM  are always applications dependent, and are usually chosen based on trial and 

error. They can significantly affect the multi-modal optimization performance of the modi-
fied HS method. Unfortunately, there is no analytic way yet to guarantee their best values. 

Secondly, as in (4), the distances between [ ]nxxx ′′′ ,,, 21 L  and all the present HM members 

have to be calculated. This requirement can certainly result in a time-consuming procedure 
in case of a large N .  

[ ]nxxx ′′′ ,,, 21 L

id

M

VMM <

F

Ff >

 
FIGURE 3. HM member control in modified HS method for  

multi-modal optimization  
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5. Simulations. In this section, we investigate the effectiveness of the two modified HS 
methods with a few simulation examples of uni-modal and multi-modal functions.  

A. Uni-modal functions optimization 

The following eleven n-dimension nonlinear functions, which have been widely used as the 
optimization benchmarks [23] [24], are employed to compare the optimization (minimiza-
tion) capabilities between the HS and our HS-DE. Here, 50=n , except for Powell func-
tion, where 52=n . 
Ackley function: 
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Michalewicz function: 
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Powell function: 
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Rastrigin function: 
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Rosenbrock function: 
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Sphere function: 
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Trid function: 
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Zakharov function: 
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The global minima of all the above functions are at 0)f( =x , except for Michalewics func-

tion and Trid function, whose global minima are unknown when 50=n . Generally, 
evaluation of the objective function is the most time consuming part of nearly all the opti-
mization algorithms. Therefore, we use the Number of Function Evaluation (NFE) rather 
than number of iterations as the principal criterion to compare the convergence speeds of 
the HS and HS-DE. Both of them have 100 HM members, i.e., 100=N , which are initial-
ized to be equal. The relevant parameters in these two methods are as follows: 

8.0HMCR = , 6.0PAR = , 7.01 =λ , and 3.02 =λ . Their evolution procedures are termi-

nated after 10,000 NFE. Table 1 gives the optimal solutions acquired. We stress that the re-
sults here are based on the average of 1,000 independent trials. As two illustrative examples, 
the optimal solutions to the Ackley function and Rastrigin function from the HS and 
HS-DE are shown in Figures. 4 and 5, respectively. Apparently, compared with the original 
HS method, for the eleven test functions, our HS-DE can achieve much better optimization 
results within the same NFE, due to the efficient DE-based refinement of the HM members. 
That is, the HS-DE has a superior uni-modal optimization capability over the HS method. 
However, the optimization effectiveness of this HS-DE can significantly deteriorate with 

inappropriately chosen parameters 1λ  and 2λ . Figures 6 (a) and (b) illustrate the optimal 

solutions to Rosenbrock function obtained by the HS-DE with 7.01 =λ  & 3.02 =λ  and 

9.01 =λ  & 1.02 =λ , respectively. We can observe that 1λ  and 2λ  indeed play a pivotal 

role in our HS-DE.  
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TABLE 1. Optimal solutions acquired by HS and HS-DE within 10,000 NFE 

 HS HS-DE 
Ackley Function 16.3014  1.1232  

Dixon and Price Function 5103.9617×  0.9345  

Levy Function 63.8282  4.2580  
Michalewicz Function 29.5973-  13.7792-  

Perm Function 14106919.1 ×  14105122.1 ×  

Powell Function 3109420.5 ×  8105404.6 −×  

Rastrigin Function 273.5232  16.8533  

Rosenbrock Function 5104.7523×  54.7093  

Sphere Function 4102.1569×  5.7988  

Trid Function 7106403.1 ×  26.8870 

Zakharov Function 3101.2005×  77.8902  
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FIGURE 4. Optimal solutions to Ackley function acquired by HS and HS-DE 
(a) HS (b) HS-DE 
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FIGURE 5. Optimal solutions to Rastrigin function acquired by HS and HS-DE 
(a) HS (b) HS-DE 
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FIGURE 6. Optimal solutions to Rosenbrock function acquired by HS-DE  
with DE different parameters 

(a) 7.01 =λ  and 3.02 =λ  (b) 9.01 =λ  and 1.02 =λ  

B. Multi-modal functions optimization 
In this example, the multi-modal optimization capability of the second modified HS 
method is examined using the following three two-dimension functions [25] [26]: 

2222
1 )7()11(200),(f −++−+−= yxyxyx , 5,5 ≤≤− yx .      (17) 

1)4sin()4sin(),(f2 ++−= πππ yyxxyx , 1,1 ≤≤− yx .         (18) 
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Each function has only one global optimum (minimum) but several local optima. Actually, 
the goal of the optimization algorithms employed is to find not only the global optimum but 
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also as many local optima as possible. The typical optimization results of these functions of 
the regular HS and modified HS methods after 100,000 iterations are illustrated in Figures. 
7-9. 100=N , 75.0HMCR = , and 6.0PAR =  are used in both two optimization tech-

niques. In our modified HS method, V  and VM  for ),(f1 yx , ),(f2 yx , and ),(f3 yx  are 

given as follows: 

For ),(f1 yx , 15.0=V , and 2=VM . 

For ),(f2 yx , 075.0=V , and 3=VM . 

For ),(f3 yx , 025.0=V , and 3=VM . 

It is clearly visible that the regular HS method can only find the global optimum of each 
function, while the modified HS method is capable of locating most of the local optima in 

addition to the global one. Nevertheless, we emphasize that like 1λ  and 2λ  in the HS-DE, 

V  and VM  can also considerably affect the multi-modal optimization performance of our 

modified HS method. For example, Figures 10 (a) and (b) show the optimization results of 

),(f2 yx , when 01.0=V  and 1=V , respectively, which are apparently worse than that in 

Figure 8 (b). In case of a fixed VM , if V  is too small, the behaviors of the normal HS and 

modified HS methods are quite similar. On the other hand, with a too large V , the quality 
of the global and local optima located indeed become poor. Unfortunately, how to choose 

the best V  and VM  is still an unsolved problem, although some adaptation strategies can 

be the potential solutions.  
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FIGURE 7. Optimization results of ),(f1 yx  using regular HS and modified HS methods 

(a) regular HS method (b) modified HS method 
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FIGURE 8. Optimization results of ),(f2 yx  using regular HS and modified HS methods 

(a) regular HS method (b) modified HS method 
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FIGURE 9. Optimization results of ),(f3 yx  using regular HS and modified HS methods 

(a) regular HS method (b) modified HS method 
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FIGURE 10. Optimization results of ),(f2 yx  using modified HS method with 01.0=V  

and 1=V  (a) 01.0=V  (b) 1=V  

6. Conclusions. In this paper, we propose two modified HS methods to deal with the 
uni-modal and multi-modal problems. Based on the fusion of the HS and DE, a novel hy-
brid optimization scheme, HS-DE, is first discussed. The HM members are fine-tuned by 
the DE to improve their affinities so that enhanced optimization performances can be 
achieved. In the second modified HS method, we employ a fish swarm-based technique to 
maintain the diversity of the HM members, which makes it a suitable candidate for han-
dling the multi-modal problems. Several simulation examples of the uni-modal and 
multi-modal functions have been used to verify the effectiveness of the proposed methods. 
Compared with the original HS, better optimization results are obtained using our modified 
HS approaches. However, a few important issues, such as convergence analysis and optimal 
parameters selection, need to be further explored. We are also going to study how to apply 
these modified HS methods in handling real-world problems.  
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