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Attenuation of harmonic rotor vibration in a cage
rotor induction machine by a self-bearing force

actuator
Antti Laiho, Anssi Sinervo, Juha Orivuori, Kari Tammi, Antero Arkkio, and Kai Zenger

Abstract—In this paper, attenuation of flexural rotor vibration
in electrical machines is considered. In order to generate force
on the machine rotor, an electromagnetic actuator based on
self-bearing machine working principle is examined. A control
method for attenuating harmonic rotor vibration components
is applied in a 30 kW two-pole cage induction machine. The
machine is equipped with a four-pole supplementary winding for
generation of lateral force on the rotor. Experimental results
for the two-pole induction motor are presented. The main
contribution of this paper is to apply a control method, specially
designed for compensating harmonic excitations, by using a built-
in electromagnetic actuator in an induction machine.

Index Terms—induction machine, electromagnetic actuator,
rotor-dynamics, self-bearing machine, bearingless drive, mechan-
ical vibration, active control

I. INTRODUCTION

IN electrical machines, various forces of both electromag-
netic and mechanical origin are acting on the rotor of the

machine. Typically, these forces are harmonic with specific
frequencies which depend on the design of the machine and the
operation condition (number of poles, rotor bars, stator slots,
rotation speed, load, saturation, possible faults etc.) [1]–[7].
Forces of the electromagnetic origin are induced by the rotat-
ing magnetic fields in the air-gap between the stator and rotor
of the machine. The fields may be originated, for instance,
from the stator or rotor slotting (higher harmonics), eccentric
rotor motion, saturation of magnetic materials or unipolar flux
(two-pole machines). On the other hand, typically, the main
forces of the mechanical origin in any rotating machine are
(mass) unbalance forces synchronous with the rotor rotation
frequency and its multiples and sub-multiples [8].

In general, the forces acting on the rotor may result in
flexural rotor vibration depending on the dynamical properties
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of the machine. The rotor vibration may cause additional bear-
ing wear, increased vibration levels, fatigue, or even machine
break-down. Excitation forces near resonance can be espe-
cially harmful and may disturb or even preclude the machine
operation. In any case, the rotor vibration poses limitations in
machine design. The critical speed, in most cases set by the
first flexural rotor bending mode, is a limiting factor which
reduces the operating speed range. Traditionally, electrical
machines are designed to operate either below the first critical
speed (’stiff-rotor’) or above the first critical speed (’flexible-
rotor’) [9]. Optimal machine design with minimal material use
may lead to a slender rotor which is problematic for vibrations.
For manufacturing purposes, it would be profitable to increase
the machine power by extending the rotor with a fixed machine
cross-section. However, this is often not possible due to the
increasing vibration responses. Hence, in order to increase the
machine power above certain limit, also the cross-section has
to be modified, which leads to increased manufacturing costs.

In practice, passive vibration control provides means of
reducing the vibration level of the rotor, which, however,
includes limitations in operation near critical speed. On the
other hand, in electrical machines, a force actuator installation
problem arises. In order to attenuate flexural rotor vibration at
low-frequency domain, the optimal actuator position would be
in the middle of the rotor, which is not possible due to the
small air-gap between the stator and rotor [10].

(a) (b)

Fig. 1. The control winding design in the machine stator. The control winding
is distributed to the stator slots in the wedge area. In the experimental set-up
of this work, the control winding occupies 10 % of the total cross-sectional
area of a single slot.

During recent years, active vibration control has become
an alternative for traditional passive or semi-active control
methods in various industrial applications. In self-bearing (or
bearingless) machine technology [11], an internal force actu-
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ation methodology was introduced [12], [13]. The principle
of the actuator force production in self-bearing machines is
to generate an unbalanced magnetic field distribution in the
air-gap between the stator and rotor by supplying currents to
a supplementary winding placed among the torque-producing
stator main winding (Fig.1). A different approach by using a
single winding set was proposed in [13], [14]. The bearingless
machine technology provides means of producing a controlled
force in the middle of the rotor which is an advantage for
vibration suppression. The construction was used for vibra-
tion attenuation in a cage induction machine by using force
feedback and Proportional-Integral-Derivative (PID) controller
by Chiba et al. [15].

Typically, the main excitation forces, both of electromag-
netic and mechanical origin, exerted on the rotor of an elec-
trical machine are rotating with specific frequencies. Hence,
a narrow frequency-band controller compensating discrete
dominating harmonics of the disturbance force would be
potential for rotor vibration suppression in electrical machines,
in general. For compensating these harmonic excitation forces,
the mass unbalance compensation algorithms, or Synchronous
Response Control (SRC) algorithms, were developed [16]–
[23]. Previously, such controllers have mainly been used for
rotor-bearing systems, Active Magnetic Bearings (AMBs) and
helicopter rotors, for instance. The SRC has proven to be
advantageous in AMBs [24] but has not previously been
demonstrated in rotor vibration attenuation by using a self-
bearing force actuator in an induction machine.

In this paper, we apply a SRC algorithm referred to as
’Convergent Control’ (CC) [19] in a 30 kW two-pole cage
induction machine equipped with a four-pole supplementary
winding for generation of lateral force on the rotor. A two-
pole cage induction machine was chosen for the reason that
they are generally known to have rotor vibration problems
[9]. Previously, CC algorithm was systematically compared to
other algorithms for flexural rotor vibration suppression [25].
Motivated by the results, CC algorithm was chosen for this
work.

Furthermore, in this work, a voltage-fed actuator design is
examined. Previously, a current-fed actuator was considered
by Chiba et al. [15]. In the voltage-fed system, additional dy-
namics is involved due to the RL -circuit of the supplementary
winding. On the other hand, the damping properties of the
short-circuited supplementary winding are readily available.
Identification of the system in frequency-domain is discussed.
Furthermore, experimental results are presented in which CC
algorithm was used for compensation of harmonic excitation
forces of both electromagnetic (magnetic pull due to eccentric
rotor) and mechanical (mass unbalance harmonics) origin.

II. THE BUILT-IN FORCE ACTUATOR

The working principle of the built-in force actuator is
to generate an additional magnetic field component which
unbalances the field distribution in the air-gap between the
stator and rotor so that a net force is exerted on the rotor
[11], [12]. In a machine with p pole pairs, the criteria for the

force production is that an additional magnetic field with either
p− 1 or p + 1 pole pairs is generated [26]. In this paper, we
consider a two-pole induction machine equipped with a four-
pole supplementary winding referred to as ’control winding’.
Both windings are distributed symmetric 3-phase integral-slot
series-connected (no parallel paths) windings. In Fig.2, the
winding schema of the machine is depicted. In the figure,
the phase zones of the two-pole and and four-pole windings
are depicted on the outer and inner circle, respectively. In the
experimental set-up, the four-pole control winding occupied 10
% of the slot area (Fig.1). In Fig.3, the two-pole fundamental
field with the four-pole supplementary field distribution is
schematically depicted. The four-pole field is induced by the
combined effect of the eccentric rotor motion and the currents
in the control winding.

Fig. 2. Stator winding schema for the two-pole machine with the four-pole
control winding. The measurement windings for the two-pole flux are marked
by ’1a’ and ’1b’.

Fig. 3. Force exerted on the rotor as an effect of the two-pole (dashed line)
and the four-pole (solid line) magnetic fields.

Let us denote the space-vectors of the two-pole and four-
pole flux densities by B̂1 and B̂2, respectively [27]. Here, the
sub-indices ’1’ and ’2’ refer to the two-pole (single pole-pair)
and four-pole (two pole-pairs) quantities, respectively. It is
assumed that the machine is under the constant-flux operating
condition i.e.

B̂1(t) = B̂1e
jϕ1(t), ϕ̇1 = ω1 (1)

where t denotes time, ω1 the constant supply frequency (rad/s)
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of the two-pole winding and B̂1 the constant peak value of
the radial two-pole flux density in the air-gap. The four-pole
space-vector B̂2 is a function of time and generally depends
on the control winding currents and the eccentric rotor position
[3], [28].

In the stator frame of reference (Fig.3), the radial magnetic
flux density in the air-gap, B(t, θ)~uR, induced by the two- and
four-pole fields is given by

B(t, θ) = Re{B̂1(t)e
−jθ + B̂2(t)e

−j2θ} (2)

where θ is the angular coordinate. Typically, the tangential
component of the air-gap field is considerably smaller than
the radial one [29], and hence, the lateral force exerted on the
rotor is obtained from the Maxwell stress tensor as

f
c
(t) =

drlr
2

∫ 2π

0

B(t, θ)2

2µ0
ejθ dθ

=
πdrlr
4µ0

B̂1e
−jϕ1(t)B̂2(t) (3)

in which µ0 is the permeability of free space, dr is the
diameter of the rotor core and lr is the length of the rotor
core. Substitution of

B̂2(t) = B̂2(t)ejϕ2(t) (4)

to Eq.(3) shows that, at time instant t, the force is directed to
ϕ2(t)− ϕ1(t) (Fig.3).

The major dynamics of the eccentric-rotor cage induction
machine equipped with the built-in force actuator is governed
by (i) eccentric rotor, (ii) control winding, (iii) rotor-dynamics
of the flexible rotor. A Linear Time-Invariant (LTI) model of
such a system with some simplifications (no saturation, no
parallel stator paths etc.) was constructed in the previous paper
[28]. In this model, the voltage-flux equations were formulated
for the control winding and rotor cage. In addition, a model
of the eccentric rotor [3] was applied. The model [28] is
analogous with the actuator-rotor LTI model developed for
the AMBs [30].

The controller used in this work operates in frequency
domain and, in terms of system identification, requires esti-
mates of the system Frequency-Response Functions (FRFs) at
discrete frequencies. This is, a complete system model is not
needed. For this reason, in this paper, the parametric model
[28] is applied only for modulation of the currents and voltages
in order to obtain an LTI system. Indeed, as can be seen from
Eq.(3), the DC component of the control winding input voltage
(generating a static four-pole field with constant B̂2) induces a
force revolving with angular frequency ω1 in negative direction
(clock-wise), and hence, the response (rotor displacement) is
not static as it should be for an LTI system. Consequently,
the actuator-rotor system is not directly LTI but, fortunately,
can be transformed to an LTI system by a simple modulation
of the supply voltage and the rotor cage and control winding
currents [11], [28].

Let us denote the space-vector of the 3-phase control
winding voltage supply by ûc. Hence, the modulated control
winding supply ûc,0 is given by

ûc,0(t) = ûc(t)e
−jϕ1(t). (5)

Then, the DC component of the voltage supply ûc,0 results
in B̂2 rotating with a constant angular frequency ϕ̇2 = ω1.
Consequently, the static force given by Eq.(3) is generated
resulting in a static rotor displacement. The actuator-rotor
model [28] can be written, in the stator coordinate system,
by using real-valued LTI formalism as

q̇(t) = Aq(t) + Bvc(t) (6)
urc(t) = Cq(t) (7)

where vc = (Re(ûc,0), Im(ûc,0))
T and urc = (x, y)T in which

x and y are the horizontal and vertical rotor displacements,
respectively (Fig.3), and T denotes transpose. For a two-pole
machine, the state-vector q consists of 8 real-valued states
given by

q =
(

Re(q)
Im(q)

)
(8)

where the complex state-vector q is given by

q =




żr

zr

îc,0

îr,2,0


 . (9)

In Eq.(9), zr = x+jy and the modulated control winding and
rotor cage currents are given by

îc,0(t) = îc(t)e
−jϕ1(t) (10)

îr,2,0(t) = îr,2(t)e
−jϕ1(t) (11)

where îc and îr,2 are the space-vectors of the control winding
current and the rotor cage four-pole current, respectively [3],
[28]. The current in the control winding is driven by the control
winding voltage supply and the eccentric rotor motion. The
rotor cage four-pole current is induced by the eccentric rotor
motion and the mutual coupling with the control winding.

In Eqs.(6) and (7), the entries of the system matrices A, B
and C consist of resistances and inductances of the rotor cage
and the control winding with mechanical (modal) stiffness,
damping and mass terms [28]. In addition, the eccentric rotor
motion induces some additional coupling factors [3] which
relate the eccentricity to the induced four-pole flux density.

In a practical application, the rotor center displacement is
difficult to measure because of the small air-gap between the
stator and rotor. In this work, the displacement transducers
were located close to the end-shields of the machine. This
set-up leads to a non-collocated system which is assumed to
be a good framework at the low-frequency domain when the
first rotor bending mode dominates the rotor vibration.

III. VIBRATION CONTROL

The control scheme used in this paper is the CC algorithm
originally developed for compensating harmonic excitation
forces in rotating machinery [16]–[20]. The algorithm op-
erates in frequency-domain on harmonic multiples (kωm,
k = 0, 1, 2, . . .) of the rotor rotation frequency ωm. In the
algorithm, the Fourier coefficient v̂k

c of the control input vc at
the frequency kωm is given by the recursive law

v̂k
c (n) = γkv̂k

c (n− 1)− αkAkûk
rc(n) (12)
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where n refers to the time instant tn = nTs with Ts denoting
the sample time, and 0 < γk ≤ 1, αk > 0 are parameters
related to the convergence of the algorithm. Furthermore, ûk

rc

denotes the Fourier coefficient of the rotor displacement at the
frequency kωm. In this work, the 2× 2 matrix Ak in Eq.(12)
is the inverse of the system FRF given by

Ak = H(jkωm)−1 (13)

where the FRF matrix H obtained from Eqs.(6) and (7) is
given by

H(jω) = C(jωI −A)−1B. (14)

In order to calculate the Fourier coefficients ûk
rc, an instan-

taneous coefficient update [25], [31] was applied. In Fig.4,
the instantaneous CC adaptation and realization is shown for
compensation of a single harmonic with frequency kωm. The
rotor angular coordinate θm with θ̇m = ωm is obtained from
the tachometer. Hence, the instantaneous Fourier coefficient
update given by

ûk
rc(n) = e−jkθm(n)urc(n) (15)

is applied. In Fig.4, the adaptation loop given by Eq.(12) is
inside the dashed box. The realization of the control signal is
analogous to the inverse Fourier transformation resulting in vc

given by

vc(n) = 2Re




Nf∑

k=0

v̂k
c (n)ejkθm(n)


 (16)

where Nf is the highest harmonic to be suppressed. The
control signal given by Eq.(16) is, after 2-phase to 3-phase
transformation and amplification, supplied to the control wind-
ing. A detailed analysis of CC algorithm including robustness
issues was carried out by Knospe et al. [32].

Fig. 4. The signal flow diagram of CC algorithm for a single harmonic k
with an instantaneous coefficient update. In the figure, the unit delay operator
is given by z−1v̂k

c (n) = v̂k
c (n− 1).

IV. EXPERIMENTAL SET-UP

The induction motor used in the experiments is shown in
Fig.5. The main parameters of the motor are listed in Table
(I). The motor is a commonly-used 30 kW cage induction
motor with an extended rotor shaft in order to demonstrate the
low-frequency rotor vibration (Fig.6). A standard squirrel-cage
rotor stack was installed on an extended rotor shaft. However,
the standard squirrel-cage design induces additional dynamics

to the self-bearing machine actuator. A different approach by
using a pole-specific rotor construction was considered by
Chiba et al. [33].

TABLE I
MAIN PARAMETERS OF THE INDUCTION MOTOR USED IN THE

EXPERIMENTS (FIG.5). THE VALUES IN PARENTHESIS ARE RATED VALUES
OF THE MACHINE WITH STANDARD ROTOR.

parameter value
supply frequency [Hz] 17.0 (50)
supply voltage (rms) [V] 79.0 (400)
rotation frequency [Hz] 17.0 (49.5)
connection delta
current [A] 15.0 (50)
rated power [kW] 30
number of phases 3
number of parallel paths 1 (2)
number of poles 2
slip [%] 0.0 (1.0)
rotor mass (rotor core and shaft) [kg] 55.80
rotor shaft length [mm] 1560
radial air-gap length [mm] 1.0
first rotor bending mode [Hz] 36.94
control winding turns per phase 240

Fig. 5. The 30 kW cage induction motor used in the experiments. The
numbering refers to the accelometer positions ’1’ (N-end bearing), ’2’ (foun-
dation), ’3’ (stator housing) and ’4’ (D-end bearing) from where vibration
levels were measured.

In Fig.7, a schematic picture of the experimental set-up
is shown. The rotor was supported on ball element bearings
at D-end (Driving end) and N-end (Non-driving end). In
addition, auxiliary sliding-element bearings working as the
touchdown bearings were installed with a 0.5 mm clearance
inside the bearing blocks replacing the original bearings. In
the experiments, the motor was supplied by a synchronous
generator (17Hz and 15A supply current to the two-pole
winding terminals of the motor). This gave a two-pole flux
density of 0.71 T (peak value) in the air-gap (measured by
two-pole flux measurement windings in the stator). The motor
was run without load. In the considered operation point, the
hysteresis torque of the rotor was strong enough to compensate
the friction losses [34]. Consequently, the motor was running
at zero slip.

The controller was operating on dSpace (DS1103 Release
4.2) real-time interface with MATLAB Real-Time Workshop.
Sampling frequency of the system was set to 5 kHz. The
measurement signals e1 (voltage induced in the two-pole
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Fig. 6. The extended (length 1560 mm) rotor (above) used in the test machine
and the standard rotor (below).

Fig. 7. Schematic view of the experimental set-up. The 2-phase to 3-phase
transformation (2Dto3D) is given by Eq.(19).

flux measurement winding), urc (rotor displacement) and θm

(rotor angular coordinate from tachometer) were transferred
to dSpace. Two two-pole flux measurement windings were
installed in the stator slots in order to measure

e1(t) = e1a(t) + je1b(t) (17)

in which e1a and e1b are the voltages induced in the two-pole
flux measurement windings ’a’ and ’b’, respectively (Fig.2).
Hence, the revolving space-vector of the two-pole flux was
obtained as

B̂1(t) = − 1
jω1A1N1

e1(t) (18)

in which A1 = lrdr is the area and N1 = 2 the number of
turns of the two-pole flux measurement coil. From Eq.(18),
the phase angle ϕ1 of B̂1 is obtained for the modulation of
the input voltage in Eq.(5), which is needed for construction
of the actuator-rotor LTI system given by Eqs.(6) and (7). The
control signal vc was transformed to a 3-phase voltage by the
2-phase to 3-phase transformation [27] given by




ua

ub

uc


 =




1 0
−1/2

√
3/2

−1/2 −√3/2


 vc. (19)

Hence, the 3-phase voltages given by DAC outputs of the
dSpace were amplified up to 20V/1.0A by amplifiers and
supplied to the control winding.

A. Experimental modal analysis of the rotor

In order to obtain an insight into the mechanical charac-
teristics of the rotor, modal testing [35] was carried out in
the non-rotating case. In prior to the motor assembly, the
rotor was supported by the bearings and the modal testing
was performed by using an impact hammer. Total number

of 8 equally distributed measurement points along the rotor
shaft were used to perform the measurements. A single triaxial
Endevco E65-100 accelometer fixed 15 cm from the D-end
bearing was used. The hammer impacts (impact hammer
Endevco E2302-5 icp) were directed in the −y -direction
for every measurement point. Data acquisition was performed
by using Data Physics SignalCalc 240V4.7.200. Frequency
resolution of the measured averaged frequency responses was
0.3125 Hz (3201 lines from 0 Hz to 1.0 kHz). The analysis was
carried out in LMS Test-Lab 8A in which the PolyMAX modal
parameter extraction was used. Model size was fixed to 32, and
the frequency-band from 10 Hz to 900 Hz was included in the
pole search. As a result, the dynamical characteristics of the
rotor (natural mode shapes and frequencies) were obtained in
y -direction.

The vibration modes are listed in Table (II). The first two
vibration modes are shown in Fig.8. The mode 1 is the first
rotor bending mode and in the mode 2 the rotor stack performs
conical movement. The force actuator is capable of affecting
the first mode, but, on the contrary, control of the conical mode
would need a more sophisticated actuator design. The higher
modes were above 480 Hz and thus beyond the scope of this
work.

TABLE II
MODAL FREQUENCIES AND DAMPING RATIOS OF THE ROTOR.

mode frequency [Hz] damping [%]
1 (bending) 36.94 0.68
2 (conical) 203.33 0.37
3 484.95 0.87
4 518.66 1.15
5 637.39 0.58
6 668.10 0.94
7 748.38 0.89

Fig. 8. Rotor shaft natural vibration modes 1 (bending) and 2 (conical).
The rotor stack (box in the middle) performs rigid body movement. The un-
deformed rotor is marked with dashed line.

B. Modal testing by using displacement transducers

Modal testing by using an impact hammer and the displace-
ment transducers was carried out after the motor assembly.
Eddy-current displacement sensors (Bently-Nevada 3300 XL
NSv Proximity Transducer System, cut-off 10 kHz) were used.
The sensors measured horizontal and vertical rotor displace-
ment close to the D-end end-shield (Fig.5). The impact point
was located close to the displacement transducers. Measured
FRFs are shown in Fig.9. It can be seen that, at the low-
frequency range, roughly up to 70 Hz, the first bending mode
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Fig. 9. Frequency responses obtained from the modal testing. (a) amplitude
of FRF from fx to x, (b) amplitude of FRF from fy to y, (c) amplitude of
FRF at low-frequency; from fx to x (solid line) and from fy to y (dashed
line), (d) phase of FRF at low-frequency; from fx to x (solid line), from fy

to y (dashed line). The hammer impact force fx was in +x direction and
fy in −y direction (Fig.5). Hence, there is a 180 degrees phase shift in FRF
from fy to y.

dominates the dynamics of the rotor. The poles (frequencies
and damping ratios), obtained from PolyMAX estimation,
were at 36.94 Hz, 0.76 % (horizontal bending) and 37.12
Hz, 0.58 % (vertical bending). From the FRFs, the DC
amplification gave horizontal stiffness 7.9 MN/m and vertical
stiffness 7.2 MN/m. The results show that in addition to the
flexible rotor, the rotor support (bearings and bearing blocks)
was flexible, as well.

V. RESULTS

A. System Identification

The aim of the system identification was to obtain valid
estimates of the system transfer function H(jkωm) in Eq.(14).
The transfer function values at four harmonics (k = 0, 1, 2, 3)
were estimated by measuring FRFs and applying black-box
identification in frequency-domain by using PEM (Prediction
Error Method). As a result, the method gave continuous-time
system matrices A, B and C in Eqs.(6) and (7). The system
order was fixed to 8 which agrees with the number of states in
Eq.(8). In prior to the identification, the forced vibration peaks
in the FRFs were removed by using a third order polynomial
interpolation. Frequency-band included in the identification
was from 1 Hz to 60 Hz.

In order to obtain FRFs for the system identification, band-
limited (cut-off 500 Hz) white noise was supplied to the
control winding. The first column of the frequency-response
matrix H in Eq.(14) was obtained by supplying Re(ûc,0) while
Im(ûc,0) = 0, and, in order to obtain the second column,
Im(ûc,0) was supplied while Re(ûc,0) = 0. In Fig.10, the
voltage input Re(ûc,0) to the control winding is shown. The
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Fig. 10. Identification input voltage Re(ûc,0). (a) Time-domain data, (b)
spectrum.

TABLE III
THE POLES OF THE IDENTIFIED LTI MODEL RELATED TO THE

ELECTROMECHANICAL (EM) SYSTEM AND THE RESISTOR-INDUCTOR
(RL) CIRCUIT OF THE ACTUATOR.

pole frequency f0 [Hz] damping ξ [%]
EM 1 32.42 41.61
EM 2 29.87 16.01
RL 1 16.74 15.28
RL 2 16.69 7.62

measured FRFs (frequency resolution 0.25 Hz) against the
identified LTI model are shown in Fig.11 (magnitude) and
Fig.12 (phase). The results show that the measured FRFs agree
well with the FRFs obtained from the identified LTI model
with 8 states. The dominating FRF peak, at 16.25 Hz, in Fig.11
is stemming from the control winding RL -resonance dynam-
ics. Here, the ’RL resonance’ refers to additional poles of
the actuator-rotor system which are generated by the voltage-
current relation of the voltage-fed actuator. The minor peak
at 30.25 Hz is the mechanical resonance, which, compared to
the modal testing results in Fig.9, is shifted in frequency and
has a considerably increased damping ratio.

The poles of the identified LTI model are listed in Table
(III). The poles p were obtained from the characteristic equa-
tion

det(pI −A) = 0. (20)

The damping ratios and the frequencies were calculated from
the poles by ξ = −Re(p)/|p| and f0 = |p|/(2π), respectively.
The poles at 32.42 Hz and 29.87 Hz (FRF peak at 30.25 Hz)
are related to the mechanical resonance frequencies, originally
at 36.94 Hz (horizontal bending, 0.76 % damping) and 37.12
Hz (vertical bending, 0.58 % damping) in Fig.9. The reduction
in frequency and increased damping can be explained by
combined effect of (i) the Unbalanced Magnetic Pull (UMP)
[1], [3], [36], [37] and (ii) the control winding acting as a
damper winding (passive control) [15].

In a two-pole machine, the eccentric rotor motion induces
a four-pole flux which crosses both the rotor cage and
control winding. The four-pole flux distorts the air-gap flux
distribution and induces a net force on the rotor directed
approximately in the direction of the shortest air-gap (radial
UMP). The radial UMP decreases the natural frequency of the
rotor bending mode by the negative spring effect. In addition,
the four-pole currents are induced in the rotor cage. These
currents oppose the change of the four-pole flux through the
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Fig. 11. Amplitudes of FRFs from measurements (dashed line) and
identification (solid line); (a) from Re(ûc,0) to x, (b) from Re(ûc,0) to y,
(c) from Im(ûc,0) to x, (d) from Im(ûc,0) to y.
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Fig. 12. Phases of FRFs from measurements (dashed line) and identification
(solid line); (a) from Re(ûc,0) to x, (b) from Re(ûc,0) to y, (c) from Im(ûc,0)
to x, (d) from Im(ûc,0) to y.

rotor cage and, hence, make the overall flux distribution more
uniform. Consequently, the induced rotor cage currents reduce
UMP and may induce a tangential UMP component [5] which
has an effect on the damping of the rotor-dynamic system.

As reported previously by Chiba et al. [15], the short-
circuited control winding acts as a passive damper for the
rotor vibration. Indeed, the four-pole flux induced by the
eccentric rotor motion is proportional to the product of the
two-pole flux density and rotor eccentricity [3]. The four-
pole flux induces a current in the control winding which
opposes the change of the four-pole flux through the control
winding. Consequently, the induced current is related to the
rotor velocity and displacement. Hence, a net force is exerted
on the rotor which affects the damping and stiffness of the
rotor-dynamic system.

The poles at 16.74 Hz and 16.69 Hz (FRF peak at 16.25
Hz) in Table (III) are due to the RL -resonance of the control
winding. The control winding is magnetically coupled with the
rotor cage, and hence, the RL -resonance can be affected by
the four-pole rotor cage currents, as well. In addition, under
eccentric rotor motion, the four-pole flux (proportional to the
product of the two-pole flux density and rotor eccentricity)
couples with the control winding. Hence, the RL resonance
peak is affected by the two-pole fundamental flux density.
The damping of the poles related to the RL resonance
(minimum 7.62 %) is high enough so that the phase-shift
at the supply frequency (17.0 Hz) is moderate (Fig.12). This
enables frequency-domain controller design without an extra
compensator [28]. However, in the case of a low damping, the
estimation of the system FRF would become more sensitive
to changes in dynamics.

From the identified LTI model (Fig.11 and Fig.12), in the
units of µm/V, the estimates for the system FRFs at kωm,
k = 0, 1, 2, 3 were obtained as

H(0) =
[

14.35 2.36
−5.38 13.83

]
(21)

H(jωm) =
[
57.09 · e−jπ·108.22/180 51.60 · ejπ·153.34/180

44.87 · e−jπ·16.69/180 56.95 · e−jπ·97.48/180

]

(22)

H(2jωm) =
[
9.11 · ejπ·153.59/180 8.13 · e−jπ·14.21/180

6.21 · ejπ·167.70/180 10.23 · ejπ·154.22/180

]
(23)

H(3jωm) =
[
1.78 · ejπ·105.63/180 1.52 · e−jπ·57.67/180

1.45 · ejπ·137.36/180 2.05 · ejπ·109.22/180

]
.(24)

B. Passive vibration control

In Fig.13, results are shown in which a 3-phase current of
17.0 Hz, 5.2 A was supplied to the two-pole winding terminals
of the motor. This generated the two-pole flux density of
0.33 T (peak value) in the air-gap. The two-pole flux density
was reduced from the original 0.71 T due to the fact that
the motor could not be run, without rotor touchdown with
the auxiliary bearings, with control winding open and higher
fundamental field. This was due to the rotor bow which
emphasizes the magnetic eccentricity forces exerted on the
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rotor when the fundamental field is increased. In Fig.13(a),
the control winding terminals were open at the beginning
and abruptly, the terminals were shorted. The rotor vibration
amplitudes were considerably decreased (from 203.0 µm (rms)
to 61.0 µm (rms)). In Fig.13(b), under short-circuited case, the
current in the control winding phase ’a’ is shown. The current
was dominated by 17.0 Hz (peak value 0.10 A) and 34.0 Hz
(peak value 0.14 A) components which can be explained by the
eccentric rotor motion (static eccentricity and rotor whirling at
17.0 Hz) with current modulation given by Eq.(10). The rms
value of the current was 0.13 A.
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Fig. 13. Control winding short circuit: (a) change of the rotor orbit when
the control winding was open (outermost orbit) and then suddenly shortcut
(innermost orbit), (b) current in the short-circuited control winding phase ’a’
in steady-state.

C. Active vibration control

The CC algorithm given by Eq.(12) with instantaneous
coefficient update (Fig.4) was employed with coefficients
α0 = 5.0 · 10−5, α1 = 20.0 · 10−5 (= Ts, the sample time),
α2 = 10.0·10−5, α3 = 10.0·10−5, γ0 = γ1 = γ2 = γ3 = 1.0.
The FRF estimates given by Eqs.(21) - (24) were used in the
adaptation given by Eq.(12). The motor was running in the
operation point listed in Table (I). The two-pole flux density
was 0.71 T (measured by two-pole flux measurement windings
in the stator).

The rotor orbits at steady state operation with control on and
control off are shown in Fig.14. The rotor orbit with control
off differs from the short-circuited case in Fig.13(a) due to
the higher fundamental flux. In addition, the rotor orbit at low-
speed in run-down without main and control winding supply is
shown. In order to obtain the slow-speed rotor orbit, the rotor
was run down from a certain speed and data was collected
when the rotor was rotating very slowly (0.5 Hz). Total number
of 20 revolutions were averaged to obtain the rotor orbit [38].

In Fig.15, the rotor displacement is shown when the control
was switched on at t = 0.8s. In Table (IV), the steady-state
amplitudes and velocities of the rotor vibration are shown. The
rotor displacement was differentiated in frequency domain up
to 2 kHz from which the rms velocity values were calculated
on time-domain. From the results it can be observed that the
vibration of the rotor was considerably decreased.

In Fig.16, the displacement spectra of the controlled and
uncontrolled systems are shown. The peak values are listed in
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Fig. 14. The rotor orbits of the controlled system (the innermost curve),
at low-speed run-down (in the middle) and the uncontrolled system (the
outermost curve).

TABLE IV
VIBRATION ATTENUATION RESULTS OF CC ALGORITHM OBTAINED BY

USING DISPLACEMENT TRANSDUCERS.

control off control on change [%]
amplitude x (µm, rms) 98.19 2.39 -97.56
amplitude y (µm, rms) 91.33 2.35 -97.43
velocity x (mm/s, rms) 12.11 5.10 -57.92
velocity y (mm/s, rms) 11.52 4.93 -57.25

TABLE V
VIBRATION ATTENUATION RESULTS OF CC ALGORITHM OBTAINED BY
USING DISPLACEMENT TRANSDUCERS: PEAK VALUES OF THE ROTOR

DISPLACEMENT SPECTRA.

frequency [Hz] 0 17.0 34.0 51.0 68.0
uncontrolled x (µm) 58.3 124.1 28.7 4.4 1.1
controlled x (µm) 0.0 0.2 0.2 0.1 0.7
uncontrolled y (µm) 34.9 119.1 24.6 3.4 0.9
controlled y (µm) 0.1 0.2 0.2 0.1 0.8

Table (V). The reduction in vibration can be explained by the
reduction of the DC, first, second and third component of the
rotation speed. The fourth component (4 · 17.0 Hz = 68.0 Hz)
was not included into the control algorithm, and hence, the
fourth harmonic peak value was not reduced. On the other
hand, as can be seen from the spectrum of the uncontrolled
system, the DC and the first two harmonics dominate. Hence,
compensation of these low-frequency harmonics alone atten-
uates the rotor vibration considerably.

In Fig.17, the voltage ûc,0 and the voltage demand for
the control winding phase ’a’ is shown. The rms values for
the real and imaginary parts of ûc,0 are 7.24 V and 6.83 V,
respectively. The rms value of the voltage in phase ’a’ is
3.96 V. In Fig.18, the current in the control winding phase
’a’ is shown. The dominating harmonic (17.0 Hz, 34.0 Hz
and 51.0 Hz) peak values for the uncontrolled system were
0.14 A, 0.34 A and 0.12 A, respectively. For the controlled
system, the corresponding peak values were 0.21 A, 0.17 A
and 0.05 A. The rms values of the control winding current for
the uncontrolled and controlled systems were 0.31 A and 0.21
A, respectively. The higher current of the uncontrolled system
can be explained by a strong influence of the eccentric rotor
motion which was reduced in the controlled system.

The reaction of the control system to external excitations
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Fig. 15. The results from vibration attenuation. The control was switched on
at t = 0.8s; (a) horizontal rotor displacement, (b) vertical rotor displacement,
(c) rotor orbit, (d) control input voltage ûc,0: real part (solid line) and
imaginary part (dashed line).
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Fig. 16. Displacement spectra of controlled system (solid line) and uncon-
trolled system (dashed line); (a) x -direction, (b) y -direction.
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Fig. 17. Control voltage demand with control on at steady-state operating
conditions. (a) The space-vector ûc,0; real part (solid line) and imaginary part
(dashed line). (b) Phase ’a’ voltage demand.
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Fig. 18. Current in the control winding phase ’a’. Controlled system (solid
line) and uncontrolled system (dashed line). (a) Phase ’a’ current, (b) spectrum
of the phase ’a’ current.

was tested by hammer impacts shown in Fig.19. The results
in Fig.19(a) show that the hammer impacts do not violate the
controller operation. In a more detailed view, in Fig.19(b),
a transient of length 0.5 s can be seen. From the spectral
analysis, it can be observed that the high-frequency vibration
component is at 205.5 Hz, which is, the conical rotor vibration
mode has been excited (Table (II) and Fig.8).
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Fig. 19. Hammer impacts in −y -direction on the rotor with control on; (a)
multiple impacts and (b) closer look at a single impact.

TABLE VI
VIBRATION LEVELS OF THE CONTROLLED AND UNCONTROLLED

SYSTEMS. THE ACCELOMETER POSITIONS ’1’ (N-END BEARING) , ’2’
(FOUNDATION), ’3’ (STATOR HOUSING) AND ’4’ (D-END BEARING) ARE

SHOWN IN FIG.5.

point direction control off control on change [%]
mm/s (rms) mm/s (rms)

1 x 0.76 0.41 -45.80
1 y 0.33 0.30 -10.84
1 z 1.94 1.85 -4.64
2 x 0.44 0.087 -80.10
2 y 0.31 0.074 -76.23
2 z 0.056 0.047 -16.49
3 x 0.76 0.24 -68.51
3 y 0.22 0.090 -59.00
3 z 0.078 0.068 -13.24
4 x 0.96 0.62 -35.15
4 y 0.65 0.73 +13.45
4 z 3.03 3.25 +7.26

The vibration levels of the controlled and uncontrolled
system at four measurement points were measured. The
measurement points ’1’ (N-end bearing) , ’2’ (foundation),
’3’ (stator housing) and ’4’ (D-end bearing) are shown in
Fig.5. Triaxial Endevco E65-100 accelometers were used. Data
acquisition was made in Data Physics SignalCalc 240V4.7.200
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and analysis in LMS Test-Lab 8A. The velocity autopower
spectra were calculated and the vibration levels (mm/s, rms)
were obtained from these on the frequency band from 10 Hz
to 2 kHz. The results are listed in Table (VI). In general,
the vibration levels were small and they decreased when the
control was switched on. However, it can be seen that, even
though being of small amplitude, the vibration at point ’4’ (D-
end bearing) in y (vertical) and z (axial) directions increased
when the control was switched on. One reason for this might
be the fact that the originally bowed rotor (Fig.14) was forced
to the center of the displacement measurement origin. Hence,
additional force may exert on the bearing.
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Fig. 20. Vibration velocity autopower spectrum measured at the D-end
bearing. (a) and (b) x -direction, (c) and (d) y -direction, controlled system
(solid line), uncontrolled system (dashed line).
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Fig. 21. Radial rotor vibration at high frequency domain; (a) vibration
spectrum of the controlled system (solid line) and uncontrolled system (dashed
line), (b) proportional amplification (unit amplification marked by horizontal
line).

In Fig.20, velocity autopower spectra of the vibration at the
D-end bearing in x and y -directions is shown. By comparing
Fig.20(a) to Fig.20(b) and Fig.20(c) to Fig.20(d) it can be
seen that, on contrary to x -direction, the vibration in y -
direction is emphasized in the high-frequency range. Then,
even though the low-frequency vibration suppression being

successfull (Fig.20(c)), the vibration level has increased in
y -direction due to the high-frequency amplification. The
high-frequency amplification of the controller can be seen
from the vibration spectrum of the radial rotor vibration, i.e.
spectrum of the signal

√
x2 + y2. The results obtained by

using the displacement transducers are shown in Fig.21. It
can be seen that some high-frequency vibration components
were amplified.

VI. DISCUSSION AND CONCLUSIONS

In this paper, attenuation of flexural rotor vibration in
electrical machines was considered. Application of harmonic
excitation compensation in a two-pole cage induction machine
was demonstrated. A non-contact electromagnetic actuator was
applied for generation of lateral force on the rotor. The main
observations in this paper are

1) the algorithms for compensation of harmonic excitation
provide a potential tool for low-frequency rotor vibration
suppression in electrical machines,

2) the built-in force actuator is an applicable force actuation
methodology to be used with the harmonic excitation
compensation algorithms,

3) voltage-fed control winding and eccentric cage rotor is
a coupled electromechanical system.

Based on the experiments, it was observed that the rms
values of the amplitude and velocity of the flexural rotor
vibration were decreased by 97.50% and 57.60%, respectively,
when control was switched on. The overall vibration level
(mm/s, rms) in N-end bearing was decreased by 9.10% but, on
the contrary, in D-end bearing it was increased by 4.40%. In
conclusion, due to the bearing block high-frequency dynamics,
the vibration level in the D-end bearing was increased. Nev-
ertheless, it was observed that (1) the vibration levels were
small and (2) the problems with noise did not appear. In some
applications, however, the high-frequency amplification may
result in problems with noise, for instance.

In this work, the vibration attenuation was applied at no-load
operating conditions. In addition, the machine was supplied
by a generator which provided a smooth fundamental field
compared to frequency converter supply widely used in prac-
tical applications. In order to bring the set-up closer to a real
application, these aspects have to be considered. Furthermore,
the identification was carried out for a fixed rotation speed
and fixed two-pole flux. Changing operating conditions and
online (parametric) identification belongs to future research.
By increasing the two-pole field, for example, the RL -
resonance damping may decrease, which causes problems in
frequency-domain estimation and hence may require a pre-
compensator to be used as a part of the control strategy. In the
later developments, the CC algorithm coupled with a linear-
quadratic feedback controller [39] provided wide frequency-
band attenuation of rotor vibration including stable operation
at the critical speed of the machine.
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