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Abstract

A backward-wave slab based on a capacitively and inductively loaded three-dimensional transmission-line network is designed in such a way
that impedance-matching with free space is obtained. To enable field propagation from free space to the network and vice versa, the use of
a transition layer is proposed. Matching of the designed network with free space and negative refraction occurring at the slab interfaces are

confirmed with full-wave simulations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

As suggested by Veselago [1], a material with negative per-
mittivity & and permeability © (a backward-wave material) can
be used as a flat lens that focuses propagating electromagnetic
waves. Due to the negative ¢ and p, the wave propagation in
this material differs significantly from any material found in
nature, since the phase and group velocities are antiparallel.
Furthermore, as shown by Pendry [2], a slab of such material
can be used as a superlens that, besides focusing the propagat-
ing waves, enhances the evanescent waves of a source.

First experimental demonstration of negative refraction, that
occurs on the interface between a material with positive ¢ and
@ and a material with negative ¢ and p, was achieved with a
slab made of a composite material consisting of metal wires and
split-ring-resonators [3]. The use of resonant particles in creat-
ing the wanted negative p has the drawback of very narrow
operation bandwidth and high sensitivity to losses. An alter-
native approach to creating a “material” with negative ¢ and
W, based on networks of loaded transmission lines (TLs), has
been proposed [4,5]. The benefit of this approach is the fact
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that the exotic wave propagation is not due to use of resonant
particles and thus the operational bandwidth and losses are not
so critical issues. The drawback of such structures in superlens
applications is that coupling of waves from free space to such a
network is not trivial. Indeed, superlenses proposed in the litera-
ture, that are based on the TL-method, have mostly used sources
which are embedded in a TL network as well, see, e.g., [6].
Recently, also three-dimensional extensions of the TL-method
have been proposed [7-11] and realized [11,12].

Recently, a design of a TL network with negative index of
refraction, that can be matched with free space, was proposed
[13]. This approach can be realized for two-dimensional TL
networks, i.e., a set of two-dimensional TL networks can be
stacked on top of each other creating a volumetric slab. In this
Letter, we propose a transition layer to couple waves from free
space to a TL network such as proposed in [6] (two-dimensional
TL network) and in [9] (three-dimensional TL network). The
transition layer is effectively an array of antennas that covers
the whole interface between free space and the TL network.
This approach, as compared to the previous design [13], has
the benefit of freedom in the design of the TL network, since
the network itself does not have to be coupled with free space.
Moreover, there are no parasitic forward waves, since fields are
concentrated in the TLs only.
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2. Design of the loaded transmission-line network

In this Letter we study the structure presented in [9,12], al-
though the proposed method of matching a TL network with
free space can be used for other types of networks as well,
see, e.g., [14]. In [14] this method was used to match an un-
loaded TL network with free space in order to obtain broadband
cloaking of small objects in the microwave region. As com-
pared to the previous designs in [9,12], here we do not have
an unloaded network representing a material with positive &
and pu, but instead, a transition layer that enables electromag-
netic waves from free space to propagate into the TL network
and vice versa.

To optimize matching with free space, we need to design
the TL network in such a way that its impedance equals that
of free space (120 Q =~ 377 ). Using the previously de-
rived dispersion and impedance equations [9], we have found
suitable dimensions and parameters for the network operation
in the microwave region, see Table 1. The reader should note
that throughout this Letter we assume the lossless situation. For
analysis of this type of networks with taking into account the
losses see, e.g., [10].

The resulting dispersion and impedance curves are presented
in Fig. 1. From Fig. 1 we can conclude that the optimal opera-
tion frequency for the network studied in this example case is
around 4 GHz, since there we obtain matching of the wavenum-
bers and impedances of the network and free space. The op-
eration frequency can be changed by varying the values of the
lumped capacitances (C) and inductances (L) and by tuning the
impedance of the transmission lines.

Although in Fig. 1(a) only the axial propagation is plotted
(the total wavenumber k = k; while k; = ky, = 0), the network
can be considered to be isotropic in a relatively large band near
the operating frequency, as was shown in [10]. The isotropy is
achieved at frequencies at which the period of the network is
much smaller than the wavelength inside the network. Isotropy
of these networks is discussed more thoroughly in [10].

3. Transition layer and simulation model

As the TL network that is used here is similar to previous de-
signs [9,12], it can be conveniently realized using the microstrip
technology. The transition layer can therefore be realized with
parallel-plate-waveguide type of TLs at the ends of the network,
as illustrated in Fig. 2(a). Naturally, this way we can obtain op-
eration for one polarization only as in [13]. The benefit of this
method is its simplicity.

We have made full-wave simulations of the proposed back-
ward-wave slab (the three-dimensional TL network with a finite
thickness) with the transition layers and sections of free space
on both sides of the slab. The simulations were done using An-
soft’s High Frequency Structure Simulator (HFSS). The studied
slab has a finite thickness in the direction of the z-axis and
is infinite in the transversal directions. The simulation of the
transversally infinite slab can be greatly simplified by using pe-
riodical boundary conditions. This way we can simulate only
one “unit cell” of the slab, as shown in Fig. 2(a).
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Fig. 1. Wavenumber (a) and impedance (b) as functions of the frequency in a
three-dimensional loaded transmission-line network with parameters as shown
in Table 1. Here k = k; (axial propagation in the network).
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Fig. 2. (Color online.) (a) HFSS model of one “unit cell” of the backward-wave
slab. (b) HFSS model of one unit cell of the backward-wave transmission-line
network. The microstrip lines of the unit cell in (b) are loaded by six capacitors
(one capacitor at each end of the line, with capacitance equal to 2C = 0.2 pF)
and one inductor (connected from the center node to the ground, with induc-
tance equal to L = 2.5 nH).

The TL network has the same parameters as shown in Ta-
ble 1. The metal strips are made of infinitely thin perfect electric
conductors and have the width of 1.3 mm with the distance from
the ground being 2 mm. Small holes are cut into the horizon-
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Fig. 3. Simulated reflection and transmission through the backward-wave slab
as a function of frequency for the normal incidence.

tal and vertical ground planes to allow wave propagation in all
axial directions, see Fig. 2(b). As shown in Fig. 2(a), the thick-
ness of the slab is five periods in the direction of the z-axis. The
width of the TLs of the transition layer gradually changes from
2 mm to 7.988 mm, with their length being 16 mm. The width
and height (in the xy-plane) of the whole simulation model,
shown in Fig. 2(a), are both equal to the period of the network,
i.e., 8 mm. The neighboring TLs of the transition layer are not
in contact, since there are approximately 12 um and 4 pm gaps
between them in the x- and y-directions, respectively.

The TLs of the transition layer are simply parallel metal
strips with their width equal to their separation, thus having ap-
proximately the impedance of free space (note that no dielectric
filling is used between the strips of the network or the transition
layer). The length of these lines can in principle be chosen ar-
bitrarily. Matching problems may arise if the transition layer is
too short, i.e., if the angle of the tapering is very large. That
is why in this example case we have chosen the length of the
TLs in the transition layer to be 16 mm. This enables relatively
smooth transition while having a reasonably short distance be-
tween free space and the TL network.

4. Simulation results

First the case of the normal incidence was studied, i.e.,
a plane wave in free space with the wave vector k parallel to
the z-axis and electric field E parallel to the y-axis illuminates
the backward-wave slab. By studying the reflection (p) and
transmission (7) coefficients, it was found that the optimal op-
eration frequency for the structure was approximately 3.6 GHz
(the frequency point where most of the power goes through
the slab). This implies that the impedance of the network was
best matched to free space at that frequency, since the transition
layer impedance does not depend on the frequency. By chang-
ing the inductance value of the lumped inductors to L = 2 nH,
the reflection and transmission curves shown in Fig. 3 were ob-
tained, showing good correspondence with Fig. 1(b).

We believe that the slight difference in the value of the induc-
tance with which operation at 4 GHz is achieved, as compared
to the analytical study, is a result of differences between the
analytical and simulation models. The analytical equations do
not take into account the finite size of the lumped elements and
the equations used to calculate the data presented in Figs. 1(a)
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Fig. 4. Simulated reflection and transmission through the backward-wave slab
as a function of the incidence angle at the frequency 4 GHz.

and 1(b) do not take into account the finite thickness of the
slab [9]. The study of this inaccuracy is out of the scope of
this Letter, since here we wish to illustrate the feasibility of the
proposed matching method as such.

From Fig. 3 it is seen that the optimal frequency of opera-
tion (for normal incidence) is approximately 4 GHz. To study
the dependence of the transmission and reflection on the inci-
dence angle, we have made simulations with the same model
for oblique plane-wave illumination. The polarization of the il-
luminating wave is kept the same, i.e., E is parallel to the y-axis
and therefore the incidence angle ¢ is the angle in the xz-plane.
See Fig. 4 for the results when ¢ = 0°...60°. We can conclude
that the transition layer operates very well also for fairly large
oblique incidence angles, although the transmission clearly re-
duces when ¢ grows.

With the model shown in Fig. 2(a) the refraction on the in-
terface between free space and the backward-wave slab may
not be visible due to the small size of the simulation model
in the transversal direction. To observe negative refraction, we
have extended the simulation model to encompass three “unit
cells” of the slab in the x-direction. See Fig. 5 for the simu-
lated phase distribution in this larger simulation model at the
frequency 4 GHz and with incidence angle of ¢ = 30°. The rel-
ative refractive index of the slab seems to be close to —1, which
is expected based on the dispersion curve shown in Fig. 1(a).

Preliminary simulations show that at least for small angles
of incidence also in the yz-plane (angle 0), the transition layer
operates well. For instance, for the incidence angle of 6 = 20°
(with ¢ = 0°) the reflection from the backward-wave slab is
below —15 dB at the frequency 4 GHz.

5. Conclusions

We have proposed and studied a transition layer for match-
ing a slab of a backward-wave transmission-line network with
free space. We have analytically studied how the network im-
pedance can be tuned to match that of free space. The proposed
network and transition layer have been simulated using a com-
mercial full-wave simulator. The simulation results show that
the layer can be used to match a backward-wave transmission-
line network with free space and verify the negative refraction
occurring at the interfaces between free space and the net-
work.
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Fig. 5. (Color online.) Simulated phase distribution in free space and inside the backward-wave slab, at the frequency 4 GHz. Incidence angle ¢ = 30°.
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