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Abstract

We use low order approximations, piecewise linear, continuous velocities and piecewise constant pressures to compute solutions
to Brinkman’s equation of porous media flow, applying an edge stabilization term to avoid locking. In order to handle the limit-
ing case of Darcy flow, when only the velocity component normal to the boundary can be prescribed, we impose the boundary
conditions weakly using Nitsche’s method [J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Ver-
wendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg 36 (1971) 9–15]. We show that this leads to a stable method for all choices of material parameters. Finally we
present some numerical examples verifying the theoretical predictions and showing the effect of the weak imposition of boundary
conditions.
© 2008 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The Brinkman equations model creeping flow in porous media and can be seen as a mixture of Darcy’s equations
and Stokes’ equations. The behavior of solutions to the Brinkman equations will be controlled by the ratio of perme-
ability (in Darcy) to viscosity (Stokes), and it is desirable from a numerical point of view to develop methods that
can handle the whole range of possible ratios, from the pure inviscid Darcy problem to the Stokes problem with full
(infinite) permeability. In doing so, we are led to formulate the Darcy equations in mixed form using velocities and
pressure as variables, as is done in the Stokes case. One problem that then arises is the fact that a good method for the
Stokes problem may perform badly, or not even work, in the case of a mixed form of the Darcy problem, see Mardal,
Tai, and Winther [9]. In [6], this problem was overcome by using a stabilized method that was shown to be convergent
for both Darcy and Stokes; the same method will be used in the present study. Another inconvenient fact, from the
point of view of numerical implementation, is that the Darcy equations do not admit the same boundary conditions as
the Stokes equations: in the Darcy case only the velocity normal to the boundary can be prescribed, whereas no-slip
boundary conditions are usually employed for Stokes. In this paper we suggest a remedy to this last inconvenience:
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the use of weakly prescribed Dirichlet boundary conditions for the velocities using Nitsche’s method [10]. The same
approach was also used for Oseen’s problem by Burman, Fernández, and Hansbo [5], but with a different focus.

Weakly imposed Dirichlet boundary conditions, first proposed for flow problems by Freund and Stenberg [7], have
been shown to be advantageous for convection–diffusion problems with outflow layers, already in [7] and later in the
work of Burman [3], in that it will lead to discontinuous jumps in the solution at the boundary rather than forcing
a continuous numerical solution to mimic discontinuities. It has also been promoted by Bazilevs and Hughes [1] as
an alternative to wall function models in turbulent channel flow, allowing for limited slip at the boundary. In these
cases, the balance between a first order term (convection) and a second order term (diffusion/viscosity) is the factor
that favors weak boundary conditions; in our case it is the balance between a zero order term (in Darcy) and a second
order term (in Stokes). The idea is thus more general and its full potential awaits exploitation.

We will consider the following Brinkman model of porous flow

σu − ∇ · (μ∇u) + ∇p = f in Ω,

∇ · u = 0 in Ω, (1)

where Ω is an open, bounded subset of R
d , u denotes the average fluid velocity in the porous medium, σ the viscosity

divided by the permeability, μ the effective viscosity, p the pressure, and f is a given forcing term. We assume that
Ω has polygonal boundary ∂Ω and that the boundary is divided into two non-overlapping sets ∂Ω = ΓD ∪ ΓN . The
respective boundary conditions are

u = u0 on ΓD,

μ∂nu − pn = g on ΓN, (2)

where g = gnn + μgt , with gn a scalar and gt a vector in the plane perpendicular to n. In other words we prescribe
only the normal component of the Neumann condition in Darcy limit μ = 0. Furthermore we assume that the measure
of ΓD is not zero i.e. we always have some Dirichlet boundary.

The side condition ∇ ·u = 0 requires that some care is taken in the choice of approximating spaces in order to avoid
over-constraining the problem. Here we shall use a stabilized scheme proposed for Stokes by Hughes and Franca [8],
and for Darcy by Burman and Hansbo [6] (cf. also Burman [4] for a discussion of related methods). In this paper we
apply this mixed stabilized method to the Brinkman equations with weakly imposed boundary conditions and prove
optimal a priori estimates in the energy norm. We also give an a posteriori error estimate and adaptive algorithm for
energy norm control of the computational error. Finally, we give some numerical examples showing the performance
of the method and the adaptive algorithm.

2. Finite element formulation

In order to formulate our finite element method we first introduce the weak formulation of problem (1). We intro-
duce the Hilbert spaces

Wu0 = {
v ∈ [

H 1(Ω)
]d s.t. v|ΓD

= u0
}
,

and

L2
0 =

{
q ∈ L2(Ω) s.t.

∫
Ω

q dx = 0

}
.

We denote the product space Wu0 × L2
0 by Wu0 and define the following norm on Wu0 ,∥∥(u,p)

∥∥2
W = σ‖u‖2

0,Ω + μ‖u‖2
1,Ω + ‖∇ · u‖2

0,Ω + ‖p‖2
0,Ω .

Consider the bilinear form

B
[
(u,p), (v, q)

] = (μ∇u,∇v)0,Ω + (σu,v)0,Ω − (p,∇ · v)0,Ω − (q,∇ · u)0,Ω . (3)

The weak formulation of (1) now takes the form, find (u,p) ∈ Wu0 such that

B
[
(u,p), (v, q)

] = (f ,v)0,Ω + (g,v)0,ΓN
∀(v, q) ∈ W0. (4)
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Let T h be a conforming, shape regular triangulation of Ω . With K we denote an element of the triangulation and with
E an edge/face of the triangulation. By hK and hE we denote the size of an element or edge/face, respectively, and by
h we denote the size of the largest element in T h. We introduce the two classical finite element spaces of piecewise
linears and piecewise constants

V h = {
v s.t. v|K ∈ P1(K), v ∈ C0(Ω)

}
,

Qh =
{
q s.t. q|K ∈ P0(K),

∫
Ω

q dx = 0

}
.

The velocity field will be sought in Wh = [V h]d and the pressure field in Qh. In analogy with the notation above we
use the notation W h := Wh × Qh. We introduce the following bilinear and linear forms on which we will base our
finite element method:

Bh
[
(u,p), (v, q)

] = (μ∇u,∇v)0,Ω + (σu,v)0,Ω − (p,∇ · v)0,Ω − (q,∇ · u)0,Ω − Jh(p, q)

− (μ∂nu,v)0,ΓD
− (μu, ∂nv)0,ΓD

+ (
μγμh−1u,v

)
0,ΓD

+ (p,v · n)0,ΓD
+ (u · n, q)0,ΓD

+ (
γσ h−1u · n,v · n)

0,ΓD
(5)

and

Lh
[
(v, q)

] := (f ,v)0,Ω + (g,v)0,ΓN
− (u0, ∂nv)0,ΓD

+ (
u0,μγμh−1v

)
0,ΓD

+ (u0 · n, q)0,ΓD
+ (

u0 · n, γσ h−1v · n)
0,ΓD

, (6)

where

Jh(p, q) = δ
∑

(E∈T h)\∂Ω

hE

([p], [q])0,E
, (7)

with [·] denoting the jump over the element edge (taken on the interior edges only). Above, and in what follows, in
the inner product h = h(x) i.e. h correspond to the element under integration, not to the global maximum. We propose
the following finite element formulation: find (uh,ph) ∈ W h such that

Bh
[(

uh,ph
)
,
(
vh, qh

)] = Lh
[(

vh, q
)] ∀(

vh, qh
) ∈ W h. (8)

This finite element formulation is simply the standard Galerkin formulation with Nitsche boundary conditions and the
penalizing term Jh(p, q) added. In the following we will assume that the pressure is in H 1(Ω): then the penalizing
term is consistent and we have the following

Lemma 2.1. If (u,p) is a weak solution to (1) with (u,p) ∈ W × H 1(Ω) ∩ L2
0 then

Bh
[(

u − uh,p − ph
)
,
(
vh, qh

)] = 0 ∀(
vh, qh

) ∈ W h. (9)

Proof. Immediate by noting that if p ∈ H 1(Ω) then the trace of p is well defined and hence Jh(p, qh) = 0 for all
qh ∈ Qh. �
3. Stability

Since it is a well known fact that the above choice of finite element spaces results in an ill posed discrete problem
if used in a standard Galerkin method, the crucial point is to show that our stabilization operator Jh(p, q) introduces
sufficient coupling between the degrees of freedom in the pressure field such that an inf–sup condition is satisfied.
This was done for Darcy in [6], using the standard way of handling Dirichlet boundary conditions. Here, we extend
the analysis of [6] to the Brinkman model with weakly imposed Dirichlet boundary conditions.

In the analysis, we will use the following norms:∥∥(u,p)
∥∥2

h
:= ∥∥(u,p)

∥∥2
W + Jh(p,p) + μ‖u‖2

1/2,h,ΓD
+ ‖u · n‖2

1/2,h,ΓD
, (10)∣∣∣∣∣∣(u,p)

∣∣∣∣∣∣2 := ∥∥(u,p)
∥∥2 + μ‖u‖2−1/2,h,Γ , (11)
h h D
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where

‖v‖2
1/2,h,ΓD

:= (
h−1v, v

)
0,ΓD

and ‖v‖2−1/2,h,ΓD
:= (hv, v)0,ΓD

.

Note that the norms contain the L2-norm of ∇ · u; this term is superfluous for Stokes since we already control the
H 1-norm of the velocities, but of vital importance for Darcy. In fact, the control of the divergence is what allows us
to prove optimal error estimates in the energy norm for sufficiently regular solutions. In what follows we will use the
following well known estimates:

(∂nv,w)0,∂Ω � ‖∂nv‖−1/2,h,∂Ω‖w‖1/2,h,∂Ω ∀v,w ∈ V h, (12)

‖∂nv‖2−1/2,h,∂Ω � CI‖∇v‖2
0,Ω ∀v ∈ V h, (13)

‖∇ · v‖2−1/2,h,∂Ω � CII‖∇ · v‖2
0,Ω ∀v ∈ V h. (14)

Note that due to estimate (13) the norms ‖ · ‖h and ||| · |||h are equivalent on the finite element subspace.
In the following, we will let C denote a generic positive constant whose value may change from instance to instance.
The main result of this section is the following theorem, assuring the well-posedness of our discretization.

Theorem 3.1. Assume γμ > CI and γσ > 0. Then the finite element formulation (8) satisfies the following inf–sup
condition

α
∥∥(

uh,ph
)∥∥

h
� sup

(vh,qh)∈W h

Bh[(uh,ph), (vh, qh)]
‖(vh, qh)‖h

, ∀(
uh,ph

) ∈ W h.

Proof. The idea of the proof is to acquire control of the different terms of the energy norm with different choices of
test functions and finally combine the choices using the linearity of the bilinear form.

Step 1. Taking first (vh, qh) = (uh,−ph) we obtain

Bh
[(

uh,ph
)
,
(
uh,−ph

)] = μ
∥∥∇uh

∥∥2
0,Ω

+ σ
∥∥uh

∥∥2
0,Ω

+ Jh
(
ph,ph

) − 2
(
μ∂nu

h,uh
)

0,ΓD

+ γμμ
∥∥uh

∥∥2
1/2,h,ΓD

+ γσ

∥∥uh · n∥∥2
1/2,h,ΓD

.

Using Young’s inequality and estimates (12) and (13) we get

Bh
[(

uh,ph
)
,
(
uh,−ph

)]
�

(
1 − CI

ε

)
μ

∥∥∇uh
∥∥2

0,Ω
+ σ

∥∥uh
∥∥2

0,Ω
+ Jh

(
ph,ph

)
+ (γμ − ε)μ

∥∥uh
∥∥2

1/2,h,ΓD
+ γσ

∥∥uh · n∥∥2
1/2,h,ΓD

,

where ε > 0 is a parameter from Young’s inequality. Our assumption is that γμ > CI . Therefore we can choose
CI < ε < γμ and we have

Bh
[(

uh,ph
)
,
(
uh,−ph

)]
� C1μ

∥∥∇uh
∥∥2

0,Ω
+ σ

∥∥uh
∥∥2

0,Ω
+ Jh

(
ph,ph

)
+ C2μ

∥∥uh
∥∥2

1/2,h,ΓD
+ γσ

∥∥uh · n∥∥2
1/2,h,ΓD

. (15)

Step 2. We are still missing the control of the pressure and the divergence of the velocity. To gain control over
the pressure we note that as a consequence of the surjectivity of the divergence operator there exists a function
vp ∈ [H 1

0 (Ω)]d such that ∇ · vp = ph and

‖vp‖1,Ω � C
∥∥ph

∥∥
0,Ω

. (16)

Let πhvp denote the Scott–Zhang interpolant (cf. [2]) of vp onto [V h
0 ]d , where

V h
0 := {

v s.t. v|K ∈ P1(K), v ∈ C0(Ω), v = 0 on ∂Ω
}
.

By the stability of the interpolant we have∥∥πhvp

∥∥ � c̃
∥∥ph

∥∥ . (17)
1,Ω 0,Ω
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We now choose the test function to be (vh, qh) = (−πhvp,0). Adding

0 = ∥∥ph
∥∥2

0,Ω
− (

ph,∇ · vp

)
0,Ω

and recalling that πhvp vanishes on the boundary we obtain

Bh
[(

uh,ph
)
,
(−πhvp,0

)] = −μ
(∇uh,∇πhvp

)
0,Ω

− σ
(
uh,πhvp

)
0,Ω

+ ∥∥ph
∥∥2

0,Ω

+ (
ph,∇ · (πhvp − vp

))
0,Ω

+ μ
(
uh, ∂nπ

hvp

)
0,ΓD

.

Integrating the fourth term by parts on each element K we get

Bh
[(

uh,ph
)
,
(
πhvp,0

)] = −μ
(∇uh,∇πhvp

)
0,Ω

− σ
(
uh,πhvp

)
0,Ω

+ ∥∥ph
∥∥2

0,Ω

+
∑

K∈T h

1

2

([
ph

]
,
(
πhvp − vp

) · n)
0,∂K

+ μ
(
uh, ∂nπ

hvp

)
0,ΓD

.

Splitting the inner products using Schwarz inequality, followed by Young’s inequality, we have

Bh
[(

uh,ph
)
,
(
πhvp,0

)]
� − 1

2ε
μ

∥∥∇uh
∥∥2

0,Ω
− ε

2
μ

∥∥∇πhvp

∥∥2
0,Ω

− 1

2ε
σ
∥∥uh

∥∥2
0,Ω

− ε

2
σ
∥∥πhvp

∥∥2
0,Ω

+ ∥∥ph
∥∥2

0,Ω
− 1

2ε
μ

∥∥uh
∥∥2

1/2,h,ΓD
− ε

2
μ

∥∥∂nπ
hvp

∥∥2
−1/2,h,ΓD

− 1

2δε
J h

(
ph,ph

) − ε

2

∑
(E∈T h)\∂Ω

hE

∥∥(
πhvp − vp

) · n∥∥2
0,E

.

Using estimate (13) and the stability of the interpolate (17) we get

Bh
[(

uh,ph
)
,
(
πhvp,0

)]
� − 1

2ε
μ

∥∥∇uh
∥∥2

0,Ω
− 1

2ε
σ
∥∥uh

∥∥2
0,Ω

+
(

1 − ε

2
(μc̃ + σ c̃ + μc̃CI )

)∥∥ph
∥∥2

0,Ω

− 1

2ε
μ

∥∥uh
∥∥2

1/2,h,ΓD
− 1

2δε
J h

(
ph,ph

) − ε

2

∑
(E∈T h)\∂Ω

hE

∥∥(
πhvp − vp

) · n∥∥2
0,E

.

To conclude we need the following trace inequality, cf. [11],

‖w · n‖2
0,∂K � C

(
h−1‖w‖2

0,K + h‖w‖2
1,K

) ∀w ∈ [
H 1(K)

]d
, (18)

from which we deduce, using (16),∑
(E∈T h)\∂Ω

hE

∥∥(
πhvp − vp

) · n∥∥2
0,E

� C
∑

K∈T h

‖vp‖2
1,Ω � C

∥∥ph
∥∥2

0,Ω
.

Using the inequality above we obtain

Bh
[(

uh,ph
)
,
(
πhvp,0

)]
� − 1

2ε
μ

∥∥∇uh
∥∥2

0,Ω
− 1

2ε
σ
∥∥uh

∥∥2
0,Ω

+
(

1 − ε

2
(μc̃ + σ c̃ + μc̃CI + C)

)∥∥ph
∥∥2

0,Ω

− 1

2ε
μ

∥∥uh
∥∥2

1/2,h,ΓD
− 1

2δε
J h

(
ph,ph

)
.

Setting 0 < ε < 2/(μc̃ + σ c̃ + μc̃CI + C) we finally have

Bh
[(

uh,ph
)
,
(
πhvp,0

)]
� −C3μ

∥∥∇uh
∥∥2

0,Ω
− C3σ

∥∥uh
∥∥2

0,Ω
+ C4

∥∥ph
∥∥2

0,Ω

− C3μ
∥∥uh

∥∥2
1/2,h,ΓD

− C3

δ
J h

(
ph,ph

)
. (19)

Step 3. The divergence of the velocity is already contained in the H 1–norm of the velocity if μ > 0 but we want to
have the control of the divergence even if μ = 0.

The control of ‖∇ · uh‖2 is obtained choosing (vh, qh) = (0,−∇ · uh), which leads to
0,Ω
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Bh
[(

uh,ph
)
,
(
0,−∇ · uh

)] = ∥∥∇ · uh
∥∥2

0,Ω
+ Jh

(
ph,∇ · uh

) − (∇ · uh,uh · n)
0,ΓD

�
∥∥∇ · uh

∥∥2
0,Ω

−
∑

(E∈T h)\∂Ω

ξ

2
δ
∥∥∇ · uh

∥∥2
−1/2,h,E

− 1

2ξ
J h

(
ph,ph

)

− ξ

2

∥∥∇ · uh
∥∥2

−1/2,h,ΓD
− 1

2ξ

∥∥uh · n∥∥2
1/2,h,ΓD

.

Using estimate (14) we get

Bh
[(

uh,ph
)
,
(
0,−∇ · uh

)]
�

(
1 − ξ

2
CII(1 + δ)

)∥∥∇ · uh
∥∥2

0,Ω
− 1

2ξ
J h

(
ph,ph

) − 1

2ξ

∥∥uh · n∥∥2
1/2,h,ΓD

. (20)

Step 4. Now we have control over all the terms in the energy norm separately. Finally we take (vh, qh) = (βuh −
πhvp,βph − ∇ · uh). Combining the results (15), (19) and (20) we get

Bh
[(

uh,ph
)
,
(
vh, qh

)]
� (βC1 − C3)μ

∥∥∇uh
∥∥2

0,Ω
+ (β − C3)σ

∥∥uh
∥∥2

0,Ω
+ C4

∥∥ph
∥∥2

0,Ω

+
(

1 − ξ

2
CII(1 + δ)

)∥∥∇ · uh
∥∥2

0,Ω
+

(
β − 1

2ξ
− C3

δ

)
Jh

(
ph,ph

)
+ (βC2 − C3)μ

∥∥uh
∥∥2

1/2,h,ΓD
+

(
βγ0 − 1

2ξ

)∥∥uh · n∥∥2
1/2,h,ΓD

.

The fourth term on the right-hand side is positive if the parameter from Young’s inequality is ξ < 2/(CII(1 + δ)).
With this the rest of the terms are positive if β > C3/C1, β > C3, β > CII(1 + δ) + C3/δ, β > C3/C2, and
β > CII(1 + δ)/γ0. Then we have that

Bh
[(

uh,ph
)
,
(
vh, qh

)]
�

∣∣∣∣∣∣(uh,ph
)∣∣∣∣∣∣2

h

and the claim follows since there exists C > 0 such that |||(uh,ph)|||h � C|||(vh, qh)|||h. �
Note that the Nitsche stability parameter γσ forcing the Darcy problems boundary conditions has no lower bound.

This holds even on Darcy limit μ = 0.
In the rest of the paper we assume that the stability requirement is satisfied, i.e. we make the following assumption.

Assumption 3.2. The real parameter γμ satisfies γμ > CI .

4. Error analysis

4.1. A priori estimates

First of all, we note that applying the trace inequality (18) we easily derive the following approximation property
for couples of functions (u,p) ∈ [H 2(Ω)]d × H 1(Ω),∣∣∣∣∣∣(u − πhu,p − πhp

)∣∣∣∣∣∣
h

� Ch
(‖u‖2,Ω + ‖p‖1,Ω

)
, (21)

where (πhu,πhp) ∈ W h denotes the interpolates. Without proof we also state the continuity of the bilinear form.

Lemma 4.1. For all (u,p), (v, q) ∈ W it holds

Bh
[
(u,p), (v, q)

]
� C

∣∣∣∣∣∣(u,p)
∣∣∣∣∣∣

h

∣∣∣∣∣∣(v, q)
∣∣∣∣∣∣

h
. (22)

The main result in this section is the following lemma.

Lemma 4.2. Assume that the solution (u,p) to the problem (1) resides in [H 2(Ω)]d × H 1(Ω) ∩ L2
0(Ω); then the

finite element solution (8) satisfies the error estimate∥∥(
u − uh,p − ph

)∥∥
h

� Ch
(‖u‖2,Ω + ‖p‖1,Ω

)
.
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Proof. In view of the approximation property (21) we only need to show the inequality for |||(uh −πhu,ph −πhp)|||.
By the stability, see Theorem 3.1, there exist a pair (vh, qh) ∈ W h such that ‖(vh, qh)‖h = 1 and∥∥(

uh − πhu,ph − πhp
)∥∥

h
� α−1Bh

[(
uh − πhu,ph − πhp

)
,
(
vh, qh

)]
.

Using the Galerkin orthogonality, see Lemma 2.1, we obtain∥∥(
uh − πhu,ph − πhp

)∥∥
h

� α−1Bh
[(

u − πhu,p − πhp
)
,
(
vh, qh

)]
.

Furthermore, using the continuity of the bilinear form, Eq. (22), and recalling that the energy norms are equivalent in
the finite element subspace, we have∥∥(

uh − πhu,ph − πhp
)∥∥

h
� α−1C

∣∣∣∣∣∣(u − πhu,p − πhp
)∣∣∣∣∣∣

h
.

Now the claim follows by the approximation property (21). �
4.2. A posteriori estimate

In this section we propose and prove the a posteriori estimate in the energy norm. In what follows we will need
two meshes. The original mesh T h and mesh T h/2 derived from the original mesh by splitting the elements. By pair
(uh,ph) we denote the solution on the mesh T h and by (uh/2,ph/2) the solution on the mesh T h/2. The proof is
based on the following saturation assumption.

Assumption 4.3 (Saturation assumption). There exists 0 < β < 1 such that∥∥(
u − uh/2,p − ph/2)∥∥

h/2 � β
∥∥(

u − uh,p − ph
)∥∥

h
. (23)

We note that this assumption is asymptotic in nature and cannot be expected to hold is there are unresolved features
in the flow. However, this does not mean that unresolved features will not be detected (being a residual-based estimate
it will still signal large errors where the residual is large), only that there will be a lack of sharpness of the estimate
outside the asymptotic range.

The residual based elementwise estimator is defined as

EK

[(
uh,ph

)]2 := h2
K

μ + σh2
K

∥∥∇ · μ∇uh − σuh − ∇̂ph + f
∥∥2

0,K
+ ∥∥∇ · uh

∥∥2
0,K

+ μhE

∥∥[
∂nu

h
]∥∥2

0,∂K\∂Ω
+ hE

∥∥[
ph

]∥∥2
0,∂K\∂Ω

+ μhE

∥∥gt − ∂nu
h + (

∂nu
h · n)

n
∥∥2

0,∂K∩ΓN
+ μh−1

E

∥∥u0 − uh
∥∥2

0,∂K∩ΓD

+ hE

∥∥gn + ph − μ∂nu
h · n∥∥2

0,∂K∩ΓN
+ h−1

E

∥∥u0 · n − uh · n∥∥2
0,∂K∩ΓD

, (24)

where the approximate gradient of pressure ∇̂ph ∈ Wh is defined as the solution to(−∇̂ph,v
)

0,Ω
= (

ph,∇ · v)
0,Ω

− (
ph,v · n)

0,∂Ω
∀v ∈ Wh. (25)

We then have the following result.

Theorem 4.4. Under the Assumptions 3.2 and 4.3 it holds

∥∥(
u − uh,p − ph

)∥∥
h

� C

( ∑
K∈T h

EK

[(
uh,ph

)]2
)1/2

. (26)

Proof.

Step 1. By the triangle inequality and the saturation Assumption 4.3 we have∥∥(
u − uh,p − ph

)∥∥
h

� 1 ∥∥(
uh/2 − uh,ph/2 − ph

)∥∥
h/2. (27)
1 − β
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Hence it is sufficient to bound ‖(uh/2 − uh,ph/2 − ph)‖h/2. By the stability, Theorem 3.1, we know that there exists
(vh/2, qh/2) ∈ W h/2 such that

α
∥∥(

uh/2 − uh,ph/2 − ph
)∥∥

h/2 � Bh/2[(uh/2 − uh,ph/2 − ph
)
,
(
vh/2, qh/2)] (28)

and ‖(vh/2, qh/2)‖h/2 = 1. Let (vh, qh) ∈ W h be an interpolate to (vh/2, qh/2) ∈ W h/2. To simplify the notation we
denote

w := vh/2 − vh and r := qh/2 − qh.

By scaling arguments one obtains∑
K∈T h/2

{(
σ + μh−2

K

)‖w‖2
0,K + ‖∇ · w‖2

0,K + ‖r‖2
0,K + μhK‖∂nw‖2

0,∂K

+ hK‖r‖2
0,∂K + μh−1

K ‖w‖2
∂K + h−1

K ‖w · n‖2
∂K

}
� C

∥∥(
vh/2, qh/2)∥∥2

h/2 � C. (29)

Combining Eqs. (27) and (28), and using the interpolate to split the bilinear form into two parts, we get

C
∥∥(

u − uh,p − ph
)∥∥

h
� Bh/2[(uh/2 − uh,ph/2 − ph

)
,
(
vh/2, qh/2)]

= Bh/2[(uh/2 − uh,ph/2 − ph
)
, (w, r)

] + Bh/2[(uh/2 − uh,ph/2 − ph
)
,
(
vh, qh

)]
= W1 + W2. (30)

Step 2. We bound the terms W1 and W2 separately, starting with W1. Since (uh/2,ph/2) is the solution to the problem,
we have

W1 = Lh/2[(w, r)
] − Bh/2[(uh,ph

)
, (w, r)

]
= (f ,w)0,Ω + (g,w)0,ΓN

+ (
u0, γμμ2h−1w

)
0,ΓD

− (u0,μ∂nw)0,ΓD
+ (

u0 · n, γσ 2h−1w · n)
0,ΓD

+ (u0 · n, r)0,ΓD
− (

μ∇uh,∇w
)

0,Ω
− (

σuh,w
)

0,Ω
+ (

ph,∇ · w)
0,Ω

+ (∇ · uh, r
)

0,Ω

+ Jh/2(ph, r
) + (

μ∂nu
h,w

)
0,ΓD

+ (
μuh, ∂nw

)
0,ΓD

− (
γσ μ2h−1uh,w

)
0,ΓD

− (
ph,w · n)

0,ΓD
− (

uh · n, r
)

0,ΓD
− (

γσ 2h−1uh · n,w · n)
0,ΓD

. (31)

Integrating the term −(μ∇uh,∇w)0,Ω by parts in each element, and using the definition of approximate gradient of
pressure (25) we get

W1 = (
f + ∇ · μ∇uh − σuh − ∇̂ph,w

)
0,Ω

+ (∇ · uh, r
)

0,Ω
−

∑
E\∂Ω

([
μ∇uh · n]

,w
)

0,E

+
∑

E\∂Ω

([
ph

]
,w · n)

0,E
+ Jh/2(ph, r

) + (
g + phn − μ∂nu

h,w
)

0,ΓN
− (

u0 − uh,μ∂nw
)

0,ΓD

+ (
u0 − uh, γμμ2h−1w

)
0,ΓD

+ (
u0 · n − uh · n, r

)
0,ΓD

+ (
u0 · n − uh · n, γσ 2h−1w · n)

0,ΓD
. (32)

We split Eq. (32) into smaller pieces

Z1 := (
f + ∇ · μ∇uh − σuh − ∇̂ph,w

)
0,Ω

,

Z2 := (∇ · uh, r
)

0,Ω
+ Jh/2(ph, r

)
,

Z3 := −
∑

E\∂Ω

([
μ∇uh · n]

,w
)

0,E
+

∑
E\∂Ω

([
ph

]
,w · n)

0,E
,

Z4 := (
g + phn − μ∂nu

h,w
)

0,ΓN
,

Z5 := −(
u0 − uh,μ∂nw

)
0,ΓD

+ (
u0 − uh, γμμ2h−1w

)
0,ΓD

,

Z6 := (
u0 · n − uh · n, r

) + (
u0 · n − uh · n, γσ 2h−1w · n)

.
0,ΓD 0,ΓD
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Next we bound the terms Zi using the Schwarz inequality for both inner products and sums.

Z1 �
( ∑

K∈T h/2

(
σ + μh−2

K

)−1∥∥f + ∇ · μ∇uh − σuh − ∇̂ph
∥∥2

0,K

)1/2

×
( ∑

K∈T h/2

(
σ + μh−2

K

)‖w‖2
0,K

)1/2

, (33)

Z2 �
( ∑

K∈T h/2

∥∥∇ · uh
∥∥2

0,K

)1/2( ∑
K∈T h/2

‖r‖2
0,K

)1/2

+ Jh/2(ph,ph
)1/2

Jh/2(r, r)1/2, (34)

Z3 �
( ∑

(E∈T h/2)\∂Ω

μhE

∥∥[
∂nu

h
]∥∥2

0,E

)1/2( ∑
(E∈T h/2)\∂Ω

μh−1
E ‖w‖2

0,E

)1/2

+
( ∑

(E∈T h/2)\∂Ω

hE

∥∥[
ph

]∥∥2
0,E

)1/2( ∑
(E∈T h/2)\∂Ω

h−1
E ‖w · n‖2

0,E

)1/2

. (35)

The term Z4 is first split into normal and tangential components, see Eq. (2).

Z4 = (
gnn + μgt − μ∂nu

h + μ
(
∂nu

h · n)
n − μ

(
∂nu

h · n)
n,w − (w · n)n + (w · n)n

)
0,ΓN

= (
gn + ph − μ∂nu

h · n,w · n)
0,ΓN

+ (
μgt − μ∂nu

h + μ
(
∂nu

h · n)
n,w − (w · n)n

)
0,ΓN

= Z4,n + Z4,t , (36)

Z4,n �
( ∑

(E∈T h/2)∩ΓN

hE

∥∥gn + ph − μ∂nu
h · n∥∥2

0,E

)1/2( ∑
(E∈T h/2)∩ΓN

h−1
E ‖w · n‖2

0,E

)1/2

, (37)

Z4,t �
( ∑

(E∈T h/2)∩ΓN

μhE

∥∥gt − ∂nu
h + (

∂nu
h · n)

n
∥∥2

0,E

)1/2( ∑
(E∈T h/2)∩ΓN

μh−1
E ‖w‖2

0,E

)1/2

, (38)

Z5 �
( ∑

(E∈T h/2)∩ΓD

μh−1
E

∥∥u0 − uh
∥∥2

0,E

)1/2( ∑
(E∈T h/2)∩ΓD

μhE‖∂nw‖2
0,E

)1/2

+
( ∑

(E∈T h/2)∩ΓD

μh−1
E

∥∥u0 − uh
∥∥2

0,E

)1/2( ∑
(E∈T h/2)∩ΓD

μh−1
E ‖w‖2

0,E

)1/2

, (39)

Z6 �
( ∑

(E∈T h/2)∩ΓD

h−1
E

∥∥u0 · n − uh · n∥∥2
0,E

)1/2( ∑
(E∈T h/2)∩ΓD

hE‖r‖2
0,E

)1/2

+
( ∑

(E∈T h/2)∩ΓD

h−1
E

∥∥u0 · n − uh · n∥∥2
0,E

)1/2( ∑
(E∈T h/2)∩ΓD

h−1
E ‖w · n‖2

0,E

)1/2

. (40)

By the interpolation estimate (29) and since (uh,ph) has same values on both meshes, we find that

W1 � C

( ∑
K∈T h/2

EK

[(
uh,ph

)]2
)1/2

� C

( ∑
K∈T h

EK

[(
uh,ph

)]2
)1/2

. (41)

Step 3. Now we have bounded the term W1 and next we bound the term W2. Since both (uh,ph) and (uh/2,ph/2) are
solutions to the problem on different meshes, we get

W2 = Lh/2[(vh, qh
)] − Bh/2[(uh,ph

)
,
(
vh, qh

)] − Lh
[(

vh, qh
)] + Bh

[(
uh,ph

)
,
(
vh, qh

)]
. (42)

Below we will denote with subscripts h and h/2 the mesh that we are currently integrating on, e.g. (·,·)0,ΓD,h
. Since

(uh,ph) and (vh, qh) have same values on both meshes, we have
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W2 = Jh
(
ph,qh

) − Jh/2(ph, qh
) + (

uh − u0, γμμh−1vh
)

0,ΓD,h
+ (

uh · n − u0 · n, γσ h−1vh · n)
0,ΓD,h

− (
uh − u0, γμμ2h−1vh

)
0,ΓD,h/2

− (
uh · n − u0 · n, γσ 2h−1vh · n)

0,ΓD,h/2

= Jh/2(ph, qh
) − (

uh − u0, γμμh−1vh
)

0,ΓD,h/2
− (

uh · n − u0 · n, γσ h−1vh · n.
)

0,ΓD,h/2
. (43)

Using the Schwarz inequality we obtain

W2 � C

[
Jh/2(ph,ph

)1/2
Jh/2(qh, qh

)1/2

+
( ∑

(E∈T h/2)∩ΓD

μh−1
E

∥∥uh − u0
∥∥2

0,E

)1/2( ∑
(E∈T h/2)∩ΓD

μh−1
E

∥∥vh
∥∥2

0,E

)1/2

+
( ∑

(E∈T h/2)∩ΓD

h−1
E

∥∥uh · n − u0 · n∥∥2
0,E

)1/2( ∑
(E∈T h/2)∩ΓD

h−1
E

∥∥vh · n∥∥2
0,E

)1/2]
. (44)

Since ‖(vh/2, qh/2)‖h/2 = 1 the stability of the interpolate gives

W2 � C

( ∑
K∈T h/2

EK

[(
uh,ph

)]2
)1/2

� C

( ∑
K∈T h

EK

[(
uh,ph

)]2
)1/2

. (45)

Step 4. Now all the pieces are ready and we only need to combine Eqs. (30), (41) and (45) to get the desired result. �
5. Numerical examples

In this section we illustrate the method and analytical results with numerical examples. We concentrate on showing
that the results derived in the previous sections hold with viscosity μ � 0, including Darcy limit μ = 0. Furthermore,
we compare the results with the traditional boundary conditions.

Our model problem is

u − ∇ · μ∇u + ∇p = 0 in Ω,

∇ · u = 0 in Ω.

First we compute the convergence rate of the error in the energy norm with different values of viscosity μ. Our domain
Ω is the unit square with Dirichlet boundary conditions computed from the known exact solution;

p = − sin(x) sinh(y) − (
cos(1) − 1

)(
cosh(1) − 1

)
and

u = −∇p =
(

cos(x) sinh(y)

sin(x) cosh(y)

)
.

Since the pressure p is harmonic, the solution is independent of the viscosity. In all the subsequent computations
Nitsche stability parameters are γμ = 10 and γσ = 1. In Fig. 1 are the convergence rates of the method. We see that
the convergence rate is O(h) with all the values of viscosity, even on Darcy limit, as predicted by Lemma 4.2. In Fig. 2
are the a posteriori estimators computed for the same problem with the same uniformly refined meshes. We see that
also the a posteriori error estimator converges with the same rate as the exact error. Only at the Darcy limit μ = 0 we
see a slight reduction in the convergence rate.

Next we compare the Nitsche method to the traditional boundary conditions. Here our domain is the unit square
and we use the following boundary conditions

u = 0 on
{
x ∈ (0,1), y = 0

}
and

{
x ∈ (0,1), y = 1

}
,

gn = 1, gt = 0 on
{
x = 0, y ∈ (0,1)

}
,

g = 0, g = 0 on
{
x = 1, y ∈ (0,1)

}
.
n t
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Fig. 1. The convergence of the error in the energy norm for various values of viscosity parameter. The convergence rates are given in the legend.
Notice that even the Darcy limit case (μ = 0) converges with the optimal rate of O(h).

Fig. 2. The convergence of the a posteriori estimator for various values of viscosity parameter. The convergence rates are given in the legend. The
convergence rates are the same as for the exact error, see the figure above.

In Fig. 3 are the velocities with different values of viscosity. We see that the traditional method cannot produce slip
boundary conditions of the Darcy problem unless the viscosity is equal to zero. On the other hand, Nitsche’s method
moves continuously towards the slip boundary conditions as the viscosity diminishes. In Fig. 4 we have the velocity
profile in x-direction at line x = 0.5. We notice that the traditional method has oscillations in the velocity near the
boundaries in the case of small viscosity. In Fig. 5 we have the velocity in y-direction at same line x = 0.5. The
velocity in y-direction should be zero, but with traditional boundary conditions and with small viscosity there is also
oscillation in the velocity in y-direction. These oscillations are due to the fact that the problem is very close to Darcy
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Fig. 3. Velocity fields of the model problem, on the left using the traditional and on the right using Nitsche boundary conditions. From top to bottom
viscosity μ has values 0.1, 0.001, and 0. The lengths of the vectors are scaled differently on each row. For size of the velocity, see the velocity
profile figures below. Notice the difference in the solutions near the boundaries on the middle row.

problem but the traditional way of prescribing the boundary conditions does not allow slip in tangential direction
before the viscosity is equal to zero.

We think that the previous example clearly illustrates the shortcoming of the traditional boundary conditions in
the Brinkman problem; the whole range of viscosity cannot be used. From the non-physical oscillations it is obvious
that the results are not accurate or reliable near the boundaries with the traditional no-slip boundary conditions if the
viscosity is small. Refining the mesh pushes the inaccuracy closer to the boundary but will not remove the problem.
Nitsche’s method handles these difficulties even on a coarse mesh.

Finally we test the adaptive refinement based on the elementwise a posteriori error estimator. The domain is the
unit square and we use the Dirichlet boundary conditions computed from the known exact solution. The exact solution
(in the polar coordinates) is
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Fig. 4. The velocity profile to x-direction at line x = 0.5 with different values of viscosity μ. The solid line is computed with Nitsche boundary
conditions and the dashed line with the traditional boundary conditions. Notice the oscillations with the traditional method near the boundary with
small μ.

p = −rβ sin(βθ) + 2 sin(πβ/4)(2β/2 + sin(πβ/4))

2 + 3β + β2
and

u = −∇p = βrβ−1
(− sin(θ − βθ)

cos(θ − βθ)

)
,

where β > 0 is a parameter. With the parameter β we can adjust the smoothness of the solution so that p ∈ Hβ+1(Ω)

and u ∈ [Hβ(Ω)]2. With β > 1 we assume we have a solution but the a priori result, Lemma 4.2, is no longer
applicable. In Fig. 6 we have the first three rounds of adaptive refinement for β = 1.3 and μ = 1. We see that the
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Fig. 5. The velocity profile to y-direction at line x = 0.5 with different values of viscosity μ. The solid line is computed with Nitsche boundary
conditions and the dashed line with the traditional boundary conditions. Notice the oscillations with the traditional method near the boundary with
small μ.

a posteriori estimator detects the singularity at the origin and refines there. In the same Fig. 6 we also have the same
problem with μ = 0.001. In this case the a posteriori indicator has problems in seeing the singularity at the origin and
refines also on the boundaries. In both cases the ratio between the estimated and the exact error stays constant which
is perhaps the most important feature for an a posteriori estimator.

Looking at Figs. 2 and 6 we see that the a posteriori indicator is less sharp near the Darcy limit. This is because the
residual inside the elements in the a posteriori estimator is of the form ‖uh +∇̂ph‖2

0,K if the viscosity and load are zero
(or very small). More precisely, there are no powers of h in the coefficient; therefore the approximate negative gradient
of pressure −∇̂ph has to be close to the velocity. The problem is worse near the boundaries since the approximate
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Fig. 6. First three rounds of adaptive refinement based on the a posteriori estimator. On the left we have μ = 1 and on the right μ = 0.001. There is
a singularity at the origin. With smaller viscosity the a posteriori estimator has problems finding the singularity. This is because the reconstructed
gradient of the pressure has larger role with small viscosity and near the boundaries the reconstruction is not as sharp as inside the domain. Still,
the ratio between the exact error and the estimator stays almost constant which is important for the estimator.

gradient is essentially computed from the pressure jumps, and on the boundary we do not have a value for the jump.
With larger viscosity the reconstruction is not as crucial anymore since we have powers of h in the coefficient reducing
the residual if the elements are small.
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