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Abstract

Objective: To study behavioral and brain responses to variations in signal-to-noise ratio (SNR) of cognitive visual stimuli.

Methods: We presented meaningful words visually, embedded in varying amounts of dynamic noise, and utilized magnetoencephalography

(MEG) to measure responses to the words. A multidipole model of the evoked fields was constructed to quantify the strengths and latencies of

the neuronal sources at each noise level. The recognition rates of the words were measured in separate behavioral sessions.

Results: MEG revealed sequential activation of occipital and occipito-temporal areas (latencies 130–250 and 170–350 ms, respectively)

followed by activity in superior temporal cortex (230–640 ms). The strengths and latencies of all identified sources followed functions

similar to the SNR of the stimulus. The peak amplitudes and shortest latencies of all sources coincided with the maximum SNR of the

stimulus. The occipito-temporal and temporal sources as well as the word recognition rate accurately followed the SNR of the stimulus

whereas the early occipital source exhibited a more peaked dependence on the SNR.

Conclusions: Evoked responses expectedly peaked at the maximum SNR of the stimulus. Interestingly, early visual responses showed

sharper peaks than longer-latency sources as a function of the noise level. This can be understood as the higher-level processes analyzing the

stimuli more holistically and thus being less sensitive to the salience of simple visual features. The similar noise-dependence of the longer-

latency sources and the recognition rate provides new evidence for the relevance of these activations in the recognition of written words.

Significance: This study contributes to the understanding of brain activity evoked by degraded stimuli with cognitive content.

q 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Degraded stimuli have been employed in psycophysics

and neuroimaging studies to investigate sensory systems.

Images of objects mixed with different levels or spatial

distributions of random interference or reduced in their pixel
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intensity range (e.g. ‘two-tone images’) are often used in

such studies of the visual system (Dolan et al., 1997; Pegna

et al., 2004; Tanskanen et al., 2005; Tarkiainen et al., 1999).

Analogously, auditory input can be masked by a varying

amount of uncorrelated noise to alter the physical and

perceptual qualities of the stimulus (Hari and Mäkelä, 1988;

Muller-Gass et al., 2001). These studies typically utilize

stimuli embedded in increasing amounts of noise so that

the signal-to-noise ratio of the stimulus decreases

monotonically.
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In contrast to the previous studies, we wanted to

investigate brain responses to stimuli that not only change

in terms of the amount of added noise but exhibit a unimodal

peak, or resonance, in the signal-to-noise ratio. This

approach has an interesting connection to the theory of

stochastic resonance (Wiesenfeld and Moss, 1995), which

explains the observed enhancement in the detectability of

sub-threshold or otherwise weak signals in the presence of

an optimal amount of random interference, usually referred

to as ‘noise’. Stochastic resonance is observed in both

artificial and natural non-linear systems and is suggested to

play a functional role in the central nervous system, where

sources of intrinsic noise are ubiquitous. Several studies on

visual perception employed experimental paradigms

designed to meet the threshold stochastic resonance theory

(Gingl et al., 1995), in which visual stimuli were embedded

in random noise and subjected to an artificial gray-level

threshold (Piana et al., 2000; Simonotto et al., 1997, 1999).

In this study, however, we did not consider stochastic

resonance as a model for the underlying brain processes or

activity but only applied stimuli that are stochastically

resonant.

To reach brain functions beyond primary sensory

systems, we used words as a cognitive component in the

stimulus. Magnetoencephalography (MEG) has shown that

both visual and extravisual cortical areas are involved in the

processing of letters and words presented visually (Helenius

et al., 2002; Pylkkänen and Marantz, 2003; Raij et al., 2000;

Salmelin et al., 1996; Xiang et al., 2001). Tarkiainen et al.

(1999) noted that the addition of static Gaussian noise

affects the responses to letters, symbols, and words, and

were able to identify brain processes specific for letter

strings.

The aim of this study was to characterize the brain

responses—at multiple levels—to a cognitive visual

stimulus that itself exhibits stochastic resonance. Magne-

toencephalography (Hämäläinen et al., 1993) was used in

this study to measure brain activity with temporal and

spatial accuracy sufficient to reveal the cortical activation

sequence. In addition, word recognition was tested

behaviorally and compared with the estimated strengths of

the neural sources at different levels of added noise.
Fig. 1. Examples of the stimuli at the 5 noise levels. The visibility of the

word is enhanced in these static images. MELAmeans ‘apple’ in Italian and

‘paddle’ in Finnish.
2. Methods

2.1. Subjects

Nine healthy volunteers (3 females), with age ranging

from 24 to 52 years (mean 36G12 years), were recruited

among university students and staff. Seven of the subjects

were right-handed, one left-handed, and one ambidexterous.

No subject had any history or evidence of systemic,

neurological or ocular diseases. All had normal visual

acuity with proper correction. Six of the subjects were

native Italian speakers and three were Finnish. All subjects
gave their informed consent. The MEG recordings were

approved by the Helsinki-Uusimaa Ethics committee.
2.2. Experimental paradigm

According to subject’s native language, an Italian or

Finnish word was randomly selected for each trial from a

bank of 50 meaningful words, 4 letters each. The word was

written with a monospaced Courier font at a constant gray

level wZ114 (scale 0–255) and centred on a screen of

640!480 pixels with constant background intensity (bZ
128). Noisy static images were obtained by adding to each

pixel a random number uniformly chosen in [Kh, h] and

thresholding the pixels on the letters at tZ104: pixels lighter

than the threshold were unaffected while darker pixels were

replaced by those of the noisy background. Dynamic noise

was obtained by presenting static images in a rapid

sequence. This procedure yielded degraded shapes of letters

darker than the average background. We employed 5 levels

of added noise, presented in separate blocks in a

monotonically increasing series: hZ12, 16, 24, 40, 60

(see Fig. 1).

Dynamic noise was present continuously throughout

each block to avoid noise-onset responses. In the sequence,

each static image, whether noiseCword or just noise, was

shown for two frames at the rate of 60 frames/s. The

duration of the embedded word stimulus was chosen as 8

imagesZ264 ms, which is sufficiently long so that the word

is perceivable at the noise levels about the resonance and

that its early offset response does not overlap temporally

with the longer-latency onset responses. The word was

followed by 22 imagesZ726 ms of noise so that the

expected longest-latency responses decay before the next

trial. Response averaging was trigged at the word onset; see

Fig. 2.

The static images were created off-line and displayed as a

sequence with the Presentation stimulus software package

(Neurobehavioral System, Inc., Albany, CA, USA). The

stimuli were delivered to the subject by a video projector

and a back-projection screen inside the dimly lit magneti-

cally shielded room. Stimuli were presented binocularly,

with the viewing angle consistent with foveal vision.
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Fig. 2. Stimulus timing. Eight consecutive frames of the wordCnoise
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Fig. 3. The background and letter pixel intensity distributions correspond-

ing to Eqs. (2) and (3). The gap in the letter pixel intensity pdf is due to the

thresholding procedure.
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Subjects were asked to fixate to a small cross in the center of

the screen throughout the measurement.

The recognition of the words was tested by presenting all

subjects with similar sequences of random words under the

same conditions and in the same noise-level order as in the

MEG experiment and asking them to read overtly the words

they could. The speech output was recorded on a digital tape

and analyzed off-line. These behavioral measurements were

conducted after the MEG acquisition.
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Fig. 4. Contrast-to-noise ratio of the stimulus as a function of the noise level

as obtained from Eq. (4).
2.3. Stimulus properties

The mean contrast between the words and the back-

ground resulting from the thresholding procedure outlined

above can be quantified. Let b be the background intensity

level (gray level), w the intensity of the letters, and t the

threshold. The intensity of a word pixel is thus

i Z
wCr; if r Cw! t;

bCr; if r CwR t;

(
(1)

where r is the realization of a random variable uniformly

distributed over [Kh, h].

Eq. (1) suggests a probabilistic description of the

stimulus. The probability density function (PDF) for a

background pixel is

pbgðh;iÞZ

1

2h
; bKh% i%bCh;

0; otherwise;

8><
>: (2)

whereas the PDF for a pixel on a letter is:

pwðh;iÞZ

1

2h
; wKh% i! t;

0; t% i!bC tKw;

1

2h
; bC tKw% i!bCh;

0; iRbCh:

8>>>>>>>>>><
>>>>>>>>>>:

(3)

Both PDFs are plotted in Fig. 3. For the dynamic

stimulus, we can define a limiting contrast-to-noise ratio

CNRðhÞZ
EfpbgðhÞgKEfpwðhÞg

h
(4)
for the noise level h where E{p} is the expectation value of

the random variable p. The difference E{pbg(h)}K
E{pW(h)} represents the hypothetical mean contrast

between the letters and the background. Substituting the

probability density functions (2) and (3) yields:

CNRðhÞZ
1

2h
bK

ðwKbÞðtKwÞChðwCbÞ

2h

2
4

3
5; if hOwKt;

0; otherwise:

8>><
>>:

(5)

The limiting contrast-to-noise ratio is plotted in Fig. 4.
2.4. Data collection

The measurements were carried out in the Brain

Research Unit of the Low Temperature Laboratory,

Helsinki University of Technology, Espoo, Finland. MEG

measurements were performed in a magnetically shielded

room with a 306-channel MEG system (Elekta Neuromag

Oy, Helsinki, Finland) consisting of 102 sensor units at

distinct locations in a helmet-shaped array. Each sensor unit

comprises 3 independent channels: one magnetometer and

two orthogonal planar gradiometers. The planar
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gradiometers give the maximum signal for the neural

currents right beneath the sensor.

Environmental magnetic interference was suppressed by

signal-space projection (SSP) (Parkkonen et al., 1999;

Uusitalo and Ilmoniemi, 1997). The signal patterns

corresponding to the highest eigenvalues of the correlation

matrix of the raw signals from a measurement without a

subject were identified; 3 of these patterns were projected

out from the gradiometer data and 6 from the

magnetometers.

MEG signals were filtered by a digital 6th-order

Butterworth IIR filter (K3 dB at 172 Hz) and then sampled

at 600 Hz. Eye blinks and horizontal and vertical eye

movements were continuously monitored (electrooculo-

gram, EOG) during the MEG measurement. Epochs with

EOG or MEG exceeding 150 mV or 3 pT/cm, respectively,

were excluded from further analysis. About 100 epochs free

of artifacts were obtained for each noise level and averaged

over time in windows of [K100, 900] millisecond (time 0 at

stimulus onset).

The MEG recording session lasted about 35 min, with

approximately 5 min of rest between stimulus conditions.

Behavioral measurements were conducted separately but

in the same conditions as the preceeding MEG recordings,

i.e. the subjects seated in the MEG system and viewing the

stimuli delivered in the same way as in the MEG sessions.
2.5. Anatomical MRIs and co-registration

Three anatomical landmarks (the nasion and the points

anterior to the left and right ear canals) were utilized to

establish a head coordinate system. The same landmarks

were also identified in anatomical MRIs.

The position of the subject’s head with respect to the

MEG sensors was determined with the help of 4 marker

coils placed on the scalp at known locations in the head

coordinate system. The coils were localized prior to each

experimental condition by briefly energizing them and

measuring the resulting magnetic fields with the MEG

sensors. During the data analysis, the estimated neural

sources were always expressed in head coordinates thus the

possible head movement across the conditions was

compensated for.

Anatomical MR-images for all subjects were obtained

using a General Electric Signa 3-T or a Siemens 1.5-T MRI

scanner. The geometrical accuracy of the MR-image and the

co-registration were verified by overlaying and visually

comparing the MRI with the digitized head shape.

The MR-images of each subject were transformed to

match the shape and sulcal/gyral structure of a standard atlas

brain (Roland and Zilles, 1996) by a combination of an

affine (Woods et al., 1998) and an elastic (Schormann et al.,

1996) transformation. The obtained transformation was then

applied to project the individual source locations onto the

atlas brain for intersubject comparison.
2.6. Data analysis

The averaged MEG signals were low-pass filtered (zero

phase shift FFT filter, corner frequency 40 Hz) and

corrected for the baseline signal level in a window

[K100, 0] millisecond with respect to the stimulus onset.

The MEG signal sources were modeled with equivalent

current dipoles (ECD), defined as the current dipoles best

explaining the measured magnetic fields at a given time

point. The ECD represents the synchronized activity in a

small patch of the cortex (Hämäläinen et al., 1993). The

location and orientation of an ECD are found with a non-

linear search that minimizes the sum of the squared errors

between the model and the measurements at each MEG

channel. The fit was performed at time points when the

averaged data exhibited a clear dipolar field pattern; a subset

of the planar gradiometer channels centered about the

dipolar pattern were used. At least 20 neighboring channels

were selected for each fit. These single-dipole fits were then

combined into a multidipole model in which only the dipole

amplitudes were allowed to vary to best explain the signals

on all MEG channels. Only dipole models accounting for

more than 80% of the signal variance during the response

peaks were accepted.

We employed a spherical conductor model—required for

the estimation of the volume current distribution and the

magnetic field due to it—as an approximation of the true

shape of the intracranial volume. The sphere origin was

determined from the anatomical MR-images of the subject.

Since, responses were seen both in the occipital and

temporal regions, we tested in two subjects whether two

spheres fitted to the curvature of the intracranial volume at

occipital and temporal regions would give different ECD

locations. No significant differences were found, thus we

modeled all the responses with a single sphere, fitted

simultaneously to occipital and temporal regions.

The source model, consisting of multiple current dipoles,

was constructed separately for each subject using data from

the condition hZ24. This condition was chosen as it evoked

the largest signals among all the conditions. The con-

formance of the model with data from the other conditions

was verified by comparing the field maps and sources, and

by monitoring the goodness-of-fit values. To further

validate this approach of deriving the model from one

particular condition, two additional checks were performed.

First, in one subject, an alternative multidipole model was

constructed based on a suboptimal noise level (hZ12).

Compared to the original, this model gave essentially the

same ECD positions, peak latencies and most importantly

the source amplitudes as a function of the noise level.

Second, areal RMS averages of the averaged MEG signals

(6 pairs of planar gradiometer channels; no sensitivity to the

source current orientation) above the identified source areas

were examined for all the noise levels; the highest

amplitudes were again obtained at the same noise level as
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with the multidipole model and amplitudes decreased and

latencies increased towards suboptimal noise levels.

The verified ECD model was then used to find the

amplitudes of all the identified sources as a function of

time across the averaging window; the locations and

orientations of the dipoles were kept fixed and only the

magnitudes were allowed vary to best fit the measured

signals.

Due to notable intersubject variability (the peak dipole

amplitudes range from 10 to 70 nAm at the resonant noise

level) we normalized the source waveforms before

averaging across subjects; the highest peak amplitudes and

shortest latencies across all the noise levels of each source

were scaled to unity.
A

B

C

Fig. 6. Locations of the A, B and C sources of all subjects transformed onto the st

single subject at the noise level hZ24.
3. Results

The ECDs of all subjects clustered in 3 classes by

location and latency (Figs. 5 and 6). The ECD classes with

shorter latency (hereafter referred to as A and B) were

characterized by locations in medial occipital and occipito-

temporal areas, respectively. Latencies from the stimulus

onset varied 130–250 and 170–350 ms for A and B,

respectively, with distributions partially overlapping.

The spatial resolution of MEG is not sufficient to clearly

discern simultaneously active sources in the left and right

primary visual areas, however, the medial occipital sources

are most likely bilateral because of the full-field stimulus.

The B sources were bilateral in 7 subjects and unilateral in 2

out of 9. A third source (class C) centered on the (superior)

temporal areas, typically of both hemispheres (in 7 out of 9

subjects) was activated at latencies of 230–640 ms after

stimulus onset, without significant temporal overlap with

sources A and B. The dominant hemisphere of class C

sources reflected the handedness of the subjects, i.e. right-

handed subjects showed clear left-hemisphere dominance,

in the left-handed subject the right hemisphere was

dominant, and in the ambidexterous subject no clear

lateralization was observable.

As a further verification of the separability of the three

classes an analysis of variance (ANOVA) was performed for

the peak latencies; the classes differ with P!0.05.

The noise level affected the peak amplitudes and

latencies of all sources. The average latency decreased

and amplitude increased with increasing noise levels to

reach the largest amplitude, shortest latency and smallest

variance across subjects at the noise level 24. Latencies
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thereafter increased at higher noise levels and the source

amplitudes decreased.

The mean amplitudes and latencies of the 3 identified

sources and the fitted functions derived from the mean

contrast-to-noise ratio of the stimulus are shown in Fig. 7. A

proper fit required a correction function k(h, b) to be included

in the numerator of the contrast-to-noise ratio (4) and a

normalization factor a. The function k(h, b) tunes the

steepness of the model function at noise levels different than

the resonant level hZ24.

The modified model function is thus:

CNRðhÞZa
EfpbgðhÞgKkðh;bÞEfpwðhÞg

h
: (6)

We assume that k(h, b) has a null effect at hZ24ZbKt

and increases linearly with the distance from this level:

kðh;bÞZ 1CbjhKðbKtÞj: (7)

Substituting the probability density functions (2) and (3)

yields:

CNRðhÞZ
a

2h
bKkðh;bÞ

ðwKbÞðtKwÞChðwCbÞ

2h

2
4

3
5; if hOwKt

0; otherwise:

8>><
>>:

(8)
Table 1

Source classes and the behaviorally measured word recognition rate with the corre

fits to the limiting contrast-to-noise function

Source A B

Location Occipital Occipito-temporal

aamp 10.7 10.9

bamp 4.9!10K4 1.3!10K4 (n.s.)

c2amp 2.57 2.68

alat 9.4 9.4

blat !10K7 (n.s.) !10K7 (n.s.)

c2lat 1.79 0.59
Fig. 7 shows the amplitudes and latencies averaged across

the subjects for each noise level and the fit of the contrast-to-

noise function (8) to these averages. For the latencies, the

fitted function was inverted and shifted along the y-axis. The

CNR function was also fitted to the normalized behavioral

data on the word recognition rate. The parameter values

found in the fits are given in Table 1. The reduced c2 values

computed for the three degrees of freedom are not far from

1, thus indicating an acceptable fit. For both amplitudes and

latencies the fitted values of a were stable and expectedly

around 10 (the maximum value of the model function is

about 0.1, and the data were normalized to have a peak value

of 1.0).

The b-parameters of source classes B and C and

behavioral data do not significantly differ from zero (P!
0.05). In contrast, the b-value of source class A is significant

with P!0.05. This implies that the amplitude of class A

sources can be modeled by means of (8) only with a

substantial k(h, b)-correction, i.e. by considerably modify-

ing the steepness of the model function.
4. Discussion

We employed degraded visual stimuli with words as

cognitive content in a combined magnetoencephalographic
sponding a and b parameters and c2 statistics for the amplitude and latency

C Recogn. rate

Temporal n.a.

10.1 11.5

5.0!10K5 (n.s.) 1.35!10K4 (n.s.)

1.95 2.27

9.2 n.a.

!10K7 (n.s.) n.a.

1.91 n.a.
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and behavioral experiment. These stimuli evoked magnetic

responses at three distinct regions in the brain and at

different latencies with respect to the presentation of the

word.

The locations and temporal dynamics of the estimated

neural sources allow some functional interpretation; the

sites of sources A (occipital) and B (occipito-temporal) is

congruent with that of striate and extrastriate visual cortices

identified in humans by fMRI and PET techniques (Tootell

et al., 1996). Moreover, class B is consistent, both in latency

and location, with the previously identified letter-string

specific source (Tarkiainen et al., 1999). The C class,

located in (superior) temporal areas, was characterized by

individual variability that may be more apparent than

substantial. Although this source class could reflect general

higher-level recognition processes, the observed temporal

dynamics and locations are compatible with the known

electrophysiological/neuromagnetic correlates of proces-

sing the semantics of language (the Wernicke–Geschwind

model) (Hinojosa et al., 2001; Kober et al., 2001; Kuriki

et al., 1998; Nobre et al., 1998; Poeppel and Hickok, 2004;

Pulvermüller, 1999). Furthermore, the location is consistent

with the previously reported sources of the magnetic

counterpart of the N400 responses observed in concomi-

tance to word comprehension (Helenius et al., 2002;

Salmelin et al., 1996).

For all identified sources the amplitude maxima and

latency minima (indicative, at large, of stronger neuronal

activation and phase-locking to the sensory input (Hari,

1990)) and the smallest variance across subjects were

reached at the middle noise level corresponding to the

largest signal-to-noise ratio of the physical stimulus. More

importantly, the source amplitudes and latencies as a

function of the noise level were described with a good

approximation by the contrast-to-noise function derived

from the physical properties of the stimulus. The peak

latencies of all sources tracked the contrast-to-noise

function rather similarly, however, the amplitudes of the

sources in striate visual areas (source class A) showed

significantly more peaked dependence on the stimulus SNR

than the other areas or the behaviorally measured word

recognition rate. A recent MEG study by Hall et al. (2004)

demonstrated that the contrast response functions of striate

and an extra-striate visual area are different: the striate

source can be characterized with a linear function while the

extra-striate source saturates above a moderate contrast

level. This is in a good agreement with our findings; the

extra-striate source B reflects a process that is in the

saturation regime within a wide window of noise levels

about the maximum stimulus SNR and thus its dependence

on the noise level is weaker than that of the striate source A

with a linear contrast response function.

The temporal integration windows available for the

processes underlying the evoked responses are also

different. The early occipital source A with an average

latency shorter than the duration of the stimulus reflects the
transient onset of the stimulus and must thus rely on a short

integration time while the longer-latency activity may take

advantage of longer temporal windows. The source

strengths behave consistently: the amplitudes of the

longer-latency sources follow the limiting, i.e. infinite

integration time, contrast-to-noise function of the stimulus

more accurately than the early source A in the primary

visual areas.

The difference between the A and other source classes

can also be attributed to a more specific ‘tuning’ of the

atomistic early visual processes to the simple physical

features of the stimulus versus the more holistic longer-

latency and higher-level processes analyzing the stimulus

with larger receptive fields and thus being less sensitive to

added uncorrelated noise. In addition, the higher-level

recognition processes are likely to apply templates,

acquired by learning, of letters and words, which renders

them insensitive to a moderate degradation of sensory

input. This is convincingly illustrated in a more general

context by studies employing visual stimuli of objects

sufficiently degraded to render them unrecognizable by a

naive subject but easily identifiable once the non-degraded

version has been presented to the subject (Dolan et al.,

1997; Pegna et al., 2004).

Interestingly, the recognition rate of the words behaved

similarly as the strengths of the occipito-temporal (B) and

temporal (C) sources with respect to the noise level. This

provides further evidence that the brain functions underlying

these sources are likely to be essential for the recognition of

visually presented words. The present results are also

compatible with the assumption that there is no higher-tier

word-recognition process; such activity would conceivably

‘insensitize’ the recognition rate further to the noise

manipulation of the stimulus. Additional studies should,

however, be conducted to address this point properly.

The consistency of the stimulus contrast-to-noise

function with the ‘threshold stochastic resonance’ theory

(Gingl et al., 1995) and its application in modeling the

activation of involved cortical sources should be treated

sensibly. Further research is needed to better understand the

effects of visual ‘noise’ on brain processes and the possible

interaction with intrinsic neuronal noise.
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