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Abstract: This paper presents a hybrid optimisation method based on the fusion of the clonal 
selection algorithm (CSA) and harmony search (HS) technique. The CSA is employed to improve 
the harmony memory members in the HS method. The hybrid optimisation algorithm is further 
used to optimise Sugeno fuzzy classification systems for the Fisher Iris data and wine data 
classification. Computer simulations results demonstrate the remarkable effectiveness of our new 
approach. 
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1 Introduction 

Biology-inspired computational intelligence methodologies 
have attracted great research attention from numerous 
communities. For example, artificial immune systems 
(AIS), inspired by the immunology, are an emerging kind of 
soft computing methods. As an important branch of the AIS, 
the clonal selection algorithm (CSA) stems from the clonal 

selection mechanism that describes the basic natural 
immune response to the stimulation of non-self cells 
(antigens) (Dasgupta, 2006; Wang et al., 2004; Wang et al., 
2006). The harmony search (HS) method is a meta-heuristic 
optimisation algorithm firstly proposed by Geem et al. 
(2001). It is inspired by the underlying principles of the 
musicians’ improvisation of harmonies. During the recent 
years, the HS method has been successfully applied in the 
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fields of function optimisation (Lee and Geem, 2005), 
mechanical structure design (Kang and Geem, 2004)  
and pipe network optimisation (Geem et al., 2002). 
Unfortunately, empirical study has shown that the HS 
method usually suffers from a slow search speed. To 
overcome this drawback, we propose a novel optimisation 
approach that combines the CSA and HS together. The 
diversity maintenance capability of the CSA can accelerate 
the convergence speed of the HS in our hybrid optimisation 
method. 

Pattern classification refers to the problem of 
partitioning the feature space into multiple regions and 
categorising the objects into different classes defined on 
these regions (Chang and Lilly, 2004). Fuzzy logic has been 
widely employed in the data classification area. One of the 
essential considerations in constructing fuzzy systems is the 
generation of the fuzzy rules as well as membership 
functions for each fuzzy set. Generally, some clustering 
algorithms can be utilised to divide the pattern space into 
subspaces and map the centre of each cluster into a rule, 
which results an initial fuzzy model. After that, the coarse 
fuzzy system is optimised by adjusting the structures and 
parameters. For instance, the genetic algorithms (GA) are 
used to tune the membership functions, tailor the fuzzy rules 
and select the most suitable fuzzification and defuzzification 
methods (Shi et al., 1999; Setnes and Roubos, 2000). The 
data classification rate is improved after the fine-tuning 
procedure. In our paper, the fuzzy c-means clustering 
algorithm is first applied to build up the fuzzy classification 
system from only the training data. This rough fuzzy model 
is next optimised by the proposed hybrid optimisation 
algorithm. 

The rest of this paper is organised as follows. We briefly 
introduce the working principles of both the CSA and HS 
method in Sections 2. In Section 3, by merging the CSA and 
HS together, we propose a hybrid optimisation technique, in 
which the HS memory (HM) members are improved by the 
CSA. The fuzzy classification systems are discussed in 
Section 4. The new optimisation algorithm is employed to 
optimise the Sugeno fuzzy classification systems for the 
Fisher Iris data and wine data classification in Section 5. 
Finally, in Section 6, we conclude our paper with some 
remarks and conclusions. 

2 CSA and HS method 

2.1 Clonal selection algorithm 

Inspired by the clonal selection principle (CSP), the CSA 
has been studied and applied to deal with demanding 
optimisation problems due to its superior search capability 
compared with the classical optimisation techniques (Wang 
et al., 2004). The CSP explains how an immune response is 
mounted, when a non-self antigenic pattern is recognised by 
the B cells. In the natural immune systems, only the 
antibodies that can recognise the intruding antigens are 
selected to proliferate by cloning (Timmis et al., 2008). 
Hence, the fundamental idea of the CSA is that those cells 

(antibodies) capable of recognising the non-self cells 
(antigens) will proliferate. The flow chart of a basic CSA is 
shown in Figure 1 and it involves the following nine 
iteration steps (Wang, 2005). 

1 Initialise the antibody pool Pinit including the subset of 
memory cells (M). 

2 Evaluate the fitness of all the antibodies (affinity with 
the antigen) in population P. 

3 Select the best candidates (Pr) from population P, 
according to their fitness. 

4 Clone Pr into a temporary antibody pool (C). 

5 Generate a mutated antibody pool (C1). The mutation 
rate of each antibody is inversely proportional to its 
fitness. 

6 Evaluate all the antibodies in C1. 

7 Eliminate those antibodies similar to the ones in C and 
update C1. 

8 Reselect the antibodies with better fitness from C1 to 
construct memory set M. Other improved individuals of 
C1 can replace certain existing members with poor 
fitness in P to maintain the whole antibody diversity. 

9 Return back to Step 2, if the preset performance criteria 
are not met. Otherwise, terminate. 

Figure 1 Flow chart of basic CSA 

 

We emphasise that a unique mutation operator is used in 
Step 5, in which the mutated values of the antibodies are 
inversely proportional to their fitness by means of choosing 
different mutation variations. That is to say, the better 
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similarity among the antibodies can also affect the overall 
convergence speed of the CSA. Thus, the strategy of 
antibody suppression inspired by the immune network 
theory (Dasgupta, 2006) is introduced to eliminate the 
newly generated antibodies, which are too similar to those 
already in the candidate pool (Step 7). With such a diverse 
antibody pool, the CSA can effectively avoid being trapped 
into the local minima and provide the optimal solutions to 
the multi-modal problems (Wang et al., 2006). In summary, 
the antibody cloning and fitness-related mutation are the 
two remarkable characteristics of the CSA. 

2.2 HS method 

As we know, when musicians compose harmonies, they 
usually try various possible combinations of the music 
pitches stored in their memory. This kind of efficient search 
for a perfect state of harmonies is analogous to the 
procedure of finding the optimal solutions to engineering 
problems. The HS method is inspired by the principles of 
the above harmony improvisation (Geem et al., 2001). 
Figure 2 shows the flowchart of the essential HS method, in 
which there are four principal steps involved. 

Step 1 Initialise the HM. The HM consists of a number of 
randomly generated solutions to the optimisation 
problems under consideration. For an n-dimension 
problem, an HM with the size of N can be 
represented as follows: 
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where 1 2, , ,i i i
nx x x⎡ ⎤

⎣ ⎦L  ( 1, 2, , )i N= L  is a solution 

candidate. 

Step 2 Improvise a new solution [ ]1 2, , , nx x x′ ′ ′L  from the 
HM. Each component of this solution, jx′ , is 

obtained based on the harmony memory 
considering rate (HMCR). The HMCR is defined 
as the probability of selecting a component from 
the HM and 1-HMCR is, therefore, the probability 
of generating it randomly. If jx′  comes from the 

HM, it is chosen from the jth dimension of a 
random HM member and it can be further mutated 
depending on the pitching adjust rate (PAR). The 
PAR determines the probability of a candidate 
from the HM to be mutated. The improvisation of 
[ ]1 2, , , nx x x′ ′ ′L  is similar to the production of 
offspring in the GA (Poli and Langdon, 2002) with 
the mutation and crossover operations. However, 
the GA usually creates new chromosomes using 
only one (mutation) or two (crossover) existing 
ones, while the generation of new solutions in the 
HS method makes full use of all the harmony 
members. 

Step 3 Update the HM. The new solution from Step 2 is 
evaluated and if it yields a better fitness than that 
of the worst member in the HM, it will replace that 
one. Otherwise, it is eliminated. 

Step 4 Repeat Step 2 to Step 3 until a termination criterion 
is met. 

Figure 2 HS method 

 

Similar with the GA and particle swarm optimization 
algorithms (Engelbrecht, 2005), the HS method is a random 
search technique. It does not need any prior domain 
knowledge, such as the gradient information of the  
objective functions. Nevertheless, different from those 
population-based approaches, it utilises only a single search 
memory to evolve. Hence, the HS method has the 
interesting advantage of algorithm simplicity. Note that the 
HM stores the past search experiences and plays an 
important role in its optimisation performance. In the next 
section, we deploy the CSA to improve the fitness of all the 
members in the HM so that the convergence speed of the 
original HS method can be accelerated. 

3 Hybrid optimisation algorithm 

In the past decade, hybridisation of evolutionary algorithms 
has gained considerable popularity, which can overcome 
their individual drawbacks while benefit from each other’s 
strengths. In this section, we develop a hybrid optimisation 
technique based on the fusion of the CSA and HS method. 
As aforementioned, the elite maintenance policy is a 
distinguishing property of the HS method and has a central 
effect on its behaviours. However, the update of the HM 
highly depends on the past search experiences. This inherent 
shortcoming limits the search ability of the regular HS 
method, especially in handling complex optimisation 
problems. In our novel approach, the CSA is employed to 
improve the fitness of the solution candidates in the HM. 
That is to say, all the members of the HM are regarded as 
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the individual antibodies and they can evolve in the 
population of the CSA. For example, 1 2, , ,i i i

nx x x⎡ ⎤
⎣ ⎦L  is 

updated to 1 2, , ,i i i
nx x x⎡ ⎤′ ′ ′⎣ ⎦L  so as to gain a better affinity 

with the antigen after a certain number of the CSA 
iterations. The CSA-based update of the HM members is 
indeed embedded into the HS method as a separate  
fine-tuning approach. Figure 3 illustrates how the CSA is 
merged with the HS method in our hybrid optimisation 
scheme. 

Figure 3 Hybrid optimisation method based on fusion of CSA 
and HS 

 

The proposed hybrid optimisation algorithm takes the 
advantages from both the CSA and HS method. The  
CSA-aided tuning strategy can provide a set of diverse 
members for the HM, which results in an improved 
convergence capability to deal with the premature problem. 
In addition, it should be stressed that the CSA only 
moderately increases the computational complexity of the 
original HS method. In Section 5, we will demonstrate the 
enhanced performance of this hybrid algorithm over the 
CSA and HS method in the optimisation of fuzzy 
classification systems. 

4 Fuzzy classification systems 

Generally, in an n-input-single-output fuzzy classification 
system, a representative classification rule is: 

Rule l IF x1 is 1
lA  and x2 is 2

lA  and … and xn is l
nA , 

THEN y is Cm, 

where 1, ,l L= L , L is the number of fuzzy rules, 
1, ,m M= L , M is the number of data classes, n is the 

number of input variables and ( 1,2, , )l
jA j n= L  is a fuzzy 

set associated with feature variable xj. Here, vector 

1, 2 , , nX x x x⎡ ⎤= ⎣ ⎦L  in the antecedent part consists of the 

input variables and Cm in the consequent part is the class 

label. In this paper, we only consider the asymmetric 
triangular membership function for those input variables: 

( ; , , ) max 0, min ,x a c xx a b c
b a c b

μ ⎛ − − ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
 (2) 

where a, b and c are the adaptive membership function 
parameters. Based on the given input data, the initial fuzzy 
system with a set of pre-defined rules according to the 
number of data classes can be obtained using some data 
clustering algorithms. The fuzzy c-means clustering method 
is a popular data clustering technique, which groups data or 
objects with high similarity and generates the partitions so 
that each object belongs to one or more clusters. In other 
words, it allows a data object to be classified into several 
clusters with different membership degrees. Furthermore, 
the parameters of the membership functions associated with 
the fuzzy sets can be optimised by the aforementioned 
optimisation methods. 

In our fuzzy data classification scheme, we select the 
Sugeno fuzzy system with the singleton consequents 
representing different data classes. To evaluate the 
performance of the optimised membership functions, an 
objective function is defined as follows (Chang and Lilly, 
2004; Setnes and Roubos, 2000): 

1

1 K

k
k

J e
K =

= ∑  (3) 

where K is the number of the data samples in the training set 
and ek is the classification error of a given data pattern. ek is 
calculated as: 

0,  if classification is correct   
1,  if classification is incorrectke
⎧

= ⎨
⎩

 (4) 

Therefore, the task of the proposed hybrid optimisation 
method is to optimise the membership functions in the 
above Sugeno fuzzy classification system by minimising the 
objective function so that its data classification rate can be 
maximised. In the next section, the Fisher Iris data and wine 
data are used as two representative testbeds for examining 
this approach. 

5 Simulations 

5.1 Fisher Iris data classification 

The Fisher Iris data is a well-known challenging benchmark 
for the data classification techniques, which consists of four 
input measurements, sepal length (SL), sepal width (SW), 
petal length (PL) and petal width (PW), in 150 data sets 
(Fisher, 1936). A total of three species are involved, i.e., 
setosa, versicolor and virginica, and each species contains 
50 samples. To perform the Iris data classification based on 
the output y of our Sugeno fuzzy classification system, the 
following principles are deployed: 
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Setosa, if 0.4
iris Versicolor, if 0.4 0.9

Virginica, if 0.9

y
y

y

<⎧
⎪= ≤ ≤⎨
⎪ >⎩

 (5) 

In the simulations, N instances from each Iris species are 
randomly selected as the training data and the remaining 
instances (T) are regarded as the test data. All the input 
variables are normalised within the range of [0, 1]. For  
the hybrid optimisation algorithm, we set HMCR = 0.8, 
PAR = 0.8, the number of the HM members is five and the 
maximum number of the antibody clones is four. The CSA, 
HS method and proposed optimisation algorithm are applied 
to optimise the aforementioned Sugeno fuzzy classification 
system. Figure 4 illustrates the performance comparison of 
their convergence speeds. Here, N = 10 and the test data 
have a total of 120 individual sets. Note that the results in 
Figure 4 are the average of ten independent runs. Obviously, 
our hybrid optimisation method can achieve the smallest 
classification error and the corresponding classification rate 
is 99.2%. 

Figure 4 Convergence procedures of CSA, HS and hybrid 
algorithm in optimisation of Sugeno fuzzy 
classification system for Fisher Iris data classification 
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Notes: N = 10 

dotted line: CSA 
dash line: HS method 
solid line: hybrid algorithm. 

In a typical trial, a Sugeno fuzzy classification system with 
three rules is optimised, which results in only two 
misclassifications. The following three rules are available: 

1 IF SL is small and SW is large and PL is small and PW 
is small, THEN Iris is setosa. 

2 IF SL is large and SW is small and PL is medium and 
PW is medium, THEN Iris is versicolor. 

3 IF SL is medium and SW is small and PL is large and 
PW is large, THEN Iris is virginica. 

Figures 5 and 6 show the initial and optimised membership 
functions of small, medium and large, respectively. 

 

Figure 5 Initial membership functions of Sugeno fuzzy 
classification system 
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Figure 6 Membership functions of Sugeno fuzzy classification 
system optimised by hybrid optimisation algorithm for 
Fisher Iris data classification, (a) membership 
functions of SL (b) membership functions of SW  
(c) membership functions of PL (d) membership 
functions of PW 
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Figure 6 Membership functions of Sugeno fuzzy classification 
system optimised by hybrid optimisation algorithm for 
Fisher Iris data classification, (a) membership 
functions of SL (b) membership functions of SW  
(c) membership functions of PL (d) membership 
functions of PW (continued) 
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(c) 
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(d) 

We further simplify our Sugeno fuzzy classification system 
by using only three input features, i.e., SW, PL and PW and 
assigning two membership functions to each of them. The 
three new fuzzy classification rules are as follows: 

1 IF SW is large and PL is small and PW is small, THEN 
Iris is setosa. 

2 IF SW is small and PL is small and PW is small, THEN 
Iris is versicolor. 

3 IF SW is large and PL is large and PW is large, THEN 
Iris is virginica. 

The optimal membership functions acquired by the hybrid 
optimisation method are shown in Figure 7 and a 
classification rate of 99% has been achieved in this case. 

 

 

Figure 7 Membership functions of simplified Sugeno fuzzy 
classification system optimised by hybrid optimisation 
algorithm for Fisher Iris data classification,  
(a) membership functions of SW (b) membership 
functions of PL (c) membership functions of PW 
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Moreover, we examine the effectiveness of our hybrid 
algorithm in the optimisation of the same Sugeno fuzzy 
classification system with different numbers of training data 
sets, as given in Table 1. The results are also the average of 
ten separate runs. Misclassifying the patterns of virginica 
into versicolor is the main factor affecting the overall 
recognition rate and the classification of setosa is nearly 
100% correct. Additionally, the fuzzy rules extracted by the 
fuzzy c-means clustering method can influence the 
classification rate. Table 2 gives the performance 
comparison between our scheme and other existing 
solutions from several references. It is clearly visible that 
the Fisher Iris data classification rate of the Sugeno fuzzy 
classification system can be significantly improved with the 
hybrid optimisation method. 

Table 1 Classification results of Fisher Iris data using CSA, 
HS and hybrid method 

Algorithms CSA HS Hybrid 
method 

N = 10, T = 40 

Misclassifications (training) 3 2 0.2 
Classification rate (training) 90% 93.3% 99.3% 
Misclassifications (test) 6.4 4.2 1 
Classification rate (test) 94.7% 96.5% 99.2% 

N = 20, T = 30 

Misclassifications (training) 3.8 3.2 0.2 
Classification rates (training) 93.7% 94.7% 99.5% 
Misclassifications (test) 3.4 3 0.6 
Classification rates (test) 96.2% 96.7% 99.3% 

N = 40, T = 10 

Misclassifications (training) 4.2 3.8 0.6 
Classification rates (training) 96.5% 96.8% 99.5% 
Misclassifications (test) 1.6 1.4 0.2 
Classification rates (test) 94.7% 95.3% 99.3% 

Table 2 Fisher Iris data classification comparisons of results 
from different references 

References Number of 
features 

Number 
of rules 

Classification 
rates 

Shi et al. (1999) 12 4 98% 
Setnes and Roubos 
(2000) 

8 and 12 2 and 3 99.3% and 
98.9% 

Russo (2000) 18 5 100% 
Chang and Lilly 
(2004) 

7 5 99.3% 

This paper 6 and 12 3 99% and 
99.3% 

5.2 Wine data classification 

The wine data contains the chemical analysis of 178 wines 
that are brewed in the same region of Italy, but derived from 
three different cultivars. Each pattern consists of 13 

features: alcohol content (Alc), malic acid content (Mal), 
ash content, alcalinity of ash (Ash), magnesium content 
(Mag), total phenols (Tot), flavanoids (Fla), non-flavanoids 
phenols (nFlav), proanthocyaninsm (Proa), colour intensity 
(Col), hue, OD280/OD315 (OD2) of diluted wines and 
praline (Pro). The numbers of the patterns in these three 
classes are 59, 71 and 48, respectively (Chang and Lilly, 
2004). 

Like in the Fisher Iris data classification, the output y of 
the Sugeno fuzzy classification system is based on the 
following classification rules: 

Class 1, if 0.33
wine Class 2, if 0.33 0.67

Class 3, if 0.67

y
y

y

<⎧
⎪= ≤ ≤⎨
⎪ >⎩

 (6) 

Figure 8 illustrates the convergence speed comparison 
among the CSA, HS method and proposed hybrid 
algorithm. The results are the average of ten independent 
runs. N = 20 and 118 sets of wine data are used as the test 
data. As we can observe, the hybrid optimisation method 
yields the best classification performance. 

Figure 8 Convergence procedures of CSA, HS method and 
hybrid algorithm in optimisation of fuzzy 
classification system for wine data classification 
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dash-dotted line: CSA 
dash line: HS method 
solid line: hybrid algorithm. 

As an illustrative example, the initial membership functions 
of flavanoids and colour intensity in the simplified Sugeno 
fuzzy classification system are demonstrated in Figure 9. 
Figure 10 shows the optimised membership functions of 
small, medium and large. The following seven rules are 
utilised: 

1 IF Mal is small and Tot is large and Fla is large and Col 
is medium and Hue is large and OD2 is large and Pro is 
large, THEN wine is Class 1. 

2 IF Mal is small and Tot is small and Fla is medium and 
Col is small and Hue is large and OD2 is large and Pro 
is small, THEN wine is Class 2. 
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3 IF Mal is large and Tot is small and Fla is small and 
Col is large and Hue is small and OD2 is small and Pro 
is medium, THEN wine is Class 3. 

Figure 9 Initial membership functions of flavanoids and colour 
intensity in fuzzy classification system for wine data 
classification 
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Figure 10 Membership functions of simplified Sugeno fuzzy 
classification system optimised by hybrid optimisation 
algorithm for wine data classification 
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Figure 10 Membership functions of simplified Sugeno fuzzy 
classification system optimised by hybrid optimisation 
algorithm for wine data classification (continued) 
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Similarly, we explore the efficiency of our hybrid algorithm 
in the optimisation of the same Sugeno fuzzy classification 
system with different numbers of training data sets, as given 
in Table 3. The results here are the average of ten separate 
trials as well. Compared with both the CSA and HS method, 
employment of the proposed hybrid optimisation method 
leads to the optimal wine data classification results. 

Table 3 Classification results of wine data using CSA, HS 
and hybrid method 

Algorithms CSA HS Hybrid 
method 

N = 10 
Misclassifications (training) 12 10 3 
Classification rate (test) 93.2% 94.3% 98.3% 

N = 30 
Misclassifications (training) 10 9 1 
Classification rates (test) 94.3% 94.9% 99.4% 
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6 Conclusions 

In this paper, a new hybrid optimisation scheme based on 
the fusion of the CSA and HS method is proposed and it is 
further applied to optimise Sugeno fuzzy classification 
systems for the popular Fisher Iris data and wine data 
classification. The CSA and HS method are combined 
together and both of their search capabilities are fully 
utilised in the novel optimisation algorithm. Simulation 
results demonstrate that our approach can achieve a better 
classification performance than that of the original CSA and 
HS method. We are going to investigate the applications of 
the proposed hybrid optimisation technique in more  
real-world problems. 
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