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Combining Multi-Camera-Data of Flotation Circuit with PCA and 
PLS 

J ~aartinen' and H ~yotynierni* 

ABSTRACT 
In this paper multivariate data analysis performed on a new multi-camera 
system implemented to zinc flotation circuit of P y W m i  mine is 
presented. Image-analysis-based system was developed to take advantage 
of the commonly known fact that the changes in the flotation process are 
reflected to the visual appearance of the froth surface. Most often the 
changes are seen first in the froth and later in other process measurements. 

The image variables are already utilised in closed loop control and 
considerable savings are achieved with the current setting, but the results 
coming from the separate cells are used individually. This is clearly not 
the optimal way to take advantage of the many measurements coming 
from different locations of the process. A better approach would be for 
example to use the measurements coming from the early stages of the 
process to predict the behaviour (or improve the quality of measurements) 
in the law stages. The methods described in this paper are aimed to 
improving the situation in this sense. 

INTRODUCTION 
Pyhiisalmi mine is located in Finland, some 500 km north from 
Helsinki. The main minerals produced are copper (0.8 per cent), 
zinc (2.8 per cent), sulfur (37.0 per cent) and iron (33.0 per cent). 
Also, there are small amounts of gold and silver present in the 
ore (Hatanen, 1999). Flotation is divided into three sections, 1 where copper, zinc and sulfur are processed. 

Research at Pyhiisalrni started in 1997 with an EU-funded 
project called 'The characterization of flotation froth structure 

, and colour by machine vision' (ChaCo). After the ChaCo-project 
, ended the research was continued with a Finnish project called 

VASY, where the single-camera system developed earlier was 
extended to multicamera-system. 

I .  Helsinki University of Technology, Control Engineering Laboratory, 
PO Box 5500,02015 HUT, Finland. Email: Jani.KaartinenOhut.6 

2. Helsinki University of Technology, Control Engineering Laboratory, 
PO Box 5500,0201 5 HUT, Finland. 
Email: Heikki.Hyotyniemi@hut.fi 

Rotatinn axle I I 

The structure of the measurement system is shown in Figure 1. 
The camera is placed as near the edge of the flotation cell as 
possible so that the froth under the imaging area would 
characterise the properties of the outflowing material. The 
camera is located inside a protective hood, which protects not 
only the camera against dirt but also the imaging area against 
ambient light coming from the flotation hall. This is important 
since a big portion of the different image analysis algorithms 
used in the system are using the total reflectance point on top of 
each bubble as a basis for further calculations. Thus, the 
illuminating halogen lamp has to be located as near the optical 
axis of the camera as possible and no other light sources are 
allowed. Also, the intensity level of the illumination is stabilised 
by using uninterrupted power supply and by converting the 
electricity from alternating to direct current (Kaartinen, 2001). 

THE MULTI-CAMERA SYSTEM 

As mentioned before, based on the good results obtained by 
using the single camera for several years the system was 
extended to cover the whole zinc circuit. The current system 
consists of six cameras that are mounted on top of six different 
flotation cells of the circuit as shown in Figure 2. With every 
camera, various variables from the froth image(s) can be 
calculated as explained in the next section. Since there are large 
amounts of data available of these individual cells three different 
methods were tested in order to get the overall picture of the 
flotation process. This was done by combining the separate 
image analysis results and applying different sensor fusion 
techniques. The tested methods were principal component 
analysis (PCA), principal component regression (PCR) and 
partial least squares (PLS) (Sharma, 1996). All of these are 
multivariate statistical methods and they are very suitable in the 
cases when trying to extract the relevant variables out of vast 
amounts of multivariate data. 
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FIG 1 - (A) Location of the camera on the flotation cell, and (B) basic setup and connections for a single camera. 
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FIG 2 - Location of cameras and x-ray fluorescence (Courier) 
analysis points in the zinc circuit. 

IMAGE VARIABLES 

From each camera an image pair is taken so that time difference 
between the two images is about 20 ms. From these images all 
the necessary variables can be calculated. There must be two 
consecutive images in order to get information from the 
dynamical features of the froth (eg froth speed, bubble collapse 
rate, etc). Static features (eg mean bubble size, number of 
bubbles, etc) are calculated from the first image only. Currently it 
takes approximately 0.5 seconds to process one image pair 
resulting in a sample interval of three seconds for a single cell. 
An example of a froth image from the rougher circuit is shown in 
Figure 3. 

FIG 3 - An example of a froth image. 

It is possible to get approximately 60 - 70 different variables 
from each image but there is considerable redundancy in these 
measurements. A good example is different colour plane 
representations of the image; the grabbed image can be presented 
both in RGB (red, green, blue) and HSV (hue, saturation, value) 
colour planes and if for all these six variables the first four 
moments are calculated, 24 different measurements are obtained 
to describe the colour statistics of a given image. However, it  is 
clear that these measurements are highly redundant, and hence it 
is important to pick up only the most important image variables 

for the end user (Kaartinen and Koivo, 2002). Another possibility 
- which is used in this paper - is the use of intelligent data 
compression techniques; see also Hyotyniemi (1999) and 
Hyotyniemi and Ylinen (2000). 

Currently the most interesting variables measured from the 
flotation froth of the zinc circuit are speed of the froth, mean 
bubble size, bubble collapse rate, redness of the froth (since 
redness correlates with the amount of zinc in the froth) and 
transparency of the froth (ie the load variable, see Miettunen et 
a1 (2001). 

DATA ANALYSIS 

In the data analysis there were two independent data sets 
collected during 26 August 2004 - 1 September 2004 (datal) and 
6 September 2004 - 10 September 2004 (dad) .  The actual data 
sets consist of 96 variables collected in six minute intervals 
(averaged from one minute data). Eventually 18 image variables 
from three cells were selected for further analysis. The cells 
being studied were roughing, mid roughing and cleaning. 
Roughing and cleaning are an obvious choice since their impact 
on the whole circuit is considerable. The results from the mid 
roughing circuit were also consistent with the other data, but 
high grade results - although expected to be useful - could not 
be utilised since the high grade flotation tanks in Pyhasalmi are 
such that the flow under the camera is not continuous. This more 
or less ruins that data. The image data from scavenging was 
available and it was used in testing but was eventually dropped 
since it did not improve the accuracy of the estimation of the 
final product properties. The selected image variables were the 
same for each cell and are presented in Table 1. 

TABLE 1 
The selected image variables. 

Speed of the froth (obtained from peak value position 

The delays between different cells were estimated and 
removed from both data sets in a same way. The delays were (in 
six minute time steps): From rouging to mid roughing four, from - 
roughing to cleaning four and from roughing to measured zinc 
content of the final product (ZnR Zn per cent) six time steps. The , 
appropriate delays were estimated partly from the data and partly i 
by using the process knowledge of the plant engineers at 4 
Pyhasalmi. The delays are somewhat tricky since the nature of 
the flotation process is quite complex and there are many internal 
feedback flows in the circuit. This leads to changing time delays. 
Because the tested methods are static and time invariant, they are 
very sensitive to the fact that the time delays are removed 
properly. Therefore the changing time delays introduce 
unpredicted error to the results of the following analysis. 

THEPCAANDPCRAPPROACH 3 

This section describes the principal component analysis (PCA] 
and principal component regression (PCR) analysis. Both of . 
these methods are multivariate statistical methods and thev are , 
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very suitable in the cases when trying to extract the relevant As can be seen, the correlations between the different variables 
variables out of vast amounts of multivariate data. There were are always in the same direction and surprisingly consistent in 
two goals; the first goal was to identify correlations (principal the first principal component. However, when similar analysis 
components) in the data from different cells and compare them. was performed on the second data set (datd), the results were 
The second goal was to evaluate the practical relevance of the not so evident, but clearly the same kind of behaviour can be 
image analysis: how well can one predict the zinc concentration seen (see Figure 5). 
of the final product by using only the image variables. The The amount of variance captured from the whole data is 

was carried Out by using MATLAB" and its PLS presented in the legends of the figures. The first two principal 
(Wise and Gallagher* 1998)9 where lhe needed components were selected since on the average they cover 84 per 

calculation routines are readily available. cent of the total variance in the data. 

Principal components Estimators 
By using the image variables described above, the first and Since the analysis in the previous chapter clearly showed a second principal components were calculated separately for each 
cell. The idea was to compare the different cells and see if they consistent behaviour between the selected flotation cells, the next 

would behave similarly. step was to try to predict the zinc percentage of the final product. 
This was done by using only the selected image variables and 

The analysis showed that* mathematically speaking, the three nothing else. ~h~ courier was used as a reference to 
cells work systematically. Figure 4 illustrates this by showing the validate the estimate, 
loadings of the first two principal components. 

A 
Loadings of the First PC 
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-0.8 
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Loadings of the Second PC 
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I Rough. ( 2 3 1 % )  
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-0.8 
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FIG 4 - (A) Loadings of the first principal component (datal), and (B) loadings of the second principal component (datal). 

A 
Loadings of the First PC 

0.6 1 I 

B 
Loadings of the Second PC 

0.8 1 I 

1 Mid Rough. (&=49%) 

1mg.Corr. Red Load Speea BS Intens. 

0.6 - 

-0.2 - 

Mid Rough. (k24%) . Conc. (k28%) 
I 

C o r r  Red Load Speed BS Intens. 

FIG 5 - (A) Loadings of the first principal component (data2), and (B) loadings of the second principal component (data2). 
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The PCA and PCR estimates were obtained by sliding a 
48-hour history window from which the PCA model was updated 
at each step. After the model was calculated, the last values of 
the score vectors of both principal components were stored. Then 
the analysis was advanced by one step. The analysis cycle is 
presented below: 

1. take the last 480 points of history data, 

2. calculate the first two principal components for that data, 

3. calculate the score vectors of those principal components, 

4. store the final values of the score vectors, and 

5 .  wait for the next data point, slide the history window and 
go to one. 

Surprisingly, the score values of the first principal component 
obtained this way (see Figure 6a) followed the zinc content of the 
final product with remarkable accuracy (R2 = 0.86). This is very 
interesting since only image variables were used to get this 

A 
Tlme Serles (Mean = 0, Var = 1) RZ = 0.87 

-2.5 1 
0 10 20 30 40 50 60 70 80 90 100 

Time [hours] 

result. This was a good proof of the power of image analysis in 
the context of mineral flotation. Also, since the time delay 
between the image variables from the cleaning cell and the 
Courier analysis of the final concentrate is on the average 12 
minutes, this means that the PCA approach is able to predict the 
zinc content in advance. 

The principal component regression (PCR) was also used by 
combining the two score vectors. Datal was used as a teaching 
data and data2 as a validation data. As can be seen in Figures 6b 
and 7b, the results were improved only slightly for the teaching 
data and degraded - because of the changing time delays and 
different operating point - for the validation data. This means 
that it is essentially the first principal component alone that 
correlates with the output concentration. 

The same analysis was performed on the second data set and 
the results were similar, although not as good as with the first 
data set. Figure 7 illustrates the resulting curves as well as the 
squared correlation coefficients. 

B 
Time Series (Mean = 0, Var 5 1) R2 = 0.88 

I 
0 10 20 30 40 50 80 70 80 90 100 

Tlme [hours] 

FIG 6 - (A) Score values of the first principal component, PCA approach (datal), and (8) PCR approach, teaching data (datal). 
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FIG 7 - (A) Score values of the first principal component, PCA approach (data2), and (8) PCR approach, validation data (data2). 
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FIG 8 - (A) PLS model for datal, and (6)  PLS model for data2. 

THE PLS APPROACH 

Finally, a PLS model was tested in a similar fashion as the PCA 
and PCR models above. The same 48-hour sliding history 
window was used as a teaching data and since the y-side of 
teaching data (ie the zinc content of the final product) is actually 
coming two time steps later than the x-data (the image variables), 
the estimate can be obtained 12 minutes in advance. 

The results of the PLS analysis are shown in Figure 8. One 
interesting thing is the degradation in the correlation with the 
first data set, since one would assume improvement - at least 
when compared to PCA approach - because of the additional 
y-side information. This is due to the changes in the time delay 
between the image variables and the Courier analysis of the final 
product. 

For the second data set the results are improved as shown in 
Figure 8b. However, even if the improvement is clear in terms of 
correlation coefficients it is still only minor improvement when 
compared to the PCA approach (Figure 7a), which accomplished 
more or less the same thing completely without the aid of the 
y-side data. 

FUTURERESEARCH 

Since such promising results were obtained in this study, the goal 
for future research is to develop these results to be applied in 
on-line control of the flotation process. One interesting 
possibility is to complement the Courier analysis using image 
analysis: The x-ray analyses are now obtained only once for 
every 20 minute period and having accurate estimates between 
these analyses would be important. I t  seems that if the models 
based on image analysis are calibrated to match the past x-ray 
analyses, the information gaps in the measurements can be filled. 
This issue will be approached applying the static methods (PCR 
and PLS) as well as dynamic multivariate methods, such as 
subspace identijcation. 

CONCLUSIONS 

The image analysis equipment currently installed at Pyhasalmi 
mine as well as the most important image variables were 
presented in this paper. However, the main focus was on the 
multivariate data analysis that was performed on two 
independent data sets that were collected in the fall 2004. 

Although the methods described here are time invariant and the 
process delays clearly are not, still the results obtained were 
speaking strongly in favour of image analysis in the control of 
flotation process. Although the benefits of image analysis have 
been reported before (eg Guarini et al, 1995; Moolman er al, 
1995; Cipriano el al, 1998; Miettunen et al, 2001). the data 

hnalysis performed in this paper clearly shows that the visual 
information obtained from the flotation froth, by itself, is able to 
characterise the state of the flotation process. This gives the 
research group confidence and motivation to continue with 
image analysis and to derive new implementations of closed loop 
control. 
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