
Janne  Lindqvist, Tuomas Aura, George Danezis,  Teemu  Koponen,  Annu Myllyniemi,
Jussi Mäki, and Michael Roe. 2009. Privacypreserving 802.11 accesspoint discovery.
Cambridge, United Kingdom. Microsoft Research Technical Report, MSRTR20097.
An  abridged  version  of  this  article  is  available  in:  David  Basin,  Srdjan  Capkun,  and
Wenke  Lee  (editors).  Proceedings  of  the  Second  ACM  Conference  on  Wireless
Network  Security  (WiSec 2009).  Zürich,  Switzerland.  1618  March  2009,  pages  123
130.

© 2009 by authors



Privacy-Preserving 802.11 Access-Point Discovery (full version)

Microsoft Research Technical Report MSR-TR-2009-7
January 2009

Janne Lindqvist
Helsinki University of Technology (TKK), Finland

email: janne.lindqvist@iki.fi

Tuomas Aura
Microsoft Research, Cambridge, UK

George Danezis
Microsoft Research, Cambridge, UK

Teemu Koponen
Helsinki Institute for Information Technology (HIIT), Finland

Annu Myllyniemi
Helsinki University of Technology (TKK), Finland

Jussi Mäki
Helsinki University of Technology (TKK), Finland

Michael Roe
Microsoft Research, Cambridge, UK



Privacy-Preserving 802.11 Access-Point Discovery
(full version)§

Janne Lindqvist∗ Tuomas Aura‡∗ George Danezis‡
Teemu Koponen† Annu Myllyniemi∗ Jussi Mäki∗ Michael Roe‡

ABSTRACT
It is usual for 802.11 WLAN clients to probe actively
for access points in order to hasten AP discovery and to
find “hidden” APs. These probes reveal the client’s list
of preferred networks, thus, present a privacy risk: an
eavesdropper can infer attributes of the client based on its
associations with networks. We propose an access-point
discovery protocol that supports fast discovery and hidden
networks while also preserving privacy. Our solution is
incrementally deployable, efficient, requires only small
modifications to current client and AP implementations,
interoperates with current networks, and does not change
the user experience. We prove the security and privacy
properties of our protocol, and provide performance
measurements based on a prototype implementation.

1 Introduction
WLAN access-point (AP) discovery based on the IEEE
802.11 [19] standard suffers from a well known privacy
problem [15, 32, 33]: WLAN clients probe actively for
their preferred networks. These directed active probes
reveal the client’s list of preferred network identifiers,
SSIDs, to anyone listening. The continuous probing
is necessary for fast handoffs when the signal from
a previous AP fades. It is also needed to implement
the hidden network feature popular with many network
administrators, in which the AP does not advertise its
SSID and waits for probes with the right identifier.

Leaking the list of the client’s preferred networks
can be a serious privacy problem. The SSIDs are
human-readable and often contain names of organizations,
companies or government departments, which may leak
the client’s affiliation with them. Some WLAN clients
probe automatically for all previously visited networks,
which can act as a map of the user’s movements. We
illustrate the importance of the problem through three
fictional yet plausible examples:

• John works at a major consultancy company, and
often visits client sites as part of his work. An
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eavesdropper observers the probes from John’s
laptop at a local cafe. He learns the client sites that
John has visited and may infer information about
their commercial relationships.

• Jenny works at a local hospital. An attacker
seeks unauthorized access to patient records. He
eavesdrops a coffee-shop network and identifies
Jenny’s laptop as having been connected to the
hospital WLAN. He can then target her for social
engineering or steal her laptop in order to extract
her credentials for the hospital network.

• Jack works for the government and participates in a
conference abroad. A local extremist group detects
his association with a foreign government network
and targets him for abuse.

In these examples, the network names are leaked by a
link-layer network discovery protocol. Thus, higher-layer
security or privacy mechanisms, such as encryption or the
use of anonymous communications, cannot prevent the
information leakage. Strengthening the privacy of access
point discovery is therefore a key enabler for higher level
privacy protocols.

In the current 802.11 access point discovery schemes,
there is a tradeoff between performance and privacy.
Directed active probing is a relatively effective way to
maintain an up-to-date list of available APs. The client
sends a probe message on each radio channel and gets a
response only from APs that serve the requested SSID.
An alternative to probing is passive scanning, in which
the client waits for beacons on each radio channel. This is
much slower than probing and may result in lower quality
of service. Another possibility is to send undirected active
probes that do not specify the SSID and to which all
APs respond. This has the problem that it uses more
bandwidth and could be slower if there are multiple
responses, although not as slow as passive scanning.

It might be possible to develop heuristics that reduce
the number of unsuccessful probes compared to current
implementations and, thus, also reduce information
leakage. A privacy solution that depends on heuristics
is, however, fragile and may fail when the operating
environment of the protocol changes.

Another tradeoff is between privacy for the client and
for the network. Hidden networks avoid their SSID
from being shown on the client user interface, which
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gives them some privacy, but this comes at the cost of
the clients having to send a directed probe to every AP
they encounter. There are arguments for why disabling
the SSID advertisement is an unreasonable practice and
should be banned. (The benefit for the AP is limited
because the SSID can be sniffed when as a client probes
for it and then associates.) Yet this is unlikely to happen in
practice because the feature is widely deployed and hiding
the network is commonly recommended as a best practice
in wireless-network security [14, 34, 37, 39]. Moreover,
many access point owners are focused on the security of
their infrastructure rather than that of the clients. They
may see hiding the network as defense in depth when used
in combination with other mechanisms such as link-layer
encryption and MAC-address filtering, even if it adds only
little security.

In this paper, we present a practical privacy-preserving
access-point discovery protocol that addresses the prob-
lems outlined above. We aim to allow active probing
and hidden networks, yet protect the privacy of clients.
Our protocol does not allow the typical adversary to find
out which networks a client is configured to connect to
or which networks it has visited previously. For access
points, the protocol strengthens network hiding because
the SSID cannot be captured even from client probes.

We assume a location-constrained adversary that is
able to roam between access points, to record and replay
messages sent between honest clients and access points,
and to mount man-in-the-middle attacks at a single access
point at a time. We do not expect the adversary to be
present at multiple networks at the same time or to relay
protocol messages between two access-point locations in
real time. Thus, we exclude wormhole attacks where the
attacker relays the protocol exchanges between a client
and remote access points.

To achieve high efficiency the proposed protocol uses
only symmetric primitives, such as message authen-
tication codes based on cryptographic hash functions
(e.g. HMAC [24]) and symmetric encryption. It also
fits into the current 802.11 2-round active discovery
protocol, requiring only minimal changes to clients
and access points as well as no changes to the user
experience for configuring pre-shared keys. In summary,
the contributions of this paper are the following:

1. Analysis of the privacy implications of disabling
or enabling the SSID broadcast in wireless LANs.
Previous work has pointed out the problems. We
look for a tradeoff and approach the question with a
view towards developing a low-cost solution.

2. Protocol design syntactically based on the ISO/IEC
standard 9798-4 entity authentication but with dif-
ferent security requirements, including new privacy
requirements.

3. Formal model and verification of the privacy prop-
erties of the authentication protocol.

4. Detailed definition of the protocol as a small
extension of the discovery protocol of the 802.11
MAC layer. The implementation is compatible
with other extensions of 802.11 and other privacy
mechanisms for 802.11, such as MAC address
randomization (which should be used together with
our protocol). The same clients can access both
hidden and non-hidden networks.

5. Implementation of the protocol on commercial
802.11 hardware with no significant performance
loss.

6. We have taken the system viewpoint, considering
the whole system and designing the protocol to work
well in that context, instead of just developing a new
stand-alone protocol.

Finally, our proposal sets a new base level of privacy
protection for future wireless networking standards and
privacy extensions to 802.11.

The rest of the paper is organized as follows. In the
next section, we give some background on current WLAN
access point discovery and privacy. Section 3 describes
the design requirements and assumptions. Then, we
explain our solution in Section 4 and evaluate its security
and performance in Section 5. We discuss further system
aspects in Section 6. Related work is surveyed in Section
7. Finally, Section 8 concludes the paper.

2 IEEE 802.11 and Privacy
An infrastructure-mode 802.11 wireless network consists
of one or more access points (AP) and some client stations
(client STA), which connect to a wired network and the
Internet via an AP. Each client station is identified by a
hardware MAC address and each AP by a basic service
set identifier (BSSID), which typically is equal to the
hardware MAC address of the AP’s wireless interface.
The network, also called an extended service set (ESS),
as a whole has a a human-readable name called a service-
set identifier (SSID). An AP may sometimes belong
to multiple extended service sets and, thus, have more
than one SSID. This is typically the case when the
wired network is divided logically into several virtual
local area networks (VLAN). A standard client may be
associated with at most one AP and SSID at a time.
(Experimental client implementations have supported
multiple simultaneous attachments to different APs [9].)
A typical client is configured with a list of SSIDs of the
networks it will try to connect when it detects one in the
vicinity.

Most clients use the globally unique identifier of their
network card as their MAC address. This identifier
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identifies the card manufacturer, not the mobile computer
or it user, but because the MAC address appears in every
frame sent to the network, it can be used to correlate
appearances of a personal wireless device and, thus, trace
the user. This tracing requires multiple observations at
different locations or at different times. As a defense
against such tracing, strategies have been devised to
periodically randomize the client MAC addresses [17,21],
although no such strategy has been yet widely deployed.

The SSID, on the other hand, is selected by the
network operator. Typical SSID values are derived from
the names of businesses, university departments, coffee
shops, commercial wireless operators, and fictional names
chosen by home users. An AP broadcasts regularly (e.g.
at 100 ms intervals) a beacon in which it advertises
its SSIDs. The SSID is not globally unique and it
only gives partial information about the identity of the
network. But since SSIDs are human readable, this
information is often immediately meaningful to a human
observer without the need for extensive data collection
or correlating observations from different times and
locations. Hence, AP operators may feel that the SSID is
sensitive information and that broadcasting it makes them
vulnerable to unwanted attention.

For this reason, the AP operator can configure the AP
in such a way that it does not broadcast its SSID in the
beacon frames. Instead, clients have to probe the AP
to find out whether it belongs to a specific network. In
practice, a client keeps a list of known networks and when
it arrives in the radio range of an AP, it sends a Probe
Request message for every SSID in the list. The hidden
SSID gives the AP a degree of privacy compared to the
usual public SSID: the SSID will not be visible in the user
interface of wireless clients that come into the range of
the AP. The privacy protection is, however, very weak. A
hacker can sniff the plaintext Probe Requests and detect
which SSIDs in them lead to an association. Nevertheless,
disabling the SSID is a widely recommended practice
[14, 34, 37, 39] and many AP administrators heed the
advice. This indicates that there probably is a legitimate
need for some wireless networks to appear nameless to
outsiders.

Unfortunately, disabling the SSID broadcast has the
unintended consequence that the client stations go around
broadcasting Probe Requests containing the SSID [15,32].
Depending on the implementation, the client will either
probe for all known SSIDs (e.g., Windows XP pre-SP2)
or only ones for which the probing has been manually
enabled (e.g., Windows Vista). In any case, the privacy
problem has not been solved but only shifted from the AP
to the clients. Clients can be profiled and even identified
based on the set of SSIDs which they probe [32].

There is another situation in which clients send Probe
Requests without first hearing a beacon with the same

Figure 1: 802.11 network discovery and association with
a hidden SSID or active probing (in active probing, the
beacon is not sent)

SSID value. A client requiring low-latency connectivity,
such as a WLAN phone during a VoIP call, may probe
access points either proactively or when it observes a
sudden drop in the signal quality from its current AP. It
does this to speed up reassociation because scanning for
the periodic beacons may cause 100 ms or more delay.
This procedure is unlikely to cause major privacy issues
if used only on the rare occasions when it is needed for
application-layer quality of service (QoS). In practice,
though, most 802.11 client implementations are not aware
of the application-layer connection state and perform
this directed active probing even when it is not strictly
necessary. It would also be difficult to define heuristics
for active probing that would accurately take into account
both privacy constraints and the QoS needs of various
applications. Some existing clients probe regularly for all
known networks and, thus, leak their entire list of SSIDs
to the network.

Figure 1 shows in detail the 802.11 network attachment
procedure for an AP that has a hidden SSID. The AP sends
a beacon with an empty SSID field. After observing the
beacon, the client usually sends several Probe Request
frames with different SSID values. If the AP recognizes
the SSID, it returns the Probe Response frame. After that,
the client can continue with the usual open authentication
and association exchanges. The frames in these exchanges
contain the plaintext SSID to identify the ESS to which
the client wants to attach.

Some networks are open in the sense that the client can
proceed with IP-layer communication immediately after
this unauthenticated discovery and attachment procedure.
In closed networks, the AP continues by initiating an
authentication protocol based on either a pre-shared key
(PSK) or the extensible authentication protocol (EAP),
which involves an authentication server.

The goal of our work is to give both the APs and
the client stations a level of privacy protection against

3



physical fingerprint of the radio transmitter
logical MAC-layer fingerprint
(capabilities and parameters)
client MAC address, access point BSSID
SSID(s) in Beacon and Probe Response
willingness to associate with an SSID
SSID in authentication and association ex-
changes
TLS certificates in EAP-TLS
physical location of the clients and AP
association between clients and APs
(implicitly associates APs with each other)

Table 1: Information leaks in 802.11

other nodes in the same physical location. We securely
hide the SSID from passive and active attackers that are
located on the access link. Our protocol gives equal
protection both when clients connect to a network which
has a hidden SSID and when the client performs directed
active probing. The protection is particularly necessary
when the client or AP uses randomized MAC addresses
because the information leaked by SSIDs could defeat
the purpose of the address randomization. We believe,
however, that the greatest benefit will be to normal users
with globally unique MAC addresses. Their anonymity
will be protected against casual observers, such as other
customers in a coffee shop, who do not perform global
traffic analysis but may be interested in meaningful
plaintext identifiers that are available on the spot.

Finally, if a client chooses to associate with a network,
it is trivial for an adversary to infer that there is some
kind of affinity between the two. Access points can be
identified by their BSSIDs. There is not much reason
for randomizing the BSSIDs because APs are stationary
and could be identified based on the geographic location
anyway. If clients use randomized MAC addresses and
leak no other identifying information, the associations be-
tween the clients and APs give relatively little information
to the adversary. On the other hand, if the client MAC
addresses are permanent or if the adversary can otherwise
recognize the individual clients, it can over time construct
a bipartite graph of the associations between the clients
and APs, from which it may be possible to infer further
information on organization structures. Collecting and
analyzing such information is extremely tedious, however,
compared to the ease of sniffing plaintext SSIDs in Probe
Requests. We summarize the information leaks in 802.11
in Table 1.

3 Design Requirements and Assumptions
The design is constrained by several functional and
security requirements that we examine in detail in this
section.

System requirements. First of all, to maximize the
possibility that a system will be taken into use, it should
be incrementally deployable. A networked system needs
to interoperate with current networks. In particular in our
case, access point operators need to be able to advertise
an old network with unmodified beacons and at the
same time send new beacons for the modified network.
Similarly, the clients in transition phase can send old
Probe Requests for networks that do not support the
new features and can also associate with available public
networks. All this, and the privacy-preserving properties,
should be enabled with minimal changes to the current
protocols.

Mobile and wireless networking imposes constraints
on the efficient use of resources. Access points and
clients are usually CPU-constrained and clients are also
energy-constrained. Therefore, we require sparing use of
symmetric key primitives, and no additional messages
transmitted by the client as part of discovery. Thus,
in addition to requiring minimal changes to deployed
WLAN software, the protocol needs to be lightweight,
that is, only require few rounds, for the discovery to be
fast.

User experience. The user interface for configuring
wireless networks depends on the particular device or
operating system. For some legacy operating systems, the
device manufacturers provide their own configuration
tools. The Universal Access Method (UAM), which
is used by service providers to authenticate the user
with a Web browser, varies from provider to provider.
Nevertheless, many user interfaces have similar features.
Typically, the user can select the name of the network
to connect to from a list. The WLAN client can also be
configured to automatically reconnect to a known network
when the wireless interface is activated. Hidden networks
require the user to initially type the name of the network
to be able to attach to it.

We favored not changing the user experience at all:
users can still choose the networks to connect to and
configure; they see the name of the access point being
used; the client device can automatically connect to
networks using the new or old protocol. To access
hidden networks, the client has to know the SSID and
the key of the hidden network. The key and SSID can
be bootstrapped using methods that are currently used,
for example, a password, WiFi Protected Setup [38], or
Network-in-a-Box [4].

Threat model and privacy assumptions. The privacy
properties we need to provide are two-fold: First an
adversary cannot infer the network name of the access
point more easily than with today’s “hidden networks”;
second the adversary cannot learn or infer which networks
are known to a client through the network discovery

4



protocol alone. We examine each of those in detail.
Current “hidden networks” guarantee that a rogue

client, that does not know the name of the network, cannot
learn it by interacting with the access point alone. On
the other hand, an eavesdropper can observe an honest
client connecting to the network and learn its SSID. The
proposed discovery protocol needs to be robust against
such an attack: an adversary observing the discovery
protocol cannot learn the name of the network, but
only a randomly generated temporary identifier. This
identifier can be changed as frequently as the network
operators wish, subject to some efficiency trade-offs.
Thus, we aim to provide slightly stronger properties
than current “hidden networks”. This also ensures that
two access points belonging to the same network, and
having the name SSID, cannot be distinguished from
two unrelated access points — which is useful for hiding
whole networks, and their size.

The second goal of the attacker is to identify the
networks to which a client is willing to connect. We must
ensure that an adversary merely observing the discovery
protocol cannot infer which access points or SSIDs
the client recognizes. Naturally, we cannot reasonably
prevent the attacker from observing the communication
between a client and the access point to which it is finally
attached. Yet, we should make it difficult for the adversary
to profile and identify clients based on the networks they
know; passively identify networks previously visited; or
actively probe the client to learn the networks known.

We assume that the attacker may have previously
been at the physical location of any access network, or
may have access to it later, and tries to correlate any
information it can obtain from the network with any data
that it can obtain from the client station. Despite allowing
the adversary to gather global information before and
after the protocol execution, we exclude adversaries that
are able to perform live relay attacks from the clients
to remote honest networks. To some extent this limits
the protection offered by our system against a global
active adversary, but only in case the client decides to
associate with the remote network. In such cases the
association is anyhow leaked by the fact that there is
further communication between the client and the access
point, and no discovery protocol alone can protect against
such inferences.

We are equally concerned about active and passive
attacks. If the access point sends its SSID or another
permanent identifier in a beacon message or the client
probes for various networks by broadcasting their iden-
tifiers, these messages can be observed by a passive
eavesdropper. It is also very easy to set up a dummy
access point or to act as a client to real access points.
Indeed, an active attacker has the advantage that it can
initiate communication at a time of its own choosing

PSK shared key between all APs and
client stations in the ESS

Ka authentication key derived from
PSK, used to compute the response
from the challenge

Ke encryption key derived from PSK,
used to encrypt R-SSID

Nclient the client nonce, acts as a challenge
NAP the AP nonce, used to make

response values unpredictable
PRFK(. . . ) a keyed pseudorandom number
R-SSID random value used in the following

messages instead of the real SSID

Table 2: Symbols used in the protocol description

rather than wait for communication between an honest
client and access point to take place.

4 Privacy-Preserving AP Discovery Proto-
col

In this section, we describe an access-point discovery
protocol that does not reveal the SSID to outsiders. The
protocol has been tightly integrated with the standard
802.11 network discovery protocol.

4.1 Shared-Key Group Identification
The protocol is a lightweight nonce-based shared-key
group identification with two messages, which are piggy-
backed on the Probe Request and Response frames of the
standard 802.11 network association protocol. The basic
assumption of the protocol is that the APs and all client
stations of a single wireless network (ESS) share a single
pre-shared secret key PSK (or an SSID and a password
for deriving one). Neither the AP nor the client broadcasts
the SSID. Instead, the client uses a challenge-response
protocol to recognize APs that know the pre-shared key
and, thus, belong to the ESS. We only need two messages
because the identification is unidirectional: the client
authenticates the AP. If the two nodes do not share a key,
the protocol fails and neither learns each other’s SSIDs or
any similar linkable identifier.

Figure 2 shows the challenge and response messages in
the context of the 802.11 network attachment procedure.
Table 2 summarizes the symbols used in the protocol.

Just as in standard 802.11, the protocol may start with
the client listening to beacons, or by active probing,
directly from the probe message. When the client receives
a Probe Response from one or more APs, it compares
them with its list of known wireless networks. In standard
802.11, it does this by comparing the SSID strings in the
Probe Response and in the known list. In our protocol, the
client computes a pseudorandom function (PRF) value
and compares it with the PRF value in the response.
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The PRF values will only match if the client and access
point are configured with the same secret key PSK. If
the client finds a match, it may continue with the open
authentication and association exchanges. Alternatively, it
may cache the information that a network is available and
take no further action. If there is no match, the protocol
stops there. This behavior is similar to the standard SSID
probing.

In the following, we describe the contents of each
message and then explain the cryptographic details:

1. Beacon. The AP advertises its presence by sending
periodic beacons. The SSID field in the beacon frame is
empty. This frame is identical to the standard protocol
with a hidden SSID. The AP should also advertise the fact
that it supports the new protocol.

2. Probe Request. The client uses the Probe Request to
send a challenge to one or more access points. It does this
either after receiving a beacon or, in active probing, on its
own initiative. The client includes its nonce Nclient in the
request. The SSID field of the Probe Request is empty.

3. Probe Response. The AP copies the client nonce
Nclient to the response and includes its own nonce NAP. It
selects a random identifier R-SSID and encrypts it with
the shared key. Finally, it signs the message by computing
a keyed pseudorandom function of the contents and the
shared key. The full message is the following:

Nclient, NAP, EKe(R-SSID),
PRFKa(Nclient, NAP, EKe(R-SSID)).

4–5. Open Authentication Request and Response. A
pair of dummy messages required by the 802.11 standard
for backward compatibility. The SSID field in these
messages contains the R-SSID.

6–7. Association Request and Response. A pair of
messages that moves the AP and client station to the
associated state. The SSID field in these messages
contains the R-SSID.

8. 4-way handshake. The standard 4-way handshake
based on the pre-shared key defined in WPA2 and 802.11-
2007 for strong mutual authentication and session-key
generation.

The AP and clients are usually configured with an
SSID and a password. From these, they compute a pre-
shared key (PSK) in the way recommended by the 802.11
standard:

PSK = PBKDF2(Password, SSID, SSID length,
4096, 256)

Including the SSID in the computation helps to avoid
collisions between keys when two networks accidentally
choose the same password. The SSID also acts as salt,

AP Client STA

1. Beacon (optional)

2. Probe Request: Nclient

3. Probe Response: 

Nclient, NAP, EKe(R-SSID), PRFKa(Nclient, NAP, EKe(R-SSID))

5. Authentication Response

4. Authentication Request

7. Association Response

6. Association Request

8. 4-way Handshake

...

SSID 

replaced 

with 

R-SSID

Empty SSID

Unicast

Broadcast

Broadcast or

unicast

Figure 2: Privacy-preserving access-point discovery
protocol

making password guessing mode difficult. The PBKDF2
function is defined in the PKCS standards [23] and it
involves 4096 iterations of the SHA-1 hash function to
make brute-force attacks that much slower. From the PSK,
we compute two keys, one for authentication and one for
encryption:

Ka = PRFPSK("privacy key 1" | Nclient | NAP )
Ke = PRFPSK("privacy key 2" | Nclient | NAP )

The keyed pseudorandom function PRFPSK(...) for the
key derivation can be implemented as a standard one-way
hash function, such as SHA-1, on the key and the input.

The nonces are 128-bit random or unpredictable pseu-
dorandom values. The client nonce Nclient is used
for freshness of the network identification. The client
should replace the nonce after receiving correct response,
although it can accept multiple responses to the same
probe as long as they have different NAP values. Clients
that randomize their MAC addresses should also generate
a new nonce when the address changes. This is necessary
for unlinkability. In practice, it is probably easiest to use
a new nonce for every Probe Request. The purpose of
the AP nonce NAP, on the other hand, is not freshness
of authentication but to make the responses unlinkable.
Without the server nonce, an active attacker could replay
challenges and see if it gets the same response from
different APs. For this reason, the server should generate
a new nonce for each response.

The PRF for computing the Probe Response can be
the same function as that used for key derivation. We
might expect standards bodies to prefer a construction
specifically designed for authentication, such as HMAC
[24].

When the client receives the Probe Response, it will
not only verify the response with one key but with all Ka
values it knows. Successful verification of the PRF value
means that the AP supports the given SSID; verification
failure means it does not. The amount of computation
remains reasonable because a typical client is configured
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to connect to at most tens of networks and only some of
them have a hidden SSID. An access point that uses our
protocol for multiple SSIDs needs to also compute and
send multiple Probe Responses, one for each SSID. The
client only needs to verify one set of responses from each
AP. After that, the client can cache the information about
which SSIDs are linked to which BSSID, and which APs
serve no recognized networks. A periodic cache flush is
needed to prevent the use of the cache behavior to trace
the client, and a manual recovery mechanism may be
needed to flush the cache immediately in case the AP’s
set of SSIDs changes.

The R-SSID is a random value that replaces the SSID
in all management frames after the Probe Request and
Response. Its role is to identify the ESS between the client
and the access point. The AP generates a new random
R-SSID for each Probe Response and caches the mapping
between it and the confidential SSID for 60 seconds.
(Cryptographic mechanisms can be applied to implement
this in a stateless way but that is not essential.For example,
the AP could calculate

R-SSID= PRFKap("R-SSID generation" | time |
SSID | client MAC address)

where Kap is a key known only by the AP and time
changes every 60 seconds.) If the client continues to
associate to the AP using the R-SSID, the value will
be stored as long as the client is in the authenticated or
associated state. The main reason for the random R-SSID
is to prevent observers from linking APs of the same
ESS to each other. A secondary reason is to prevent
the observers from counting the number of different ESSs
served by the same AP, and from knowing which clients of
the same AP belong to the same ESSs. The encryption of
the R-SSID in the Probe Response provides rudimentary
access control: only authorized clients are able to decrypt
the fresh R-SSID. However, this is not a strong access-
control mechanism, because the attacker could sniff an R-
SSID from the Authentication Request of an honest client.
Strong access control is provided by the following EAP
authentication or 4-way handshake. An access point that
belongs only to a single ESS and will execute the 4-way
handshake could, optionally, use a fixed R-SSID value
and send it in the Probe Response without encryption.

5 Evaluation
We evaluated the proposed protocol in several ways. It
was implemented on existing 802.11 MadWifi drivers to
verify that the implementation cost is as low as expected.
The performance impact of the protocol was also mea-
sured in the ORBIT [30] wireless testbed developed and
operated by the WINLAB, Rutgers University. We also
ran the access point implementation on a small indoor
access point, the Meraki Mini [27]. Moreover, we provide
informal and formal security analysis of the protocol.

5.1 Comparison of the communications cost

We compare our protocol against both undirected probing
of non-hidden networks and against directed probing of
legacy hidden networks. In undirected active probing, the
client sends one Probe Request on each radio channel and
listens for responses. Every AP in the area will respond to
the probing, but the number of APs in the same location
is usually limited. In directed active probing, the client
has to probe for each known SSID on each radio channel.
We were surprised to find out that many implementations
scan for them one SSID at a time. The implementations
send a directed probe for an SSID on one radio channel,
listen for responses, and move to the next channel. The
time taken by this kind of scanning will increase linearly
with the number of SSIDs that the client is looking for.
In comparison, our protocol discovers hidden networks
with performance equal to undirected active probing. We
only send one Probe Request per radio channel and get
a response from each AP in the area. Therefore, our
protocol improves both the security and, assuming the
client is looking for multiple SSIDs, performance of
hidden-network discovery. The communications cost
of our protocol is equal to that of standard undirected
probing. The above comparison, of course, does not take
into account the cryptographic overhead, which will be
discussed next and shown to be negligible.

5.2 Implementation and performance measurements

The protocol implementation uses an Information El-
ement (IE) field, a standard element defined in the
802.11 specifications that can be used for vendor-specific
information, to carry our discovery protocol: the nonce is
added to the Probe Request as an IE, while the AP uses
an IE for conveying the nonces, encrypted R-SSID and
the HMAC of the nonces and the encrypted R-SSID.

ORBIT measurements. The radio nodes in the ORBIT
testbed are PCs with a 1 GHz VIA C3 processor, 512 MB
RAM and wireless cards using Atheros AR5212 chipset.

We ran the tests in the grid using a single radio
node as an AP, while 100 clients probed the AP. The
clients continuously sent Probe Requests with broadcast
SSID every 125 ms, that is, eight requests per second
for a 10 minutes period. Figure 3 shows the probe
processing times for the reference unmodified MadWifi
implementation (solid line) and for our implementation
(dotted line).

We also used mpstat to measure the CPU load for the
AP. The CPU user and system load for both cases were
under 1 %, and most of the time the tool showed 0 %
usage.

Meraki Mini microbenchmarks The Meraki Mini ac-
cess point uses an Atheros AR2315 System-on-a-Chip
design clocked at 180 MHz. We chose OpenWrt [29] as
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Figure 3: Probe processing times for standard protocol
(broadcast SSID) (solid line) and for our protocol (dotted
line)

our Linux distribution for the access point.
We probed the access point with a single client 1000

times with request rate interval of 200 ms. We obtained
the following results for request-response pairs:

• legacy WiFi: average 1.8 ms latency and median
1.5 ms

• our protocol: average 3.2 ms latency and median
3.1 ms

To see how much of the reduction in performance was
caused by the increase in packet size, we measured the
effect of just padding the payload with ’A’ characters
to the size needed for our protocol. This gave a 2.8 ms
latency with 2.1 ms median.

Additionally, we measured the raw processing times
for creating and verifying the packets used in the protocol.
We implemented a command line tool that was used to
build the packets. 10 000 Probe Response packets were
created in 53 167 ms and the validation of 100 000 Probe
Responses took 340 301 ms. Thus, on average

• Probe Response is created in 0.53 ms

• Probe Response are verified in 0.34 ms

on a low-end hardware such as Meraki Mini.

Summary of results The main differences between the
standard protocol and our privacy-preserving protocol are
the additional computation related to forming and verify-
ing the discovery packets, and the increased payload.

The ORBIT testbed measurements results show that
even with large-scale enterprise deployment with high
client usage, our protocol would not introduce negative
impact on the overall user experience. We note that the
load used in the measurements for the single AP was more

than a single AP needs to handle even in an enterprise
setting.

The microbenchmarks show that the protocol is de-
ployable to a very low-cost commercial off-the-shelf
access point. The results also show that the cost of the
cryptographic operations is almost negligible compared to
increasing the packet length of the standard messages. In
this case also, our protocol would not introduce negative
impact on the overall user experience.

Finally, we note that modern access points, as well
as low-end WLAN clients, increasingly often have
cryptographic hash and symmetric encryption functions
implemented on hardware for WPA or WPA2, and
therefore, the cost of above operations can be further
reduced.

5.3 Security and privacy properties of the protocol
The privacy properties of the protocol are as follows. If
a passive or an active attacker sees two access points
which the client tries to contact, it cannot tell if their
PSKs are the same or different. Likewise, if the attacker
sees two clients trying to discover an access point, it
cannot tell if their PSK is the same or different. Thus,
the encryption function does not reveal the identity of the
parties. Also, the protocol establishes the goal that in the
discovery, no SSIDs or other fixed identifiers are given to
an unauthorized station.

With the introduction of our protocol, e.g., WPA or
WPA2 provides the same security as before, we only
improve privacy of the access point discovery, even
though we share the PSK. The protocol is vulnerable
to offline dictionary attacks if the shared secret is derived
from a weak password. This is equivalent to WPA-PSK
and most other password-based authentication protocols.

The protocol can be used to launch denial of service
attacks against the clients and the access points. However,
since the protocol is very lightweight, the attacker
does not gain much more than with current WLAN
protocols. Against access points, the attacker can send
arbitrary Probe Requests which create unnecessary Probe
Responses. Against clients, the attacker could introduce
unnecessary verifications of the keyed pseudorandom
function sent in the Probe Responses.

5.4 Formal Verification
We used the proverif tool [6] to formally model
and verify the security properties of the protocol. The
proverif input is shown in Appendix A. Two models
are used, one for authentication and confidentiality, the
other for privacy. In both models, there are an unlimited
number of concurrent clients and access points. We prove
the following properties:

Confidentiality. (query attacker:RSSID)
The attacker is not able to derive R-SSID, i.e. it remains
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secret after the Probe Response. Of course, the R-SSID
will be revealed if the client decides to use it and decides
to associate with the AP.

Authentication. (query ev:rx(m) => ev:tx(m))
An rx(SSID) event will not occur at the client unless
there was a corresponding tx(SSID) event at the access
point. That is, the client will only store an R-SSID if the
access point (and not the attacker) sent it.

Privacy. An access point using key K1 is observationally
equivalent to one using key K2. This is modeled using
the choice keyword. The idea is that the attacker is
unable to distinguish an access point for network 1 (using
shared key K1) from an access point for network 2 (using
shared key K2). Clients using different keys are also
observationally equivalent, but we don’t formally verify
this property because it is trivially true: the message sent
by the client does not involve the key.

The privacy properties fail to hold if the client acts on
the result of the authentication in some externally visible
way, for example by sending the Open Authentication
Request to an authenticated access point. This is because
it enables a “wormhole” attack: the attacker forwards
messages between the client location and the access point,
and looks to see if the protocol completes. An AP from a
known network can be used as an oracle to identify clients
that wish to connect to that network, and vice-versa. For
this reason, we leave out the rx(ssid) event from the
privacy model. If it is left in, proverif will find an
attack.

6 System Aspects
This section discusses design considerations beyond the
cryptographic discovery protocol presented in Section 4.

Key provisioning The protocol requires a shared key
between the access points and clients that belong to
the same ESS. Our goal was not to change the existing
conventions for key provisioning. Exactly as in the
standard WPA-PSK security protocol, the stations need
to be configured with the SSID and password. These can,
for example, be written on a whiteboard, or one can use
WiFi Protected Setup [38], Network-in-a-Box [4], or more
advanced credential provisioning mechanisms already
deployed in managed enterprise networks. Even though
the access point in our protocol does not explicitly send
the SSID to the client, the client knows it and can display
it as a network name in its user interface. Thus, the WAP-
PSK user experience is preserved both during the first
connection to a new network and on later reconnections.

The access point can also support different keying
schemes depending on its processing power and privacy
needs. The basic setting would be to have a single key for
all users. Alternatively, each user could have his own key.
The choice of the key distribution defines the anonymity

set for the client. When more users share the same secret,
and if the attacker compromises the key, from a single
message it knows only that the user belongs to a group of
users. However, if the keys are pairwise with client and
the access point, compromising the key compromises the
user completely, and the access point discovery messages
could be then easily used to track the single user. The
shared key has other ramifications, too. For example, is it
reasonable to assume that the users of a conference belong
to the same secret society, that is, should the conference
visitors to be able to track each other?

Interoperability with public and legacy networks The
same client can be configured to connect to three types
of networks: public, legacy hidden and securely-hidden
networks. The first two are the existing networks with
broadcast and non-broadcast SSIDs, and the last type uses
the protocol presented in this paper. An AP may also have
multiple SSIDs that belong to any of these categories.
The important rule is that a client that knows an SSID to
belong to a securely-hidden network must ignore beacons
that advertise the SSID. Otherwise, the attackers could
send such beacons to detect clients that are willing to
connect to them. Similarly, an AP that is configured to be
a part of a securely-hidden network must not respond to
legacy active probes or association attempts that contain
the plaintext SSID.

For performance and reliability reasons, it is not a good
idea to use secure probes for networks that do not require
them. The only reason to enable secure and insecure
probing for the same SSID would be transition: it allows
gradual reconfiguration of clients and access points over
a period of time, until every node operates in the more
secure mode, after which the less secure mode should be
disabled. This kind of gradual upgrading path is critical
for the new protocol to be ever deployed and we have
been careful not to prevent it in the protocol design.

One caveat of the approach is also that, if only some
users start to use the approach, their presence is easier
to spot than that of legacy WLAN users. However,
this would be true for all non-steganographic privacy
mechanisms. On the other hand, with our approach,
the probes do not leak user-readable names and the
affiliations.

Steps after Network Discovery Having carefully re-
designed the network discovery to hide all identifiers,
we have to worry about the same information leaking
in the later stages of network attachment. Typically, the
client and the AP will run an authenticated key-exchange
protocol, such as EAP and the 802.11 4-way handshake,
to establish a secure session. After that, any identifiers
in higher-level protocols will be encrypted. The key
exchange itself, however, may reveal the identity of the
client or the server. The WPA-PSK authentication, which
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consists of a 4-way handshake based on the shared key
PSK, is safe in this respect.

Some EAP authentication methods, on the other hand,
send the client and authentication-server credentials
as plaintext. In EAP-TLS, the server certificate can
be sniffed by adversaries on the local network, and
the client certificate is protected in only the latest
EAP-TLS specification [36]. PEAP [31] has the same
problem, only the client is protected. Naturally, it
rarely makes sense to use an SSID-hiding network-
discovery protocol in connection with an EAP method that
reveals the network identity. The existence of protocol
does, however, encourage future designers of EAP
authentication methods to consider identity protection
as a design requirement. Also, we note that the clients
would still benefit from our protocol in this case, too,
since the attacker can see the client certificates only if it
is present during the association to the network, that is,
the certificates are not sent if the correct network is not
found.

Randomized MAC addresses. Randomized MAC ad-
dresses have been proposed before [17, 21] to prevent
location tracking possibilities of WLAN clients. Our pro-
tocol can be used together with such privacy-enhancing
techniques. Indeed, it makes sense to combine the two
mechanisms. In that case, the client should update the
nonce in our protocol, which otherwise could be reused
for a short period, whenever it changes it MAC address.

User interface design alternatives. We have presented
a design that does not change the user experience of
WLAN access. However, there are some interesting
design alternatives that were considered in the process.
The protocol could be modified in such a way that the user
only configures the password and the SSID is discovered
automatically. In this version, the AP sends the encrypted
SSID in the Probe Response (in addition to the R-SSID).
The SSID can then be displayed to the user by the client
user interface. This would allow also updating of the
SSID, which is not possible in current networks. Such
design choices could, however, prove problematic. If
two network administrators accidentally choose the same
passwords, that could lead to unintentional discovery of
the wrong network. Also, it is convenient for the network
to have a name so that users can talk about it even before
connecting to it.

7 Related Work
WLAN privacy has been considered in many works
before: location privacy risks of using fixed MAC
addresses [17, 18], preventing location tracking by mod-
ifying the power of transmissions [21], how users can
be tracked with different implicit identifiers [15, 32]
and how the client can be identified by the intervals

between Probe Requests [11, 13]. Using pseudorandom
and changing identifiers have been proposed for MAC
addresses [17, 18, 21] or for the whole stack [2, 26].

The ISO/IEC standard 9798-4 [20] on two pass au-
thentication using a cryptographic check function can
be considered as the abstract base for the discovery
protocol we present in this paper. The standard protocol
does not consider privacy properties and (naturally)
how to integrate it to a privacy-preserving system that
we describe. Similar approaches have been, however,
proposed for RFID (WSRE) [22] and Bluetooth [40]
and the upcoming Bluetooth update Wibree [12]. The
approaches share in common that the client needs to do a
key search for every received hash, and additionally the
Bluetooth [40] proposal requires remembering previous
identifiers. In contrast, with the privacy improvement for
the Nike+iPod sport kit [35] the client needs to do a check
for every received message. However, even though these
protocols resemble our simple discovery protocol, none
of them are directly applicable to the presented problem
in the 802.11 access point discovery.

There are similar generic approaches to the problem
that we have tackled in this paper, such as secret sets
[28], private authentication [1], SmokeScreen [10], secret
handshakes [3,5], short group signatures [7] or broadcast
encryption with short ciphertexts [8]. However, since
these approaches involve either public key cryptography
[1, 7, 8, 28], exponentiation [3, 5] require a predefined
set [28], rely on timestamps and synchronization [10],
they are not directly applicable to the problem we have
presented. Further, these mechanisms are unnecessarily
complex to the presented problem, since the approaches
cover e.g. more complex requirements for secret hand-
shakes, and could not be tightly integrated to the standard
802.11 access point discovery protocol.

Finally, independent of our work, Tryst [16, 33]
proposes to solve the confidential service discovery
problem. However, the authors of Tryst rely on explicit
pairing for bootstrapping the discovery, in order to record
the time when the keys were shared. Accordingly, their
approach requires considering clock skew. In contrast, our
approach does not require changes to the user experience,
because even in the bootstrapping of the protocol our
solution is completely agnostic for sharing the secret, that
is, the SSID and the network password can be written on
a whiteboard or passed on a piece of paper, and we do
not need to rely on the accuracy of hardware clocks at
all. In conclusion, Tryst is a clean-slate replacement for
802.11 access-point discovery, whereas we investigated
how privacy-preserving access-point discovery can be
introduced to 802.11 with minimal changes to existing
software.
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8 Conclusions
We propose a privacy-preserving alternative to the stan-
dard WLAN access-point discovery to replace the current
directed active probing mechanism. The proposed
approach is easy to deploy because it requires only minor
changes to existing standard protocols, and to client and
access-point software. The same clients and access-points
can support simultaneously the new and old protocol
modes for different SSIDs. Also, the protocol design
preserves the current user experience. In essence, we
demonstrate that, by deploying a simple but carefully
designed extension to the 802.11 MAC protocol, we can
resolve problems of hidden networks, gain a considerable
increase in privacy, and even hasten the hidden access-
point discovery when probing for multiple networks.
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APPENDIX
A Formal models
A.1 Authentication and confidentiality
free c.

(* Symmetric key cryptography *)

fun enc/3.
reduc dec(enc(m, k, iv), k) = m.

fun prf/4.

(* First security property:
the R-SSID is authenticated. *)

query ev:rx(m) ==> ev:tx(m).

(* Second security property:
the attacker does not learn the R-SSID *)

query attacker: SSID_a.

let Client =
new N1_c;
out (c, N1_c);
in (c, (N2_c, Cipher_c, Mac_c));
let SSID_c = dec(Cipher_c, K) in
if Mac_c = prf(N1_c, N2_c, Cipher_c, K) then
event rx(SSID_c).

let AccessPoint =
new SSID_a;
in (c, N1_a);
new N2_a;
new iv;
let Cipher_a = enc(SSID_a, K, iv) in
event tx(SSID_a);
out (c, N1_a);
out (c, (N2_a, Cipher_a,

prf(N1_a, N2_a, Cipher_a, K))).

process
new K;
(!Client | !AccessPoint)

A.2 Privacy
free c.

(* Symmetric key cryptography *)

fun enc/3.
reduc dec(enc(m, k, iv), k) = m.

fun prf/4.

let Client =
new N1_c;
out (c, N1_c);
in (c, (N2_c, Cipher_c, Mac_c));
let SSID_c = dec(Cipher_c, K) in
if Mac_c = prf(N1_c, N2_c, Cipher_c, K) then

event rx(SSID_c).

(* Third security property:
a client using K1 is observationally
equivalent to one using K2. Trivially true. *)

let KnownAccessPoint =
in (c, N1_a);
new N2_a;
new iv;
let Cipher_a_1 = enc(SSID_a_1, K1, iv) in
event tx(SSID_a_1);
out (c, N1_a);
out (c, (N2_a, Cipher_a_1,
prf(N1_a, N2_a, Cipher_a_1, K1))).

let UnknownAccessPoint =
in (c, N1_a);
new N2_a;
new iv;
let Cipher_a_1 = enc(SSID_a_1, K1, iv) in
let Cipher_a_2 = enc(SSID_a_2, K2, iv) in
event tx(SSID_a_1);
out (c, N1_a);
out (c,

choice[
(N2_a, Cipher_a_1,

prf(N1_a, N2_a, Cipher_a_1, K1)),
(N2_a, Cipher_a_2,

prf(N1_a, N2_a, Cipher_a_2, K2))
]).

(* Fourth security propery:
an access point using key K1 is
observationally equivalent to one using K2. *)

process
new K1;
new K2;
new SSID_a_1;
new SSID_a_2;
(!Client|!KnownAccessPoint|!UnknownAccessPoint)
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