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In this paper, based on the fusion of the clonal selection algorithm (CSA) and differential evolution (DE)
method, we propose a novel optimization scheme: CSA-DE. The DE is employed here to improve the
affinities of the clones of the antibodies (Abs) in the CSA. Several nonlinear functions are used to verify
and demonstrate the effectiveness of our hybrid optimization approach. It is further applied for the
construction of the cascade-correlation (C-C) neural network, in which the optimal hidden nodes can

© 2008 Elsevier B.V. All rights reserved.

I. Introduction

Natural immune systems are complex and enormous self-
defense systems with the remarkable capabilities of learning,
memory, and adaptation [1]. Artificial immune systems (AIS),
inspired by the natural immune systems, are an emerging kind of
soft computing methods [2]. With the features of optimization,
pattern recognition, anomaly detection, data analysis, and
machine learning, the AIS have recently gained considerable
research interest from different communities [3]. As an important
constituent of the AIS, artificial immune optimization (AIO)
algorithms have been successfully applied to attack numerous
challenging optimization problems with superior performances
over the classical techniques [4]. Clonal selection algorithm (CSA)
is one of the most widely employed AIO approaches [5]. It is based
on the clonal selection principle (CSP), which explains how an
immune response is mounted, when a non-self antigenic pattern
is recognized by the B cells. Unfortunately, empirical study has
shown that the CSA usually suffers from a slow search speed. The
differential evolution (DE) method is a simple but universal
numerical optimizer [6]. All the individuals in the DE are updated
by an amount of the difference between two randomly chosen
ones. The DE has the distinguishing advantages of computation
simplicity as well as convergence efficiency. In this paper, inspired
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by the fusion of the CSA and DE, we propose a novel optimization
algorithm: CSA-DE. The CSA-DE is also used in the nonlinear
function optimization and optimal training of the cascade-
correlation (C-C) neural network. Simulations have demonstrated
that our CSA-DE can outperform the original CSA with regard to
the convergence speed.

The rest of this paper is organized as follows. We briefly discuss
the essential principles of both the CSA and DE in Sections 2 and 3,
respectively. In Section 4, by merging the CSA and DE together, we
present a hybrid optimization method: CSA-DE, in which the
affinities of the Ab clones of the CSA are improved by the DE.
Moreover, our CSA-DE is deployed to acquire the optimal hidden
nodes for constructing the C-C neural network in Section 5.
Simulation examples are demonstrated in Section 6. Finally, in
Section 7, we conclude the paper with some remarks and
conclusions.

2. Clonal selection algorithm (CSA)

As we know, in the natural immune systems, only the antibodies
(Abs) that can recognize the intruding antigens are selected to
proliferate by cloning [7]. Therefore, the fundamental of the clonal
optimization method is that those Abs capable of recognizing the
non-self cells (antigens) will proliferate. More precisely, the under-
lying principles of the CSA borrowed from the CSP are

e maintenance of memory cells functionally disconnected from
repertoire,
e selection and cloning of most stimulated Abs,
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e suppression of non-simulated cells,

e affinity maturation and reselection of clones with higher
affinities, and

e mutation rate proportional to Ab affinities.

The diagram of the basic CSA is shown in Fig. 1, in which the
corresponding iteration steps are explained as follows:

1. Initialize the Ab pool (Pi,;) including the subset of memory
cells (M).

2. Evaluate the fitness of all the individuals in population P. The
fitness here refers to the affinity measure.

3. Select the best candidates (P;) from P, according to their fitness
(affinities with the antigens).

4. Clone these Abs into a temporary pool (C).

5. Generate a mutated Ab pool (C;). The mutation rate of each

individual is inversely proportional to its fitness.

. Evaluate all the Abs in C;.

. Eliminate those Abs similar to the ones in C, and update C;.

8. Reselect the individuals with better fitness from C; to build M.
Other improved individuals of C; can replace certain members
with poor fitness in P for maintaining the overall Ab diversity.

N

The CSA can be terminated, when a preset performance criterion
is met.

We should point out that the clone size in Step 4 is generally
defined as a monotonic function of the affinity measure. A unique
mutation operator is used in Step 5, through which the mutated
values of individuals are inversely proportional to their fitness by
means of choosing different mutation variations. In other words,
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Fig. 1. Diagram of basic clonal selection algorithm (CSA).

the better fitness an Ab has, the less it may change. The similarity
among the Abs can also affect the convergence speed of the CSA.
The idea of Ab suppression based on the immune network theory
is introduced to eliminate the newly generated Abs, which are too
similar to those already in the candidate pool (Step 7). With such a
diverse Ab pool, the CSA can avoid being trapped into local
optima. In contrast to the popular genetic algorithms (GA), which
usually tend to bias the whole population of chromosomes
towards only the best candidate solution [8], it can effectively
handle the challenging multimodal optimization tasks [9-12].

3. DE method

The DE method is a robust population-based optimization
technique firstly proposed by Storn and Price [6]. It has been
applied to cope with a large variety of engineering problems in
parameter identification [13], power system planning [14], data
clustering [15], etc. The principle of the DE is similar to that of
other evolutionary computation methods, e.g., the GA. However,
the uniqueness of the DE is that it generates new chromosomes by
adding the weighted difference between two chromosomes to the
third. If the fitness of the resulting chromosome is improved, this
newly generated chromosome replaces the original one. Suppose
there are three chromosomes, ri(k), r»(k), and r3(k), under
consideration in the current population. Note, r;(k) and (k) are
randomly selected and mutually different. Fig. 2 depicts that a
trial update of r3(k), rj(k + 1), is

ry(k + 1) = r3(k) + A[r1(k) — r2(k)], (1)

where / is a predetermined weight. In order to further increase
the diversity of these chromosomes, a crossover operator is
employed to generate r4(k+ 1) by randomly combining the
parameters of r3(k) and r5(k) together. If r5(k + 1) yields a higher
fitness than r3(k), we get

r3(k+1) =r5k+1). (2)

Otherwise, r4(k+ 1) is eliminated, and the above procedure
restarts until all the chromosomes have been successfully
updated. In fact, the difference between two chromosomes is an
estimation of the gradient information in the zone, where both
chromosomes belong to. Therefore, the DE method can be
regarded as a simple gradient descent-based stochastic search
scheme.

During the recent years, hybridization of evolutionary algo-
rithms has gained growing popularity, which can overcome their
individual drawbacks while benefit from each other’s strengths
[16-19]. As aforementioned, the affinity-related Ab cloning and
somatic mutation are two interesting features of the CSA, and the
DE method has the remarkable advantages of effective search and
computation simplicity. Thus, in this paper, we propose a new
fusion of the CSA and DE: CSA-DE. The CSA-DE has been
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Fig. 2. Principle of differential evolution (DE) method.
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Fig. 3. DE-based optimization of Ab clones in CSA-DE.

demonstrated to significantly outperform the original CSA in
optimization.

4. Fusion of CSA and DE method: CSA-DE

In the CSA, the cloning and mutation of the Abs have the
important role of ‘blind’ search because of their random
characteristics. However, such a blind search is not always
sufficiently efficient for dealing with the demanding complexity
in real-world optimization problems. Combining these two
operations and gradient-based local search strategies can indeed
improve the convergence of the regular CSA. Unfortunately, the
gradient information is often difficult if not impossible to obtain
in practice. The CSA-DE, a fusion of the CSA and DE, is proposed
here on the basis of the estimated gradient directions from the DE
method. The principle of our CSA-DE is that all the clones of the
CSA Abs are updated and optimized using the DE method, as
illustrated in Fig. 3. Suppose an Ab in the CSA has been cloned and
mutated into N clones, Abq,Ab,,...,Aby. These Ab clones can be
alternatively considered as the individuals in a population of the
DE. For example, Ab; is updated to Ab] after a given number of the
DE iterations. Hence, the resulting Ab}, Ab, ..., Aby are expected
to occupy their higher affinities than that of Aby, Ab,,. .., Aby, and
they will continue the normal CSA evolution.

The proposed CSA-DE has two remarkable features. Firstly, in
the original CSA, the Ab clones are generally independent, and
have no interaction with each other. In our CSA-DE, aided by the
DE method, they make full use of the information sharing and
exchange among themselves, and work collectively to improve
their affinities. This approach can efficiently prevent the harmful
prematurity of the CSA. Secondly, to build the CSA-DE, we do not
need to make any major modification on the regular CSA. The DE
method is embedded into the CSA as an ‘internal’ fine-tuning
procedure. Thus, the implementation of our CSA-DE is fairly easy
and straightforward. We will next discuss its application in the
C-C neural network training in Section 5.

5. CSA-DE in C-C neural network training
5.1. C-C neural network
During the past decade, neural networks have been widely

employed to deal with difficult real-world problems, e.g., human
face detection [20] and exchange rate forecasting [21]. The C-C is

an adaptive learning algorithm for the self-growing feedforward
neural network [22,23]. The C-C neural network has found
intensive applications in such areas as noise cancellation [24]
and harmonic source detection [25]. Compared with the conven-
tional back-propagation (BP) neural network, the C-C neural
network does not have a fixed size. Instead, it grows from the
smallest structure with no hidden nodes, and the hidden nodes
are actually added one by one until a given performance criterion,
e.g., the maximal number of training epochs or minimal
approximation error, is satisfied. Fig. 4(a) shows an example of
the initial C-C neural network (without any hidden nodes) with
three inputs and one output. This C-C neural network is first
trained with the available learning data. When there is no
significant reduction in the approximation error or a certain
number of training epochs have been reached, the training
procedure is terminated, and all the weights obtained are frozen.
The residual approximation error will next be eliminated by
adding extra hidden nodes, as illustrated in Fig. 4(b). The strategy
of incrementally cascading the hidden nodes to the C-C neural
network is explained as follows. The new hidden nodes are
cascaded with the network input nodes as well as existing hidden
nodes. Therefore, the weights of the hidden nodes to be trained
consist of two parts: input weights connecting with both the input
nodes and preexisting hidden nodes and output weights connect-
ing with the output nodes. The input weights of the hidden nodes
are trained with the learning data to maximize S, which is the sum
over all the output nodes of the magnitude of the correlation
between V,, the hidden nodes’ outputs, and E,,, the residual
output error at output node o. S can be defined as

S= Z Z(Vp - V)(Ep,o - Eo) ’ (3)
o | p

where p is the index of the training patterns, and V and E, are the
averaged values of V and E, over all the training patterns,
respectively. After the above training phase is finished, the input
weights of the hidden nodes are also frozen, and they are cascaded
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Fig. 4. Cascade-correlation (C-C) neural network training.
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to the output nodes in the C-C neural network. The output
weights of these new hidden nodes are further updated using the
regular BP learning algorithm to minimize the network output
error. Note that the update of all the input and output weights of
the hidden nodes is based on only a single-layer structure of the
feedforward neural network. This iterative procedure of involving
more and more hidden nodes is repeated, as shown in Fig. 4(c), so
as to achieve a satisfactory approximation performance.
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Train Hidden Nodes
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Fig. 5. Construction of C-C neural network.

We emphasize that a pool of hidden nodes containing a certain
number of candidates with different initial input weights is
usually constructed and trained in order to choose the optimal
hidden nodes that can maximize (3) [22]. After the most suitable
hidden nodes are selected from the pool, they are connected to the
existing network. The flow chart of the C-C neural network
construction is given in Fig. 5. However, since the BP method is
used to acquire the input weights of all the hidden node
candidates in the pool, the shortcoming of being trapped into
the local optima during training is not avoidable. In other words, it
cannot be guaranteed that the best hidden nodes are always
obtained for constructing the C-C neural network. To handle this
difficult nonlinear optimization problem, we apply our CSA-DE to
optimize the input weights of the hidden nodes in the regular C-C
training.

5.2. CSA-DE in optimal C-C neural network construction

Instead of utilizing a large candidate pool to select the
appropriate hidden nodes, we can employ the CSA-DE to search
for the hidden nodes with the best input weights. To put it into
more details, each candidate set of the hidden node is encoded as
an Ab in our approach. With the growth of the C-C neural
network, the number of the input weights of the hidden nodes
increases, and the size of the Abs is also variant. All the Abs with
the affinities defined in (3) evolve in the CSA-DE. The ultimate
optimization goal is to find those hidden nodes, which can
maximize (3), so that the size of the C-C neural network (number
of hidden nodes) is minimized. After the optimal hidden nodes are
obtained, they are first connected to the present C-C neural
network, and their output weights are next trained with the BP
learning method. The flowchart of our CSA-DE-based optimal C-C
neural network construction is shown in Fig. 6.

Due to the global optimization capability of the CSA-DE, the
size of the resulting neural network can be smaller than that from
using the regular C-C training method. In Section 6, we deploy the
popular two-spirals problem as a challenging testbed to examine
this novel scheme.

6. Simulations

In this section, we investigate the effectiveness of the proposed
CSA-DE method with two simulation examples: nonlinear
function optimization and C-C neural network training.

6.1. Nonlinear function optimization

The following five n-dimension nonlinear functions (n = 50),
which have been extensively used as the optimization bench-
marks [26], are employed here to compare the optimization
(minimization) capabilities between the CSA and our CSA-DE:

Ackley function:

f(x) = —20e 02V UnY LR el/myL cos@mx) | 90 e,
x € [-32,32]. (4)

Griewank function:
1 n ) n X
— 2 _ A _
f(x)_4000;x1 EcosﬁJr], x € [-100,100]. (5)
Rastrigin function:

n
f®)=> "% +10-10cos2nx;), x €[-5.12,5.12]. (6)
=1
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Fig. 6. CSA-DE in optimal C-C neural network construction.

Rosenbrock function:

feo =3 100(xi11 —x7)* + (% — 1), x€[-10,10]. (7)

i=1

Sphere function:

n
fx=>_x7, xe[-100,100]. (8)
i=1
It is well known that the global minima of the above functions are
all at flx) = 0. There are totally 10 Abs involved in both the CSA
and CSA-DE. Their evolution procedures are terminated after
10,000 iterations. The optimal solutions acquired by the two
methods are given in Table 1. We stress that the results are based
on the average of 100 independent trials. As an illustrative

example, the optimal solutions to the Rosenbrock function from
the CSA and CSA-DE during these trials are shown in Figs. 7(a) and
(b), respectively. Apparently, compared with the original CSA, our
CSA-DE can acquire much better optimization results within the
same numbers of iterations, because of the DE-based effective
refinement of the Abs. That is, the CSA-DE has a superior
nonlinear function optimization performance over the CSA.
Furthermore, we compare the convergence speeds of the CSA
and CSA-DE using the same nonlinear functions. A minimization
goal is set beforehand for the optimization of each function. The
optimization procedure is stopped after the goal has been

Table 1
Optimal solutions acquired by CSA and CSA-DE in function optimization.

Function type CSA CSA-DE
Ackley 19.7493 1.0419 x 10~*
Griewank 135.7764 115.0552
Rastrigin 455.9070 9.4486 x 10~
Rosenbrock 1.5870 x 10° 48.8484
Sphere 7.6837 x 10* 4.5101 x10~*
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Fig. 7. Optimal solutions in Rosenbrock function optimization: (a) CSA and
(b) CSA-DE.
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achieved, and the corresponding calculation time elapsed is
recorded. The simulations are made under the MATLAB 7.0
environment on a Dell Optiplex GX 745 computer with a
2.4GHz Core 2 Duo E6600 CPU and 2 G system memory. Again,
100 separate trials have been run. Table 2 shows the average
calculation time of the CSA and CSA-DE in this convergence
performance comparison. To simplify our presentation, we only
illustrate the calculation time of the CSA and CSA-DE in the
Rosenbrock function optimization in Figs. 8(a) and (b), respec-
tively. From Table 2 and Fig. 8, we can observe that although the
DE method moderately increases the computational complexity of
the CSA-DE, it can still converge much faster than the CSA in

Table 2
Calculation time (in seconds) of CSA and CSA-DE in function optimization.

Function type Minimization goal CSA CSA-DE

Ackley 20
Griewank 150
Rastrigin 500
Rosenbrock 1x10°
Sphere 1x10°

26.6773
45.6679
47.6159
358.8081
44.4684

0.1159
0.1129
0.0924
0.0643
0.0657

1000

900 | -
800 | ® -
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500 | o ®
400 |
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200
100 o

Calculation Time in Seconds
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Fig. 8. Calculation time in Rosenbrock function optimization: (a) CSA and
(b) CSA-DE.

optimizing those nonlinear functions. As a matter of fact, the
incorporation of the DE into the CSA significantly improves the
optimization effectiveness of our new hybrid technique.

The above optimization results of typical nonlinear functions
clearly demonstrate our CSA-DE has a much better convergence
property than that of the original CSA. It is well capable of not only
converging faster but also achieving improved optimal solutions.
The considerable optimization performance enhancement of the
CSA-DE is due to the employment of the DE to increase the
affinities of all the Abs in the CSA. In other words, the DE-based
approach can yield those Abs with higher fitness, which lay an
improved basis for the consequent evolution of the CSA. The
CSA-DE will be next examined in the optimal training of the C-C
neural network to attack the difficult two-spirals problem.

6.2. C-C neural network optimization in two-spirals problem

The two-spirals problem is a popular benchmark for the data
classification methods [27], which consists of 194 pairs of X-Y
samples. One half of these samples belong to Class 1, and the other
half Class 2, as shown in Fig. 9. In this simulation, we target at
constructing an optimal C-C neural network with the smallest
size (number of hidden nodes) that can correctly classify the two-
spirals samples. In [22], Fahlman and Lebiere apply the C-C
method to solve the two-spirals problem. A pool of eight hidden
node candidates is deployed in their experiments. For each trial,
the best-trained hidden nodes are selected from the pool and
incrementally added to the C-C neural network until the two-
spirals samples are properly classified. All the 100 trial runs are
successful, in which the number of the resulting hidden nodes
varies from 12 to 19 with an average of 15.2. In our CSA-DE-based
optimization approach, we also use 10 Abs, as in the function
optimization example, to optimize the hidden nodes, and the
iterations are limited to 5000 steps. The range of the numbers of
the optimal hidden nodes acquired is from 9 to 18 with an average
of 12.9. Fig. 10 illustrates the trials-related distributions of the
hidden nodes from the C-C and CSA-DE-based methods. Table 3
gives the relationship between the number of hidden nodes and
number of trials in both two schemes. Obviously, for this two-
spirals problem, our CSA-DE can outperform the C-C method. The
average size of the C-C neural network obtained by the former is
much smaller than that by the later, i.e., 12.9 vs. 15.2, because the
pure gradient descent-based C-C method is usually trapped into
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Fig. 9. Samples in two-spirals problem: ‘O’: Class 1 and ‘+’: Class 2.
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Fig. 10. Distributions of sizes of C-C neural network in two-spirals problem.

Table 3
Training of C-C neural network in two-spirals problem.

Number of hidden Number of trials (C-C Number of trials (CSA-DE-based

nodes approach) approach)
9 0 1
10 0 5
11 0 17
12 4 26
13 9 18
14 24 16
15 19 5
16 24 8
17 13 2
18 5 2
19 2 0

the local optima. However, as aforementioned, only a single-layer
feedforward neural network needs to be trained in the C-C
method, while the evaluation, cloning, and mutation of the Abs in
the CSA-DE are rather time-consuming. Therefore, compared with
the C-C method, the major drawback of our CSA-DE-based
approach is its relatively high computational complexity, which
is mainly caused by the calculation of (3) for the Abs evolution.

6.3. Discussions of simulation results

The proposed CSA-DE has been validated using examples of
nonlinear function optimization and C-C neural network training
in this section. As we can observe, the CSA-DE has the remarkable
advantage of fast convergence speed. Unfortunately, there are two
shortcomings with regard to its computational complexity and
convergence analysis. The computational complexity of our
CSA-DE is moderately higher than that of the regular CSA,
because the DE embedded is indeed a simple optimization
method. Nevertheless, the computational complexity of the
CSA-DE can be reduced by using less DE iterations, which may,
on the other hand, lead to the overall optimization performance
deterioration. Moreover, the convergence of the CSA-DE still
needs a comprehensive theoretical analysis, and should be
examined with more engineering problems.

7. Conclusions

In this paper, based on the fusion of the CSA and DE, we
propose a hybrid optimization method: CSA-DE. The Abs in the
CSA are fine-tuned by the DE to improve their affinities so that
enhanced optimization performances can be achieved. We also
discuss the application of the new CSA-DE in the optimal
construction of the C-C neural network. Two simulation exam-
ples, nonlinear function optimization and C-C neural network
training, have been employed to verify the effectiveness of the
proposed hybrid technique. Compared with the original CSA,
better optimization results are obtained with our CSA-DE.
However, a few important issues of the CSA-DE, such as analysis
of convergence and computational complexity, need to be further
explored. In addition, we are going to investigate how to apply it
for manipulating the real-world problems.
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