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On Growing and Pruning Kneser–Ney
Smoothed N -Gram Models

Vesa Siivola, Teemu Hirsimäki, and Sami Virpioja

Abstract— -gram models are the most widely used language
models in large vocabulary continuous speech recognition. Since
the size of the model grows rapidly with respect to the model
order and available training data, many methods have been
proposed for pruning the least relevant -grams from the model.
However, correct smoothing of the -gram probability distri-
butions is important and performance may degrade significantly
if pruning conflicts with smoothing. In this paper, we show that
some of the commonly used pruning methods do not take into
account how removing an -gram should modify the backoff
distributions in the state-of-the-art Kneser–Ney smoothing. To
solve this problem, we present two new algorithms: one for
pruning Kneser–Ney smoothed models, and one for growing
them incrementally. Experiments on Finnish and English text
corpora show that the proposed pruning algorithm provides
considerable improvements over previous pruning algorithms on
Kneser–Ney-smoothed models and is also better than the baseline
entropy pruned Good–Turing smoothed models. The models
created by the growing algorithm provide a good starting point
for our pruning algorithm, leading to further improvements. The
improvements in the Finnish speech recognition over the other
Kneser–Ney smoothed models are statistically significant, as well.

Index Terms—Modeling, natural languages, smoothing methods,
speech recognition.

I. INTRODUCTION

N
-GRAM models are the most widely used language models

in speech recognition. Since the size of the model grows

fast with respect to the model order and available training data,

it is common to restrict the number of -grams that are given

explicit probability estimates in the model. A common approach

is to estimate a full model containing all -grams of the training

data up to a given order and then remove -grams according to

some principle. Various methods such as count cutoffs, weighted

difference pruning (WDP) [1], Kneser pruning (KP) [2], and

entropy-based pruning (EP) [3] have been used in the literature.

Experiments have shown that more than half of the -grams

can be removed before the speech recognition accuracy starts to

degrade.

Another important aspect in -gram language modeling is

smoothing to avoid zero probability estimates for unseen data.

Numerous smoothing methods have been proposed in the past,

but the extensive studies by Chen and Goodman [4], [5] showed
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that a variation of Kneser–Ney smoothing [6] outperforms other

smoothing methods consistently.

In this paper, we study the interaction between pruning

and smoothing. To our knowledge, this interaction has not

been studied earlier, even though smoothing and pruning are

widely used. We demonstrate that EP has some assumptions

that conflict with the properties of Kneser–Ney smoothing, but

work well for the Good–Turing smoothed models. KP, on the

other hand, takes better into account the underlying smoothing,

but has other approximations in the pruning criterion. We

then describe two new algorithms for selecting -grams of

Kneser–Ney smoothed models more efficiently. The first algo-

rithm prunes individual -grams from models, and the second

grows models incrementally starting from a 1-gram model. We

show that the proposed algorithms produce better models than

the other pruning methods.

The rest of the paper is organized as follows. Section II sur-

veys earlier methods for pruning and growing -gram models,

and other methods for modifying the context lengths of -gram

models. Similarities and differences between the previous work

and the current work are highlighted. Section III describes the

algorithms used in the experiments, and Section IV presents the

experimental evaluation with discussion.

II. COMPARISON TO PREVIOUS WORK

A. Methods for Pruning Models

The simplest way for reducing the size of an -gram model

is to use count cutoffs: An -gram is removed from the model

if it occurs fewer than times in the training data, where is a

fixed cutoff value. Events seen only once or twice can usually be

discarded without significantly degrading the model. However,

severe pruning with cutoffs typically gives worse results than

other pruning methods [7].

WDP was presented by Seymore and Rosenfeld [1]. For each

-gram in the model, WDP computes the log probability given

by the original model and a model from which the -gram has

been removed. The difference is weighted by a Good–Turing

discounted -gram count, and the -gram is removed if the

weighted difference is smaller than a fixed threshold value. In

their experiments (presumably with Good–Turing smoothed

models), the weighted difference method gave better results

than count cutoffs.

Kneser [2] proposes a similar method for pruning -gram

models. The pruning criterion used in KP also computes the

weighted difference in log probability when an -gram is

pruned. The difference is computed using an absolute dis-

counted model and weighted by the probability given by the

1558-7916/$25.00 © 2007 IEEE
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model. Kneser also shows that using modified backoff distri-

butions along the lines of the original Kneser–Ney smoothing

improves the results further.

EP presented by Stolcke [3] is also closely related to WDP.

While WDP (and KP) only takes into account the change in the

probability of the pruned -gram, EP also computes how the

probabilities of other -grams change. Furthermore, instead of

using the discounted -gram count for weighting the log prob-

ability difference, EP uses the original model for computing

the probability of the -gram. Hence, EP can be applied to

a ready-made model without access to the count statistics. In

Stolcke’s experiments with Good–Turing smoothed models, EP

gave slightly better results than WDP.

In this paper, we propose a method called revised Kneser

pruning (RKP) for pruning Kneser–Ney smoothed models. The

method takes the properties of Kneser–Ney smoothing into ac-

count already when selecting the -grams to be pruned. The

other methods either ignore the smoothing method when se-

lecting the -gram to be pruned (KP) or ignore the fact that as

an -gram gets pruned, the lower-order probability estimates

should be changed (WDP, EP). We use the original KP and EP

as baseline methods, and they are described in more detail in

Section III.

B. Methods for Growing Models

All the algorithms mentioned in the previous section assume

that the -gram counts are computed from the training data for

every -gram up to the given context length. Since this becomes

computationally impractical if long contexts are desired, various

algorithms have been presented for selecting the -grams of the

model incrementally, thus avoiding computing the counts for all

-grams present in the training data.

Ristad and Thomas [8] describe an algorithm for growing

-gram models. They use a greedy search for finding the

individual candidate -grams to be added to the model.

The selection criterion is a minimum description length

(MDL)-based cost function. Ristad and Thomas train their

letter -gram model using 900 000 words. They get significant

improvements over their baseline -gram model, but it seems

their baseline model is not very good, as its performance

actually gets significantly worse when longer contexts are used.

Siu and Ostendorf [9] present their -gram language model

as a tree structure and show how to combine the tree nodes

in several different ways. Each node of the tree represents an

-gram context and the conditional -gram distribution for

the context. Their experiments show that the most gain can be

achieved by choosing an appropriate context length separately

for each word distribution. They grow the tree one distribution

at a time, and contrary to the other algorithms mentioned here,

contexts are grown toward the past by adding new words to the

beginning of the context. Their experiments on a small training

data (fewer than three million words) show that the model’s size

can be halved with no practical loss in performance.

Niesler and Woodland [10] present a method for backing off

from standard -gram models to cluster models. Their paper

also shows a way to grow a class -gram model which estimates

the probability of a cluster given the possible word clusters of

the context. The greedy search for finding the candidates to be

added to the model is similar to the one by Ristad and Thomas.

Whereas Ristad and Thomas add individual -grams, Niesler

and Woodland add conditional word distributions for -gram

contexts, and then prune away unnecessary -grams.

To our knowledge, no methods for growing Kneser–Ney

smoothed models have been proposed earlier. In this paper, we

present a method for estimating variable-length -gram models

incrementally while maintaining some aspects of Kneser–Ney

smoothing. We refer to the algorithm as Kneser–Ney growing

(KNG). It is similar to the growing method presented earlier

[11], except that RKP is used in the pruning phase. Addition-

ally, some mistakes in the implementation have been corrected.

The original results were reasonably good, but the correct

version gives clearly better results. The growing algorithm

is similar to the one by Niesler and Woodland. They use the

leaving-one-out cross validation for selecting the -grams

for the model, whereas our method uses a MDL-based cost

criterion. The MDL criterion is defined in a simpler manner

than in the algorithm by Ristad and Thomas, where a tighter

and more theoretical criterion was developed. We have chosen

a cost function that reflects how -gram models are typically

stored in speech recognition systems.

C. Other Related Work

Another way of expanding context length of the -gram

models is to join several words (or letters) to one token in

the language model. This idea is presented for example in a

paper on word clustering by Yamamoto et al. [12]. Deligne

and Bimbot [13] study how to combine several observations

into one underlying token. The opposite idea, splitting words

into subword units to improve the language model, has also

been studied. In our Finnish experiments, we use the algorithm

presented by Creutz and Lagus [14] for splitting words into

morpheme-like units.

Goodman and Gao [7] show that combining clustering and EP

can give better results than pruning alone. In the current work,

however, we only consider models without any clustering.

Virpioja and Kurimo [15] describe how variable-length

-gram contexts consisting of subword units can be clustered

to achieve some improvements in speech recognition. They

have also compared the performance to the old version of

KNG with a relatively small data set of around ten million

words, and show that the clustering gives better results with the

same number of parameters. Recent preliminary experiments

suggest that if RKP is applied also to the clustered model, the

improvement in perplexity is about as good as it was for the

nonclustered algorithm.

Bonafonte and Mario [16] present a pruning algorithm, where

the distribution of a lower order context is used instead of the

original if the pruning criterion is satisfied. For their pruning

criterion, they combine two requirements: The frequency of

the context must be low enough (akin to count cutoffs) or the

Kullback–Leibler divergence between the distributions must be

small enough. The combination of these two criteria is shown

to work better than either of the criteria alone when the models

were trained with a very small training set (14 000 sentences,

1300 words in the lexicon).
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III. ALGORITHMS

A. Interpolated Kneser–Ney Smoothing

Let be a word and the history of words preceding . By

we denote the history obtained by removing the first word in

the history . For example, with the three-word history

and word , we have -grams and .

The number of words in the -gram is denoted by . Let

be the number of times occurs in the training data.

Interpolated Kneser–Ney smoothing [4] defines probabilities

for an -gram model of order as follows:

(1)

The modified counts , the normalization sums , and

the interpolation weights are defined as

if

if

otherwise

(2)

(3)

(4)

Order-specific discount parameters can be estimated on

held-out data. In (2), also has to be used for -grams

that begin with the sentence start symbol because no word

can precede them.

The original intention of Kneser–Ney smoothing is to keep

the following marginal constraints (see [6] for the original

backoff formulation, and [5] for the interpolated formulation)

(5)

Despite the intention, the smoothing satisfies the above con-

straints only approximately. In order to keep the marginals ex-

actly, maximum entropy modeling can be used (see [17], for

example), but the computational burden of maximum entropy

modeling is high.

For clarity, the above equations show Kneser–Ney smoothing

with only one discount parameter for each -gram order.

James [18] showed that the choice of discount coefficients

in Kneser–Ney smoothing can affect the performance of the

smoothing. In the experiments we used modified Kneser–Ney

smoothing [4] with three discount parameters for each -gram

order: one for -grams seen only once, one for -grams seen

only twice, and one for -grams seen more than two times.

We use numerical search to to find discount parameters that

maximize the probability of the held-out data.

B. Entropy-Based Pruning

Stolcke [3] described EP for backoff language models. For

each -gram in model , the pruning cost is com-

puted as follows:

(6)

is the original model, and corresponds to a model

from which the -gram has been removed (and backoff

weight updated accordingly). The cost is computed for

all -grams, and then the -grams which cost less than a

fixed threshold are removed from the model. It was shown that

the cost can be computed efficiently for all -grams. Another

strength of EP is that it can be applied to the model without

knowing the original -gram counts.

However, only Good–Turing smoothed models were used in

the original experiments. In the case of Kneser–Ney smoothing,

the lower-order distributions are generally not good

estimates for the true probability . This is because the

lower-order distributions are in a way optimized for modeling

probabilities of unseen -grams that are not covered by the

higher order of the model.1 This property conflicts with EP in

two ways. First, the selection criterion of EP weights the change

in with the probability

(7)

which is not a good approximation with Kneser–Ney smoothing

as discussed above. For the same reason, pruning

may be difficult if is not a good estimate for the true

. Indeed, we will see in Section IV that an entropy-pruned

Kneser–Ney model becomes considerably worse than an en-

tropy-pruned Good–Turing model when the amount of pruning

is increased.

C. Kneser Pruning

Kneser [2] also describes a general pruning method for

backoff models. For an -gram , which is not a prefix of

any -g included in the model ( is a leaf -gram), the

cost of pruning from the full model is defined as

(8)

The cost for a non-leaf -gram, is obtained by aver-

aging for -grams that have as prefix (including

).

Kneser also gives a formula for computing modified backoff

distributions that approximate the same marginal constraints as

the original Kneser–Ney smoothing

(9)

The interpolation coefficient can be easily solved from the

equation to account for the discounted and pruned probability

1For example, this can be verified by training a 3-g model using Good–Turing
and Kneser–Ney smoothing, and then computing log probability of test data
using the 1-g and 2-g estimates only. The truncation degrades the performance
of the Kneser–Ney smoothed model dramatically when compared to the
Good–Turing smoothed model.
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mass. The above formulation corresponds to the original def-

inition,2 except that the original formulation was for backoff

model, while ours is for interpolated model and the discount

term is explicitly shown. As with Kneser–Ney smoothing,

the marginal constraints are not satisfied exactly.

The criterion for selecting -grams to be pruned contains

the following approximations: The selection is made before any

model modification takes place, and the criterion utilizes the

difference between the log probability of the -gram and its

backed-off estimate for the full absolute discounted model. Only

is updated during pruning. In practice, however, both the

backoff coefficient and the backoff distribution may be consid-

erably different in the final pruned model with modified backoff

distributions.

We have implemented an interpolated version of the algo-

rithm, since it has been shown that interpolated models gener-

ally work better [4]. It is not explicitly clear how KP should

be implemented with three discounts per model order, so we

implemented the original unmodified version (one discount per

order). In practice, the difference between modified and unmod-

ified models with large training data should be very small [5].

We conducted some preliminary experiments with different

approximations for selecting the -grams, and it seemed that

the criterion could be improved. These improvements are im-

plemented in the algorithm presented in the next section.

D. Revised Kneser Pruning

Since the original KP and EP ignore the properties of

Kneser–Ney smoothing when selecting -grams to be pruned,

we propose a new algorithm that takes the smoothing better into

account. The main motivation is that removing an -gram from

a Kneser–Ney smoothed model should change the lower-order

distributions. The algorithm tries to maintain the following

property of Kneser–Ney smoothing: As shown in (2), a backoff

distribution of a Kneser–Ney-smoothed model does not use

actual word counts. Instead, the number of unique words ap-

pearing before the -gram are counted. For the highest-order

-grams, the actual counts from the training data are used. We

can view the highest-order -gram counts in the same way as

the lower-order counts if we pretend that all -grams

have been pruned, and each appearance of the highest-order

-gram is considered to have a unique preceding word in the

training data.

This property is maintained in the algorithm shown in Fig. 1.

PRUNEGRAM describes how the counts and normal-

ization sums are modified when an -gram is pruned.

Before pruning, the first word of is considered as one unique

preceding word for in . After pruning , all the

instances of are considered having a new unique

preceding word for . Thus, is increased by

. Note that the condition on line 2 of PRUNEGRAM is always

true if the model contains all -grams from the training data.

However, if model growing or count cutoffs are used,

may be zero even if is positive. Additionally, the sum

2In the original paper [2, Eq. 9], there are parentheses missing around
N(v; h ; w) � d in the numerator and denominator.

Fig. 1. Pruning algorithm. Note that lines 3 and 6 in PRUNEORDER modify the
counts C (�), which also alters the estimate P (wjhhh).

of pruned counts is updated with . The probabili-

ties are then computed as usual (1), except that the

interpolation weight has to take into account the discounted

and pruned probability mass:

(10)

For each order in the model, PRUNEORDER is called

with a pruning threshold . Higher orders are processed before

lower orders. For each -gram at order , we try pruning

the -gram (and modifying the model accordingly), and com-

pute how much the log probability of the -grams decreases

in the training data. If the decrease is greater than the pruning

threshold, the -gram is restored into the model. Note that the

algorithm also allows pruning non-leaf nodes of an -gram

model. It may not be theoretically justified, but preliminary ex-

periments suggested that it can clearly improve the results. For

efficiency, it is also possible to maintain a separate variable for

in the algorithm. After pruning, we re-esti-

mate the discount parameters on a held-out text data. In contrast

to EP, the counts are modified whenever an -gram is pruned,

so the pruning cannot be applied to a model without count in-

formation.

The pruning criterion used in PRUNEORDER has a few approx-

imations. It only takes into account the change in the probability

of the pruned -gram. In reality, pruning -gram alters

directly for all . The interpolation weights

and are altered as well, so may change for

all and . For weighting the difference in log probability, we

use the actual count . This should be a better approximation

for Kneser–Ney smoothed models than the one used by EP. The

Good–Turing weighting, as used in WDP, would probably be

better, but would make the model estimation slightly more com-

plex, since the model is now originally Kneser–Ney smoothed.

Note that apart from the criterion for choosing the -grams

to be pruned, the proposed method is very close to KP. If we

chose to prune the same set of -grams, RKP would give almost

the same probabilities as shown in (9); only the factor

would be approximated as one. This approximation makes it

easier to reoptimize the discount factors on a held-out text data

after pruning. In our preliminary experiments, this approxima-

tion did not degrade the results.
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Fig. 2. Growing algorithm.

Thus, the main differences to KP are the following: We

modify the model after each -gram has been pruned, instead

of first deciding which -grams to prune and pruning the

model afterwards. The pruning criterion uses these updated

backoff coefficients and distributions. Lastly, the pruning cri-

terion weights the difference in log probability by the -gram

count instead of the probability estimated by the model.

The method looks computationally slightly heavier than

EP or WDP, since some extra model manipulation is needed.

In practice, however, the computational cost is similar. The

memory consumption and speed of the method can be slightly

improved by replacing the weighting by in

line 2 and 4 of PRUNEORDER algorithm (Fig. 1), since then the

original counts are not needed at all, and can be discarded. In

our preliminary experiments, this did not degrade the results.

E. Kneser–Ney Growing

Instead of computing all -gram counts up to certain order

and then pruning, a variable-length model can be created incre-

mentally so that only some of the -grams found in the training

data are taken into the model in the first place. We use a growing

method that we call Kneser–Ney growing. KNG is motivated

similarly to the RKP described in the previous section.

The growing algorithm is shown in Fig. 2. The initial model

is an interpolated 1-g Kneser–Ney model. Higher orders are

grown by GROWORDER , which is called iteratively with

increasing order until the model stops growing. The al-

gorithm processes each -gram already in the model at order

, and adds all -grams present in the training data

to the model, if they meet a cost criterion. The cost criterion

is discussed below in more detail. The ADDGRAM algo-

rithm shows how count statistics used in (1) are updated when

an -gram is added to the model.

Since the model is grown one distribution at time, it is still

useful to prune the grown model to remove the individual unnec-

essary -grams. Compared to pruning of full -gram models,

the main computational benefit of the growing algorithm is that

counts only need to be collected for histories that are

already in the model. Thus, much longer contexts can be brought

into the model.

1) About the Cost Function for Growing: For deciding which

-grams should be added to the model, we use a cost function

based on the MDL principle. The cost consists of two parts: the

cost of encoding the training data , and the cost of

encoding the -gram model . The relative weight of

the model encoding is controlled by , which affects the size

of the resulting model. The cost of encoding the training data

is the log probability of the training data given by the current

model. For the cost of encoding the model, we roughly assume

the tree structure used by our speech recognition system (the

structure is based on [19]). The cost of growing the model from

-grams to -grams is then

(11)

where is related to the number of bits required for storing

each float with given precision. The first term assumes that con-

stant amount of bits is required for storing the parameters of an

-gram, regardless of the -gram order. The remaining terms

take into account the tree structure for representing the -gram

indices (see [11] for details), but omitting them does not seem to

affect the results. In practice, during the model estimation, the

model is stored in a different structure where model manipula-

tion is easy.

More compact representations can be formulated. Ristad and

Thomas [8] show an elaborate cost function which they use for

training letter-based -gram models. Whittaker and Raj [19],

[20], on the other hand, have used quantization and compression

methods for storing -grams compactly while maintaining rea-

sonable access times.

In practice, however, pruning or growing algorithms are not

used for finding the model with the optimal description length.

Instead, they are used for finding a good balance between the

modeling performance (or recognition accuracy) and memory

consumption. Moreover, even if the desired model size was, say,

only 100 MB, we probably want to create first as large model

as we can (perhaps a few gigabytes with current systems), and

then prune it to the desired size. The same applies for growing

methods. It may be hard to grow an optimal model for 100 MB,

unless one first creates a larger model to see which -grams

really should be omitted. In this sense, the main advantage of

the growing algorithms may be the ability to create good initial

models for pruning algorithms.

F. Some Words on the Computational Complexity

The limiting factors for the algorithms are either the con-

sumed memory or the required processing power. All of the al-

gorithms presented here can be implemented with similar data

structures. For models containing equal amount of -grams, the

methods will end up using similar amounts of memory. When

looking at the processor time, some algorithms are clearly sim-

pler than the others. In practice though, they all scale similarly

with the number of -grams in the model. In our experiments,



1622 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 5, JULY 2007

the computation times of the methods were roughly equivalent

using a computer with a 2-GHz consumer level processor and

10 GB of memory.

IV. EXPERIMENTS

A. Setup and Data

The Finnish text corpus (150 million words) is a collection

of books, magazines, and newspapers from the Kielipankki

corpus [21]. Before training the language models, the words

were split into subword units, which has been shown to sig-

nificantly improve the speech recognition of Finnish [22] and

other highly inflecting and agglutinative languages [23]. We

used the Morfessor software [24] for splitting the words. The

resulting 460 million tokens in the training set consisted of 8428

unique tokens. The held-out and test sets contained 110 000

and 510 000 tokens, respectively. Full 5-g models were trained

for Good–Turing smoothing and for unmodified and modified

Kneser–Ney smoothing. The models were pruned to three

different size classes: large, medium, and small. SRILM toolkit

[25] was used for applying EP to the Good–Turing and the

modified Kneser–Ney smoothed models. RKP was performed

on the modified Kneser–Ney smoothed model, and KP was

performed on the unmodified Kneser–Ney smoothed model.

Using KNG, we trained a model to the same size as the full 5-g

models and then pruned the grown model with RKP to similar

sizes as the other models were pruned to.

The English text corpus was taken from the second edition

of the English LDC Gigaword corpus [26]. 930 million words

from the New York Times were used. The last segments were ex-

cluded from the training set: 200 000 words for the held-out set

and 2 million words for the test set. 50 000 most common words

were modeled, and the rest were mapped to an unknown word

token. Full 4-g models were trained for modified and unmod-

ified Kneser–Ney smoothing. We were unable to train full 4-g

models with the SRILM toolkit because of memory constraints,

so we used count cutoffs for training a Good–Turing and a mod-

ified Kneser–Ney smoothed model to be used with EP. The cut-

offs removed all 3-g seen only once and all 4-g seen fewer than

three times. With KNG, we trained the largest model we practi-

cally could with our implementation. KP was used with the full

4-g unmodified Kneser–Ney model and RKP was used with the

full 4-g modified Kneser–Ney model as well as the KNG model.

Again, we created models of three different sizes.

The audio data for the Finnish speech recognition experiment

was taken from the SPEECON corpus [27]. Only adult speakers

in clean recording conditions were used. The training set con-

sisted of 26 h of material by 207 speakers. The development

set was 1 h of material by 20 different speakers and evaluation

set 1.5 h by set of 31 new speakers. Only full sentences without

mispronunciations were used in the development and evaluation

sets.

The HUT speech recognizer [28] is based on decision-tree

state-clustered hidden Markov triphone models with contin-

uous-density Gaussian mixtures. Each clustered state was

additionally associated with a gamma probability density func-

tion to model the state durations. The decoder has an efficient

Fig. 3. Cross-entropy results on the Finnish text corpus. Note that the reported
cross-entropy and perplexity values are normalized per word.

Fig. 4. Cross-entropy results on the English text corpus.

time-synchronous, beam-pruned Viterbi token-passing search

through a static reentrant lexical prefix tree.

B. Results

For each model , we computed the cross-entropy with

previously unseen text data containing words

(12)

The relation to perplexity is . The cross-en-

tropy and perplexity results for Finnish and English are shown

in Figs. 3 and 4. Note that in the Finnish case, the entropy is

measured as bits per word, and perplexity as word perplexity

even if the Finnish models operate on subword units. Normal-

izing entropies and perplexities on whole-word level keeps the

values comparable with other studies that might use different

word splitting (or no splitting at all). Finnish models were also

evaluated on a speech recognition task, and the results are shown

in Fig. 5. We report letter error rates (LER) instead of word error

rates (WER), since LER provides finer resolution for Finnish
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Fig. 5. Results of the Finnish speech recognition task. Note that we report the
letter error rate and not the language model token error rate.

Fig. 6. Distribution of N -grams of different orders in RKP and KNG models
for Finnish. Orders up to 10 are shown. The highest order in any model was 16.

words, which are often long because of compound words, inflec-

tions, and suffixes. The best obtained LER 4.1% corresponds to

WER of 15.1%.

We performed a pairwise one-sided signed-rank Wilcoxon

test to see the significance of the differences with

to selected pairs of models. In Finnish cross-entropy experi-

ments, the KNG models were significantly better than the RKP

models and the entropy pruned Good–Turing models for all

but the small models. The RKP model was significantly better

than Good–Turing model for all but the small models. In Eng-

lish cross-entropy experiments, all differences between simi-

larly sized Good–Turing, RKP, and KNG models were signif-

icant. In Finnish speech recognition tests, the KNG model was

not significantly better than the RKP model. The RKP model

was significantly better than the Good–Turing model only for

the full model.

C. Discussion

In the Finnish cross-entropy results (Fig. 3), we can see that

EP and KP degrade the Kneser–Ney-smoothed model rapidly

when compared to pruning the Good–Turing-smoothed model.

We believe that this is due to two reasons. In Kneser–Ney

smoothing, the backoff distributions are optimized for the cases

that higher orders do not cover. Thus, the backoff distributions

should be modified when -grams are removed from the

model. KP does that, EP does not. However, fixing the backoff

distributions does not help if wrong -grams are removed.

Both KP and EP assume that the cost of pruning an -gram

from the model is independent of the other pruning operations

performed on the model. This approximation is reasonable for

Good–Turing smoothing. In Kneser–Ney smoothing, this is not

the case, as the lower order distributions should be corrected to

take into account the removal of higher order -grams.

RKP addresses both of these issues and maintains good per-

formance both for the full Kneser–Ney smoothed model and the

grown model. Since the largest KNG model has lower entropy

than the full 5-g model, the KNG model must benefit from

higher-order -grams. The advantage is also maintained for

the pruned models. Fig. 6 shows how -grams are distributed

on different orders in RKP and KNG models for Finnish.

For heavily pruned models, the distributions become almost

identical.

Note that for highly inflecting and compounding languages,

such as Finnish, the entropy and perplexity values measured on

the whole-word level are naturally higher than corresponding

English values. This is simply because inflected and com-

pounded words increase the number of distinct word forms.

Thus, a Finnish translation typically contains fewer but longer

words than the corresponding English sentence.3 In our test

sets, the average number of words per sentence was 11 for

Finnish and 20 for English. The sentence entropies for the best

models were around 160 bits regardless of the language. Thus,

the Finnish word entropy is almost twice the English word

entropy, and the perplexity is almost squared.

Also in the English case (Fig. 4), EP and KP seem to de-

grade results rapidly. Surprisingly, the largest entropy pruned

Kneser–Ney model seems to give a good result when compared

to other models. That model is actually unpruned, except for

count cutoffs. As mentioned in the previous section, count cut-

offs were used only for being able to build larger models for EP.

The result is in line with [7] where it was reported that count cut-

offs can produce better results than plain EP if only light pruning

is desired. Preliminary experiments indicate that small cutoffs

also improve RKP and KNG.

In speech recognition (Fig. 5), EP and KP degrade the full

Kneser–Ney model considerably, too. For example, medium-

sized KNG and RKP models have about the same error rate

as the large-sized EP and KP models that are almost one order

of magnitude larger. Further experiments would be needed for

reliably finding out the relative performances of RKP, KNG, and

entropy pruned Good–Turing models.

V. CONCLUSION

This work demonstrated that existing pruning algorithms

for -gram language models contain some approximations

that conflict with the state-of-the-art Kneser–Ney smoothing

algorithm. We described a new pruning algorithm, which

in contrast to the previous algorithms takes Kneser–Ney

smoothing into account already when selecting the -grams

to be pruned. We also described an algorithm for building

3For example, the six-word sentence The milk is in the fridge translates into
a three-word sentence in Finnish: Maito on jääkaapissa
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variable-length Kneser–Ney smoothed models incrementally,

which avoids collecting all -gram counts up to a fixed

maximum length. Experiments on Finnish and English text

corpora showed that the proposed pruning algorithm gives

significantly lower cross-entropies when compared to the

previous pruning algorithms, and using the growing algorithm

improves the results further. In a Finnish speech recognition

task, the proposed algorithms significantly outperformed the

previous pruning methods on Kneser–Ney smoothed models.

The slight improvement over the entropy pruned Good–Turing

smoothed models turned out not to be statistically significant.

The software for pruning and growing will be published at

http://www.cis.hut.fi/projects/speech/.
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