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Magnetoencephalography (MEG) offers a unique way to non-invasively monitor the neural activity in the human brain.
MEG is based on measuring the very weak magnetic fields generated by the electric currents in the active neurons.
Such measurements allow, with certain limitations, estimating the underlying current distribution and thus the locations
and time courses of the neural generators with an excellent temporal resolution.

The aim of this Thesis was to advance MEG to certain realms that have been considered difficult or even impossible for
it. Specifically, the included studies contributed to the modelling of the neural generators, detection of activity in the
deep brain areas, analysis of oscillatory activity, and characterisation of neural states related to bistable perception.

Estimating the sources of MEG signals is non-trivial as multiple current constellations can give rise to the same
observed magnetic fields. As a new solution to this problem, we introduced an automatic Bayesian tracking algorithm
that recovers the locations and time courses of a set of focal neural current sources from MEG data.

The majority of MEG experiments have concentrated on brain signals originating in the neocortex due to the rapid
decrease of the MEG signals as a function increasing source depth. Here, we demonstrated that neural activity deep in
the brainstem can be detected and accurately localised by MEG in favourable conditions.

We also explored the utility of stochastic resonance in varying the salience of a cognitive stimulus, and showed that the
detection accuracy of visually-presented words correlated better with the amplitudes of the late than early responses.

The temporal resolution provided by MEG was exploited in novel ways. We showed that oscillatory 20-Hz signals
from the primary and secondary somatosensory cortex were transiently phase-locked in response to a stimulus,
possibly signifying functional connectivity. We also introduced a frequency-tagging method employing dynamical
noise to separate brain activations elicited by different parts of a visual scene: monitoring these rhythmic signals with
MEG enabled us to probe the neural engagement in the early visual brain areas during bistable perception and thus to
link subjective perceptual states to brain states.
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Magnetoenkefalografia (MEG) tarjoaa turvallisen tavan tutkia ihmisaivojen toimintaa. MEG perustuu aktiivisissa
hermosoluissa kulkevien sähkövirtojen synnyttämien heikkojen magneettikenttien mittaamiseen pään ulkopuolella.
Näistä mittauksista voidaan tietyin rajoituksin päätellä magneettikentät synnyttänyt virtajakauma ja siten aktiivisten
aivoalueiden paikat ja niiden aktiivisuuden muutokset ajassa.

Tässä väitöskirjassa kehitettiin menetelmiä MEG:n soveltamiseksi sellaisillekin tutkimusalueille, joita on aiemmin
pidetty sille vaikeina tai jopa mahdottomina. Väitöskirjan osatöissä esiteltiin uusia menetelmiä aktiivisten alueiden
mallintamiseksi, syvien aivoalueiden toiminnan mittaamiseksi, rytmisen aivotoiminnan analysoimiseksi ja
vaihduntakuvioiden havainnointiin liittyvien hermostollisten tilojen kartoittamiseksi.

Aktiivisten aivoalueiden estimointi MEG-mittauksista on vaikeaa, sillä useat virtajakaumat voivat synnyttää
samanlaisen kenttäjakauman. Kehitimme bayesiläiseen seurantaan perustuvan menetelmän, joka pystyy
automaattisesti rekonstruoimaan MEG-mittauksista usean neuraalisen lähteen paikat ja aikakäyttäytymiset.

Valtaosassa MEG-kokeista tutkitaan aivokuorella syntyneitä nopeita vasteita ja rytmistä toimintaa, sillä näistä syntyvät
signaalit näkyvät MEG:llä parhaiten. Tässä työssä osoitimme, että myös syvien aivorakenteiden, erityisesti aivorungon
tuottamia signaaleita voidaan mitata MEG:llä ja niiden lähteet voidaan paikantaa suotuisissa olosuhteissa.

Tutkimme myös stokastisen resonanssin käyttöä näköärsykkeessä ja osoitimme, että sanoille syntyvien myöhäisten
aivovasteiden voimakkuus korreloi tunnistustarkkuuden kanssa paremmin kuin aikaisempien vasteiden voimakkuus.

Käytimme hyväksi MEG:n erinomaista ajallista tarkkuutta uusilla tavoilla. Osoitimme että ihmisen primaarisen ja
sekundaarisen tuntoaivokuoren tuottamat MEG-signaalit vaihelukittuvat hetkellisesti osana tuntoärsykkeen käsittelyä.
Kehitimme myös taajuusmerkintää ja kohinaa käyttävän menetelmän joka mahdollisti ihmisen näköjärjestelmän
tutkimisen uudella tavalla: pystyimme MEG:n avulla seuraamaan näköaivokuoren toimintaa ja osoittamaan, että
vaihduntakuvion näköhavainnon muuttumiseen liittyy vastaava aktivaatiomuutos jo varhaisilla näköalueilla.
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1 Introduction

Being the organ of the mind, the brain is an intriguing target of study in many scientific

disciplines. The intense research on the human brain has provided us with a wealth of

neuroscientific knowledge, but it has also come to ascertain the complexity of the brain.

The estimated 1014 connections—roughly 1000 times more numerous than stars in our

Galaxy—between nerve cells, the chemical processes involved, and the dynamical nature

of the structure and function of the brain warrant its status as the most complex organ.

This multidimensionality calls for several research methods as no single approach can

fully characterise the brain, neither its function nor its structure.

Brain function can be studied from the level of single nerve cells to human behaviour.

Bridging this gap appears intractable, and research able to cross several of the levels in-

between is still rare. Between those extrema lies the systems-level approach to brain func-

tion. There, the activity of large cell assemblies and its relation to cognitive functions are

at the primary focus rather than individual nerve cells, or neurons. Even within that niche,

several methods exist for learning about the underlying brain processes. Non-invasively,

one can obtain information about brain activation by monitoring the metabolism and

hemodynamics in the nervous tissue. One can also record the electric signalling between

neurons as manifested in extracranial electric potentials and magnetic fields. Measuring

these physical quantities and inferring some characteristics of the underlying brain activ-

ity is referred to as electroencephalography (EEG) and magnetoencephalography (MEG).

The virtue of these techniques is that they tap the neural processes directly in the sense that

the same physical events that allow neurons to convey information are also responsible for

generating these extracranial fields. By contrast, methods based on local hemodynamics,

such as functional magnetic resonance imaging (fMRI) and optical imaging, monitor the

activity indirectly and exhibit relatively poor temporal resolution since blood oxygenation

level only sluggishly tracks neural activity.

MEG has been applied to a number of neuroscientific and clinical questions during its

relatively brief history as a full-fledged research tool. In basic research, MEG has been

instrumental in the study of, e.g., the human auditory, somatosensory and visual systems,

as well as oscillatory brain activity. Important results have also been obtained in studies of

language comprehension and production as well as of the human mirror-neuron system;

for reviews, see e.g. Näätänen et al. (1994), Hari and Salmelin (1997), Hämäläinen and

Hari (2002), Lu and Kaufman (2003), Hari and Nishitani (2004), and Salmelin (2007).



2 1 INTRODUCTION

In clinical use, the main applications of MEG are in epilepsy (first indications by Barth

et al., 1982; a recent comparison study by Iwasaki et al., 2005) and preoperative mapping

of eloquent cortical areas (for the current state, see e.g. Mäkelä et al., 2006).

Many of the early approaches in designing MEG experiments and analysing data are still

in use; however, MEG can benefit from advances in many disciplines, including signal

analysis and mathematical modelling. This Thesis is about enlarging the scope of research

that could be addressed with MEG.

This summary first reviews the neurophysiological and methodological background rele-

vant for the studies comprising the Thesis, providing links to the pertinent literature. The

Background Section explains the physiological facts important for understanding the gen-

esis and interpretation of MEG signals as well as the physics and mathematics required in

processing and modelling those signals; for the general neuroscientific background, the

reader is referred to the textbooks by, e.g., Kandel et al. (2000), Purves et al. (2004), and

Mountcastle (1998). Thereafter, the specific aims of the Thesis are listed, and the studies

are briefly summarised, followed by a general discussion on the results.



2 Background

The studies constituting this Thesis employ MEG as a means to non-invasively obtain

data about the neural processes in the human brain. The excellence of MEG lies in its

high temporal resolution, down to sub-milliseconds as shown in Study P2, combined

with a reasonable spatial localisation power. This combination is unique. MEG’s electric

counterpart, EEG, features similar temporal resolution but an inferior ability to localise

the sources of the signals. On the other hand, the hemodynamic measures of brain ac-

tivity, positron emission tomography (PET) and fMRI, yield a spatially more accurate

reconstruction of the activity but lack the millisecond-range temporal information. A

combination of these methods in estimating the neural activity (see e.g. Dale et al., 2000;

Ahlfors and Simpson, 2004; Furey et al., 2006) would, in principle, enable high spatial

and temporal resolution; however, such a fusion is not straightforward as the hemody-

namic (fMRI and PET) and electrophysiological (MEG and EEG) methods monitor the

neural processes in very different ways and thus convey somewhat different pictures of

the activity (Furey et al., 2006; Liljeström et al., 2009).

Using MEG or EEG is not only about the mere measurement of the signals associated

with neural activity, but also entails signal processing to extract the signal components of

interest. Source modelling methods are needed to move from a sensor-level description

of the data to the source level, i.e., to mathematically describe the data in terms of neural

generators rather than illustrating them as waveforms at the sensors. However, the prob-

lem of modelling these generators is ill-posed; multiple different source current patterns

can give rise to the same MEG and EEG data. This ambiguity calls for modelling that es-

tablishes a unique solution by imposing physiologically sound constraints. Since there is

room for specifying different sets of constraints that all carry some physiological validity,

a number of modelling approaches have emerged in the course of the history of MEG and

modern EEG.

Structural information about the human brain—obtained typically with magnetic reso-

nance imaging (MRI)—can provide justified constraints for modelling the MEG sources;

for example, the source currents can be restricted to lie only in the brain tissues that

are known to be able to generate MEG activity. In addition, anatomical images can be

employed in the visualisation of MEG results.

This Section introduces the basic mechanisms of neural signalling, concisely reviews the



4 2 BACKGROUND

EEG: Measuring the electric
potential distribution on the
scalp

MEG: Measuring the magnetic
field distribution outside of the
head

Figure 2.1 An electrically active neuron population (red arrow) gives rise to scalp po-
tentials (red and blue shadings) and extracranial magnetic fields (green lines). Recording
the scalp potentials is known as electroencephalography (EEG), and measuring the mag-
netic field as magnetoencephalography (MEG). Both MEG and EEG convey information
about synchronised electric activity in the brain. Background image courtesy of Mika
Seppä.

basics of the genesis of MEG and EEG signals, describes the signal processing techniques

central to the studies in this Thesis, introduces the MEG source modelling problem and

the ways utilised and developed in this Thesis to tackle it. Finally, the combination of

MEG and structural MRI is briefly discussed.

2.1 Origin of neuromagnetic signals

2.1.1 Neural signalling

For information transfer, the human nervous system employs a combination of electrical

and chemical mechanisms. Electric impulses travel faster than chemical, and they require

only a conducting medium for propagation. On the other hand, with respect electric sig-

nalling, chemical transmission between cells allows them to be decoupled for independent

metabolism, growth and migration. Chemical signals are also convenient in modulating

the activity of the nerve cells at a slow but large scale.

A nerve cell, or neuron, comprises a tree of dendrites that receive information from other

neurons, a cell body or soma where the nucleus resides, and an axon that conveys the out-
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put of that cell to other neurons. The axon of one neuron and the dendrite of another form

a contact at a synapse, where information is transferred usually chemically although also

electrical synapses exist. A single cortical pyramidal neuron can receive input through

hundreds of synapses.

Specialised proteins within the cell membrane act as ion pumps that actively move certain

ion species across the cell membrane. These pumps maintain a high potassium and low

sodium and chloride concentration within the cell with respect to the extracellular fluid.

These concentration gradients and the membrane permeabilities of the ion species set up

a transmembrane potential of Em≈−70 mV (the inside of the cell is negative with respect

to the extracellular fluid) under physiological conditions.

In a synapse, neurotransmitter molecules arriving at the post-synaptic membrane open ion

channels that selectively let specific ion species flow passively along the concentration

gradient and thus alter the transmembrane potential. An excitatory synapse depolarises

the cell membrane locally (raises the potential to a less negative value) and thus gives

rise to an excitatory postsynaptic potential (EPSP). By contrast, an inhibitory synapse

hyperpolarises the cell (lowers the potential) and generates an inhibitory postsynaptic po-

tential (IPSP), or shunts the membrane potential to its resting value so that simultaneous

excitation is less likely to depolarise the cell.

The simultaneous excitatory and inhibitory contributions of the synapses, weighted by

several factors including the distance from the soma, sum together, and this net effect

determines how much the membrane potential deviates from the resting level at the soma.

If the potential Em exceeds approximately −55 mV at the root of the axon, called the

axon hillock, an action potential (AP) is initiated. The distributions of excitatory and

inhibitory synapses within the dendritic tree are rather different; most inhibitory synapses

are located close to the soma where they influence the potential of the soma more than

the excitatory synapses which are concentrated further away, at dendritic spines, which

are small protrusions of the dendritic shaft. The dendrites contain voltage-gated channels

that may amplify the effects of the post-synaptic potentials by producing dendritic spikes.

While EPSPs and IPSPs are graded potentials, the AP is an all-or-none event. The prop-

agation of the AP along the axon is active; voltage-gated sodium channels open at the

front of the AP wave and depolarise the membrane further up to Em ≈+35 mV, followed

by a delayed opening of potassium channels that brings the potential down towards the

resting level. This chain of events takes about 1–2 ms, after which the neuron continues
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to be in a refractory state for about a millisecond during which new APs can not be fired.

Normally, the AP traverses from the axon hillock to the pre-synaptic terminals. At these

terminals, the AP triggers a cascade that leads to the release of neurotransmitter vesicles

to the synaptic cleft where they diffuse to the receptors at the post-synaptic membrane.

The active propagation and binary nature ensure that AP can travel unchanged over long

distances. However, the velocity is limited by the kinetics of the ion channels and the

leakage of the intracellular current through the cell membrane. In addition, active propa-

gation is energy-demanding. Therefore, most axons are surrounded by an electric insula-

tor, myelin, which is a specialised glial cell that wraps around the axon. Myelin increases

the resistance between the inside of the cell and the surroundings, and thus reduces the

leakage. As a result, within a myelinated segment, the propagation of the AP is passive

but fast, and between the segments, at the nodes of Ranvier, the propagation is active and

the AP amplitude is restored. This saltatory conduction in thick, myelinated peripheral

axons can reach velocities in excess of 50 m/s. In Study P2 of this Thesis, the localisation

and timing obtained by MEG allowed us to estimate the conduction velocity along a part

of the auditory pathway to be about 20 m/s.

Since the AP is not graded, information is encoded in the rate of the APs, not in the

amplitude. In the central nervous system, the phase of the AP with respect to a large-

scale oscillatory signal also appears to convey information (for reviews, see e.g. Engel

et al., 2001; Varela et al., 2001). The oscillatory signals investigated in Study P3 may act

as such a reference signal.

2.1.2 Neural currents

The intracellular potential changes associated with PSPs at distal synapses give rise to

a current flow along the dendrites towards the soma. When viewed at a distance much

larger than the length of the dendrite, this flow can be modelled by a current dipole. The

magnetic field due to a current dipole decays as 1/r2, where r is the distance from the

dipole. In the cortex, the parallel arrangement of the apical dendrites of pyramidal neu-

rons1 enables spatial summation of the electromagnetic fields from nearby neurons. The

characteristic time course of the postsynaptic currents is on the order of ten milliseconds,

which is slow enough to allow for temporal summation of the contributions from nearby

neurons to the net field. Owing to these two summation mechanisms, PSPs are the pri-

1The most abundant (70–80%) neuron type of the cortex.
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Axon Synapse

Presynaptic neuron Postsynaptic neuron

Primary current

Impressed current

Volume current

Branch of the
dendritic tree

λI

Figure 2.2 A synapse at a dendritic spine and the associated electric currents. In the
presynaptic cell, the action potential gives rise to a quadrupolar source whereas in the
postsynaptic cell, the currents in the dendrites are mostly dipolar. The length constant λ

represents the decay of the current I due to leakage.

mary source of MEG and EEG signals.

The strength of the current dipole is defined as Q = Iλ , where I is the current and λ

is the length constant that describes the decay of the current as a function of distance.

The estimates of Q of a single EPSP in the apical dendrite of a pyramidal cell depend on

the assumed geometry; theoretical calculations have suggested 50 fAm (Okada, 1982),

120 fAm (Vvedensky et al., 1985), and 20 fAm (Hämäläinen et al., 1993). A simulation

study employing realistic 3D models of cortical neurons indicated considerably larger

values of 290–900 fAm and a non-vanishing contribution from basal dendrites (Murakami

and Okada, 2006).

For an action potential, the situation is quite different; the intracellular currents flow al-

most symmetrically both forward and backward from the location of the AP peak2. Such

a current constellation forms a quadrupole, and the associated magnetic field decays as

1/r3, that is, much faster than the field of a current dipole. This rapid attenuation of the

field as a function of distance and the less likely temporal summation due to the short du-

ration of the APs render them almost invisible in MEG and EEG. However, we recorded

also axonal MEG responses in study P2. There, the compound action potential (CAP),

formed by temporally aligned APs in several parallel nerve fibres in the nerve trunk, is a

2For example, for an AP duration of 1 ms, the forward and backward fronts are separated by 20 mm in
an axon with a conduction velocity of 20 m/s.
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result of an analogous summation as in the case of PSPs. Still, the symmetry giving rise

to the quadrupolar arrangement needs to be broken for a measurable contribution from a

CAP. Such symmetry breaks arise when the nerve bends and the forward and backward

currents no longer flow along the same line, and the CAP thus generates a dipolar net cur-

rent distribution. Peripheral nerves have also been shown to generate detectable magnetic

fields (Hari et al., 1989).

The intracellular currents are accompanied by passive extracellular return or volume cur-

rents that close the electric circuit and thus prevent the accumulation of electric charge.

These ohmic currents flow in the whole surrounding conducting medium but have the

highest density in the vicinity of the cells that drive them. For modelling purposes, it

is convenient to define impressed currents as those directly associated with the influx or

outflux of ions through the cell membrane, primary currents as those within the cell, and

volume currents as the currents driven by the primary currents; the respective current den-

sities are usually denoted as Ji(r), Jp(r) and Jv(r). This division is illustrated in Fig. 2.2.

The impressed currents, while being the driving force, flow for such a short distance

that their dipole moment Q is very small compared with that of the other currents, and

thus their direct effect on the extracranial electromagnetic fields can be neglected (Tripp,

1981).

2.2 Instrumentation for magnetoencephalography

2.2.1 Signal strength

Extracranial neuromagnetic fields are extremely weak. Figure 2.3 shows the magnetic

spectrum obtained with a helmet-shaped 306-channel magnetometer array (Elekta Neu-

romag Oy, Helsinki, Finland), both in the absence of a subject and from a resting sub-

ject. The spectral density of the 10-Hz peak of the spontaneous brain activity is less than

100 fT/
√

Hz. Brain’s physiological evoked responses (not shown in the Figure) are on the

order of 100 fT in amplitude. In Study P2, the detected responses with peak amplitudes

slightly less than 5 fT were among the weakest seen by MEG. Earth’s steady magnetic

field (50–90 µT) is thus about 1010 times stronger than the faintest MEG signals measured

so far.

Assuming a dipole moment Q = 500 fAm for a single EPSP (see Sec. 2.1.2 and Murakami

and Okada, 2006), a spherical volume conductor (see Sec. 2.4.1) with a radius of 8 cm,
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Figure 2.3 Spectral densities of magnetic fields as a function of frequency in the ab-
sence of a subject (blue) and with a subject resting (green). These spectra are the aver-
age of the spectra of all 102 magnetometer signals recorded with the Elekta Neuromag
whole-scalp neuromagnetometer. Author’s unpublished data.

and a perfectly parallel and tangential orientation of the contributing dendrites 2 cm below

the surface of the sphere, the magnetic field 2 cm above the surface would exceed 100

fT only when more than 10,000 perfectly simultaneous EPSPs take place. In reality, the

orientations of the dendrites and their branches are less optimal for MEG, and the EPSPs

do not fully overlap temporally. Therefore, it can be estimated that tens of thousands of

active neurons are required for generation of fields on the order of 100 fT.

Local synchrony of the PSPs affects the field strength. As a first approximation, tightly

stimulus-locked postsynaptic activity sums up linearly, whereas N neurons with randomly-

timed PSPs summate only in proportion to
√

N. It can be shown that synchronising 1%

of the elements (neurons) in a population of 105 elements yields already 80% of the max-

imum signal that the population of can generate; in larger populations, the percentage is

even higher (Hari, 1990).

The challenge of MEG is to detect the weak fields but also to suppress the ambient,

disturbing magnetic fields that are several orders of magnitude stronger. A combination

of several techniques is required to achieve these goals.
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2.2.2 Sensors and systems

Magnetic signals due to the activity of the human brain were first detected by a conven-

tional induction magnetometer but with a very low signal-to-noise ratio (Cohen, 1968).

The advent of the SQUID (superconducting quantum interference device) sensor with

its exceptional sensitivity (Zimmerman et al., 1970) enabled practical MEG measure-

ments (Cohen, 1972). Since then, MEG sensors and devices have evolved to reach lower

noise levels and larger coverage. An important milestone was the introduction of the first

whole-scalp device (Ahonen et al., 1993b).

A SQUID is a superconducting loop interrupted by one or two Josephson junctions

(Josephson, 1962), which is a thin (≈ 100 nm) layer of an electric insulator between

two superconductors. The electron pairs of the superconductor can tunnel through the

junctions, giving rise to an interference that manifests itself as a dynamic resistance

that depends on the magnetic flux applied through the SQUID loop. This dependence

is non-linear and periodic, and therefore SQUIDs are operated in a negative feedback

loop known as a flux-locked loop. In this mode, the SQUID acts as a zero flux detector;

a feedback coil is attached on top of the SQUID loop and a controller adjusts the feed-

back current so that the SQUID output remains zero, that is, the feedback is set to exactly

cancel the measured flux. This feedback current is directly proportional to the measured

flux. Due to the intrinsic periodic response, SQUIDs as such cannot measure absolute

flux values and magnetic fields strengths but only their changes.

The SQUID loop is made small (d << 1 mm) to optimise the noise performance. Such a

loop couples only weakly to the external magnetic field. To enhance this coupling and to

enable measurements of various components of the magnetic field, MEG sensors employ

superconducting flux transformers that have a large pick-up coil (d ≈ 2–3 cm) and a small

but multiturn signal coil attached on top of the SQUID loop, connected in series. The

field in the pick-up coil gives rise to a shielding current that also passes through the signal

coil where it generates flux threading the SQUID loop.

The geometry of the pick-up coil determines the field component it measures. A simple

loop forms a magnetometer that measures the field component normal to the loop surface,

i.e., Bz, where z is the direction along the normal. Two oppositely-wound loops make up

a gradiometer whose output approximates a spatial derivative of the field. If these loops

are in a plane, the sensor is a planar gradiometer measuring ∂Bz/∂x; if they are on the

same axis, it is an axial gradiometer that measures ∂Bz/∂ z. Figure 2.4 shows the three
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Figure 2.4 Common pick-up coil geometries: A magnetometer, B planar gradiometer,
and C axial gradiometer. D The output of a sensor is computed as a surface integral with
an integration element dA normal to the coil. Adapted from Hämäläinen et al. (1993).

most common types of pick-up coils.

The output of the i’th channel is

bi =
∫

S
B(r) ·dA≈

K

∑
k=1

wkB(r) ·nk (2.1)

where S is the surface of the pick-up coil; see Fig. 2.4D. The output is approximated by

computing the field B(r) at K discrete points (see Sec. 2.4.1), projecting the field onto the

normal vector nk, and weighting by wk.

The field component measured by the sensor determines its sensitivity to a particular

current distribution. This sensitivity pattern can be expressed as a lead field, which is a

fictitious vector field that gives the output of a channel to a unit dipolar source current

at a given location and orientation. Figure 2.5 illustrates the lead fields of the previous

three pick-up coil geometries. A magnetometer or an axial gradiometer outputs the largest

signal for source currents around the pick-up coil and no signal for a source current at or

beneath the centre of the coil, whereas planar gradiometers give the maximum signal for

source currents directly beneath them. It can be shown that the lead fields of orthogonal

planar gradiometers and a magnetometer at the same location and plane are orthogonal,

and thus the three sensors provide independent information about the sources (Ahonen

et al., 1993a).
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Figure 2.5 Lead fields associated with common pick-up coil geometries.

The data for the studies comprising this Thesis have been acquired with a 306-channel

MEG device (Elekta Neuromag Oy, formerly Neuromag Oy, Helsinki, Finland) which

employs 102 triple-sensor elements in a helmet-shaped array. Each sensor element com-

prises a magnetometer measuring Bz and a pair of orthogonal planar gradiometers mea-

suring ∂Bz/∂x and ∂Bz/∂y. The complementarity of the two types of sensors was also

exploited: in Study P2, we employed exclusively the magnetometers as their lead fields

reach deep brain structures better than those of the gradiometer sensors, whereas in Study

P3 the focality of the planar gradiometers allowed investigating phase locking between

two cortical areas at the sensor level. In P1 and P5, data from the whole sensor array were

utilised, and in P4 the source modelling was guided with the planar gradiometer signals

but eventually both sensor types were used.

2.2.3 Interference suppression

The weakness of cerebral magnetic fields necessitates effective means to block the ambi-

ent interference, often several orders of magnitude stronger. Multiple methods are usually

employed in parallel: i) the MEG system is operated in a magnetically shielded room, ii)

gradiometer sensors are utilised for their low sensitivity to far-away sources whose fields

are nearly homogeneous, and iii) any residual interference is estimated and removed from

the data computationally. These techniques and their commonly used variants are briefly

explained below.
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Magnetically shielded rooms rely on high permeability mu-metal (an alloy of nickel and

iron) which reduces the field strength within the room by providing the external fields a

low reluctance path along the walls of the room. At frequencies above some tens of hertz,

the shielding relies on eddy currents that flow in a layer of high-conductivity material,

usually aluminium, counteracting the impinging fields. For efficient shielding across a

range of frequencies, the walls are typically made of a combination of mu-metal and

aluminium plates (Kelhä et al., 1982). Shielded rooms usually employ 2 or 3 such shells,

or layers, to increase the shielding factor, particularly at frequencies below 10 Hz.

Passive magnetic shields can be enhanced by active systems that measure the interference

field and generate a compensating field to cancel the interference at the location of the

MEG system. A typical active compensation system comprises a flux-gate sensor, driver

electronics, and pairs of Helmholtz coils outside of the room to supply the cancellation

fields. Such a setup can provide 10–30 dB of additional shielding if the interference

sources are far away (tens of meters or more) so that the interferring fields are approxi-

mately homogeneous at the location of the room. Unfortunately, nearby sources may be

problematic since proper compensation would require the spatial derivatives of the field

to be taken into account. Recently, single-shell light-weight shielded rooms, supported

by active compensation systems also inside the shielded room, have been successfully

utilised with MEG (for a performance verification, see De Tiège et al., 2008). The data

for the studies in this Thesis were acquired in a two-layer room (ETS Lindgren Oy, Eura,

Finland) equipped with an external active compensation system.

Employing gradiometers instead of magnetometers is a straightforward method to protect

the MEG sensors from far-away interference sources; the response of a gradiometer to

a source falls off much faster with distance than that of a magnetometer. A carefully

manufactured (well-balanced) gradiometer can attenuate homogeneous fields by as much

as 60 dB (factor of 1,000). On the other hand, Study P2 demonstrates that fields from the

most distant brain regions are picked up better by magnetometers than gradiometers.

Interference can also be measured explicitly and then subtracted from the signals. Refer-

ence sensors located some tens of centimetres away from the MEG helmet do not measure

brain signals but capture mainly the interference. By optimally coupling the output of the

reference sensor array to the MEG channels proper, the interfering signal can be removed.

This arrangement works well with homogeneous interference fields; however, the pres-

ence of gradients may degrade the performance as the interference at the helmet must be

extrapolated from the measurements at the reference sensors. For this purpose, the refer-
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ence sensor arrays usually include both magnetometers and gradiometers. The reference

sensor approach can also be considered as a way to construct higher-order gradiometers

(Vrba and Robinson, 2001).

Interference can be suppressed without a reference sensor array since external interfer-

ence and brain sources evoke different spatial patterns on the sensor helmet. The benefit

of this reference-free approach is that no extrapolation is required since the interference

is measured at the very location it should be suppressed. The approach relies on the con-

cept of signal space which is a virtual space where each measurement channel spans one

dimension. Thus, the output of an n-channel sensor array at any time instant can be ex-

pressed as a signal vector in the n-dimensional signal space. The spatial pattern is equal

to the direction of the corresponding vector in the signal space while the overall strength

of the signal defines the length of that vector. If the subspace where the interference

resides is known, the measured signals can be projected onto a hyperplane orthogonal

to that subspace, thus completely removing the contribution of the unwanted subspace;

the method is called signal-space projection (SSP) (Tesche et al., 1995; Uusitalo and

Ilmoniemi, 1997; Parkkonen et al., 1999).

Projected data are rank deficient, i.e., after projecting out an m-dimensional subspace

from an n-channel measurement, only n−m linearly independent signals are left. Since

m is usually only 3–8 and n > 100, the mere loss of degrees of freedom is not a problem

as such, but to correctly interpret the spatial aspect of the projected data, the effect of the

SSP operator should be taken into account because SSP may introduce slight changes in

the signal topography. In source modelling, the projection operator has to be applied to

the result of the forward computation to ensure unbiased estimation.

The interference subspace is usually determined by principal component analysis (PCA)

of a short measurement without a subject. Selecting 3–5 components associated with the

highest eigenvalues for the subspace typically reduces the variance of the interference

down to acceptable levels. Such subspaces appear very stable over time, even for months

or years, provided that the magnetic environment does not change drastically.

The interference subspace can be optimised to the frequency band of interest by filter-

ing the raw data to that band prior to PCA. The magnetic auditory brainstem responses

(mABR) measured in Study P2 were concentrated at frequencies above 200 Hz. Applying

PCA on the band-pass filtered (180–1000 Hz) data yielded only two significant compo-

nents, corresponding to the harmonics of the mains, instead of the typical five that include
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components for homogeneous fields. Suppressing homogeneous fields would have atten-

uated the spatially smooth brainstem signals considerably.

Instead of determining the interference subspace statistically, the known physical proper-

ties of magnetic fields—expressed in Maxwell’s equations—can be utilised to mathemat-

ically delimit the subspace where all signals due to sources external to the sensor helmet

must reside. Similarly, another subspace can be spanned for all signals whose sources are

inside the sensor helmet. These two subspaces are linearly independent, thus providing

a unique way of separating the measured data into contributions from outside and inside

of the sensor helmet. Interference suppression can now be performed simply by dropping

out the outside contribution. This method is called signal-space separation (SSS) (Taulu

and Kajola, 2005).

The SSS subspaces are derived from a series of spherical harmonic functions. In the SSS

framework, the data are first expressed as two multipole expansions, one for the inside

and the other for the outside contribution, in spherical harmonic spaces. Subsequently,

the sensor-level data are reconstructed using only the inside expansion. Both series are

truncated to stay within the limits imposed by the number of channels in the system; the

inside expansion typically corresponds to about 100 degrees of freedom. The SSS method

is thus data-independent and time-invariant; however, it does require precise information

on the geometry of the sensor array. SSS was employed in Studies P1 and P5.

2.3 Signal processing

2.3.1 Averaging and filtering

MEG signals related to a single stimulus presentation or task performance usually have

too low a SNR for reliable detection and modelling of brain activity. Therefore, sig-

nals to multiple such events are typically averaged to suppress the uncorrelated noise

present in the recording, yielding an average response. In averaging, the stimulus- or

task-locked signal components are retained and the uncorrelated components decrease at

best as 1/
√

N, where N is the number of trials. However, the responses may also change

in the course of multiple trials due to, e.g., habituation, loss of attention, and decreasing

vigilance. The earliest responses are typically the least susceptible to this kind of variation

(Hari, 1990), and the experimental design can be optimised for a given response (Ahlfors

et al., 1993). In Study P2, we presented about 16,000 stimuli in 30 minutes and averaged



16 2 BACKGROUND

the brainstem responses without an appreciable suppression of the response with respect

to a slower stimulation rate. On the other hand, less than 100 trials were sufficient in P3,

P4, and in the experimental part of P1. Single-trial responses can be studied as well (see

e.g. Tanskanen et al., 2007).

The noise uncorrelated to the stimulus presentation is not only due to background brain

activity and other physiological sources, such as muscular activity, but it also results from

the instrumentation and environment. The relative contributions of these factors depend

on the frequency. At low frequencies (< 1 Hz), the environmental and non-neural phys-

iological sources can be difficult to suppress and thus may contaminate the recordings.

In addition, the 1/ f noise of the SQUID sensors elevate the system noise at these fre-

quencies. The predominant brain rhythms span frequencies from a few to some tens of

Hz; within this band, the background brain activity plays the major role. For higher fre-

quencies, the intrinsic system noise gives the largest contribution provided that no strong

muscular activity takes place; see Fig. 2.3. The exceptional high-frequency responses in-

vestigated in P2 are within this high-frequency band and would have thus benefited from

a lower system noise level. The experimental data in the other studies concentrated on

frequencies less than 100 Hz.

To improve the SNR of a particular response, the MEG data are filtered temporally and

spatially. Temporal filtering includes typical time-domain band-pass filtering but also,

e.g., template matching to detect single responses. Spatial filtering can be as simple

as selecting and examining the signal of a MEG channel above the source area but can

also involve source modelling or beamforming (see Sec. 2.4), or blind source separation

techniques such as independent component analysis (ICA) (for a review, see Hyvärinen

and Oja, 2000).

2.3.2 Extracting oscillatory responses from MEG data

The stimulus-locked time-domain averaging described earlier is not applicable for recov-

ering the amplitudes of oscillatory brain signals as the phase of these signals is typically

not locked to the stimulus. Instead, the phase information has to be removed so that av-

eraging is guaranteed to improve the signal-to-noise ratio. Alternatively, the phase itself

can be investigated, as in Study P3.

Several methods exist for estimating the amplitudes of the oscillatory signals. The choice
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depends on the required temporal granularity at which one needs to follow the spectral

content of the measurements. In certain cases, the data can be considered stationary, i.e.,

the frequency composition is assumed not to vary over time, whereas in other cases the

non-stationarity is at the focus of interest.

Fourier transform

The spectrum of a long span of data, e.g., a task block of several tens of seconds or the en-

tire experiment, is typically computed using the Welch method: the magnitudes of the fast

Fourier transforms (FFTs) of half-overlapping segments of the data are averaged. Prior

to FFT, a temporal window function is applied to each segment to optimise the resolu-

tion of the transform. This piecewise approach enables the use of FFT and thus presents

a significant computational advantage over the plain Fourier transform (FT) applied to

the entire data at once. Averaging reduces the variation of the spectral estimate but it

also implies poorer frequency resolution due to the shorter length of the transform. In

P5, we employed the Welch method with 4096-sample-long Hanning-windowed FFTs to

estimate the amplitude spectra with a frequency resolution of 0.073 Hz; see Fig. 2.

Slow changes in the spectral content of a signal can be monitored by computing the FFTs

as above but omitting the averaging step. This approach, referred to as short-time Fourier

transform (STFT), yields coarse time series of the frequency components across the data.

For the frequencies in typical MEG signals, the length of the segment, i.e., the support

of the transform, has to be 1 s or longer for a reasonable frequency resolution. This

limited temporal resolution is sufficient, e.g., for quantifying spectral differences between

two or more alternating experimental conditions, or for tracking spontaneous changes in

rhythmic activity; however, it does not allow quantifying the sub-second modulations of

spontaneous brain rhythms by external stimuli, for example.

Modelling

The STFT may not be optimal for analysing narrow-band signals; the frequency bins (the

discrete set of frequencies at the output) are determined solely by the support of the FFT,

and it may thus happen that no bin is centred at the desired frequency. In addition, within

the finite support of the STFT, most frequency pairs are non-orthogonal and spectral leak-

age compromises amplitude and phase estimation. If the data contain a known sparse set

of signals at distinct frequencies, the STFT can be replaced by a general linear model
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Figure 2.6 Obtaining the amplitudes of a small set of frequencies ( f1 and f2) using a
general linear model (GLM). Adapted from P5.

(GLM) with model sinusoids as regressors in the design matrix. If the phases of those

signals are not known, quadratures should be included. The quadrature component of an

arbitrary regressor can be obtained by a Hilbert transform; for a sine wave it is simply the

cosine wave, i.e., a 90-degree-shifted copy. Applying Euler’s formula eia = cosa+ isina,

the complex-valued model can be written as

x(t) =



ei2π f1t

ei2π f2t

· · ·
ei2π fNt

t

1


(2.2)

where the two lowest rows correspond to a linear trend. Instead of using complex-valued

regressors, the sinusoidal quadratures can be included as separate sin and cos terms. The

design matrix can then be constructed for an arbitrary time interval of M samples as

X = (x(t1) x(t2) · · · x(tM)) (2.3)

where the x(t)’s are column vectors. This matrix is the transpose of the usual GLM

design matrix so that each row holds a time series. Figure 2.6 illustrates a design matrix

that contains four regressors of interest, corresponding to the quadratures of two sinusoids
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at frequencies f1 and f2, and additional “nuisance regressors” that model the known but

uninteresting non-white components of the data. The inclusion of such regressors aims to

cancel the spurious effects of these interferring signals on the estimates of the signals of

interest. The time-dependent MEG data, represented as a row vector y for each channel,

can be modelled as

y = bX+ e (2.4)

where b is a row vector of the unknown complex amplitude coefficients βn. The error

term e is assumed to be normally distributed. Provided that X is full rank (the regressors

are linearly independent), the solution that minimises e in the least-squares sense is

b̂ = y(XTX)−1XT = yX+ (2.5)

where + denotes the pseudo-inversion of a matrix. The amplitudes an and phases φn of

the regressors are then obtained as

an = 2‖βn‖ (2.6)

φn = ∠ βn (2.7)

where the ∠ operator refers to taking the phase angle of a complex number.

In P5, we applied this GLM-based method to estimate the amplitudes of oscillatory sig-

nals evoked by a frequency-tagged stimulus. The analysis was done for 1-s windows

temporally aligned with the experimental conditions. STFT would not have enabled suf-

ficient accuracy in the estimation of the tag-related signal amplitudes.

Wavelets

For a more balanced trade-off between temporal and frequency resolution, wavelets can

be employed to quantify the instantaneous amplitude and phase of a continuous signal.

Wavelets are oscillatory functions of finite length and they can be scaled and translated to

match signal components at specific frequencies and time points, respectively. The idea

of such analysis for non-stationary data was conceived by Gabor (1946) but the proper

mathematical foundations of the wavelet transform were laid later (Morlet et al., 1982;

Daubechies, 1988). A wavelet transform is a way to perform multiresolution analysis:

lower frequencies are localised in time with less precision than higher frequencies and,

conversely, lower frequencies are localised in frequency with higher precision than higher
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frequencies. The resolution of the wavelet transform, just as that of a FT, is limited by

the uncertainty principle, which imposes a lower bound on the product of the temporal

resolution (∆t) and frequency resolution (∆ f ).

The wavelet transform can be performed by convolving the time domain signal with

scaled versions of the prototype or mother wavelet. Owing to the lower temporal accuracy

at lower frequencies, the corresponding convolutions can be presented at lower sampling

rates; however, this frequency-dependent sampling is usually undesirable in MEG/EEG

analysis. Instead, the convolution result is used as is, such as in a Gabor filter (Sinkkonen

et al., 1995; Tallon-Baudry et al., 1997).

In studies P3 and P5, we employed a Morlet (1982) wavelet, in which the oscillatory

component is a complex sinusoid at a single frequency, and its temporal localisation is

obtained by shaping the envelope with a Gaussian:

w(t, t0, f0) = C · e
− (t−t0)2

2σ2
t · ei2π f0(t−t0) (2.8)

σf =
f0

λ
(2.9)

σt =
λ

2π f0
(2.10)

C =
1√

σt
√

π
(2.11)

where t is time, t0 and f0 are the centre time and frequency, respectively, and the length

parameter λ controls the trade-off between the frequency and time resolution. The vari-

ables σt and σf are the standard deviations of the wavelet in the time and frequency do-

main, respectively. The normalisation term C ensures that
∫

∞

−∞
|w(t, t0, f0)|2dt = 1, i.e.,

the wavelet is normalised for unit energy. The real and imaginary parts, corresponding

to the cosine and sine terms, are shown in Fig. 2.7. These wavelets do not have compact

support and, for any finite interval, they do not form an orthogonal basis. The Daubechies

(1988) wavelets have these desirable properties but their interpretation is not as intuitive

as that of Morlet wavelets, which can directly be associated with pure sinusoids.

Convolution of a real-valued continuous signal s(t) with a Morlet wavelet yields a com-

plex signal whose modulus and angle give the instantaneous amplitude a(t) and phase
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Figure 2.7 Morlet wavelets (λ = 7) scaled for frequencies f0 = 1, 2 and 4 (arbitrary
units). The time-domain plots (left column) show the magnitude (black), as well as the
real (red) and imaginary (blue) components. With an increasing frequency, the wavelets
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φ(t), respectively, at the frequency f of the wavelet:

a(t, f ) = ‖w(t,0, f )∗ s(t)‖ (2.12)

φ(t, f ) = ∠ w(t,0, f )∗ s(t) (2.13)

where ∗ denotes convolution. This decomposition directly lends itself to a time–frequency

representation (TFR) of the signal; by plotting a(t, f ) or φ(t, f ) so that time and frequency

are along orthogonal axes, one can visualise the time- and frequency-dependent amplitude

and phase of the signal. Averaging a(t, f ) or |a(t, f )|2 across trials yields an average

TFR that reflects both the stimulus-locked and stimulus-induced, i.e. non-phase-locked,

activity in response to a stimulus. Studies P3 and P5 include such plots.
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2.3.3 Phase-locking analysis

Information can be conveyed in the amplitude of a signal but also in its phase. Two sig-

nals that maintain a constant phase difference are said to be phase-locked with each other.

In electrophysiology, such phase relations can be considered as signatures of informa-

tion transfer between brain areas or between the peripheral and central nervous systems.

However, phase-locking of the signals from, say, two brain regions does not necessarily

imply that these two regions are directly connected with each other or that they exchange

information. Phase locking can also occur as a result of an external influence, such as a

common signal from another brain region. On the other hand, a reproducible coinciden-

tal phase locking is improbable: locking does imply that the involved areas share some

information, and therefore it is worthwhile to study the phase relations between brain

signals.

The methods described in the previous section yield an estimate of both amplitude and

phase. The obtained phase information can be subjected to phase-locking analysis. As

in the amplitude analysis, there is a tradeoff between frequency and temporal resolutions.

While STFT can be used to study phase relationships, the instantaneous phase provided by

wavelets opens up new domains for such analysis. The following paragraphs concentrate

on the subsequent analysis of these continuous estimates of phases.

Averaging φn(t, f ) across trials n in an MEG experiment yields an estimate where high

values indicate consistent phase information in the brain responses whereas low values

indicate randomness. This quantity, known as the phase-locking factor (PLF) (Tallon-

Baudry et al., 1996), is typically illustrated as a time–frequency plot. PLF is closely

related to the frequency content of the time-domain average described in Sec. 2.3.1, since

both approaches preserve only the components whose phase is locked to the trial.

PLF can be extended to study the consistency of the phase difference between two signals

s1(t) and s2(t). The Phase-locking value (PLV) (Lachaux et al., 1999) is computed by

averaging the complex phase differences

Θn(t, f ) = eiδn , where (2.14)

δn = φ1,n(t, f )−φ2,n(t, f ) (2.15)
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for each time and frequency across the trials n, viz.

P(t, f ) =
1
N

N

∑
n=1

Θn(t, f ). (2.16)

Now, ∠ P(t, f ) gives the average phase difference at frequency f between these two sig-

nals for each time point t in the trial, and ‖P(t, f )‖ ≤ 1 indicates the consistency of that

difference; if the same difference is maintained during all trials, ‖P(t, f )‖= 1, and if the

difference varies randomly, that function will tend to zero. Importantly, P(t, f ) does not

depend on the absolute phase of the signals with respect to the trial timing. PLV is thus

able to capture induced phase locking.

When studying the phase locking of ongoing rhythmic MEG signals, evoked responses

may present a spurious contribution to the phase information if their frequency content

overlaps with the band within which phase locking is assessed. Such effects can be re-

moved by thresholding the PLV estimate with respect to a surrogate data set, generated by

multiple random permutations of the N trials of φ2,n(t, f ) in Eq. (2.15). The permutation

preserves only such evoked phase locking in which the absolute phase remains constant,

and suppresses induced phase locking. The surrogate data thus provide a reference condi-

tion that represents phase locking in other than induced activity and determine a threshold

for the PLV to create a phase-locking statistic (PLS) of the data (Lachaux et al., 1999).

We employed this approach in P3 to account for the effect of the somatosensory evoked

responses when studying the induced phase locking at around 20 Hz between the primary

(SI) and secondary (SII) somatosensory cortices.

2.4 Source modelling

MEG measurements convey temporal and spatial information about neural activity. While

both aspects are present in the sensor level signals, the picture of the underlying activity

can be considerably refined by applying modelling techniques that enable localisation of

the sources of the activity. Spatial localisation often allows better separation of the tempo-

ral behaviour of simultaneously active sources. However, the source localisation problem

is a difficult one; the underlying source constellation cannot be uniquely determined from

MEG/EEG data, therefore constraining models have to be employed.

The goal in source modelling is to estimate the source constellation that generates signals
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that best match the measured MEG. This endeavour entails two distinct tasks: i) given

a source constellation, predicting what the measurements (observed magnetic or electric

fields) would be, and ii) given the measurements, estimating the source constellation such

that the prediction best matches the measurements. A solution to the former part, the for-

ward problem, is required to tackle the second part, the inverse problem. Both problems

involve their specific models, and the range of these models has lead to families of source

modelling algorithms. The following sections review the approaches and models applied

in this Thesis.

2.4.1 From neural currents to magnetic fields

Magnetic field B external to the brain, elicited by a known primary current distribution

Jp (see Sec. 2.1.2), can be computed uniquely. In principle, the accuracy of the result

depends only on the accuracy of the geometry and conductivity information about the

structures where the volume currents Jv flow. Since all currents contribute to the external

magnetic field, the computations must consider the total current density J. The following

mathematical treatment mostly follows that by Sarvas (1987), with additional details from

the reviews by Hämäläinen et al. (1993) and Baillet et al. (2001).

Field computations

Electric and magnetic fields are governed by Maxwell’s equations. Since the neural cur-

rents and fields vary slowly ( f . 1 kHz) in a small volume, the time-dependent terms can

be neglected and the quasistatic approximation (Plonsey, 1969; Hämäläinen et al., 1993)

can be applied such that

∇ ·E =
ρ

ε0
(2.17)

∇ ·B = 0 (2.18)

∇×E = −∂B
∂ t
≈ 0 (2.19)

∇×B = µoJ+ µ0ε0
∂E
∂ t
≈ µ0J (2.20)

where E is the electric field, µ0 and ε0 are the permeability and permittivity of free space,

respectively, and ρ is the charge density. Since it is assumed that ∇×E = 0, the electric

field can be expressed in terms of its scalar potential V as E =−∇V . Volume currents are
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driven by the electric field E according to Ohm’s law. Thus, the total current density

J = Jp +Jv = Jp +σE = Jp−σ∇V (2.21)

where σ is the conductivity of the medium. From Eq. (2.20) and the vector identity

∇ ·∇×A = 0, it follows that ∇ · J = 0. Thus, Eq. (2.21) can be written as ∇ · (σ∇V ) =
∇ ·Jp, which yields (assuming constant σ )

∆V =
1
σ

∇ ·Jp (2.22)

where ∆ denotes the Laplace operator. This equation connects the electric potential—and

thus the volume current distribution—to the primary current distribution. In general, the

solution can only be obtained numerically; however, analytic solutions exist for certain

symmetries, particularly for spherical symmetry. Once the total current is known, the

Biot–Savart law as a solution to Eq. (2.20) gives the magnetic field as

B(r) =
µ0

4π

∫
G

J(r′)× r− r′

‖r− r′‖3 dv′ (2.23)

where G is the volume in which the currents flow.

Current dipole

An elementary current is a useful concept when computing the external magnetic field. It

is evident from the previous equations that the field depends linearly on the magnitude of

the current. Thus, any primary current distribution can be decomposed in terms of these

elementary currents, and the associated magnetic field can be computed by superposition,

i.e., by summing the elementary contributions. A current dipole is such a concept. It is a

point-like concentration of current and comprises, in mathematical terms, a current source

and sink an infinitesimal distance apart. A current dipole is characterised by position

r′ and moment Q, which incorporates the orientation and strength of the current. The

primary current distribution by one current dipole is thus

Jp(r) = Qδ (r− r′) (2.24)

where δ (r) is the Dirac delta function. In the following derivations, to maintain general-

ity, an unspecific primary current distribution is considered first, followed by solutions to

a dipolar Jp.
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Inhomogeneous conductor

To tackle the volume current distribution and hence the fields due to it, the following

simplifying assumptions are useful: the conductivity outside the volume G is zero, and G

can be divided into N compartments Gi within which the conductivity is constant and has

the value σi. Now, substituting Eq. (2.21) into (2.23) yields

B(r) =
µ0

4π

∫
G

Jp(r′)×
r− r′

‖r− r′‖3 dv′︸ ︷︷ ︸
B0(r)

− µ0

4π

N

∑
i=1

σi

∫
Gi

∇V (r′)× r− r′

‖r− r′‖3 dv′ (2.25)

where B0(r) is the contribution of the primary currents only, and the second term is due

to the volume currents. With some vector algebra (for details, see Sarvas, 1987), the

Geselowitz formula (Geselowitz, 1970) is obtained:

B(r) = B0(r)−
µ0

4π

N

∑
i=1

(σi,in−σi,out)
∫

Si

V (r′)
r− r′

‖r− r′‖3 ×dSi (2.26)

where Si is the surface bounding the compartment Gi and the integration element dSi is

normal to that surface; the equation holds for any r, apart from locations on the surfaces

Si. This equation has two important properties regarding the volume current contribution:

i) only the conductivity differences between the compartments matter, and ii) the potential

V has to be computed only at the surfaces Si. The form of the second term also indicates

that the effect of the volume currents can be replaced by that of currents normal to the

boundary between different conductivities. These fictitious currents are called secondary

currents, and their magnitude is the product of the conductivity difference and the local

electric potential. For the potential on surface Si, a similar derivation (Sarvas, 1987) yields

V (r) =
1

σi,in +σi,out
[2σNV0(r)−

1
2π

N

∑
k=1

(σk,in−σk,out)
∫

Sk

V (r′)
r− r′

‖r− r′‖3 ·dSk] (2.27)

where V0 is the potential exclusively due to the primary current distribution Jp, viz.

V0(r) =
1

4πσN

∫
G

Jp(r′) ·
r− r′

‖r− r′‖3 dv′ (2.28)

which completes the solution to the problem of computing the external magnetic field

due to a primary current distribution in a bounded, piecewise homogeneous conductor.

To summarise, for a known primary current distribution Jp(r), applying equations (2.28),
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(2.27) and (2.26), in this order, gives the magnetic field B(r) outside such a conductor.

In the context of MEG, the volume G is taken to correspond to the head of the subject and

its subdivisions Gi are determined according to the tissue types with different conductiv-

ities. The geometric shapes are usually determined from structural magnetic resonance

images (MRI) of the subjects by segmenting the desired tissue types and tessellating the

corresponding surfaces. In these multi-compartment models, the innermost volume G1

is usually the brain, G2 cerebrospinal fluid in the cranial space, G3 the skull, and G4 the

scalp. This division is based on the known significant conductivity changes at the corre-

sponding boundaries; the conductivities are approximately σ1 = 0.3 S/m, σ2 = 1.8 S/m,

σ3 = 0.006 S/m, and σ4 = 0.44 S/m (compiled from Abascal et al., 2008; Akhtari et al.,

2002; Baumann et al., 1997; Latikka et al., 2001). Since G2 is usually very thin, it is

often merged with G1 in the conductor model. σ3 exhibits the largest uncertainty; the

skull bone comprises three layers of different conductivities and the relative thicknesses

of the layers vary. In addition, bone tissue is poorly visible in MRIs and thus its accurate

segmentation is difficult.

For modelling the magnetic fields due to primary currents in the neocortex, a multi-

compartment model does not present a considerable improvement over a single-compart-

ment model, or homogeneous model, which considers only the brain or cranial compart-

ment (Hämäläinen and Sarvas, 1989). As only the conductivity differences matter (see

Eqs. 2.26 and 2.27), there is no need to even specify the conductivity for such a model.

Spherical conductor

The previous equations simplify considerably when the conductor is spherically symmet-

ric, i.e., the surfaces Si are concentric spheres. Since the head and the cranial volume

are roughly spherical, this special case is a relevant approximation in MEG and EEG. In

particular, it can be shown that the radial component of the magnetic field

Br(r) =
µ0

4π

∫
G

Jp(r′)×
r− r′

‖r− r′‖3 · er dv′ (2.29)

where er is a unit vector oriented along the radius of the sphere. Most importantly, the

radial component does not receive any contribution from the volume currents. However,

the other field components are affected by the volume currents, and since no MEG device

measures strictly the radial component, this equation is not directly applicable in practice.

Yet, the result is important as it shows that a measurement of an approximately radial field
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component outside an approximately spherical conductor is not severely distorted by the

fields due to the volume currents.

If the primary current distribution is a current dipole (Eq. 2.24) located at rd, the total

magnetic field B(r) outside of a spherical conductor can be computed analytically as

shown, e.g., by Sarvas (1987):

B(r) =
µ0

4π

FQ× rd− (Q× rd · r)∇F
F2 (2.30)

where

F = a(ra+ r2− rd · r)

∇F = (r−1a2 +a−1a · r+2a+2r)r− (a+2r +a−1a · r)rd

a = r− rd

a = ‖a‖

r = ‖r‖

This relatively simple formula provides a computationally efficient way to obtain the field

due to any current dipole in the spherically symmetric case. Equations (2.29) and (2.30)

demonstrate that the conductivity profile of the sphere is irrelevant for MEG: a sphere

with layers of different conductivities can be considered equivalent to a homogeneous

sphere when computing the external magnetic field. The same is not true for electric

fields, and thus the conductivities and the corresponding radii are required in the EEG

forward computation.

Effects of source orientation and depth

In a spherical geometry, any current dipole can be expressed as the sum of its radial and

tangential components. If the dipole is strictly radial, i.e., Q = ‖Q‖er, it can be shown

(cf. Eq. 2.30) that B(r) vanishes. Thus, the radial component does not produce any mag-

netic field outside of a spherically symmetric conductor. Because of the aforementioned

approximate sphericity of the head and cranium, radial source currents in the brain in-

deed produce considerably weaker external magnetic fields than tangential sources of the

same strength and depth. In other words, MEG is most sensitive to neural currents flow-

ing tangential to the skull. As explained in Sec. 2.1, postsynaptic currents in the apical

dendrites of pyramidal neurons are the main source of MEG. Since these dendrites, and
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thus the currents, are oriented approximately perpendicularly to the local cortical surface,

tangential sources are mainly in the sulcal cortex. However, since the true conductivity

geometry is not exactly spherical, MEG is not completely blind to any orientation of the

current. A simulation study demonstrated that only 2-mm wide strips at the crests of the

gyri are characterised by poor resolvability, and that—in general—the depth of the source

has a greater effect on its resolvability than orientation (Hillebrand and Barnes, 2002).

In a perfect sphere, the invisibility of radial primary currents translates to the invisibility

of any current dipole at the centre of a sphere where all orientations can be considered

radial. Therefore, it is questionable whether the deepest brain structures elicit sufficiently

large magnetic signals for source localisation. In Study P2, we showed that the electric

activity in the auditory brainstem generates magnetic responses strong enough for local-

isation of the sources. Again, the non-sphericity of the cranium, particularly that of the

inferior part, was important for the detectability of these responses. In this study, we em-

ployed a three-compartment conductor model comprising brain, skull, and scalp volumes.

With respect to a spherical model, the source locations differed by as much as 25 mm and

their strengths varied substantially. The other studies in this Thesis involved only cortical

sources and thus either a single-compartment model (P1, P5) or a sphere model (P1, P3,

P4) was considered adequate.

2.4.2 From magnetic fields to neural currents

Estimating the primary current distribution from the magnetic (or electric) measurements

outside of the head is an ill-posed problem; the solution is not unique and small changes in

the data may lead to large differences in the estimates. To provide a solution, the primary

current distribution has to be constrained to a model that is then fitted to the data using the

forward solution discussed in the previous Section. Thus, inverse modelling involves at

least two kinds of models: a conductor model, more generally a forward model, to solve

the forward problem, and a source model to parametrise and constrain the primary current

distribution Jp(r). This Section deals with source models and the algorithms to estimate

them from a MEG data set.

Signal space (see Sec. 2.2.3) is also a useful concept in source modelling. In the following

sections, the signal vector b(t) represents the collection of signal values b1 . . .bN at all N

MEG sensors at time t.
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Bayesian approach

The MEG inverse problem is a good example of a problem whose solution requires some

prior assumptions. Earlier, such assumptions were not considered in the probabilistic

sense and they only implicitly manifested in the specific inverse modelling algorithm.

However, in practice, much of the prior information—in addition to the data themselves—

bears some uncertainty which cannot necessarily be expressed as constant variables but

rather calls for probability distributions. Moreover, these uncertainties should be prop-

agated to the results as comprehensively as possible so that the reliability of the results

can be quantified. Bayesian inference provides the framework for this kind of analysis.

There, prior information is incorporated in a principled manner as probability distribu-

tions, and also the estimates are given as probability densities. The central concept is

Bayes’ formula

p(S|D) =
p(D|S)p(S)

p(D)
(2.31)

where the conditional probability p(S|D), the posterior probability, means the probability

of the solution S given the data D. Similarly, p(D|S) expresses the probability of the data

D given the solution S. The marginal probability p(S) is the prior information about the

solution S, and p(D) is a normalisation constant. A solution is then extracted by applying

a point estimator on the posterior probability p(S|D). In general terms, Bayes’ formula

states how one would optimally update the knowledge on S after observing D.

The MEG inverse problem can be cast in the Bayesian framework. One can ask what is

the probability of a certain primary current distribution given a set of MEG measurements

and the prior information. Bayes’ formula could be written as

p(q|b) =
p(b|q)p(q)

p(b)
(2.32)

where q is a primary current distribution, and b denotes the MEG measurements. The

term p(b|q) is the likelihood of the measurements given the source constellation q and

it thus embodies the forward solution; if q gives rise to a set of measurements similar to

b, the likelihood is high. The p(q) contains the prior information on the sources and it

could be derived from physiology, anatomy, and other imaging modalities such as fMRI

(e.g. Liu et al., 1998).



2.4 Source modelling 31

Dipole models

The current dipole, illustrated in Sec. 2.1.2 and defined by Eq. (2.24), serves well as a

simple model of the primary current distribution provided that only one small patch of

neural tissue is active at a time. A current dipole fitted to best explain the measured

data is called an equivalent current dipole, or ECD. Since the magnetic field depends

non-linearly on the dipole position, the best fit has to be obtained using non-linear min-

imisation algorithms that search for a minimum of a cost function by adjusting the dipole

position r and moment Q. The cost function is usually the sum of the squared errors be-

tween the measured b and estimated b̂ (via the forward solution) magnetic signal vectors,

viz. e = ‖b− b̂‖2. The validity of the dipole model can be assessed by considering the

goodness-of-fit which is usually defined as g = (1− e/‖b‖2) · 100%. However, a high

goodness-of-fit does not necessarily imply that a dipole is the correct model for the un-

derlying primary current distribution.

To relax the assumption of only a single active source at a time, the model can comprise

multiple dipoles, which are fitted either simultaneously or individually to spatially filtered

versions of the data. Such multidipole models are usually obtained heuristically by iso-

lating the contribution of each neural source area, primarily by picking time points where

the magnetic field map resembles that of a single dipole, and secondarily by selecting a

subset of MEG channels and fitting a single dipole to the signals from each of these areas.

Such selection of suitable dipole fitting conditions involves subjective judgement, can be

labour-intensive when modelling complex source constellations, and is often cumbersome

to document precisely. Subspace scanning methods such as multiple signal classification

(MUSIC) (Schmidt, 1986; Mosher et al., 1992) and its variant recursively applied and

projected MUSIC, or RAP-MUSIC (Mosher et al., 1999), seek for a multi-dipole repre-

sentation of the data. In Study P1, we introduced a Bayesian algorithm that automatically

obtains a dynamical multi-dipole model from a MEG data set.

In traditional spatio–temporal multi-dipole models (Scherg and von Cramon, 1985), the

spatial parameters (position and orientation) are usually considered fixed whereas the

time courses, i.e., the magnitudes of the dipoles as a function of time, are then computed

through a linear inverse, since the magnetic field depends linearly on the strength of

the dipoles; see Sec. 2.4.1. The signal vectors corresponding to unit-strength dipoles

d = 1 . . .D, at locations rd with orientations Qd , can be obtained by Eq. (2.1) for all N

channels. To obtain B(r), i.e., to solve the forward problem, either Eq. (2.30) or (2.26)

in a spherical or piecewise homogeneous geometry, respectively, can be used. The signal
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vectors of all dipoles b1...D can then be included as columns in a gain matrix

G = (b1 . . .bD). (2.33)

The model for the measured data y(t) can now be written as

y(t) = Gq(t)+ e(t) (2.34)

and finding the best-fitting time courses q̂(t) corresponds to minimising e. The problem

is similar to that expressed in Eq. (2.4), and here also the least squares solution is obtained

as

q̂(t) = G+y(t). (2.35)

Since orthogonal dipoles at the same location are characterised by orthogonal signal vec-

tors, and because a dipole with any orientation at that location can be expressed as their

linear combination, rotating sources can be embodied in the above model.

The invertibility of G determines MEG’s spatial resolving power; if two non-orthogonal

dipoles are too close to each other, the condition number of G is high and the estimated

time courses q̂(t) may be meaningless, showing spurious interaction of the dipoles. We

encountered such a situation in P2 for the multiple dipoles confined to the brainstem; it

was not possible to obtain non-interacting time courses of those dipoles. By contrast,

in P3 and P4, which concentrated on cortical activity at sufficiently distant regions, the

linear inverse yielded plausible time courses.

The above methods seek to represent the data with a small number of dipoles, or, in more

general terms, with a small set of parameters. Hence, these algorithms are often referred

to as “parametric” as opposed to “imaging” inverse modelling methods which estimate a

large set of parameters to provide an image of brain activity (Baillet et al., 2001). The

methods described in the following Section belong to this latter class.

Minimum norm estimates

Instead of modelling the data with a small set of focal sources, one could estimate a

spatial map of the activity. For such a mapping, one would distribute—without spatial

fitting—a large number of dipoles throughout the brain and then obtain their strengths or

time courses using the linear inversion technique described above (Eqs. 2.34 and 2.35).

The source space, i.e., the locations of these dipoles, can either span the cranial volume
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uniformly or be constrained to the cortex (Dale and Sereno, 1993) where the bulk of MEG

activity originates.

However, this approach entails many more unknown dipole strengths than there are mea-

surements, and thus G is not invertible. In addition, the nearby sources make G ill-

conditioned, as explained before. Yet, a unique solution can be obtained by imposing

additional constraints on the dipole strengths. A common constraint is to require that

while the estimate explains the measurements, the sum (in the sense of some norm) of the

dipole strengths must be as small as possible. This minimisation problem calls for two

terms in the cost function; a data term that expresses the deviation of the estimate from

the measurements, and a model term that describes the correspondence of the estimate to

the model specified a priori. Adding the latter term is equivalent to applying Tikhonov

regularisation. Now, the minimum p-norm version of Eq. (2.35) can be written

q̂ = arg min
q
{‖Wd(Gq−y)‖p︸ ︷︷ ︸

data term

+ a ‖Wmq‖p︸ ︷︷ ︸
model term

} (2.36)

which includes the weighting matrices Wd and Wm for the data and model terms, respec-

tively; a is the regularisation parameter that controls how faithfully the estimate has to

follow the model. Different choices of the weighting matrices lead to different variants

of the estimate; see Baillet et al. (2001) for a review. If both Wd and Wm are identity

matrices and p = 2, this equation yields the traditional unweighted minimum norm esti-

mate (MNE) (Hämäläinen and Ilmoniemi, 1984,1994). This approach tends to attribute

too much of the current to the superficial dipoles as they have the strongest coupling to

the sensors. To compensate for this bias, the superficial sources can be penalised by an

appropriate choice of Wm, e.g., Wm ∝ diag(g−γ

1 . . .g−γ

D ) where gp’s are the norms of the

columns of G and γ is a tunable parameter. Such depth bias removal leads to depth-

weighted or lead-field normalised MNE.

A modern variant of this method was applied in Study P5. To describe that method prop-

erly, the MNE approach should be re-formulated in Bayesian terms. The assumptions—in

addition to those underlying the source space and its forward solution embodied in the G
matrix—are that i) the source currents q exhibit a Gaussian amplitude distribution, ii)

their covariance Cq is known, iii) the measurement noise n also has a Gaussian amplitude

distribution, and iv) the noise covariance Cn is known. The maximum a posteriori (MAP)

estimate

q̂map = arg max
q

p(q|y) (2.37)
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can then be obtained (for derivation, see e.g. Baillet and Garnero, 1997) as

q̂map = CqGT(GCqGT +a2Cn)−1y≡My (2.38)

where M is the time-independent L2-norm inverse operator. The noise covariance Cn =
E{nnT} is typically estimated from unaveraged prestimulus baselines, from a longer

block of rest data, or from a measurement without a subject. The choice depends on

the experiment; for evoked responses the baselines provide the best approximation of the

noise statistics, whereas for analysis of spontaneous activity the noise covariance has to

be determined from data recorded in the absence of the subject since the signals of interest

would otherwise be treated as noise. The full source covariance Cq is practically always

unknown; however, any prior information, e.g., from fMRI, about the existence of certain

sources could be incorporated into Cq.

The MNE given by Eq. (2.38) can be converted to a dimensionless z-score by dividing

the activity estimate at each source point by the estimate of noise-induced spurious ac-

tivity (Dale et al., 2000). This noise normalisation readily allows combining data across

measurement modalities, e.g., EEG and MEG. As the statistics can be computed for every

time sample and visualised as a map, the method is called dynamic statistical parametric

mapping (dSPM). We applied this method in P5 to characterise the active cortical regions

to our frequency-tagged visual stimulus.

The L1 norm, i.e., letting p = 1 in Eq. (2.36), can also be applied in MEG inverse mod-

elling. The resulting nonlinear minimum current estimate (MCE) (Matsuura and Okabe,

1995; Uutela et al., 1999) yields sparse, multi-dipole-like source reconstructions. How-

ever, the source time courses directly obtained from MCE often exhibit spikiness due to

the nonlinearity of the estimate. Hybrid techniques have been proposed to overcome this

problem (Huang et al., 2006; Ou et al., 2009). In Study P1, we compared the source mod-

els obtained by MCE in a previous study (Stenbacka et al., 2002) with those reconstructed

by the new Bayesian filtering method presented in our study.

2.4.3 Post-processing and visualisation

The source model is usually linked to the anatomy of the subject for several purposes.

First, to combine data from different subjects and imaging modalities, the results should

be expressed in a space that is common or transformable between the subjects and mea-
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surements. In MEG, the sensor space may not be optimal for pooling data across subjects

as the position of the sensor array with respect to the head typically varies across mea-

surement sessions and subjects. Second, to maximally gain from the source models, the

source estimates are typically superimposed on structural images, most often MRIs. Both

tasks require co-registration of MEG and MRI, which is accomplished in three stages;

prior to the MEG measurement, anatomical locations, identifiable also on MRIs, are digi-

tised along with the locations of three or more marker coils attached on the scalp of the

subject. In the beginning of the MEG recording, these coils are briefly driven by sinu-

soidal currents at distinct frequencies (180–200 Hz), and the emitted magnetic fields are

collected for the localisation of the coils in the MEG coordinate system. By combining

the information from the digitisation, one can establish a link between the head and the

MEG coordinate systems (Hämäläinen et al., 1993). The method has traditionally relied

on the immobility of the subject’s head in the MEG helmet. Recently, a system for contin-

uous tracking and compensation of head movements has been introduced (Uutela et al.,

2001; Taulu and Kajola, 2005), and it has enabled measurements and accurate source

analysis of otherwise challenging subject populations, such as children. However, only

experienced healthy adult subjects participated in the studies in this Thesis, thus head

movement compensation was deemed unnecessary.

Intersubject co-registration—mapping one person’s brain to another’s—poses more dif-

ficult problems. The available methods arrive at a common coordinate frame either by

using gross anatomical features, such as the size of the brain, to obtain a simple and

coarse coordinate transformation, or by exploiting the sulcal and gyral structure of the

cortex to determine a finer-grain morphing between the brains. Talairach transformation

(Talairach and Tournoux, 1988) is an example of the former approach, and it was em-

ployed in P2 to visualise the ECD locations in all subjects on an average brain (Collins

et al., 1994). The latter approach usually entails a transformation field that maps each

voxel or cortical surface element to the corresponding element on the target brain. In

P4, we utilised such a transformation (Schormann et al., 1996; Woods et al., 1998) for

the whole brain volume to map the ECDs to an atlas brain (Roland and Zilles, 1996).

In P5, the mapping was obtained only for the cortical surface as the MEG sources were

constrained to the cortex (Fischl et al., 1999).
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3 Objectives

The goal of this Thesis was to develop and test methods that promise to expand MEG to

new application areas. Specifically, the Thesis aimed at

• devising an automatic, principled method for determining neural generators un-

derlying measured MEG data (Study P1),

• exploring whether deep brain areas are properly accessible by MEG (Study P2),

• investigating transient phase locking of cortical regions in response to a tactile

stimulus (Study P3),

• exploring the use of stochastic resonance in a cognitive stimulus to characterise

the relationship of brain and behavioural responses (Study P4), and

• characterising brain states related to subjective percepts that alternate during view-

ing of an ambiguous visual scene (Study P5).
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4 Summary of studies

The studies comprising this Thesis are briefly reviewed here. First, the basic methodology

of is summarised, and then the main motivations and results of all studies are concisely

explained.

4.1 Methods

4.1.1 Subjects

The subjects in all studies were healthy adult volunteers who participated after informed

consent. All recordings had prior approval by the local ethics committee. The number

of subjects per study was 7–10, except in P1 where the somatosensory evoked fields

for comparing the source modelling algorithms were recorded only in one subject; the

algorithm of P1 was tested mostly with simulated data so that the true underlying source

constellation was known.

4.1.2 Recordings

All data were collected in the MEG laboratory of the Brain Research Unit, Low Temper-

ature Laboratory, Helsinki University of Technology, using the 306-channel MEG device

(Elekta Neuromag Oy, Helsinki, Finland) with a built-in 64-channel EEG system. In that

system, the helmet-shaped sensor array covers the whole scalp and comprises 102 triple-

sensor elements, each housing a magnetometer and two orthogonal planar gradiometers;

see Sec. 2.2. The white noise level is less than 3 fT/
√

Hz and 3 fT/cm/
√

Hz for the

magnetometers and gradiometers, respectively. The measurements were conducted in a

two-layer magnetically shielded room (ETS Lindgren Oy, Eura, Finland) supported by

an active compensation system, with the compensation coils external to the room and the

sensing induction coil magnetometers embedded in the walls of the room. The MEG sig-

nals were filtered to 0.1–200 Hz (to 0.03–200 Hz in P3) and sampled at 600 Hz except in

P2 where the brainstem responses required a considerably wider pass-band of 0.1–1200

Hz and sampling at 3 kHz.

The stimulus generation was controlled by a personal computer running the Presenta-
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tion software (Neurobehavioral Systems, Inc., Albany, CA, USA). Visual stimuli (P4 and

P5) were presented using a VistaPro triple-DLP projector (Christie Digital Systems, Inc.,

Cypress, CA, USA) outside of the shielded room. The image was projected through an

opening in the shielded room wall to a backprojection screen the subject viewed at a dis-

tance of about 1 m. Auditory stimuli (P2) were produced by a piezoelectric crystal outside

of the shielded room and conveyed to the subject’s ear via a plastic tube. Somatosensory

stimuli (P1 and P3) were brief (0.1 ms) electric pulses delivered to the median nerve

at the wrist. The output of the constant-current stimulator (Schwindt Medizintechnik

GmbH, Germany) was adjusted to be slightly above the motor threshold, corresponding

to a current of 5–10 mA.

The behavioural responses were collected using a silent optical switch (P5) in which the

subject’s finger interrupted a modulated light beam, or by a microphone recording the

speech of the subject (P4). Eye tracking (P5) was performed using an infrared video

camera and the associated video capturing and analysis software (SensoMotoric Instru-

ments GmbH, Teltow, Germany). The gaze position was calibrated using 9 points at the

edges of the stimulus area.

To discard data contaminated by eye blinks or gross eye movements, the vertical electro-

oculogram (EOG) was collected along with the MEG data; trials with the EOG variation

exceeding 200 µV were rejected. Also, trials within which any of the MEG channels

showed excessive variation (typically larger than 3 pT/cm in gradiometer or 5 pT in mag-

netometer signals) were discarded, as such large signals are most likely artefactual.

4.1.3 MRIs and co-registration

Structural MRIs were obtained with a 1.5-T MAGNETOM Vision scanner (Siemens

GmbH, Erlangen, Germany) at Helsinki University Central Hospital and a 3-T Signa

Excite scanner (General Electric, Inc., Milwaukee, WI, USA) at the Advanced Magnetic

Imaging Centre of Helsinki University of Technology. The 3D MPRAGE (magnetisation

prepared rapid gradient echo) and SPGR (spoiled gradient recalled) sequences were used

to acquire the images. The approximately 1-mm3 cubical voxels covered the whole head

to enable accurate co-registration. The head coordinate system was defined on the MRIs

primarily using three landmarks (pre-auricular points and nasion), but the registration was

fine-tuned using digitised points (typically 40–60) across the scalp and around the nose.

In the MEG system, the transformation to the head coordinate system was obtained using
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four marker coils attached to the scalp of the subject; two on the forehead and two behind

the earlobes. The locations of these coils and the extra points were digitised with respect

to the landmarks prior to the MEG measurement using a 3D digitiser (Polhemus Naviga-

tion Sciences, Inc., Colchester, VT, USA). Tests with a phantom have indicated that the

overall localisation accuracy of ideal dipolar sources is typically 2–3 mm, largely due to

co-registration errors (author’s unpublished data).

For obtaining the origin of a spherical conductor model and for superimposing the ECD

locations on the anatomy, the co-registered 3D MRIs were used as such in P1 and P3. For

P2, which required a multi-compartment conductor model, the MRIs were segmented for

the cranial, skull and scalp compartments by the FreeSurfer software (Fischl et al., 2004),

which also established a Talairach transformation to the MNI305 average brain (Collins

et al., 1994). In P4, the individual MRIs underwent a combination of an affine (Woods

et al., 1998) and an elastic (Schormann et al., 1996) transformation to map the sulcal/gyral

structure of each individual subject to an atlas brain, thus allowing visualisation of the

ECDs of all subjects in a common space. The cortical mantle was segmented in P5 by

FreeSurfer (Fischl et al., 2001) for a cortically-constrained source model, for visualisation

and for morphing the source models to a common brain (Fischl et al., 1999).

4.1.4 Signal processing

Residual magnetic interference was attenuated by signal-space projection (SSP) (Uusitalo

and Ilmoniemi, 1997; Parkkonen et al., 1999) in P2, P3 and P4, and by signal-space

separation (SSS) in P1 and P5 (Taulu and Kajola, 2005). Time-domain averaging of brain

responses to individual stimuli was utilised in P1–P4 to obtain auditory, somatosensory

and visual evoked fields. The number of accepted trials was typically about 80–120, but

the weak brainstem responses (P2) required averaging of about 16,000 trials per subject.

The oscillatory components in the recorded brain signals were isolated by 7-cycle Morlet

wavelets in P3 and P5, and also by the GLM-based method (see Sec. 2.3) in P5.

4.1.5 Source modelling

The traditional multidipole approach for modelling the neural sources was applied in P1

(for comparison), P2, P3 and P4. Single dipoles were fitted to the data at time points
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where dipolar field patterns were present. If multiple such patterns were present simulta-

neously, the fit was restricted to one at a time by selecting a group of at least 20 channels

around the local signal maximum at the planar gradiometers. The fits were validated by

requiring that the goodness-of-fit exceeded 70–80% and that the dipole location corre-

sponded to the field pattern. After these spatial fits, except in P2, the source time courses

were computed using all channels in the linear inversion (see Sec. 2.4.2), keeping the

dipole locations and orientations fixed.

Instead of ECDs, dynamic statistical parametric mapping (dSPM) was employed in P5.

The data for estimating the noise covariance were recorded with the subject present but in

the absence of the dynamical stimulus, thus ensuring that the spontaneous brain rhythms

were treated as noise in this case.

4.2 Dynamical MEG source modelling (P1)

As explained in Sec. 2.4.2, inferring the neural sources underlying the measured MEG

data requires explicit models of the activity. Most of the existing source modelling meth-

ods do not take advantage of the temporal continuity of the activations, but either model

each time point separately or use only statistics obtained across the whole analysis period.

As a corollary, those methods implicitly assume that the reconstructed sources exist either

throughout the analysis period or only at a single time point; the sources may show only

small amplitudes at time points when they are considered “silent” but they nevertheless

exist in the model. To address these shortcomings, in this study we proposed a concep-

tually different, dynamical model in which the sources can emerge and disappear in the

course of time. Then, questions such as how many distinct local sources exist at a given

time point can be readily answered. In addition, we exploited the continuity of the brain

responses by using the statistics of the source configuration at the previous time point as

the prior information for the next time point. The problem was solved in the Bayesian

framework, which also allows incorporating other prior information, such as data from

other imaging modalities.

The algorithm is a sequential Monte-Carlo filtering process which tries to find the best-

fitting multidipole model for each time point. A large number of candidate multidipole

models are expressed as particles (for a review of particle filtering, see Arulampalam

et al., 2002). Each particle holds the parameters r1...D and Q1...D of one complete D-dipole

model (see Sec. 2.4.2), where D can differ across particles. Each particle is assigned a
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Figure 4.1 A source reconstruction by the Bayesian tracking algorithm of P1. Three
simulated current dipoles (blue dashed lines), two of which were fully correlated in time,
and their reconstructed dipole strengths (red solid lines). The model selection, i.e., the
probabilities of different numbers of sources (top panel). An unpublished result of the
authors of P1.

weight proportional to the likelihood of the corresponding model given the measured

data. Thus, the particle set approximates the instantaneous probability distribution of the

source space.

The data are sequentially analysed by employing the posterior distribution obtained at

time t as the prior distribution at t +1 via the Chapman–Kolmogorov equation and taking

into account the likelihood, i.e., the match with the measurements, using Bayes’ formula

(Eq. 2.31). A new set of particles is extracted according to the likelihoods and this set

is subjected to an evolution process where random perturbations to the dipole parameters

likely yield a subset of particles which are even better fit to the data at this time point. The

process is then repeated for each time point within the analysis window, always using the
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obtained posterior distribution as the prior distribution for the next time step. Since the

probability distributions as such cannot be used as source models, a probability hypothesis

density (PHD) (Mahler, 2003) was computed to retrieve the most likely source constel-

lation for each time point. Since the particles representing the “best” source models are

generally different for each time point, clustering by location, orientation and time of oc-

curence was a necessary post-processing step to group together the dipoles that reflect a

certain neural source; otherwise it would not be possible to determine the time course of

each source. Despite the clustering, the sources may still move, emerge and disappear

during the analysis period. Figure 4.1 illustrates the result from a simple three-dipole

simulation.

In P1, the algorithm was tested with Monte-Carlo simulations, with simulated data mim-

icking hypothetical responses to a complex visual stimulus (Stenbacka et al., 2002), and

finally with real data from a somatosensory experiment. In comparison with traditional

multidipole modelling and MCE, this new Bayesian filtering algorithm displayed simi-

lar or slightly better performance in terms of the accuracy of the source reconstruction,

achieved fully automatically, without subjective judgement on the existence of a source

or expert knowledge as to the brain areas active in a given task.

4.3 Magnetic auditory brainstem responses (P2)

Deep brain areas, such as the thalamus and brainstem, are traditionally considered un-

reachable by MEG due to their depth and the associated reduction in signal amplitude, but

also due to the smaller neural assemblies and their less optimal spatial arrangement com-

pared to the pyramidal cells in the cortex. Reports on MEG measurements of such deep

sources exist (e.g. Erné et al., 1987; Iramina and Ueno, 1995; Tesche, 1996; Lütkenhöner

et al., 2000); however, in these studies source localisation was either severely hampered

by the low signal-to-noise ratio or the location was assumed based on the anatomy and

then used as a spatial filter. Here, we showed that magnetic auditory brainstem responses

(mABRs) can be recorded in such a way that reliable, data-driven source modelling is

possible (Fig. 4.2). A large array of low-noise magnetometers and an interference sup-

pression system that did not attenuate signals from deep sources were instrumental in

obtaining data with an adequate SNR. Equally important was a robust neural response

whose frequency content was separable from that of the cortical activity, thus allowing

suppression of strong cortical signals by simple filtering.
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Figure 4.2 Auditory brainstem responses. A Grand averages of magnetic and elec-
tric responses across all subjects (N = 7; latencies adjusted so that individual wave-V
responses overlapped) and all magnetometer channels (root-mean-squared) of the data
filtered to 180–1000 Hz. The roman numerals denote the ABR deflections. Intrinsic MEG
and EEG system noise levels, taking into account the number of trials averaged, are in-
dicated by the dashed horizontal lines. B ECD source locations in all subjects. Dipole
locations were Talairach-transformed, colour-coded for latency, and superimposed on the
MNI305 average brain. Adapted from P2.

The auditory brainstem response (ABR) (Jewett et al., 1970) comprises five to seven brief

responses, “waves”, within 10 ms after a presentation of a click tone. The first two waves

originate in the auditory nerve whereas waves III–V are generated within the brainstem

(Møller, 2007). Although wave V typically has the largest amplitude of all ABR waves, its

laterality has been disputed. Lesion (Markand et al., 1989) and PET (Giraud et al., 2000)
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studies have suggested an ipsilateral origin of wave V whereas, e.g., subdural record-

ings from the basal temporal surface (Zappia et al., 1996) indicated a contralateral origin.

Our study strongly suggested contralateral generation of wave V. Since the electric au-

ditory brainstem responses and particularly wave V are utilised clinically for diagnosing

pathologies in the early auditory pathway, this confirmation likely increases the value of

such use.

We employed a realistically-shaped three-compartment boundary element model in the

forward modelling. Since many of the sources were in the vicinity of tissue-type bound-

aries, a more accurate model taking into account the different conductivity of the cere-

brospinal fluid in the ventricles, for example, might have improved the localisation results

further. Anisotropic conduction could also play a more significant role here than in stud-

ies of cortical activity, and thus a finite element model of the volume conductor (Wolters

et al., 2006) would be appropriate if accurate anatomical data were available for such a

model.

4.4 Phase locking between primary and secondary somato-
sensory cortices (P3)

Rhythmic brain activity has been postulated to convey information in its phase (see e.g.

Engel et al., 2001; Varela et al., 2001). The central idea is that the impact or purpose of a

neural event could differ depending on its timing with respect to the phase of a large-scale

oscillation.

Both the primary (SI) and secondary (SII) somatosensory cortices show evoked responses

to somatosensory stimuli (Hari and Forss, 1999). Thus, SI and SII share information

about the stimulus, either via a direct connection between the cortices or indirectly via,

e.g., thalamus. In this study, we tested whether such information transfer could happen,

at least partially, as transient phase locking. Specifically, we examined the oscillatory

components for a consistent phase difference between the signals from the SI and SII

cortices in response to sensory input, in this case a brief electric stimulus to the median

nerve at the wrist. The instantaneous phase locking was quantified by computing the

PLV; see Sec. 2.3.2. Such phase locking was found in most subjects at around 20 Hz,

80–90 ms after the stimulus, between the contralateral SI and ipsilateral SII cortices.

Figure 4.3 shows the PLV of one subject. Our data suggested similar locking between
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Figure 4.3 Phase locking between SI and SII cortices in one subject. A Time–frequency
representations of the PLVs computed for all planar gradiometer channels, using data
from the channel above the contralateral SI as the reference signal. B A topographic rep-
resentation of PLV distribution at 18–22 Hz, averaged across 50–150 ms post-stimulus.
Reprinted with permission from P3.

the contralateral SI and SII cortices as well, but we could not completely exclude the

possibility of cross-talk at the sensor level. Statistical testing was instrumental in this

study as merely the evoked responses could give rise to the observed phase-locking; using

the PLS method with surrogate data (see Sec. 2.3.2) to establish the level of stimulus-

locked and spurious phase locking, we showed that most of the observed phase locking is

stimulus-induced, i.e., not due to the responses tightly locked to the stimulus.

4.5 Stochastic resonance in visual stimulation (P4)

Stochastic resonance (SR) is a phenomenon in which adding an appropriate amount of

uncorrelated noise to a subthreshold stimulus allows its detection. This, perhaps coun-

terintuitive, effect can be explained as a combination of two steps: first, the added noise

increases the amplitude of the subthreshold signal so that it occasionally exceeds the
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threshold, leading to a stochastic train of suprathreshold impulses. Second, this impulse

train is low-pass filtered, which yields a moving-average amplitude that reflects the am-

plitude of the original, noiseless stimulus. In other words, temporal resolution is traded

for better amplitude resolution. SR was first proposed for modelling physical systems but

was later discovered in neural systems (Longtin et al., 1991; Anderson et al., 2000); for a

review, see Moss et al. (2004).

We devised an experiment in which a visual stimulus exhibited SR in such a way that

the subthreshold part formed a written word. The amplitude of added dynamic noise

was then varied around the resonance, defined to give the maximum contrast between

the word and the background at the limit of infinite exposure time. Our experimental

design differed from previous work utilising varying amounts of superimposed noise (e.g.

Tarkiainen et al., 1999) by featuring this resonance, which was reflected in both the source

amplitudes and behavioural results.

The evoked responses to the word onset displayed different sensitivities to the amount of

added noise: the early visual responses in the occipital cortex depended most strongly

on the noise level whereas the late, N400-type responses in the temporo–parietal cortex,

showed a broader peak around the resonance. Behavioural data on the word detection rate

correlated best with these late responses, supporting their relation to the processing of the

semantic content of the stimulus words (Kutas and Hillyard, 1980; Helenius et al., 1998).

4.6 Frequency-tagging approach to study bistable visual per-
ception (P5)

Ambiguous figures that allow for two interpretations often trigger spontaneous switching

between the percepts. This bistability of perception is stochastic although it can be bi-

ased by manipulating the stimulus (Leopold et al., 2002; Sterzer and Rees, 2008). The

perceptual alternations may manifest the reconciliation of the sensory input and the prior

information on the structure of visual scenes, and in the case of these figures, the two

outcomes are equally likely. If one considers the perceptual apparatus as a Bayesian in-

ference machine (Lee and Mumford, 2003), an ambiguous scene corresponds to a bimodal

posterior distribution. Then, even subtle variations may perturb the system to switch from

one state to the other. These perturbations are likely intrinsic to the brain as the switches

occur without any changes in the physical stimulus or in the sensory organs.
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Figure 4.4 Investigating bistable visual perception with a frequency-tagged stimulus.
A Dynamic noise at two update frequencies superimposed on Rubin’s face–vase figure.
B A spectrum of an occipital MEG sensor showing the tag-frequency peaks. C A time–
frequency representation of the power at these frequencies around the behaviourally-
reported perceptual switch. Reprinted with permission from P5.

We wanted to investigate how the brain activity differs during the two percepts of Rubin’s

face–vase figure. Evoked responses could not have illuminated this question, but they—

both hemodynamic and electrophysiological—have been used to study the perceptual

switch itself (Kleinschmidt et al., 1998; Pitts et al., 2008). To monitor the maintenance of

and the difference between the brain states related to perceptual states, we superimposed

regional marker signals, tags, on the stimulus image. The vase area was tagged with a

subtle noise pattern oscillating at 12 Hz while the rest of the image was tagged with a

similar pattern oscillating at 15 Hz; see Fig. 4.4. The noise was not perceptually salient

and the spontaneous switching of the percepts was preserved. Recording the 12- and 15-

Hz signals from the brain allowed us to determine at least some of the brain areas where

the stimulus was processed and to follow the relative strengths of these processes as a

function of the perceptual state, which the subjects reported behaviourally.

In all subjects, the early visual areas displayed tag-related activity; primary visual cortex

V1 showed the largest contribution. In some subjects, lateral occipital areas also elicited
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12/15-Hz signals when the subject was viewing the tagged stimulus. Owing to their rela-

tively high temporal frequency, the tags did not penetrate much further in the hierarchy of

visual brain areas. However, importantly, the balance of these signals from V1/V2 varied

according to the subjective percept, indicating that the activity in V1/V2 covaries with the

perceptual state, despite the invariant feedforward input to V1. These modulations likely

result from the feedback activity from higher-order visual cortices, and they may serve

in figure–ground segregation by accentuating the figure part (Lamme, 1995) and also—in

more general terms—in the selection of the relevant parts of the visual scene for spatial

attention (Saalmann et al., 2007).

The source of the top-down modulations remains elusive. The modulations may be as-

sociated with the selection of goal-directed behaviours (Leopold and Logothetis, 1999;

Lumer et al., 1998; Windmann et al., 2006) or simply be a manifestation of brain’s mech-

anism to avoid locking to a single interpretation in an ambiguous situation (Leopold and

Logothetis, 1999).



5 Discussion

The primary aim of this Thesis was to expand the applicability of magnetoencephalog-

raphy in studies of human brain function. Compared with other available non-invasive

methods, MEG presents a unique combination of excellent temporal and reasonable spa-

tial resolution. Indeed, the temporal and spatial dimensions should be considered to-

gether. The ability to track a specific neural population in time often entails spatial lo-

calisation of that population and isolation of its contribution to the measurements. On

the other hand, one can search for activations in space that exhibit certain temporal char-

acteristics, such as oscillations at specific frequencies. In addition, spatial localisation

can benefit from the temporal continuity of the neural activations. Taken together, the

temporal aspect that MEG provides with respect to, e.g., fMRI offers more than just one

additional dimension.

5.1 Benefits of spatio-temporal approaches

To fully exploit the joint spatio-temporal information in the MEG data, the analysis meth-

ods should take both sides into account. The Bayesian filtering method presented in

Study P1 allows that explicitly; the algorithm includes an a priori evolution model that

can capture the typical temporal behaviour of a neural source and takes advantage of the

predictions of that model when searching for the spatial parameters of the sources. Sim-

ilarly, the obtained source reconstruction is not spatially static as in most other source

modelling methods, but also the spatial arrangement can evolve in time. With our rela-

tively uninformed evolution model, which only exploited the temporal continuity of the

neural activations, the method presented in P1 attained similar reconstruction accuracy as

obtained by multi-dipole modelling and MCE performed by scientists with varying ex-

pertise in source modelling (Stenbacka et al., 2002). Since the method presented here is

fully automatic, the demonstrated performance can be considered better than that of the

human-assisted methods. In addition, since the applied priors were rather uninformative,

better results are to be expected when more physiological and anatomical information is

included.

A precursor of the Bayesian filtering method in P1 has been compared by Pascarella

et al. (2007) with other automatic source modelling methods using simulated data with
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dipolar sources : RAP-MUSIC (Mosher et al., 1999) performed in a comparable manner

with both correlated and uncorrelated stationary sources, but it was inferior if the true

sources moved, causing RAP-MUSIC to reconstruct a number of sources with different

time courses. Bayesian filtering captured the moving source as one since the source model

is dynamical, that is, the filtering algorithm also updates the spatial parameters of the

model at every time step. On the other hand, RAP-MUSIC was considerably faster to

compute.

The combined spatial and temporal information of MEG was also directly utilised in

Studies P3 and P5, where cortical regions were identified based on the temporal structure

of the signals they emitted. With respect to EEG, MEG’s spatial localisation power was

instrumental in the study of cortico-cortical phase-locking (P3); in EEG, a reliable sep-

aration of signals from the somatosensory cortices would have been a challenging task,

whereas such a separation was straightforward in MEG with the focal planar gradiometer

channels, even without an explicit source model.

Stochastic resonance (SR) successfully worked as a way to parametrise the stimulus.

Contrary to simply superimposing a varying amount of noise, the SR design of Study

P4 allowed increasing and decreasing the signal-to-noise ratio while maintaining a qual-

itatively similar noisy appearance of the stimulus. The cortical activation chain had a

successively weaker dependence on the noise level, approaching that of the behavioural

performance. This approach could potentially be systematised to parcel out the source

regions directly from, e.g., a minimum norm estimate.

5.2 Expanding the frequency regime

Traditionally, MEG and EEG studies have concentrated on cortical responses whose fre-

quency content is below 100 Hz; the same has been true for both evoked responses and

oscillatory activity for the simple reason that the great majority of all activity recorded

with these two methods is confined to that frequency range. Yet, responses at much

higher frequencies have been detected. For example, the SI cortex is known to generate

short bursts of MEG and EEG activity at around 600 Hz in response to electric median

nerve stimulation (Curio et al., 1994; Hashimoto et al., 1996). In addition, intracranial

EEG has indicated that epileptogenic tissue generates signals at 80–500 Hz (Bragin et al.,

1999; Jacobs et al., 2009); however, such activity has not yet been demonstrated in scalp

EEG or MEG, likely due to the weakness of these signals, combined with the lack of a
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phase-locked reference signal to trigger response averaging.

Deep brain areas can generate high-frequency activity that is detectable non-invasively;

the auditory brainstem responses, first shown in scalp EEG (Jewett et al., 1970) and

demonstrated here with MEG in Study P2, extend above 1 kHz in frequency. The fre-

quency content plays a major role in the detectability of these responses as they would

easily be masked by cortical activity that can be an order of magnitude stronger and is

much easier to detect by the sensor array due to the shorter source–sensor distance. How-

ever, the cortical contribution falls off rapidly with increasing frequency (see Fig. 2.3 for

a spectrum of total MEG activity), thus high-pass filtering can be applied to effectively

suppress the bulk of the cortical signals. Yet, the possible low-frequency activity of deep

structures remains obscured by the cortical activity. In principle, accurate source mod-

elling of the cortical activity would allow its removal from the data but since even the

activity uncorrelated and independent of the stimulus or task likely acts as a mask, such

modelling would be very demanding in most cases.

Detection of these high-frequency responses depends crucially on the system noise level.

Since the instrumentation and the background brain activity are uncorrelated noise sources,

their contributions add quadratically, and therefore the larger by far dominates. The brain

contribution is larger than the system noise level at frequencies upto about 100 Hz, above

which the system is the major source of noise3. Further reduction of the system noise level

would thus clearly improve the visibility of brain signals above 100 Hz. Such develop-

ments would increase MEG’s utility in investigating both deep activations with associated

high-frequency components and superficial neural sources that exhibit the high-frequency

oscillations mentioned above. On the other hand, the signal-to-noise ratio of the tradi-

tional low-frequency responses is limited mainly by the on-going background brain ac-

tivity, “brain noise”, and within that regime the advantage of a considerably lower system

noise level is questionable. The ultimate limit is set by the magnetic noise due to the ther-

mal motion of charge carriers in the body, estimated to be on the order of 0.1 fT/
√

Hz at

the measurement distance of 5 mm (Varpula and Poutanen, 1984). Instrumentation noise

is still far above.

The frequency axis can also be expanded towards very low frequencies. Near-DC or

infraslow phenomena have been recorded by MEG (Cohen et al., 1980; Barkley et al.,

1991; Mackert et al., 2001). DC-MEG recordings seem to yield important neurophysio-

3The white noise level of today’s state-of-the-art MEG systems is about 3 fT/
√

Hz, and the total noise
is approximately

√
2 ·3 fT/

√
Hz at 100 Hz; see Fig. 2.3
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logical data, similarly as DC-EEG, or full-band EEG, has done (Vanhatalo et al., 2004).

Long, sustained responses recordable with DC-MEG allow fMRI-like experimental de-

signs, where active (task or stimulation) and rest periods alternate (e.g. Lammertmann

and Lütkenhöner, 2001).

5.3 Employing temporally-structured stimuli

Study P5 rested on the cortical responses to the temporal structure of the stimulus itself;

the faint frequency tags present in a visual stimulus were reflected in the activity of the

early visual cortices. A similar approach but with a salient flickering stimulus has been

applied to study binocular rivalry using EEG (Lansing, 1964) and MEG (Tononi et al.,

1998; Srinivasan et al., 1999). In the auditory modality, frequency tagging has been intro-

duced to monitor the contributions of the two ears to the activity in both auditory cortices

during binaural listening (Fujiki et al., 2002; Kaneko et al., 2003), and recently to study

word learning while listening to continuous speech (Buiatti et al., 2009). Stimulus tag-

ging could also be employed in fMRI but the slowness of the hemodynamic response

severely limits the usable tag frequencies. Multifocal approaches to human vision, appli-

cable both to fMRI (Vanni et al., 2005) and EEG (Sutter, 2001), also rely on temporally

structured stimuli to highlight brain areas that respond, e.g., to a certain location in the

visual field. However, multifocal experimental designs evoke transient responses whereas

tagged stimulation is usually continuous and elicits continuous oscillatory or steady-state

responses. Thus, tagging is better suited for studying on-going processes, such as the

maintenance of a perceptual state.

In previous frequency-tagging experiments, the tags have been perceptually salient to

ensure a high signal-to-noise ratio of the tag-related signals from the brain. While large

signals are desirable, the distinct flickering or hum are usually not, as they may severely

degrade the actual content of the stimulus. To circumvent this problem, in Study P5 we

developed a new tag: dynamic noise superimposed on the stimulus image. That tag was

only mildly perceivable while still eliciting relatively large tag-related oscillatory signals

in the early visual areas. Importantly, the stimulus feature of interest—spontaneously

switching percepts to an ambiguous figure—was preserved.

The tag frequency has to be selected carefully. Tagging with a low frequency (< 10 Hz

in a visual stimulus) corresponds to an evoked response study and often gives rise to har-

monic components in the tag-related signal, which may complicate the analysis. Higher
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tagging frequencies do not generate harmonics but the signal amplitude at the fundamen-

tal frequency decreases as well, and the tag may not propagate as far in the hierarchy of

cortical regions due to the different recovery cycles of different cortical regions (Uusitalo

et al., 1996). For extracting the tag-related signals from the MEG data, the model-based

detection (see Sec. 2.3.2) was more flexible than Fourier transform-based approaches as

it was not restricted to orthogonal frequencies.

5.4 Clinical and neuroscientific implications

Modelling the neural sources underlying MEG responses can be elaborate and time con-

suming. Further development of the automatic algorithm introduced in Study P1 can

provide means to capture the essentials of the data without human intervention, which

would be beneficial particularly in clinical MEG, where the time allocated for analysis is

often limited. The target-tracking nature of the algorithm lends itself to real-time analy-

sis of brain activity; learning the statistical properties of the source constellation should

improve the attainable signal-to-noise ratio of single responses, which may open up new

ways to provide biofeedback or otherwise alter the experiment in the course of the mea-

surement. However, as of now, the computational demand of the algorithm is too high for

real-time use.

The success in recording and modelling neural generators in the brainstem suggests that

other activity below superficial brain areas may also be accessible by MEG. Recording

and localising epileptic spikes in the mesial temporal cortex is possible with a similar

magnetometer array as used in our study (Enatsu et al., 2008). Also, a recent simula-

tion study supported the visibility of signals from basal ganglia and hippocampi in MEG

(Attal et al., 2007). Together, these studies indicate that at least high-frequency activity

in the deeper structures can be recorded and localised with MEG, which should improve

the clinical utility of MEG further. In the light of these results, recording thalamic and

hippocampal signals can be considered more feasible than before, even without strong

spatial priors in the source analysis.

The role of cortical oscillations in information transfer was supported by the transient

phase-locking of the SI and SII cortices in Study P3. However, the mere synchronisation

does not ascertain that these areas communicate directly with each other. In addition to

the cortico-cortical connection from the SI cortex, the SII cortices also receive thalamic

projections; it is thus plausible that the thalamus could drive both cortical regions with
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an oscillatory signal. One could speculate that—analogously to the postulated role of

gamma oscillations for binding different visual features (for reviews, see e.g. von der

Malsburg, 1999; Engel and Singer, 2001)—such a thalamo-cortical signal could serve as

a mechanism to bind together the transient representations of the stimulus features in SI

and SII cortices for a unified percept.

Study P5 revealed that during bistable visual perception, the subjective perceptual alterna-

tions are associated with corresponding changes in the activity of the early visual areas,

presumably V1 and V2. These activity changes are likely due to top-down feedback,

which further supports the notion that activity in early visual areas is not just a feedfor-

ward reflection of retinal input. This finding endorses the active role of V1/V2 in visual

awareness, contrary to some earlier views which attributed conscious vision only to the

higher-order visual cortices (Crick and Koch, 1995).

5.5 Future directions

MEG’s excellence in temporal resolution combined with reasonable spatial accuracy

makes MEG the tool of choice for investigating cortical oscillations per se and the func-

tional connectivity mediated by these oscillations. On the other hand, the same combi-

nation should also help track the neural processing of continuous, possibly even natural

stimuli. Should these kind of approaches succeed, they may trigger a paradigm shift in

neuroscience from applying highly controlled, simplistic stimuli to real-life-like multi-

modal scenarios. As an intermediate solution towards more complex stimuli, the non-

salient stimulus tagging developed in this Thesis could be explored further; for example,

non-periodic tags could be even less perceivable, particularly in the auditory modality, and

they might allow further probing of the cortical areas. If evoked responses are viewed as

manifestations of prediction updates concerning the surrounding world (Friston, 2005),

tagging can provide access to some of the brain states, i.e., the results of those predic-

tions.



6 Conclusions

The aim of this Thesis was to advance MEG to realms that have been considered difficult

or even impossible for it. Specifically: i) A Bayesian tracking algorithm was introduced

to automate MEG source modelling and to allow principled inclusion of prior anatomi-

cal and physiological information. The performance of the algorithm was comparable to

previous human-assisted methods. ii) Neural activity in the brainstem was successfully

recorded and accurately localised, which also supports MEG’s clinical utility when inves-

tigating deep brain areas. iii) Oscillatory 20-Hz signals from the primary and secondary

somatosensory cortex were shown to be transiently phase-locked to tactile stimuli, possi-

bly signifying functional connectivity between those areas. iv) Using a stimulus exhibit-

ing stochastic resonance, a systematic quantification of the correlations between stimulus

parameters, brain signals and behavioural performance was possible. v) A new frequency-

tagging method to separate brain activations elicited by different parts of a visual scene

was developed and applied to probe the neural engagement in the early visual brain areas

during bistable perception. Recordings revealed that already the early visual areas reflect

the subjective percept. The finding supports the active role of the early visual areas in

conscious vision. The results obtained in this Thesis present methodological advances

that likely contribute to future applications of MEG in basic and clinical neuroscience.
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