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ABSTRACT 

This paper proposes a hybrid optimization method based 
on the fusion of the Simulated Annealing (SA) and 
Clonal Selection Algorithm (CSA), in which the SA is 
embedded in the CSA to enhance its search capability. 
The novel optimization algorithm is also employed to 
deal with several nonlinear benchmark functions as well 
as a practical engineering design problem. Simulation 
results demonstrate the remarkable advantages of our 
approach in achieving the diverse optimal solutions and 
improved convergence speed. 

1. INTRODUCTION 

During the past decade, biology-inspired computational 
intelligence techniques have been widely employed in 
numerous optimization areas. For example, Artificial 
Immune Systems (AIS), inspired by the immunology, 
are an emerging kind of soft computing methods. As an 
important branch of the AIS, the Clonal Selection Algo-
rithm (CSA) stems from the clonal selection mechanism 
that describes the basic natural immune response to the 
stimulation of non-self cells (antigens) [1]-[3]. Another 
popular optimization scheme is the Simulated Annealing 
(SA) method, proposed by Kirkpatrick et al. in 1983 [4], 
which is based on the principle of the atoms transition in 
equilibrium at a given temperature. There is an analogy 
between the minimization of the cost function in an op-
timization problem and the practical procedure of gradu-
ally cooling a metal until it reaches its “freezing” point, 
where the energy of the system has acquired the globally 
minimal value [5]. However, these optimization algo-
rithms have their inherent drawbacks and limitations, 
e.g., the slow convergence of the SA method. As we 
know, fusion of different intelligent computing methods 
can often provide superior performances over employing 
them individually [6]. Therefore, in this paper, we study 
a novel hybrid optimization approach based on the hy-
bridization of the CSA and SA method.  

Our paper is organized as follows. First, the principles 
of the original CSA and SA method are briefly intro-

duced in Section 2. Next, in Section 3, we discuss the 
proposed hybrid optimization algorithm in more details. 
In Section 4, the effectiveness of this new optimization 
method is demonstrated and verified using several 
benchmark functions and a real-world pressure vessel 
design problem. Performance comparisons among the 
CSA, SA, and our hybrid optimization method are also 
made. Finally, we conclude the paper with some conclu-
sions and remarks in Section 5. 

2. CLONAL SELECTION ALGORITHM AND 
SIMULATED ANNEALING METHOD 

A. Clonal Selection Algorithm (CSA) 

Inspired by the Clonal Selection Principle (CSP), the 
CSA has been successfully applied to deal with some 
challenging optimization problems, due to its improved 
capability compared with the classical optimization 
techniques [2]. The CSP explains how an immune re-
sponse is mounted, when a non-self antigenic pattern is 
recognized by the B cells. In the natural immune sys-
tems, only the antibodies that can recognize the intruding 
antigens are selected to proliferate by cloning [7]. Hence, 
the fundamental idea of the CSA is that those cells (anti-
bodies) capable of recognizing the non-self cells (anti-
gens) will proliferate. The flow chart of an essential CSA 
is shown in Fig. 1, and it involves the following nine 
iteration steps [8]. 

1. Initialize the antibody pool  including the 
subset of memory cells (M). 

initP

2. Evaluate the fitness of all the antibodies (affin-
ity with the antigen) in population P. 

3. Select the best candidates (Pr) from population 
P, according to their fitness. 

4. Clone Pr into a temporary antibody pool (C).  

5. Generate a mutated antibody pool (C1). The 
mutation rate of each antibody is inversely pro-
portional to its fitness. 
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6. Evaluate all the antibodies in C1. 

7. Eliminate those antibodies similar to the ones in 
C, and update C1. 

8. Re-select the antibodies with better fitness from 
C1 to construct memory set M. Other improved 
individuals of C1 can replace certain members 
with poor fitness in P to maintain the antibody 
diversity. 

9. Return back to Step 2, if a pre-set termination 
criterion is not met.  

 

Fig. 1. Flow chart of basic CSA. 

Note that a unique mutation operator is used in Step 5, 
in which the mutated values of the antibodies are in-
versely proportional to their fitness by means of choos-
ing different mutation variations. That is to say, the bet-
ter fitness the antibody has, the less it may change. The 
similarity among the antibodies can also affect the over-
all convergence speed of the CSA. The idea of antibody 
suppression inspired by the immune network theory [1] 
is introduced to eliminate the newly generated antibod-
ies, which are too similar to those already existing in the 
candidate pool (Step 7). With such a diverse antibody 
pool, the CSA can effectively avoid being trapped into 
the local minima, and provide the optimal solutions to 
the multi-model problems [3]. In summary, the antibody 
cloning and fitness-related mutation are the two remark-
able characteristics of the CSA.  

B. Simulated Annealing (SA) Method 

The SA is a powerful optimization method, which is 
based on the analogy between the statistical mechanics 

and optimization. The SA process consists of first “melt-
ing” the system being optimized at a high temperature, 
and then lowering the temperature by very slow stages 
until the system “freezes” and no further change occurs. 
At each temperature instant, the annealing must proceed 
long enough for the system to reach a steady state [4]. 
The SA method actually mimics the behavior of this 
dynamical system to achieve the thermal equilibrium at a 
given temperature. It has the distinguishing ability of 
escaping from the local minima by accepting or rejecting 
new solution candidates according to a probability func-
tion. In addition, the SA method only requires little 
computation resource. The flow chart of a basic SA 
method is illustrated in Fig. 2, and it can be described by 
the following steps: 

P
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1. Specify initial temperature , and initialize the 
candidate. 

0T

2. Evaluate fitness E  of the candidate. 

3. Move the candidate randomly to a neighboring so-
lution. 

4. Evaluate the fitness of new solutions . 'E

5. Accept the new solution, if 

i. EE ≤'  

or 

ii.  with acceptance probability EE >' P . 

6. Decrease temperature T . The SA search is termi-
nated, if the temperature is close to zero.   

EE ≤' EE >'

 
Fig. 2.  Flow chart of basic SA method. 

As we can see that the SA algorithm simulates the 
procedure of gradually cooling a metal until the energy 
of the system achieves the global minimum. Each con-
figuration of the physical system and energy of the at-
oms correspond to the current solution to the optimiza-
tion problem and fitness of the objective function, re-



spectively, and the temperature is used to control the 
whole optimization procedure. At every generation, ac-
cording to the Metropolis criterion [9], the candidate is 
updated through the random perturbation, and the im-
provement of its fitness is calculated. If EE ≤' , the 
moving change results in a lower or equivalent energy of 
the system, and the new solution is accepted. Otherwise, 
the displacement is only accepted with a probability P : 

T
EE

eP
)'( −−

= .                                 (1) 
The temperature is updated by: 

),()1( kTkT λ=+  10 << λ ,                 (2) 
where  is the number of generations. As a matter of 
fact, the cooling schedule can be adjusted by modifying 
parameter 

k

λ . We set λ  to be between 0.4 and 0.8 in our 
simulations. 

The SA method is terminated when the final tempera-
ture is sufficiently low, which makes it reach the global 
optimal solution with a high probability. The probability-
dependent acceptance policy for the new solutions helps 
the SA algorithm in the solution exploitation. However, 
slow convergence is the main disadvantage that can hin-
der its applications in engineering. The temperature 
plays an important role in the cooling procedure control. 
The initial temperature should be high enough to explore 
the whole solution space [5]. 

3. HYBRID OPTIMIZATION ALGORITHM 

In this section, we develop a hybrid optimization algo-
rithm based on the principles of both the aforementioned 
CSA and SA. The SA method occasionally chooses 
those ‘uphill points’ from the current place. That is, not 
only the improved solutions but also the relatively weak 
ones are accepted with a specified probability according 
to different temperatures. Thus, the SA method has cer-
tain advantages, e.g., robustness and flexibility, over 
other local search methods, and is suitable for handling 
nonlinear problems. Unfortunately, it always takes a 
considerably long time to acquire the global optimum, 
because the temperature indeed needs to be decreased 
slowly enough during the iterations. In our approach, the 
fitness-related mechanisms of mutation and cloning as 
well as the affinity-based self-suppression of the CSA 
are utilized and combined with the SA method so as to 
improve the global search and convergence speeds. The 
diagram of this hybrid optimization scheme is shown in 
Fig. 3, and the corresponding iteration steps are ex-
plained as follows. 

1. Initialize the candidate pool. 

2. Evaluate the fitness of all the antibodies (affini-
ties with the antigen) in the population. 

3. Select the best candidates from the population 
according to their fitness. 

4. Clone those selected antibodies.  

5. Move the candidates randomly to the neighbor-
ing states. The moving step of each candidate is 

inversely proportional to its fitness, which can 
be considered as the mutation operation in the 
CSA. 

6. Evaluate the new candidates. 

7. Accept the new solutions, if their fitness is im-
proved )0( >Δf . Otherwise, accept them only 
with probability P . 

8. Update the temperature based on (2). 

9. Evaluate the antibodies, and measure the affini-
ties among these antibodies. 

10. Re-select the antibodies with better fitness, and 
return back to Step 4. 
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Fig. 3.  Flow chart of hybrid optimization algorithm. 

As can be observed from Fig. 3, the proposed hybrid 
optimization algorithm has the distinguishing features of 
both the CSA and SA method, i.e., fitness-related muta-
tion size, selfness suppression, and probability-based 
acceptance of worse solutions. In this hierarchical search 
system, the SA method is embedded in the CSA to en-
hance its local search ability. In Step 5, the random per-
turbation of the current solutions is regarded as the muta-
tion, which is proportional to their fitness. That is to say, 
the better fitness the individual has, the less it changes 
by mutation. Furthermore, the acceptance of the low-
affinity antibodies with a specified probability can effi-
ciently protect those potential candidates that may lead 
to the global optimal from weeding. Therefore, the SA-
aided approach provides a sufficient global search, 
which is well suited for challenging optimization prob-
lems. According to the evaluation criterion of the CSA, 
not only the antibody-antigen affinities, but also the af-
finities among the antibodies are employed here in order 
to suppress the candidates with over-similarity. The pro-
cedure from Steps 5 to 8 represents the local search. To 



accelerate the convergence as well as improve the search 
efficiency, the local search is only executed for a pre-
defined number of iterations under low temperatures to 
maintain a high update probability. Compared with the 
original CSA and SA method, our hybrid optimization 
method has an enhanced performance of global search 
and convergence, which will be demonstrated using nu-
merical simulations in Section 4. 

4. SIMULATIONS 

In this section, a few nonlinear functions and a practical 
engineering problem are employed to verify our pro-
posed hybrid optimization method. In all the simulations, 
we use a total of 20 candidates for evolution, and the 
Euclidean distance is deployed as the affinity measure. 

A. Nonlinear functions 

Firstly, we examine the above three optimization meth-
ods with the following six nonlinear functions, which 
have been widely used as the optimization benchmarks 
[10]. 

Function 1: 
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Note that all the functions are uni-model functions with 
n dimensions except for Function 1, which is a two-
dimension multi-model function with 12 global optima. 
The details of these unconstrained functions are given in 
Table 1. 

Table 1. Details of benchmark functions. 

Functions Search Range Global Optima 
Function 1  [-5, 5] 0),(f1 =yx  

Sphere [-100, 100]n 0)(f2 =x  
Hyperellipsoid [-50, 50]n 0)(f3 =x  

Griewank [-600, 600]n 0)(f4 =x  

Zakharov [-10, 10]n 0)(f5 =x  
Schwefel [-10, 10]n 0)(f6 =x  

The simulations are made under the MATLAB 7.0 en-
vironment on an AMD Athlon 64 4000+ computer with 
1 G system memory. As a representative example, the 
minimization of the 50-dimension Zakharov function is 
deployed here for comparing the CSA, SA, and proposed 
hybrid optimization method. Figure 4 illustrates their 
average convergence procedures over 100 runs that are 
represented by the dash-dotted, dash, and solid lines, 
respectively. Obviously, the convergence speed of the 
SA method is the lowest among the three approaches. 
Moreover, the proposed algorithm performs moderately 
better than the CSA, which demonstrates that the SA 
method embedded can provide a more sufficient local 
search. Therefore, we conclude that our hybrid optimiza-
tion scheme converges faster than both the other two 
methods in this high-dimension function optimization 
case. However, the computational complexity of this 
hybrid method is higher than that of the CSA and SA. 
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Fig. 4. Convergence procedures of CSA, SA, and hybrid 

algorithm in 50-dimension Zakharov function 
optimization. 

Dash-dotted line: CSA, dash line: SA method, solid line: 
hybrid algorithm. 

We also run these three optimization methods for 100 
times and 1,000 iterations using the above n-dimension 
benchmark functions with , , and 10=n 20=n 30=n . 
The average optima and standard errors obtained by the 
CSA, SA, and hybrid optimization method are given in 
Table 2. It is clearly visible that the hybrid method is 
capable of significantly outperforming the other two 
approaches in the high-dimension functions. Table 3 
shows the performance comparison with regard to the 
optimization of Function 1. The optimization results of 
the CSA, SA method, and hybrid algorithm are illus-
trated in Figs. 5 (a), (b), and (c), respectively. We ob-
serve that both the CSA and hybrid algorithm success-
fully locate all the 12 optima (Figs. 5 (a) and (c)), while 
the SA method fails (Fig. 5 (b)). To summarize, for the 
multi-model problems, this hybrid method can take ad-
vantage of the solution diversity from the CSA to find 
the global optima.  



 
(a) 

 
(b) 

 
(c) 

Fig. 5. Optimization results of Function 1 with CSA, SA 
method, and hybrid algorithm.  
(a) Optima obtained by CSA. 

(b) Optimum obtained by SA method. 
 (c) Optima obtained by hybrid algorithm. 

B. Pressure vessel design 

The pressure vessel design is to minimize the total cost 
of the material, forming, and welding of a cylindrical 
vessel [11]. There are four design variables involved:  
( , shell thickness),  ( , spherical head thickness), 

 ( , radius of cylindrical shell), and  ( , shell 

length). The shell and spherical head thickness are the 
integer multipliers of 0.0625  in accordance with the 
available thickness of the rolled steel plates, and the ra-
dius of cylindrical and shell length have continuous val-
ues of 

1x

sT 2x hT

3x R 4x L

8040 ≤≤ R  and , respectively. The 
mathematical formulation of this typical constrained 
optimization problem is as follows: 
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During the optimization process, the perturbed candi-
dates resulting from mutation may potentially violate the 
constraints. The bounds of these candidates are checked 
after mutation. If they exceed the bounds, a new ran-
domly chosen mutation parameter is used. This approach 
is called ‘random re-initialization’. The comparisons of 
the variable values, constraints, and objective functions 
with three earlier solutions from Sandgren [12], Wu & 
Chow [13], and Lee & Geem [11] are given in Table 4. 
Sandgren uses the branch and bound method, and 
achieve the result of 7980.894. However, the variable 
values do not satisfy the third constraint. Wu and Lee 
apply two different Genetic Algorithms (GA)-based ap-
proaches, and obtain the costs of 7207.494 and 
7198.433, respectively. Apparently, the performances of 
the proposed hybrid optimization algorithm are better 
than those of the existing schemes.  

5. CONCLUSIONS 

In this paper, a hybrid optimization method based on the 
fusion of the CSA and SA is proposed, and further ex-
amined with a few nonlinear optimization problems. The 
flexible global search ability of the SA and solution di-
versity feature of the CSA are fully utilized and com-
bined in the new algorithm. Simulation results have 
demonstrated that our hybrid method achieves an en-
hanced optimization performance over the original CSA 
and SA algorithm. It can also acquire satisfactory results 
in providing diverse and flexible solutions to the multi-
model problems. We are going to investigate its applica-
tions in a larger variety of engineering areas.  
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Table 2. Performance comparisons of three optimization methods in benchmark functions with different dimensions 
(optima ± standard error). 

Dimensions 10 20 30 
Sphere Function 

CSA 6.1×10-10 

(1.7×10-11) 
2.0×10-7 

(2.7×10-8) 
2.7×10-4 

(1.8×10-5) 

SA Method 0.1 

(0.02) 
11.1 

(1.8) 
13.4 

(3.7) 

Hybrid Algorithm 7.2×10-47 

(3.1×10-47) 
2.3×10-32 

(9.7×10-31) 
2.1×10-21 

(2.3×10-20) 
Hyperellipsoid Function 

CSA 3.4×10-17 

(5.3×10-18) 
1.0×10-14 

(0.7×10-14) 
3.7×10-11 

(1.8×10-11) 

SA Method 0.1 

(0.02) 
2.5 

(2.3) 
15.8 

(5.9) 

Hybrid Algorithm 4.8×10-24 

(5.7×10-25) 
5.7×10-18 

(9.6×10-20) 
4.0×10-12 

(5.5×10-13) 
Griewank Function 

CSA 8.9×10-11 

(6.7×10-11) 
1.0×10-7 

(6.7×10-8) 
4.9×10-6 

(1.4×10-5) 

SA Method 3.2×10-2 

(3.4×10-3) 
0.6 

(0.1) 
1.4 

(0.1) 

Hybrid Algorithm 2.2×10-15 

(3.5×10-16) 
1.7×10-10 

(9.9×10-11) 
6.2×10-8 

(3.9×10-8) 
Zakharov Function 

CSA 3.0×10-10 

(6.7×10-9) 
2.8×10-8 

(1.7×10-8) 
2.7×10-6 

(8.6×10-6) 

SA Method 4.8×10-1 

(2.4×10-1) 
1.5 

(0.3) 
23.5 

(10.4) 

Hybrid Algorithm 4.8×10-12 

(3.7×10-13) 
5.7×10-10 

(9.6×10-10) 
3.1×10-7 

(1.0×10-7) 



Schwefel Function 

CSA 2.5×10-40 

(5.7×10-41) 
2.5×10-37 

(6.7×10-38) 
2.7×10-20 

(1.8×10-20) 

SA Method 8.1×10-1 

(7.3×10-1) 
11.1 

(3.6) 
13.7 

(8.0) 

Hybrid Algorithm 5.6×10-44 

(7.9×10-43) 
2.3×10-40 

(2.7×10-39) 
2.1×10-21 

(2.3×10-20) 
 

Table 3. Performance comparisons of three optimization methods in Function 1 (optima ± standard error). 

Function 1 
CSA 0 (12 optima) 

SA Method 7.0×10-24  (1.9×10-24) 

Hybrid Algorithm 0 (12 optima) 
 

Table 4. Optimization comparisons of pressure vessel design. 

Items Sandgren  Wu and Chow  Lee and Geem  Our method 

sT  1.125 1.125 1.125 1.125 

hT  0.625 0.625 0.625 0.625 

R  48.97 58.1978 58.2789 58.2891 

L  106.72 44.2930 43.7549 43.6993 
)(g1 x  -0.1799 -0.00178 -0.00022 -0.00020 

)(g2 x  -0.1578 -0.06979 -0.06902 -0.0689 
)(g3 x  97.760 -974.3 -3.71629 -8.9621 
)(g4 x  -133.28 -195.707 -196.245 -196.3007 

)f(x  7980.894 7207.494 7198.433 7197.831 
 




