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yeasts and a fungus [Aineenvaihdunnan mallinnus ja 13C-vuoanalyysi. Sovellukset bioteknologisesti 
tärkeisiin hiivoihin ja homeeseen]. Espoo 2009. VTT Publications 724. 94 p. + app. 83 p. 
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Abstract 
All bioconversions in cells derive from metabolism. Microbial metabolisms 
contain potential for bioconversions from simple source molecules to unlimited 
number of biochemicals and for degradation of even detrimental compounds. 
Metabolic fluxes are rates of consumption and production of compounds in 
metabolic reactions. Fluxes emerge as an ultimate phenotype of an organism 
from an integrated regulatory function of the underlying networks of complex 
and dynamic biochemical interactions. Since the fluxes are time-dependent, they 
have to be inferred from other, measurable, quantities by modelling and compu-
tational analysis. 13C-labelling is crucial for quantitative analysis of fluxes 
through intracellular alternative pathways. Local flux ratio analysis utilises uni-
form 13C-labelling experiments, where the carbon source contains a fraction of 
uniformly 13C-labelled molecules. Carbon-carbon bonds are cleaved and formed 
in metabolic reactions depending on the in vivo fluxes. 13C-labelling patterns of 
metabolites or macromolecule components can be detected by mass spectrome-
try (MS) or nuclear magnetic resonance (NMR) spectroscopy. Local flux ratio 
analysis utilises directly the 13C-labelling data and metabolic network models to 
solve ratios of converging fluxes. 

In this thesis the local flux ratio analysis has been extended and applied to 
analysis of phenotypes of biotechnologically important yeasts Saccharomyces 
cerevisiae and Pichia pastoris, and a fungus Trichoderma reesei. Oxygen de-
pendence of in vivo net flux distribution of S. cerevisiae was quantified by using 
local flux ratios as additional constraints to the stoichiometric model of the cen-
tral carbon metabolism. The distribution of fluxes in the pyruvate branching 
point turned out to be most responsive to different oxygen availabilities. The 
distribution of fluxes was observed to vary not only between the fully respira-
tory, respiro-fermentative and fermentative metabolic states but also between 
different respiro-fermentative states. The local flux ratio analysis was extended 
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to the case of two-carbon source of glycerol and methanol co-utilisation by 
P. pastoris. The fraction of methanol in the carbon source did not have as pro-
found effect on the distribution of fluxes as the growth rate. The effect of carbon 
catabolite repression (CCR) on fluxes of T. reesei was studied by reconstructing 
amino acid biosynthetic pathways and by performing local flux ratio analysis. 
T. reesei was observed to primarily utilise respiratory metabolism also in condi-
tions of CCR. T. reesei metabolism was further studied and L-threo-3-deoxy-
hexulosonate was identified as L-galactonate dehydratase reaction product by 
using NMR spectroscopy. L-galactonate dehydratase reaction is part of the fun-
gal pathway for D-galacturonic acid catabolism. 
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Tiivistelmä 
Aineenvaihdunta kattaa kaikki biomuunnokset soluissa. Mikrobiaineenvaihdunta 
mahdollistaa yksinkertaisten lähtöaineiden muuntamisen rajoittamattomaksi 
määräksi erilaisia biokemikaaleja ja jopa haitallisten aineiden hajottamisen. Ai-
neenvaihduntavuot ovat yhdisteiden kulutus- ja tuottonopeuksia aineenvaihdun-
nan reaktioissa. Vuot ilmentyvät organismin todellisena fenotyyppinä, jota sääte-
levät yhteistoiminnallisesti solun monimutkaiset ja dynaamiset vuorovaikutus-
verkot. Koska vuot ovat aikariippuvaisia, ne on määritettävä mallinnuksen ja 
laskennallisen analyysin avulla toisista, mitattavissa olevista, suureista. 13C-leimaus 
on välttämätöntä, jotta vuot vaihtoehtoisilla solunsisäisillä reiteillä voidaan määrittää 
kvantitatiivisesti. Paikallisessa vuosuhdeanalyysissa käytetään tasaista 13C-leimausta, 
jossa hiilenlähde sisältää osuuden täydellisesti 13C-leimattuja molekyylejä. In 
vivo -vuot määräävät missä suhteissa aineenvaihdunnassa katkeaa ja muodostuu 
uusia hiili-hiilisidoksia. Aineenvaihdunnan välituotteiden ja makromolekyylien 
komponenttien 13C-leimauskuvioita voidaan mitata massaspektrometrialla (MS) 
tai ydinmagneettisella resonanssispektroskopialla (NMR). Paikallisessa vuosuh-
deanalyysissa käytetään suoraan mittausinformaatiota 13C-leimauskuvioista ja 
aineenvaihduntaverkkomalleja vuosuhteiden ratkaisemiseksi. 

Väitöskirjassa paikallista vuosuhdeanalyysia laajennettiin ja sovellettiin bio-
teknologisesti tärkeiden hiivojen Saccharomyces cerevisiae ja Pichia pastoris, ja 
homeen Trichoderma reesei fenotyyppien analysoimiseksi. S. cerevisiaen in vivo 
-vuojakauman riippuvuus hapen saatavuudesta määritettiin kvantitatiivisesti 
käyttämällä paikallisia vuosuhteita lisärajoitteina keskeisen hiiliaineenvaihdun-
nan stoikiometriselle mallille. Pyruvaattiristeyksen vuojakauma osoittautui her-
kimmäksi eri happisaatavuuksille. Selvästi erilaiset vuojakaumat havaittiin täy-
sin respiratiivisessa, respiro-fermentatiivisessa ja täysin fermentatiivisessa ai-
neenvaihdunnan tilassa, mutta myös eri respiro-fermentatiivisissa tiloissa. Pai-
kallinen vuosuhdeanalyysi laajennettiin kahden hiilenlähteen tapaukseen, jossa 



6 

P. pastoris kulutti samanaikaisesti glyserolia ja metanolia. Metanolin osuudella 
kokonaishiilenlähteessä ei ollut yhtä merkittävää vaikutusta vuojakaumaan kuin 
hiivan kasvunopeudella. Hiilikataboliittirepression (CCR) vaikutusta T. reesein 
vuojakaumaan tutkittiin rekonstruoimalla aminohapposynteesireitit ja tekemällä 
paikallinen vuosuhdeanalyysi. T. reesein havaittiin käyttävän pääasiassa respiratii-
vista aineenvaihduntaa myös repressoivissa olosuhteissa. NMR-spektroskopiaa 
käytettiin myös D-galakturonihapon kaboliareitin tutkimuksessa ja L-treo-3-
deoksi-heksulonaatti tunnistettiin T. reesein L-galaktonaattidehydrataasireaktion 
tuotteeksi. 
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1. Introduction – biology part 

1.1 Cell factories and model organisms 

Biotechnology offers possibilities for production of highly specialised biochemi-
cals and for sustainable and economic process alternatives. It exploits cells or 
biocatalytes, enzymes, in bioconversions. Cells contain complete machineries 
for bioconversions from simple source molecules to unlimited number of bio-
chemicals and degradation potential for breakdown of compounds even hazard-
ous. Microorganisms are efficient cell factories whose requirements on the proc-
ess conditions are modest and they often grow on inexpensive media. Even 
waste streams or effluents can be utilised as raw materials for bioprocesses. 

Eukaryotic microorganism, yeast Saccharomyces cerevisiae (Figure 1), has a 
long history of biotechnological utilisation from conventional use as baker’s 
yeast to production of diverse biochemicals. Concomitantly S. cerevisiae has 
been widely applied as a model organism in studies of general cell physiology. 
Due to the broad interest and the long history, S. cerevisiae is one of the most 
studied microorganisms with highly developed molecular biology tools and 
modelling frameworks [Petranovic and Vemuri, 2009; Herrgård et al., 2008; 
Nevoigt, 2008]. Today S. cerevisiae is emerging as a simple eukaryotic model, a 
systems biology workhorse, for elucidating the mechanisms of even human dis-
eases [Petranovic and Nielsen, 2008; Chen and Thorner, 2007]. The focus in 
systems biology is in understanding the function of a cell system as a whole 
[Lazebnik, 2002]. Since the complexity of cell systems is beyond intuitive com-
prehension, the core of systems biology is mathematical modelling of biological 
processes [Kitano, 2002]. The significant similarity of the cell function among 
eukaryotic cells offers promising prospects for S. cerevisiae models [Chen and 
Thorner, 2007; Petranovic and Nielsen, 2008; Botstein et al., 1997]. Physiology 
of S. cerevisiae was studied in Publication I of the thesis. The organisms investi-
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gated in Publications II, III and V, are fungus Trichoderma reesei (Figure 1) and 
yeast Pichia pastoris that are two host organisms for industrial production of 
natural and heterologous proteins. 

 

Figure 1. Budding yeast S. cerevisiae (on the left) and filamentous fungus T. reesei (on 
the right) are biotechnologically important production organisms. 

1.2 Metabolism 

All bioconversions in cells derive from metabolism. Metabolism is a set of bio-
chemical reactions made feasible by enzymes [Stryer, 1995], which in turn are 
encoded by genes. Thus, the whole potential of metabolism of an organism is 
encoded in its genome, the complement of all genes. At present, the metabolic 
potential of an organism can usually be efficiently modified or engineered, with 
the variety of molecular biology tools available today. Metabolic engineering is, 
as stated by Stephanopoulos already in 1990’s, “directed improvement of prod-
uct formation or cellular properties through the modification of specific bio-
chemical reaction(s) or the introduction of new one(s) with the use of recombi-
nant DNA technology” [Stephanopoulos et al., 1998]. 

Unicellular organisms comprise catabolism of substrates and anabolic path-
ways for synthesis of biomass components in a single cell. Pathways for metabo-
lization of various carbon sources unite and a range of biosynthetic pathways 
initiate in central carbon metabolism, which is a common knot for catabolism 
and anabolism [Ma and Zeng, 2003]. Source molecules are broken down and 
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energy and precursors for biosynthetic pathways are produced in the central 
carbon metabolism. 

1.3 Metabolic fluxes 

Metabolic flux is a time-dependent quantity of the rate of consumption or pro-
duction of compounds in a metabolic reaction [Stephanopoulos et al., 1998; 
Nielsen et al., 2003]. Metabolic fluxes are process streams of a cell factory. 
Therefore, a common aim of metabolic engineering is to generate changes in 
pathway fluxes. The essential biocatalytes, i.e. enzymes, can be amplified, de-
leted, and modified with versatile molecular biology tools. However, metabolic 
homeostasis prevails in cells that are highly balanced systems. A flux through a 
pathway depends on various factors in addition to the enzymes. The complement 
of fluxes in a cell, namely fluxome is cell’s ultimate response to genetic and 
environmental conditions [Sauer, 2004]. The flux response emerges from an 
integrated function of complex and dynamic interaction networks (metabolic, 
signal transduction, regulatory, protein-protein interaction networks etc). Many 
of the components of the biochemical interaction networks such as concentra-
tions of enzymes, other proteins, metabolites, and genome-wide gene expression 
levels are at present directly measurable with high-throughput systems. Since the 
fluxes are dependent of time, they cannot be directly measured but have to be 
inferred from other, measurable, quantities through a model based computational 
analysis. 

1.4 Regulation of flux phenotype 

The intertwined biochemical interaction networks of a cell form a regulatory 
system. The complex regulatory system enables both fine-tuned adaptive re-
sponses and robustness of the phenotype against genetic defects and fluctuations 
in external conditions [Kitano, 2007]. The ability to adapt to the prevailing 
growth conditions is essential for micro-organisms like S. cerevisiae that are 
unable to control the extracellular conditions. Furthermore, the regulatory sys-
tem is capable of attenuating effects of genetic modifications on phenotype [Da-
vies and Brindle, 1992; Schaaff et al., 2004; Blank et al., 2005]. 

The regulation of a finite change in flux can be conveniently and quantita-
tively divided into hierarchical and metabolic regulation [ter Kuile and Wester-
hoff, 2001]. Hierarchical regulation covers the steps of the central dogma of 
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molecular biology: gene expression, transcription, and translation. It ultimately 
determines the amounts of enzymes. Transcription is regulated by transcription 
factor proteins and other regulatory factors that may bind specifically to a gene 
to initiate or to speed up the formation of a messenger RNA (mRNA) [Fuda et 
al., 2009]. The mRNA is then transferred out of the nucleus into the cytosol 
where it binds to ribosomes for translation. Rate of translation is dependent on 
various factors including ribosome density [Arava et al., 2003; Brockmann et al., 
2007]. The degradation rates also affect the quantities of mRNAs and proteins. 

Metabolic regulation of a change in flux includes everything beyond the en-
zyme concentrations such as activation of enzymes and kinetic control of reac-
tions [ter Kuile and Westerhoff, 2001]. Post-translational modifications of pro-
teins modulate their activity [Uy and Wold, 1977; Mann and Jensen, 2003]. For 
example phosphorylation can fully determine the activity of an enzyme [Ptacek 
et al., 2005]. Signal transduction cascades pass phosphorylations as a response 
of sensing the growth conditions [Zaman et al., 2008]. Reaction rates depend on 
the concentrations of the reactants after the particular kinetics of an enzyme 
[Stryer 1995]. In addition, metabolites can act as allosteric effectors and affect 
the reaction rates [Monod et al., 1965] or even trigger regulation on the hierar-
chical regulatory levels [Sellick and Reece, 2003]. 

Metabolic homeostasis derives from dependences between flux, enzymes and 
metabolites and interdependences between reactions created by the metabolic 
network. Furthermore, hubs [Ma’ayan, 2009] such as cofactors NADH and 
NADPH and the energy unit ATP, are common metabolites for the whole net-
work and create regulatory dependences even between distant pathways of the 
metabolic network. While there is lack of detailed knowledge on kinetic parame-
ters and reaction mechanisms of large fraction of metabolic enzymes, thermody-
namics provides insight to the dependences between fluxes and metabolites 
[Kummel et al., 2006; Beard and Qian, 2005]. 

1.5 Oxygen affects flux phenotype 

Oxygen conditions in nature vary between the oxygen partial pressure in air and 
complete anaerobiosis. Microorganisms have adapted to different ranges of oxy-
gen availabilities depending on their natural habitats. A central role of oxygen 
metabolism is highly usual for any biological system [Koch and Britton, 2008]. 
Aerobic organisms are able to utilise oxygen as the final electron acceptor in the 
electron transfer chain, which is coupled to ATP synthesis. Since oxygen has 
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high electronegativity, the electron transfer reactions provide large transfer en-
ergy and the respiratory ATP production has an extremely high yield [Koch and 
Britton, 2008]. On the other hand, aerobic organisms need protection mecha-
nisms against the deteriorating effects of oxygen [Jamieson, 1998]. Cell compo-
nents are deteriorated by external oxidants and oxygen radicals generated in 
cell’s internal oxygen utilising processes [Herrero et al., 2008]. In should be 
noted that oxidation severely damages proteins, lipids, and nucleic acids 
[Jamieson, 1998; Herrero et al., 2008]. Oxidative stress signalling activates re-
pair mechanisms and degradation pathways for damaged components [Letavay-
ová et al., 2006]. Interestingly, cells counteract oxidative and reductive stresses 
with at least partly overlapping mechanisms [Trotter and Grant, 2002]. 

Aerobic environment poses a challenge also on the regulation of cell’s redox 
balance. Cell cytosol is normally maintained reductive [López-Mirabal and Win-
ther, 2008] and glutathione is the main buffer in the redox balancing system. In 
addition, it is linked to numerous cellular processes like membrane transport 
systems and carbon and nitrogen metabolisms [Perrone et al., 2005; López-
Mirabal and Winther, 2008]. Balanced redox conditions affect the metabolic 
homeostasis also because several metabolic reactions are redox reactions. When 
oxygen is not available as an electron acceptor, S. cerevisiae produces glycerol 
as a redox sink [Bakker et al., 2001]. Fermentative pathway is redox neutral, but 
glycerol production occurs when the amount of NADH formed in biosynthesis 
exceeds the capacity of respiration to regenerate NADH to NAD+. Reoxidation 
of NADH is prioritised under the conditions of oxygen deficiency and the car-
bon flux is directed to the fermentative pathway instead of to the TCA cycle 
[Weusthuis et al., 1994; Publication I]. 

In S. cerevisiae oxygen limitation in the extracellular medium shifts the flux 
phenotype. The glycolytic flux is increased and ethanol production takes place 
[Weusthuis et al., 1994; Publication I]. In the absence of ethanol production, 
metabolism is fully respirative. Respiro-fermentative phenotypes are observed in 
conditions of limited respiration. Respiratory limitation faces S. cerevisiae not 
only in lack of oxygen but also under excess glucose conditions and at high 
growth rate [Cortassa and Aon, 1998]. Glucose sensing and signalling network is 
active in conditions of excess glucose and it represses the components of the 
respiratory chain and the TCA cycle [Zaman et al., 2009]. In contrast, the respi-
ratory chain components have been observed to be upregulated under low oxy-
gen conditions [Rintala et al., 2009]. Aerobic alcoholic fermentation is observed 
in S. cerevisiae also at high growth rates when the glycolytic flux exceeds the 
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critical limit that depends on maximum respiratory rate [Vemuri et al., 2007]. 
Exceeding the critical limit results in overflow metabolism in pyruvate branch-
ing point of central carbon metabolism and thus, to a flux to fermentative path-
way [Vemuri et al., 2007; Frick and Wittmann, 2005]. These observations indi-
cate that similar metabolic states are generated by different transcriptional regu-
latory patterns highlighting the importance of the post-transcriptional and meta-
bolic regulation of the phenotypes. Accordingly, the fluxes through glycolytic 
enzymes have previously been shown to be mainly regulated at post-
transcriptional level [Daran-Lapujade et al., 2007]. Furthermore, pure metabolic 
regulation can increase the glycolytic flux at least eight fold [van der Brink et 
al., 2008] and the increased glycolytic flux observed under high temperature is 
primarily maintained by metabolic regulation [Postmus et al., 2008]. On the 
other hand, the gluconeogenetic and glyoxylate cycle enzymes have been ob-
served to be regulated at transcriptional level [Kolkman et al., 2005]. 

Publication I studied the response of the metabolism of S. cerevisiae to the 
different oxygen provisions at the flux phenotypic level. 

1.5.1 Oxygen responsive hierarchical regulatory mechanisms 

The most well known oxygen-responsive hierarchical regulatory systems are 
dependent on the levels of heme and sterols [Hon et al., 2003; Davies and Rine, 
2006; Kwast et al., 1998]. The synthesis of both of them requires molecular oxy-
gen and thus, their levels decline in the depletion of oxygen. Hap-transcription 
factors respond to the levels of heme. Hap1 regulates the expression of anaerobic 
genes whereas Hap2/3/4/5 factors regulate expression of aerobic genes [Kwast et 
al., 1998]. Hap1 factor has been shown to have a gentle slope in the activity 
profile in mild oxygen limitation but a sharp increase in severe lack of oxygen 
[Hon et al., 2003]. Hap2/3/4/5 factors regulate genes encoding metabolic TCA 
cycle enzymes among others and Hap4 particularly activates catabolism of respi-
ratory carbon sources like ethanol [Raghevendran et al., 2006]. 

The mitochondrial production of oxidative stress mediating reactive oxygen 
species (ROS) and nitric oxide (NO) in low oxygen conditions have been sug-
gested to be involved in signalling for induction of hypoxic genes [Castello et 
al., 2006; D’Autréaux and Toledano, 2007; Woo et al., 2009]. Accordingly tran-
sient oxidative stress response has been observed in S. cerevisiae in sudden de-
pletion of oxygen [Dirmeier et al., 2002]. Genes encoding enzymes involved in 
biosynthesis of fatty acids, which requires oxygen, belong to hypoxic genes. 
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The mitochondria are also known to signal of a respiratory defect by retro-
grade signalling that affects even the transcription of nuclear genes [Butow and 
Avadhani, 2004; Liu and Butow, 2006]. Retrograde signalling coordinates car-
bon and nitrogen metabolisms to respond to the requirements of the deficient 
state. In conditions of mitochondrial deficiency, the regulation of genes encod-
ing TCA cycle enzymes switch from Hap-complex to retrograde regulators [Liu 
and Butow, 2006]. 

1.6 Carbon catabolite repression regulation of phenotype 

Carbon catabolite repression (CCR) is a phenomenon where in presence of a 
preferred carbon source the pathways for utilisation of alternative carbon sources 
are repressed [Gancedo, 1998]. In the presence of excess glucose CCR of 
S. cerevisiae strongly represses metabolization of other carbon sources and also 
the respirative pathway as discussed above [Gancedo 1998; Zaman et al., 2009; 
Westergaard et al., 2007]. High glucose mediates the redistribution of fluxes to 
respirative and fermentative pathways similarly as varying oxygen conditions 
and exceeding the maximum respiratory capacity [Gombert et al., 2001; Nissen 
et al., 1997; Vemuri et al., 2007; Publication I]. Fermentation and high glyco-
lytic flux enable high rate of ATP production. Glucose repression in 
S. cerevisiae is a regulatory switch that prefers high rate of ATP production in-
stead of the high ATP yield that could be obtained from the respirative pathway. 

T. reesei is naturally adapted to grow in nutrient poor environments, where it 
is able to use complex plant material as carbon source. T. reesei and number of 
other filamentous fungi and cellulolytic bacteria produce and secrete plant 
polymer hydrolyzing enzymes such as cellulases and hemicellulases to their 
surroundings to break down the polymers into easily metabolizable monomers 
[Kumar et al., 2008]. The powerful machinery producing hydrolytic enzymes in 
T. reesei is under CCR when a preferred carbon source, such as glucose, is 
available. Small oligosaccharides or derivative parts of the polymers in the envi-
ronment of the fungus act as inducers of expression of genes encoding hydro-
lytic enzymes. The inductive signaling is specific for particular sets of enzymes 
[Ilmén, 1997; Aro et al., 2005]. However, under high glucose concentrations, 
CCR overrules the inductive signals [Ilmén et al., 1997]. The regulatory switch 
of energy generation in T. reesei is different from the switch in S. cerevisiae. In 
T. reesei CCR does not cause repression of genes encoding the TCA cycle en-
zymes or the respiratory pathway components. Thus, CCR does not hinder the 
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high yield respirative energy generation in T. reesei [Chambergo et al., 2002; 
Gancedo, 1998]. The difference is reasonable in evolutionary sense because all 
the available energy in the nutritionally harsh natural habitats of T. reesei is 
valuable. 

The signalling pathways for glucose repression in S. cerevisiae are widely 
studied [Zaman et al., 2009]. The systems biology approach has provided further 
understanding of the interaction of separate signalling pathways in S. cerevisiae 
in yielding specific responses to the growth conditions [Westergaard et al., 
2007]. In T. reesei Cre1 is the key mediator protein of CCR [Strauss et al., 1995; 
Ilmén et al., 1996]. It is structurally highly similar to Mig1, a key protein in glu-
cose repression in S. cerevisiae. Despite the sequence and structural similarity, 
the functional dissimilarities of Cre1 and Mig1 have led to the conclusion that 
glucose repression functionalities in filamentous fungi and yeasts have evolved 
separately [Cziferszky et al., 2002; Vautard et al., 1999]. Pfeiffer et al. (2001) 
has also argued that the evolution from unicellular to undifferentiated multicellu-
lar organisms like T. reesei has been facilitated by the preference of high yield 
energy generation by respiration. The role of respirative metabolism in the de-
velopment of multicellular organisms has recently been supported by Koch and 
Britton (2008). 

In Publication III the distribution of intracellular metabolic fluxes in T. reesei 
were studied in different conditions of CCR. 
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2. Introduction – method part 

2.1 Systems biology 

Systems biology focuses on system level function of cells instead of the conven-
tional approach of mere concentration on individual components [Kitano, 2002; 
Lazebnik, 2002]. Thus, mathematical modelling, networks of biochemical inter-
actions, and high-throughput methods for simultaneous profiling of large num-
bers of cell components are essence of systems biology. Modelling is crucial for 
studying highly complex biological systems. Cell components and processes 
transfer information through interactions which enables for example adaptation 
mechanisms for survival and, on the contrary, phenotypic robustness against 
fluctuations in environmental conditions [Kitano, 2007]. An ultimate aim of 
systems biology is to generate predictive in silico models of biological systems. 
Modelling is an iterative process of continuous improvement of the description 
of the system. Models are mathematical representations of phenomena of interest 
and they are always simplifications of the actuality. According to the retelling of 
Einstein´s statement: models should be as simple as possible, but not simpler, 
thus the level of simplification as well as the type of the model should be de-
signed for the purpose of the model [Klipp, 2007]. 

2.2 Metabolic modelling for flux analysis 

The simplest models of metabolism are black box models in which everything 
else than the external fluxes of uptake and secretion is hidden in the black box. 
Intracellular reactions are not specified but just wrapped into the box. An overall 
reaction equation describes the conversion of substrates to products in the black 
box. Despite the obvious simplicity, the black box models can be utilised for 
calculation of mass balances, elemental balances and degree of reduction bal-
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ances in modelling of cell factories, thus, also in calculation of process figures 
like yields and productivities. However, to be able to engineer the process fig-
ures, information on what occurs inside the black box is of importance. 

2.2.1 Stoichiometric models 

Stoichiometric models of metabolism specify the individual reactions in the 
system and the reaction stoichiometry relations of substrates and products. 
Stoichiometric models are static models and thus, do not include any reaction 
kinetics. While kinetic models of any medium size branching networks are still 
inconvenient due to the lack of knowledge and computational challenges, 
stoichiometric models have proven to be highly useful in metabolic studies of 
large networks. 

2.2.1.1 Genome-wide metabolic reconstructions 

The emergence of efficient sequencing and DNA techniques brought along a 
growing number of published fully sequenced and annotated genomes of organ-
isms. Even the complete metabolic potential of an organism is encoded in its 
genome. Therefore, the availability of the genomes and the development of 
comparative genomics lead into reconstruction of genome wide metabolic mod-
els. The first genome-wide metabolic network reconstruction of S. cerevisiae 
was done by Förster et al. (2003) (Figure 2). Automatic methods exist both for 
full reconstruction of genome wide metabolism and for pathway searches from 
the given substrate to a product [Feist et al., 2009 (review); Karp et al., 2002; 
Pinney et al., 2005; Notebaart et al., 2006]. However, after the automatic work, 
reliable metabolic reconstruction requires laborious manual curation including 
both literature checks and experimental verification of the metabolic network 
model [Francke et al., 2005; Feist et al., 2009 (review); Herrgård et al., 2008 
(S. cerevisiae consensus model); Duarte et al., 2007 (human); Shinfuku et al., 
2009 (Corynebacterium glutamicum)]. The characterisation of enzymes and 
verification of their products as was done in Publication V in the thesis contributes 
to experimental validation of models. The genome wide metabolic reconstructions 
are stoichiometric models including static reaction descriptions and preferentially 
annotations of enzymes catalysing the reactions. The genome-wide metabolic 
models offer frameworks for investigations of the complete metabolic potential of 
an organism, and for data interpretation and analysis [Patil and Nielsen, 2005]. 
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They also provide scaffolds for models of smaller and dynamic systems, and im-
portantly they provide a link between the genome and the metabolic reactions. 

 

Figure 2. The genome-wide metabolic network of S. cerevisiae as a bipartite graph of 
metabolite and reaction nodes. The first genome-wide metabolic network reconstruction 
of S. cerevisiae reconstructed by Förster et al. (2003) included two compartments, cytosol 
and mitochondria, and 1175 metabolic reactions and 584 metabolites. The latest consen-
sus model is divided into eight compartments and contains a total of 1168 metabolites 
and 1857 reactions and also 832 genes, 888 proteins, and 96 catalytic complexes 
[Herrgård et al., 2008]. 

The reaction lists are readily converted into metabolite mass balances, functions 
of reaction rates, and further into stoichiometric matrices. Stoichiometric matri-
ces can be analyzed by techniques of linear algebra to understand the metabolic 
potential and the structure of the metabolism of the particular organism [Palsson, 
2006]. Stoichiometric reaction descriptions and a stoichiometric matrix are also 
the basic requirements for analysis of metabolic fluxes. 

2.2.2 Kinetic models 

Kinetic metabolic models include time-dependent mechanistic descriptions of 
reactions [Klipp, 2007]. Metabolic enzymes possess different mechanisms and 
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thus, the kinetic equations are enzyme specific [Stryer, 1995]. Depending on the 
reaction mechanism of an enzyme, the number of effectors and parameters var-
ies. It is convenient to experimentally determine kinetics of isolated enzymes in 
vitro. However, it is likely that in vivo under crowded and compartmentalised 
conditions of a cell, the kinetics differ significantly from what is determined in 
vitro. Teusink et al. (2000) performed a study were a kinetic model of yeast 
glycolysis was set up and in vitro determined values for kinetic parameters were 
utilised for simulation. The output data from model simulations were compared 
to the experimental flux and metabolite data. There one finds significant dis-
crepancies between simulated and experimental values of half of the reactions 
even though glycolysis is an extensively studied part of metabolism. Experimen-
tal data for computational estimation of kinetic parameters is acquired in pertur-
bation experiments of the system of interest [Nikerel et al., 2006; Vaseghi et al., 
1999]. However, since the number of parameters in kinetic metabolic models is 
usually huge, their estimation is demanding. Thus, different approximations of 
kinetic equations have been developed for studying the dynamic behaviour of a 
metabolic system [Heijnen, 2005 (review); Visser and Heijnen, 2003; Visser et 
al., 2004; Savageau, 1970; Liebermeister and Klipp, 2006]. 

2.3 Metabolic flux analysis 

Determination of intracellular in vivo fluxes is called metabolic flux analysis 
(MFA), which applies mass balances around metabolites according to the 
stoichiometric model. Thus, mass balances around metabolites are formulated as 
functions of the fluxes. Dilution of metabolite pools due to growth can be taken 
into account as a dilution term although in many cases the dilution term is negli-
gible [Nielsen et al., 2003]. 

metmet
met cv

dt
dc

μ−=  (1) 

In equation 1 cmet is the concentration of a particular metabolite, vmet the net rate 
of formation and consumption of the metabolite by all the fluxes in the system, 
and in the dilution term µ is the growth rate. 

Integration of equation 1 over time for all the metabolites would yield the time 
dependence of concentrations cmet(t). However, the fluxes vmet are often unknown 
functions of metabolite concentrations and unknown enzyme kinetic and other 
parameters as discussed above. Since it is challenging to simulate the dynamic 
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concentration profiles, steady state conditions are usually considered. In steady 
state conditions the growth rate and the metabolic fluxes are constant and there 
is no accumulation of intracellular metabolites but their pools also remain constant 
[Nielsen et al., 2003]. Steady state microbial growth is reached in continuous cul-
tures (chemostat cultures) where the rates of medium flow into and out from the 
bioreactor are equal. Pseudo-steady state conditions prevail in early exponential 
phase of a batch culture when the cells grow at maximum rate while the changes 
in the culture medium are still insignificant. Under assumption of steady state 
conditions the following form of equation 1 holds [Nielsen et al., 2003]: 

0=− metmet cv μ  (2) 

Because the intracellular metabolite pools are generally very small, the dilution 
term is tiny compared to the fluxes producing and consuming metabolites, par-
ticularly in the central carbon metabolism that encompasses all the major fluxes 
[Stephanopoulos et al., 1998]. When the dilution term can be assumed to be 
negligible, the equation 2 adapts a simple form: 

0=metv  (3) 

which in matrix notation reads: 

0Nv =  (4) 

where N is the stoichiometric matrix with the fluxes of the system in columns 
and the stoichiometric coefficients of metabolites in each of the fluxes in rows 
and v is a column vector of fluxes. The stoichiometric matrix transforms the 
biology of metabolic reactions into mathematical framework. The matrix equa-
tion actually represents K linear mass balances for the K metabolites that con-
tribute to J fluxes. Since there are always less metabolites K than fluxes J, the 
degree of freedom F = K – J remains and some of the fluxes in vector v need to 
be determined to solve the rest of them [Nielsen et al., 2003]. If the stoichiomet-
ric matrix is partitioned into two parts for measured fluxes (Nm) and for un-
known fluxes (Nu), the equation can be rewritten in the following way: 

0vNvNNv =+= uumm  (5) 

where vm is a vector of measured rates and vu a vector of unknown rates. If ex-
actly F fluxes have been measured and if Nu can be inverted, the unknown rates 
can be directly solved with matrix algebra [Stephanopoulos et al., 1998]. If Nu 
has full rank (rank(Nu) = K), it can be inverted and the unknown fluxes calcu-
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lated by Gaussian elimination but if the rank of Nu is less than K, Nu is singular 
and the system is underdetermined. If the set of reaction stoichiometries are line-
arly dependent, the rank of Nu is less than K even though the number of meas-
ured fluxes equals degrees of freedom. Also if some of the measured rates are 
redundant, the rank of Nu is less than K. 

Very seldom it is practically possible to measure enough fluxes to reach an al-
gebraic solution to the metabolic system of linear mass balance equations. This 
is obviously always the case with large, genome-scale metabolic models. 

2.3.1 Constraint-based analysis 
The space of metabolic states has as many dimensions as reactions in the system. 
The stoichiometry of the reactions, equation 4, limits the space into a subspace 
that is a hyperplane. If the reactions are defined so that they are all positive, the 
plane is converted into a cone. If additionally upper bounds, maximum capaci-
ties, can be defined for the fluxes, a closed convex cone solution space is ob-
tained. All the possible metabolic states of an organism, the feasible flux distri-
butions, lie in that solution space. Thus, it is the space of phenotypes which an 
organism can express. To further shrink the solution space, additional constraints 
have been set up from reaction thermodynamics [Beard et al., 2002; Beard et al., 
2004; Price et al., 2004b; Price et al., 2006], from experimental transcription 
data and from extracellular metabolome for condition-specific solution spaces 
[Covert and Palsson, 2002; Åkesson et al., 2004; Becker and Palsson, 2008; Mo 
et al., 2009]. The whole feasible solution space can be studied algebraically or 
statistically by sampling the space [Price et al., 2004a; Palsson, 2006]. Random-
ized Monte Carlo sampling of the feasible solution space gives unbiased infor-
mation on the shape and properties of the space where the true metabolic state 
lies [Price et al., 2004a; Schellenberger and Palsson, 2009]. The null space that 
contains all the possible flux distribution can be studied algebraically [Palsson, 
2006]. Investigation of the feasible solution space yields information on what 
types of solutions are possible, what parts of the metabolic network participate in 
the possible metabolic states, are there some limits for production of specific 
extracellular compounds etc. Obviously the properties of the feasible solution 
space contain even the properties of the true metabolic state. 

Linear optimisation can be utilised to find a point solution, i.e. a single flux 
distribution. The approach is often called flux balance analysis (FBA) and there 
the optimisation requires an objective function. It is always a guess what the 
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organism actually optimises for in the particular conditions and it is generally 
not simple to set up a biologically meaningful objective function. Biomass pro-
duction is an obvious choice for objective function for bacteria that grow expo-
nentially. However, higher cells do not usually optimise for growth though un-
controlled growing cancer cells could be an exception. It is generally accepted 
that organisms have evolved to survive but their survival is not straightforward 
to define as an objective function. Different types of objective functions have 
been searched and suggested [Burgard and Maranas, 2003 (ObjFind); Holzhut-
ter, 2004 (flux minimization)] and the optimised flux solutions have been tested 
against experimental data obtained with 13C-tracer based methods [Schuetz et 
al., 2007]. 13C-tracer based methods will be presented in the next chapters. In 
addition to flux determination, FBA approach has been exploited for identifica-
tion of optimal targets for metabolic engineering [Burgard et al., 2003 
(OptKnock); Pharkya et al., 2004 (OptStrain)]. Furthermore, the properties of a 
metabolic system can be studied by defining different types of objective func-
tions. For example production capabilities can be determined by optimising for 
the product formation. However, engineered organisms may not initially reach 
the optimal performance. Thus, FBA will not return flux phenotypes that match 
the reality of engineered organisms. Successful predictions of flux phenotypes of 
engineered organisms have been obtained with the minimization of metabolic 
adjustment (MOMA) to the wild type flux phenotype -principle and solved with 
quadratic programming [Segré et al., 2002]. 

2.3.2 13C-metabolic flux analysis 

As discussed above the determination of an objective function for FBA is often 
extremely difficult. In addition, the constraint-based MFA approaches, like FBA, 
cannot solve distributions of fluxes to parallel and alternative pathways. How-
ever, the parallel pathways usually transfer atoms in distinctive manner before 
they converge to a common metabolic intermediate. Thereby, utilisation of trac-
ers has emerged. Since metabolism is all about breaking and making carbon-
carbon bonds, 13C, is the most common tracer in metabolic studies [Tang et al., 
2009]. 13C is a stable carbon isotope whose natural abundance is only 1.1% 
[Gadian, 1982]. Other tracers are applicable for studies of specific metabolic 
pathways [Brosnan et al., 2004 (15N tracer application)]. 
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2.3.2.1 13C-labelling and analytical methods 

13C-labelling for MFA is performed by introducing 13C-labelled substrate to a 
cell culture. When the carbon source gets metabolized the tracer enrichment 
spreads first to the free intracellular metabolites and during extended periods of 
growth on 13C-labelled carbon source also into the macromolecules and cell con-
stituents. The spread of the 13C-label is dependent on the metabolic fluxes and 
the turnover of macromolecules and storage pools. Since the alternative path-
ways often scramble and cleave the carbon backbones of metabolites in different 
ways, the 13C-labelling prints information on the relative activities of the path-
ways into the carbon-carbon connectivities of the metabolites and into the posi-
tional fates of tracer atoms. Depending on the difference between the carbon 
chain modifications in the alternative pathways, different 13C-labelling designs 
of the carbon source are optimal for resolution of the relative pathway activities 
[Möllney et al., 1999; Araúzo-Bravo and Shimizu, 2003]. Isotopomer is a defini-
tion for isotopic isomers of a compound [Wiechert, 2001] and the isotopomers 
differ only in position or number of different isotopes in the molecule. Thus, 
molecules differing in 13C-labelling patterns are isotopomers [Nielsen et al., 2003]. 
In the following chapters two main 13C-labelling approaches are presented. 

Uniform labelling 

In uniform 13C-labelling approach the carbon source contains a fraction of mole-
cules that are uniformly 13C-labelled. Thus, they contain 13C atom in all posi-
tions. Typically utilised fraction of uniformly 13C-labelled molecules is around 
20% [Zamboni et al., 2009]. If the alternative metabolic pathways modify the 
carbon chain in distinctive ways, the relative activities of the pathways can be 
resolved with this approach. This approach can even be called bond labelling 
because the relative activities of the alternative pathways are actually recorded in 
the common product as cleaved and newly formed carbon-carbon bonds. The 
uniform 13C-labelling approach was established in 1990’s by Szyperski [Szyper-
ski 1995] by introducing biosynthetically directed fractional (BDF) 13C-labelling 
where a fraction of uniformly labelled carbon source was feed to microbial cells. 
During the steady-state growth on fractionally 13C-labelled carbon source infor-
mation on the relative in vivo activities of the pathways was recorded and sig-
nificantly amplified in the 13C-labelling patterns of proteinogenic amino acids. 
The 13C-labelling patterns of proteinogenic amino acids could conveniently be 
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detected by two-dimensional nuclear magnetic resonance (NMR) spectroscopic 
experiments. Szyperski (1995) further introduced probabilistic equations for the 
relations between the 13C-13C-couplings in proteinogenic amino acids and frag-
mentomers, fractions of intact carbon fragments. Four fragmentomers that sum 
up to one of three carbon fragment of a molecule can be deduced. Fragmentomer 
f(1) represents the fraction of molecules in which the middle carbon atom and the 
neighboring carbons originate from different carbon source molecules, fragmen-
tomer f (2) represents the fraction of molecules in which the middle carbon atom 
and one of the two neighboring atoms originate from the same carbon source 
molecule, and fragmentomer f (3) represents the fraction of molecules in which the 
middle carbon atom and both the neighboring carbons originate from the same 
carbon source molecule. Sometimes, if the end carbons of the three carbon 
fragments are in different chemical environment, even two different fragmen-
tomers f (2) and f (2*) can be distinguished by NMR spectroscopic methods. Frag-
mentomers are actually constraints for a full isotopomer distribution of a mole-
cule. Later a GC-MS based detection method was developed to be compatible 
with BDF labelling [Fischer and Sauer, 2003]. 

Positional enrichment 

The alternative 13C-labelling approach is to introduce positional label(s). The 
positional label can be introduced in a specific position or positions of the car-
bon source and usually all the carbon source is equally 13C-labelled. For exam-
ple, the common carbon source glucose is commercially available in different 
compositions of 13C and 12C atoms. However, glucose with 13C-atoms some-
where in the middle of the carbon chain is very expensive to purchase. During 
the growth on positionally 13C-labelled carbon source, specific positions of 
product molecules become enriched depending on the in vivo activities of path-
ways. In positional fractional 13C enrichments, the ratios of 13C and 12C atoms in 
the specific carbon positions of the product molecules provide constraints for the 
full isotopomer distribution of a molecule [Wiechert, 2001]. 

Nuclear magnetic resonance spectroscopy 

Modern nuclear magnetic resonance (NMR) spectroscopy detects signals of spin 
possessing nuclei in a strong magnetic field after a radio frequency pulse or a 
sequence of pulses [Friebolin, 1991]. Nuclei that possess a spin different from 
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zero have different energy states in a magnetic field. Radio frequency pulses 
induce transitions between the energy states and create detectable macroscopic 
magnetisation. The magnetisation induces a current to the receiver coil. This 
signal is recorded and called free induction decay (FID). The FID is then Fourier 
transformed from time domain to frequency domain to obtain an NMR spec-
trum. The limited sensitivity of NMR stems from detecting only the small differ-
ence between the populations of nuclei on different energy states. The energy 
difference is dependent on the strength of the static magnetic field. Therefore, 
strong magnets are utilised. Nevertheless, NMR spectroscopy provides unlimited 
potential in the variety of methods that can be utilised for analysis of biological 
samples. 

Spin possessing NMR active nuclei of main interest in analysis of biological 
samples are: 1H, 13C, 15N, and 31P [Gadian, 1982]. All these nuclei have spin 
quantum numbers of ½ and thus, have two possible energy states in a magnetic 
field. Proton is the most sensitive nuclei and 1H NMR spectroscopy is an unbi-
ased method because it can detect all proton containing compounds in a sample. 
On the other hand 31P has a 100% natural abundance and therefore, it can be 
utilised for example for selective detection of only phosphorus containing com-
pounds in a complex mixture.13C atoms, whose natural abundance is only 1.1%, 
can be directly detected by NMR but not the more abundant 12C atoms. Thus, 
13C is a suitable tracer for NMR spectroscopic studies. 

NMR active nuclei give signals in an NMR spectrum on their characteristic 
chemical shifts [Friebolin, 1991]. The characteristic chemical shift of a nucleus 
depends on the nature and the chemical environment of the nucleus. Electrons in 
the chemical environment cause shielding of the magnetic field and thus, the 
magnetic field experienced by the nucleus is also dependent on its surrounding 
electrons. In addition, coupling to other NMR active nuclei through bonds gives 
rise to signal splitting. Therefore, different molecule structures have specific 
signal fine structures. 

Complex sequences of radio frequency pulses can be designed for advanced 
NMR spectroscopic experiments. Magnetisation can, for example, be transferred 
from one type of nuclei to other types of nuclei, which targets the analysis to 
specific structures of interest. Higher dimensional experiments can be performed 
for one type nuclei (homonuclear) or for different types of nuclei (heteronuclear) 
[Croasmun and Carlson, 1994]. Higher dimensional experiments provide also 
more information about the structures of analytes because nuclei that are cova-
lently bound together or close to each other in space can be identified. 
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NMR spectroscopic analyses of samples from 13C-labelling experiments can 
provide two different types of constraints to the isotopomer distribution. If 13C 
are detected, signal fine structures reveal fractions of couplings to adjacent 13C 
and 12C nuclei, thus, a 13C-labelling status of a three carbon fragment [Szyperski, 
1995]. Sometimes even longer couplings can be resolved. If protons are de-
tected, the signal fine structure reveals the fractional enrichment of 13C in the 
carbon coupled to the detected proton. The fraction of protons coupled to 13C is 
observed as split satellite signals on both sides of the signal from the 12C coupled 
protons [Friebolin, 1991]. 

Mass spectrometry 

The advantage of mass spectrometry (MS) compared to NMR is its higher sensi-
tivity. However, there are fundamental differences in the data that is produced 
by MS and NMR. MS detects molecules that have distinctive masses but it can-
not distinguish between molecules having the same number of 13C atoms but in 
different positions [Zamboni et al., 2009]. Massisomer (or mass isotopomer) is 
the definition for isomers that differ in mass [Christensen and Nielsen, 1999]. 
Gas-chromatography-mass spectrometry (GC-MS) has been the most popular of 
MS techniques for analysis of samples from 13C-labelling experiments [Witt-
mann, 2007]. Before the GC-MS analysis the metabolites are first derivatized to 
render the molecules volatile [Tang et al., 2009]. Common derivatizations are 
silylation, acylation and alkylation [Tang et al., 2009; Wittmann, 2007]. In GC-
MS analytes become fragmented and derivatization agent may affect the frag-
mentation sites. Fragmentation yields more constraints to the full isotopomer 
distribution [Zamboni et al., 2009]. Metabolites include natural isotopes and 
derivatization introduces additional atoms to the analytes. Thus, the raw data 
requires correction to remove them [Christensen and Nielsen, 1999; van Winden 
et al., 2002]. 

Previous analyses of 13C-labelling experiments, with NMR spectroscopy or 
GC-MS, have utilised the detection of 13C-labelling patterns of proteinogenic 
amino acids that are abundant. GC-MS has somewhat been utilised also in 
analysis of free amino acids and organic acids [Wittmann et al., 2002]. How-
ever, there is a delay before the label reaches proteins that are macromolecules 
or even some delay before the label enriches in the large free amino acid pools in 
cells. Therefore, the methods have not been suitable for analysis of phenomena 
in short time frames. In addition, the long 13C-labelling experiments require lot 
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of expensive labelled carbon source. The application of liquid chromatography-
mass spectrometry (LC-MS) in analysis of 13C-labelling patterns in intracellular 
metabolic intermediates was demonstrated by van Winden et al. (2005) but the 
direct analysis of 13C-labelling patterns of intracellular metabolites has not be-
come a widespread method because the sensitivity severely limits the analysis as 
metabolic intermediates are present only in very low amounts. Later Toya et al. 
(2007) suggested CE-TOFMS (capillary electrophoresis time-of-flight mass 
spectrometry) for detection of 13C-labelling patterns in free intracellular metabo-
lites. CE-TOFMS is fast and the experimental set up is more flexible for analysis 
of various compounds than LC-MS. Kleijn et al. (2007) showed that the data 
sets from the three measurement techniques: NMR spectroscopy, LC-MS and 
GC-MS yielded consistent flux results in analysis of combined substrate label-
ling, 10% [U-13C] and 90% [1-13C] glucose, in glycerol over-producing 
S. cerevisiae strains. Since the flux sensitivities were found to often depend on 
the analysis method, a combined data set gave the most accurate flux distribution 
estimate. LC-MS was utilised for detection of 13C in free metabolic intermedi-
ates whereas the NMR spectroscopy and GC-MS analyses were performed for 
13C-labelling patterns in proteinogenic amino acids and storage carbohydrates. 

In order to obtain massisomer data on smaller fragments or even pure posi-
tional 13C enrichment data, liquid chromatography-tandem mass spectrometry 
(LC-MS/MS) was introduced to 13C-labelling analysis task [Iwatani et al., 2007]. 
In LC-MS/MS the full massisomers are further fragmented and positional en-
richments can be inferred from the full fragmentation data. Iwatani et al. (2007) 
applied LC-MS/MS detection to analysis of 13C-labelling patterns of proteino-
genic and free amino acids in E. coli. 

2.3.2.2 13C-metabolic flux analysis – mathematical and statistical 
methods 

The interpretation of data from 13C-labelling experiments requires mathematical 
modelling and statistical analysis. Firstly the atom transfers in the metabolic reac-
tions are essential to be modelled for interpretation of data form tracer experi-
ments. Mappings of carbon atoms can be obtained from few sources [Arita, 2003; 
Kotera et al., 2004, (KEGG rpair); Mu et al., 2007 (carbon fate maps)]. Unfortu-
nately the databases may contain errors or inconsistencies and thus, the mappings 
for flux analysis models require curation or at least an inspection. If the atom 
transfers of interest are not found in the databases, one is forced to go into mecha-
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nisms of the reactions to resolve them. Furthermore, label scrambling in symmet-
rically reacting compounds need to be taken into account [Bernhard and Tompa, 
1990]. Software such as ReMatch (http://sysdb.cs.helsinki.fi/ReMatch/) [Pitkänen 
et al., 2008] and OpenFLUX [Quek et al., 2009] aid in setting up and sharing 
metabolic models that include atom mappings. 

The flux estimation methods that exploit 13C-labelling data can be divided into 
two sub categories: global iterative fitting and local flux ratio analysis (possibly 
followed by direct flux estimation) methods. In the following chapters the fea-
tures of both types of computational methods and established protocols and 
software are presented. 

Global iterative fitting 

Global iterative fitting requires modelling of label propagation in the metabolic 
network and set up of balance equations generally for each isotopomer. For a 
metabolite with n carbons there will be 2n possible isotopomers. There will be an 
extremely high number of isotopomer balance equations in the system and many 
of them are nonlinear. Iterative fitting searches for the best fit between the ob-
served and simulated labelling patterns [Wiechert et al., 2001; Antoniewicz et 
al., 2006]. Iteration is initiated from a guessed or a random flux distribution and 
13C-labelling patterns of metabolites are simulated with the model. The simu-
lated 13C-labelling patterns are compared to the observed ones and the iteration 
is continued until a minimum of the difference or a difference under a threshold 
between the simulated and the observed 13C-labelling patterns is reached. The 
method returns a single flux distribution that gives the best global fit to all the 
measured data that was utilised as input. 

Other methods to model 13C-labelling patterns than isotopomers have been 
developed since the original task of simulating numerous isotopomers is compu-
tationally highly demanding. Transformation of isotopomers into cumomers 
enabled analytical solution as solving cascades of linear equations [Wiechert et 
al., 1999]. Cumomers are by definition certains sums of isotopomers and cumo-
mer fractions can incorporate both positional enrichments and isotopomer frac-
tions. Bondomers were introduced for modelling of label propagation in uniform 
13C-labelling experiments [van Winden et al., 2002]. Bondomers are isomer 
entities that differ only in numbers and positions of intact carbon-carbon bonds. 
Utilisation of bondomers instead of isotopomers or cumomers decreases the 
number of mass balance equations and similarly as isotopomers can be trans-
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formed into cumomers, bondomers can be transformed into cumulative bon-
domers. Like cumomers cumulative bondomers enable analytical solution of 
sequence of linear equations. Recently an elementary metabolite units (EMUs) 
framework was introduced to further reduce the computational time required to 
simulate isotopic labelling patterns [Antoniewicz et al., 2007]. EMUs are any 
distinct subsets of metabolites’ atoms and the reaction network is decomposed 
into EMU reactions and a minimum amount of information required for simula-
tions is identified. EMU framework is compatible for simulation of any type of 
isotopic labelling. 

13C-FLUX software was for a long time the only publicly available software 
framework for 13C-MFA [Wiechert et al., 2001]. It is compatible with all kinds 
of measurement data and provides also statistical algorithms for analysing the 
results. EMU framework is utilised in OpenFLUX, which is recent user-friendly 
software for all the steps of 13C-MFA, from model building to statistical analyses 
[Quek et al., 2009]. 

The drawbacks of the iterative fitting methods are that it is difficult to assure 
that the method reached a global minimum instead of just a local one [Ghosh et 
al., 2005]. Moreover, if there is not enough data the method returns merely ran-
dom points from the solution space but still cannot define the feasible solution 
space. 

Local flux ratio analysis 

Local flux ratio analysis utilises directly the 13C-labelling data to deduce ratios 
of converging fluxes in the network. Thus the inaccuracies in the data or in the 
assumptions or errors in the network model affect the results only locally in con-
trast to the global methods [Zamboni et al., 2009]. Algebraic equations that re-
late the 13C-labelling pattern of a junction metabolite to the relative fluxes 
through the branching pathways are formulated. If it is possible to solve relative 
fluxes for every pair of alternative pathways in the network model i.e. as many 
as there are degrees of freedom in the stoichiometric model, then the determined 
flux ratios as additional constraints render the MFA system solvable. Approach 
was introduced by Fischer et al., (2004) and has been implemented as software 
FiatFlux [Zamboni et al., 2005]. The frameworks for flux ratio analysis are de-
scribed in the following paragraphs. 
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Metabolic flux ratio analysis 

Metabolic flux ratio (METAFoR) analysis was initially developed to rely on 
uniform 13C-labelling approach by the biosynthetically directed 13C-labelling of 
the proteinogenic amino acids and following analysis of 13C-labelling patterns by 
two-dimensional NMR spectroscopy [Szyperski 1995; Szyperski et al., 1999]. 
Since the carbon backbones of metabolic intermediates of central carbon me-
tabolism are conserved in synthesis of proteinogenic amino acids and the amino 
acid synthesis pathways were well known for E. coli, Szyperski (1995) back 
propagated the 13C-labelling patterns from the amino acids to metabolites and 
derived equations for ratios of converging fluxes in central carbon metabolism. 
Later Maaheimo et al. (2001) extended the method and derived flux ratio equa-
tions for compartmental metabolism of eukaryotic S. cerevisiae. The 
13C-labelling patterns of eight metabolic intermediates of central carbon metabo-
lism of S. cerevisiae can be determined and utilised as parameters in the flux 
ratio equations. The equations derived for eukaryotic metabolism have then been 
utilised in analysis of metabolic states of at least the following other yeasts and a 
fungus P. pastoris [Sola et al., 2004], P. stipitis [Fiaux et al., 2003], P. anomala 
[Fredlund et al., 2004] and T. reesei (Publication III). 

The original analytical method in METAFoR analysis was 1H-13C HSQC (het-
eronuclear single quantum coherence) NMR spectroscopic experiment [Croas-
mun and Carlson, 1994] were the proton bound 13C-nuclei and the 13C-labelling 
status of the adjacent carbon nuclei are detected. In the experiment, signals from 
13C-nuclei in proteinogenic amino acids are spread into two-dimensions and 
found at characteristic chemical shifts in proton and carbon dimensions. According 
to the 13C-labelling status of the adjacent carbon nuclei, different signal fine struc-
tures are formed. Coupling to an adjacent 13C-nucleus splits the signal (Figure 3).  
All the different signal fine structures are observed on top of each other and their 
fractional volumes correspond quantitatively to the fractions of different three 
carbon isotopomers with a central 13C nucleus. The fractions of different three 
carbon isotopomers with a central 13C nucleus are obtained by iterative fitting of 
simulated signal fine structures on the whole multiplet signal. FCAL is a soft-
ware developed for the iterative fitting and following calculation of fragmen-
tomers from the fractions of different signal fine structures with the equations 
derived by Szyperski (1995) [Szyperski et al., 1999]. The probabilistic equations 
take into account the fraction of uniformly 13C-labelled substrate, the natural 13C 
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abundance in the rest of the carbon source and the fraction of biomass synthe-
sized during the 13C-labelled feed [Szyperski et al., 1995]. 

 

Figure 3. An example of the 13C finestructure of Glu-Cα extracted from a two-dimensional 
1H-13C HSQC NMR spectrum. 

The sample preparation for METAFoR analysis is simple [Szyperski et al., 
1999]. The harvested biomass is just hydrolysed (6 M HCl, +110 °C). Since the 
information on the in vivo fluxes is naturally amplified in biomass, sensitivity 
does not limit the NMR measurement. For NMR analysis ash is removed from 
the hydrolysed sample and the solvent is switched to D2O. The detection of the 
13C-labelling patterns of proteinogenic amino acids by 2D NMR spectroscopy 
can be performed without any separation steps in sample preparation. 

Fischer and Sauer (2003) extended the flux ratio analysis to GC-MS as ana-
lytical method and initiated the utilisation of mixed 13C-labelling, a combination 
of positional and fraction uniform 13C-labelling. The introduction of positional 
label was meaningful in combination of the switch to GC-MS analysis, because 
even though GC-MS cannot directly quantify positional enrichments, enrichment 
of label in carbon fragments can be detected. Later the GC-MS analysis has been 
extended to analysis of 13C-labelling in cell cultures in 1 ml deep-well microtiter 
plates enabling high throughput metabolic flux profiling [Fischer et al., 2004]. 

Conventionally the flux ratio equations have been manually derived by ex-
perts of the metabolism of the organism under study being able to set up mean-
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ingful assumptions of the fluxes for every new organism, metabolic network, 
13C-labelling of the carbon source and an analytical platform. Only recently a 
framework for systematic derivation of the equations from a given metabolic 
network model was introduced (Publication IV). 

Local flux ratios as additional constraints in metabolic flux analysis 

Local flux ratios determined from 13C-labelling experiments are experimental 
information that can be utilised as additional constraints in a conventional MFA 
system [Fischer et al., 2004]. If every branching point in the network model can 
be constrained, the system renders solvable. Fischer et al. (2004) applied the 
approach to metabolism of E. coli. Constraint equations were set up and the net 
fluxes in central carbon metabolism were solved by constrained nonlinear opti-
misation with Matlab function fmincon. Later Fredlund et al. (2004) set up the 
constraint equations for compartmentalised eukaryotic network model of Pichia 
anomala. Both studies utilised GC-MS determined 13C-labelling patterns for flux 
ratio determination. Zamboni et al. (2005) implemented the approach as soft-
ware FIATFLUX for net flux determination in three organisms: E. coli, Bacillus 
subtilis, S. cerevisiae. FIATFLUX contains two Matlab based modules. The first 
one is for determining local flux ratios of GC-MS massisomer data from 
13C-experiments and the second module is for estimating the net fluxes utilising 
the local flux ratios as additional constraints. The network models for determin-
ing the local flux ratios are fixed but the stoichiometric models for net flux de-
termination are open for users. Constraints from 13C-labelling experiments often 
enable leaving out the cofactors form metabolite balancing. Cofactor balancing 
is highly error prone since the cofactor specificities vary in isoenzymes and they 
are not precisely known. In Publication I net fluxes in central carbon metabolism 
of S. cerevisiae were determined under different oxygenation conditions by per-
forming 13C-labelling experiments, utilising NMR spectroscopy based META-
FoR analysis instead of GC-MS analysis for determining the local flux ratios and 
then solving the net fluxes by optimisation having the flux ratios as additional 
constraints. 

2.3.2.3 13C-metabolic flux analysis in large scale networks 

In prolonged 13C-labelling experiments all cell components and metabolites be-
come 13C-labelled but analysis of 13C-labelling patterns of only limited number 
of metabolites is feasible with current MS and NMR techniques. However, the 
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measurements with both methods can be directed to specific compounds or 
methods can be adjusted for analysis of desired compounds. Thus, computa-
tional 13C-experiment design has been investigated [Möllney et al., 1999]. In 
addition to optimal 13C-labelling designs for flux resolution [Möllney et al., 
1999; Araúzo-Bravo and Shimizu, 2003], sets of most informative compounds 
for 13C-MFA can be computationally determined to target the analysis of 
13C-labelled samples [Rantanen et al., 2006]. 

13C-MFA becomes unfeasible in large-scale networks because of limited 
13C-labelling data and because of the size of the equation system. For iterative 
methods the number of equations grows fast as the number of additional iso-
topomer balances explodes when the network size increases. 13C-MFA with lo-
cal flux ratios as additional constraints would be computationally feasible in 
larger networks if it was possible to determine sufficiently many local flux ra-
tios. Thus, the 13C-labelling data limits that approach. 

However, few flux analysis studies in large-scale networks have been carried 
out. Blank et al. (2005) determined the net fluxes in the central carbon metabo-
lism of S. cerevisiae with local flux ratios as additional constraints in MFA and 
estimated the fluxes in large-scale network by minimisation of fluxes outside the 
central carbon metabolism. Quite recently Suthers et al. (2007) applied iterative 
flux determination approach to a large scale network of E. coli. Even though 
they included both cofactor balancing and 13C-labelling data, multiple local op-
tima that were statistically indistinguishable were identified. The 13C-labelling 
data was insufficient for reliable flux determination in the large-scale model. 
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3. Aims of the research 
The research included in the thesis has concentrated on studying the metabolism 
of mainly three organisms: yeasts S. cerevisiae and P. pastoris and a fungus 
T. reesei all of which are important production organisms in biotechnology. The 
focus has been on the process streams of the cell factories, the metabolic fluxes, 
under conditions of interest for development of production processes. The quan-
titative studies of the distribution of intracellular fluxes of different organisms 
and under different growth conditions have required development of modelling 
of metabolism for the analysis of fluxes (Publications I, II, III). In Publication IV 
and somewhat also in Publication I, computational methods for quantitative 
analysis of the intracellular fluxes were developed. In Publication V a novel step 
in the fungal metabolic pathway of catabolism of plant material compound D-
galacturonic acid was identified and thus a previously unknown reaction node 
and interactions to reactant metabolites were set in the fungal metabolic net-
work. The analytical tool utilised in the detection of 13C-labelling in the analyses 
of metabolic fluxes, namely the NMR spectroscopy, was applied to verify the 
product of the novel enzyme. 

3.1 Oxygen dependence of fluxes and underlying 
regulation in S. cerevisiae 

Understanding the regulation of redox homeostasis of the organism is important 
for any metabolic engineering project because redox homeostasis binds together 
functions of even distant pathways. Redox homeostasis of an organism is natu-
rally affected by the oxygenation of the culture that is a major parameter in in-
dustrial bioprocesses. Oxygenation is also one of the factors that most contribute 
to the cost of a bioprocess. The important bioproduction and model organism 
S. cerevisiae is known to exhibit various states of energy metabolism depending 
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on the prevailing growth conditions. However, the effect of different low oxygen 
conditions on the metabolic state of S. cerevisiae, thus the distribution of the 
metabolic fluxes, has not been thoroughly studied. Thus, the aim of the Publica-
tion I was to quantify the dependence of the intracellular flux distributions of 
S. cerevisiae on oxygen provision and to study the maintenance of redox homeo-
stasis in the different oxygenation conditions. It was essential to quantify the 
intracellular net fluxes without including the redox cofactors in the metabolite 
mass balances, because the conditions were expected to strongly affect the redox 
balancing. Therefore, in Publication I 13C-MFA was utilised to determine the net 
fluxes. 

3.2 Two carbon source case of methanol and glycerol 
utilisation by P. pastoris 

Methylotrophic yeast P. pastoris is a host organism for industrial production of 
heterologous proteins. Strong inducible promotors of the genes of methanol 
utilisation pathway in the peroxisomes are utilised to induce the expression of 
recombinant proteins. Thus, metabolism during the co-utilisation of inducer 
methanol and a carbon source is of interest from process development point of 
view. The METAFoR analysis of P. pastoris [Sola et al., 2004] was extended to 
a two-carbon source co-utilization. The eukaryotic model for METAFoR analy-
sis [Maaheimo et al., 2001] was likewise extended with methanol utilisation 
pathway. The 13C-labelling with the uniform labelling approach was performed 
in continuous cultures of P. pastoris growing on different methanol/glycerol 
mixtures and at two growth rates to probe the intracellular metabolic state, the 
ratios of intracellular metabolic fluxes, in different possible process conditions. 
The aim was to provide valuable information for process optimisation of recom-
binant protein production with P. pastoris. 

3.3 Path identification and the effect of carbon catabolite 
repression on metabolic fluxes in T. reesei 

The efficient protein expression machinery of T. reesei has been widely investi-
gated but even despite the wide industrial importance the metabolism of 
T. reesei has not been largely studied and its potential is still not known. The 
genome of T. reesei has recently been published [Martinez et al., 2008] but the 
fungus still lacks a genome-wide metabolic reconstruction. 
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The transcriptional response to preferred and repressive carbon source glucose 
and to a neutral carbon source has been studied by Chambergo et al. (2002). 
They found that excess glucose does not repress the respiratory pathway genes 
to the similar extent as in S. cerevisiae that is adapted to fast utilization of sugars 
by fermentation in nutrient rich environments. However, the intracellular in vivo 
fluxes of T. reesei were not previously studied and the effect of the different 
conditions of carbon catabolite repression on the intracellular fluxes has not been 
known. 

Because of the lack of a metabolic reconstruction of T. reesei the biosynthetic 
pathways of proteinogenic amino acids in T. reesei were reconstructed with a 
recent computational pathway analysis method ReTrace [Pitkänen et al., 2009] 
in Publication III. The reconstruction of the biosynthetic pathways of proteino-
genic amino acids was essential for the application of the METAFoR analysis to 
quantitatively probe the intracellular flux distributions in T. reesei. The 
13C-labelling of T. reesei for METAFoR analysis was performed for cells grow-
ing on preferred and repressive carbon source glucose and on sorbitol. The effect 
of induction of cellulase gene expression on the ratios of intracellular fluxes was 
also studied by 13C-labelling of a T. reesei culture growing on sorbitol induced 
with a small addition of inducer sophorose. 

3.4 Framework for analytical determination of flux ratios 

The previously established computational methods for quantitative analysis of 
the metabolic fluxes from 13C-isotopomer measurement data relied either on 
manual derivation of analytic equations constraining the fluxes or on numerical 
solution of a highly nonlinear system of isotopomer balance equations. In the 
first approach, analytic equations were to be tediously derived for each organ-
ism, particular growth conditions and substrate or labelling pattern, by a domain 
expert while in the second approach, the global nature of an optimum solution is 
difficult to prove and comprehensive measurements of external fluxes to aug-
ment the 13C-isotopomer data were typically required. A framework for an 
automatic and systematic derivation of equation systems constraining the fluxes 
from the model of the metabolism of an organism was developed. The frame-
work was designed to be general for all metabolic network topologies, 
13C-isotopomer measurement techniques, carbon sources, and carbon source 
13C labelling patterns. 
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3.5 NMR spectroscopy as a tool in pathway identification 

Fungal metabolism comprises a lot of hitherto unknown potential for biotech-
nology. For example a fungal pathway for D-galacturonic acid catabolism has 
been only partly known. D-galacturonic acid is a major component of pectin that 
is abundant in plant material. The first step in the fungal pathway of D-
galacturonic acid catabolism was previously identified and it is an NADPH-
specific D-galacturonic acid reductase generating L-galactonate [Kuorelahti et 
al., 2005]. The next reaction in the pathway, a novel enzyme that converts L-
galactonate to L-threo-3-deoxy-hexulosonate was then identified in T. reesei. 
The active enzyme was produced in the heterologous host S. cerevisiae and 
characterized. The reaction product of the enzyme L-galactonate dehydratase 
was analysed and identified by NMR spectroscopy. 1D and 2D NMR spectro-
scopic experiments were utilised for the identification of the reaction product 
directly in the reaction mixture. 
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4. Research methods 

4.1 Strains 

In Publication I S. cerevisiae CEN.PK113-1A (MATα, URA3, HIS3, LEU2, 
TRP1, MAL2-8c, SUC2) strain was employed. The strain was kindly provided 
by Dr. P. Kötter (Institut für Mikrobiologie, J.W. Goethe Universität Frankfurt, 
Germany) [de Jong-Gubbels et al., 1998] and prior to the experiments stored in 
glycerol (30% v/v) at -80 °C [Wiebe et al., 2008]. In Publication II a prototro-
phic P. pastoris strain expressing a heterologous protein, a Rhizopus oryzae li-
pase, under the transcriptional control of the aox-1 promoter was employed. 
P. pastoris X-33/pPICZ A-ROL [Minning et al., 2001] is the wild-type pheno-
type X-33 strain (Invitrogen) with the pPICZ A-derived expression vector (Invi-
trogen) containing the ROL gene, pPICZ A-ROL, integrated in its aox-1 locus. 
In Publication III T. reesei strains QM6a (wild type) [Mandels and Reese, 1957] 
and QM6a with deleted cre1 gene (unpublished) were employed. In Publication 
V the S. cerevisiae strain CEN.PK2-1D (VW-1B) was employed as the host for 
the heterologous expression of a T. reesei enzyme and was the source of the 
extract in the NMR spectroscopic analyses. T. reesei strains Rut C-30 or QM6a 
were employed otherwise. 

4.2 Cultivations 

In Publications I, II and III the organisms were cultivated either in continuous 
cultures in fermentors or in batch cultures in flasks. Continuous cultivations 
provide highly controlled culture conditions were a single parameter can be var-
ied while everything else is kept constant. The growth rate of an organism is set 
by the rate of the feed and by the flow out of the reactor. Continuous cultivation 
operates in steady state continuous mode when all the variables have time inde-
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pendent values. The steady state continuous mode is usually eventually obtained 
when after the initiation of the culture in a batch mode all the feed variables are 
kept constant. The reactor is assumed to be an ideal bioreactor where the proper-
ties of the effluent are identical to the properties of the culture in any point of the 
reactor. The assumption is reasonable when the mixing of the reactor is efficient. 
Because of the strict control, continuous cultivation provides possibilities for 
sampling during steady state conditions and highly reproducible cultures. The 
continuous cultivations utilized are described in more detail in Publications I and 
II and the cultivation set up in Publication I also in Wiebe et al. (2008). 

Batch cultures in flasks are much simpler to prepare than continuous cultures. 
The filamentous growth of T. reesei complicates the bioreactor cultivations and 
thus in Publication II T. reesei was cultivated in flasks. After the initial lag-
phase, during the early exponential phase in a flask culture, the growth condi-
tions are still almost unchanged from the initial culture conditions and the organ-
ism is growing on its maximal growth rate. After passing the early exponential 
phase the growth conditions are not precisely known anymore. The T. reesei 
batch cultures in flasks are described in detail in Publication III. 

All the cultivations for METAFoR analysis in Publications I, II, III were per-
formed on minimal medium without amino acids. The media of the main cul-
tures were as follows. Information on the media for inoculates etc can be found 
in Publications II and in Wiebe et al. (2008) for cultures in Publication I. In Pub-
lication I yeast was grown on defined minimal medium [Verduyn et al., 1992], 
with 10 g glucose l-1 as carbon source, and supplemented with 10 mg ergosterol 
l-1 and 420 mg Tween 80 l-1 (a source of oleic acid). In Publication II P. pastoris 
was grown on minimal medium containing (per 1x10–3 m3 of deionized water): 
Yeast Nitrogen Base (YNB), 0.17x10–3 kg; (NH4)2SO4, 5x10–3 kg; glycerol and 
methanol (different ratios on w/w basis), 10x10–3 kg (total). In Publication III 
T. reesei was grown on minimal medium: (NH4)2SO4 7.6 g/l, KH2PO4 15.0 g/l, 
2.4 mM MgSO4, 4.1 mM CaCl2, CoCl2 3.7 mg/l, FeSO4·7H2O 5 mg/l, 
ZnSO4·7H2O 1.4 mg/l, MnSO4·7H2O 1.6 mg/l, pH adjusted to 4.8 with KOH, 
supplemented with 2% (w/v) carbon source glucose or sorbitol. 

4.3 Biosynthetically directed fractional 13C-labelling 

Biosynthetically directed fractional (BDF) 13C-labelling was performed for 
S. cerevisiae, P. pastoris and T. reesei in studies in Publications I, II and III, 
respectively. P. pastoris and S. cerevisiae 13C-labellings were performed in 
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chemostats while T. reesei was 13C-labelled in batch cultures in flasks. After 
reaching a metabolic steady state in S. cerevisiae glucose-limited chemostats, as 
determined by constant physiological parameters including biomass production, 
carbon dioxide evolution and oxygen uptake rates (CER and OUR), alkali utili-
sation, and subsequently confirmed by the observation of constant extracellular 
and intracellular metabolites and gene transcription, 10 % of the carbon source 
in the medium was replaced with [U-13C]glucose (Publication I). 10% [U-
13C]glucose was fed for 1.5 volume changes. P. pastoris was cultivated in 
chemostat on different glycerol/methanol mixtures until a metabolic steady state 
was reached as indicated by a constant cell density and constant oxygen and CO2 
concentrations in the bioreactor exhaust gas (Publication II). Then the culture 
was fed with medium containing about 10% (w/w) uniformly 13C-labelled and 
90% unlabelled amounts of each substrate simultaneously for one volume 
change. T. reesei 13C-labelling was performed with two different set ups (Publi-
cation III). In the first set up 13C-labelled carbon source was provided directly in 
the medium that was inoculated: in 2% (w/v) glucose minimal medium contain-
ing 10% (w/w) [U-13C]glucose and in 2% (w/v) sorbitol minimal medium con-
taining 10% (w/w) [U-13C]sorbitol. In the second set up in exponential growth 
phase the six flask cultures were combined and then the culture broth was di-
vided into six flasks. The final concentration of 1mM sophorose was introduced 
into three of the six replicate 2 l flasks to induce cellulase gene expression in 
T. reesei. An identical volume of water was added to the three control cultures. 
Three hours after the induction, when cellulase gene expression was expected to 
be at a moderate level [Ilmén et al., 1997], 0.4 g of [U-13C]sorbitol was added to 
all six cultures to initiate BDF 13C-labelling. The addition of 0.4 g of [U-
13C]sorbitol at this time was estimated to result in a [U-13C]sorbitol fraction of 
about 10% of the total sorbitol in the culture medium. 

During steady state growth in chemostats and during quasi-steady state growth 
in the exponential growth phase in batch cultures the intracellular metabolic 
fluxes remain constant and determine the labelling patterns of carbon backbones 
of proteinogenic amino acids formed in biosynthesis. In the T. reesei cultures 
that were inoculated in fractionally 13C-labelled medium the fraction of the initial 
biomass could be neglected and all the biomass is formed during 13C-labelling 
(Publication III). Also when the 13C-label was introduced after the induction of 
cellulase gene expression the initial biomass could be neglected. However, in 
chemostat cultures the fraction of biomass formed during the 13C-labelling de-
pends on the growth rate (equals dilution rate D) and the duration of the 
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13C-labelled feed and can be estimated from the first order wash-out kinetics 
(Publications I and II). The S. cerevisiae chemostat cultures at D = 0.1 h-1 were 
fed with fractionally 13C-labelled carbon source for 1.5 residence times which 
equals 15 h with the particular growth rate (Publication V). The P. pastoris 
chemostat cultures at D = 1.39 x 105 s-1 and 4.44 x 105 s-1 were fed with fraction-
ally 13C-labelled carbon source for 1.0 residence time (Publication II). 

4.4 Sampling 

The biomass samples of S. cerevisiae and P. pastoris were harvested by cen-
trifugation (Publications I and II, respectively) and T. reesei mycelium by filtra-
tion (Publication III). The cell pellets and the filtrated mycelium were suspended 
into 10 ml of 6 M HCl and the biomass was hydrolysed in sealed glass tubes at 
+110 ºC for 22 h. The suspensions were dried and dissolved in H2O for filtration 
through 0.2 μm filters. The filtrates were vacuum-dried and dissolved in D2O for 
NMR experiments. The pH of the samples was below 1 due to residual HCl. 

4.5 NMR spectroscopy 

In Publication V the reaction mixture of S. cerevisiae extract of the strain ex-
pressing the lgd1 from T. reesei and 110 mM L-galactonate was analysed by 
NMR after different time intervals. The reaction product was identified by com-
paring the NMR spectrum of the reaction mixture with the NMR spectrum of 
pure L-galactonate. The NMR experiments were carried out at +23 °C on a Var-
ian Inova spectrometer operating on a proton frequency of 500 MHz. The spec-
tral widths of the 1D 1H and 13C spectra were 5000 Hz and 30 675 Hz, respec-
tively. In two-dimensional homonuclear correlation spectroscopy (COSY) and 
total correlation spectroscopy (TOCSY) experiments [Croasmun and Carlson, 
1994], the spectral widths were 3400 Hz. The spinlock time for magnetization 
transfer along coupled nuclei in the TOCSY was 80 ms. In two-dimensional 
heteronuclear 1H-13C HSQC experiment the spectral widths in 1H and 13C di-
mensions were 1654 Hz and 10 000 Hz, respectively. 

For METAFoR analysis in Publications I, II and III the 1H-13C HSQC NMR 
spectra [Croasmun and Carlson, 1994] were acquired at +40 ºC on a Varian 
Inova spectrometer operating at on a proton resonance frequency of 600 MHz 
essentially as described [Szyperski, 1995]. For each sample two spectra were 
acquired focusing on the aliphatic and aromatic regions. The spectral widths in 
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the aliphatic spectra were 6000 Hz and 5100 Hz in the 1H and 13C dimensions, 
respectively. The narrow spectral width in the 13C dimension leads to back-
folding of part of the signals to the empty regions of the spectrum. The spectral 
widths for the aromatic spectra were 6000 Hz and 2815 Hz in the 1H and 13C 
dimensions, respectively. The spectra were processed using the standard Varian 
spectrometer software VNMR (version 6.1, C). 

4.6 Metabolic flux ratio analysis 

The software FCAL (R.W. Glaser; FCAL 2.3.1) [Szyperski et al., 1999] was 
used for the integration of 13C-scalar fine structures of proteinogenic amino acid 
carbon signals in the 1H-13C HSQC NMR spectra and the calculation of relative 
abundances of intact carbon fragments originating from a single source molecule 
of glucose as in Szyperski (1995). 

The nomenclature utilised for the intact carbon fragments, fragmentomers, 
was initially described by Szyperski (1995) and has briefly been explained in 
Introduction. Since the carbon backbones of eight metabolic intermediates are 
conserved in amino acid synthesis, fragmentomer information obtained from 
proteinogenic amino acids can be traced back to the intermediates of central 
carbon metabolism [Szyperski 1995; Maaheimo et al., 2001]. Mass balance 
equations of specific carbon fragments of the metabolic intermediates can be 
formulated from the propagated fragmentomer information to solve ratios of 
fluxes in junctions of central carbon metabolism. In Publication I the metabolic 
flux ratio (METAFoR) analysis relied on the compartmentalized metabolic 
model of S. cerevisiae central carbon metabolism and some of the flux ratios 
were calculated as formulated by Maaheimo and co-workers (2001). However, 
some flux ratio calculations were redefined as follows. The nomenclature of the 
metabolites with differentially conserved C-C connectivities that have been back 
propagated from the 13C-labelling patterns of amino acids is <metabo-
lite_abbreviation_> and then the following characters denote the status of the 
bonds in the carbon chain of the metabolite: 1 stands for an intact bond, 0 for a 
cleaved bond and x for either of the two. The corresponding amino acids frag-
mentomers are named as was explained above. 

The fraction of Pep originating from phosphoenolpyruvate carboxykinase ac-
tivity, denoted by PEPckX , was calculated from the ratio of the fraction of Pep 
molecules containing an intact C1-C2 fragment and a cleaved bond between C2 
and C3 ( 10_Pep ) and the fraction of Oaacyt molecules containing the equivalent 
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fragments ( xOaa cyt 10_ ) (Equation 1). These fragments cannot originate from 
glycolysis or from the PPP [Maaheimo et al., 2001]. Phe-Cα, Tyr-Cα and Asp-
Cα, Thr-Cα can be traced back to the C2 of Pep and Oaacyt, respectively [Maa-
heimo et al., 2001] (Equation 6). 

( )[ ]{ } ( )[ ]{ }αα CThrAspfCTyrPhefxOaaPepX cytPEPck −−== ,/,10_/10_ *2*2  (6) 

The Oaamit molecules originating from Oga through the TCA cycle possess 
cleaved C2-C3 bonds. The fraction of Oaamit originating from transport over the 
mitochondrial membrane from Oaacyt was solved from a mass balance of intact 
C2-C3 fragments in Oaamit. The conserved connectivity of the C2-C3 fragment in 
Oaamit could be propagated back from Glu-Cα and Pro-Cα carbons that represent 
the C2 carbon in Oga, since the C2-C3 fragment of Oaamit is conserved in the 
TCA cycle as the C2-C3 fragment of Oga. The fraction of Oaamit from Oaacyt, 
denoted by transportOaaX − , was calculated as a ratio of intact C2-C3 fragments in 
Oga and Oaacyt (Equation 7). 
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The fraction of Oaacyt originating from Pyrcyt, denoted by 
cytcyt PyrfromOaaX __ , was 

solved from the mass balance of intact C2-C3 fragments (Equation 8). Since the 
flux from Pep to Pyrcyt through phosphoenolpyruvate kinase and further through 
pyruvate carboxylase to Oaacyt could be assumed to be irreversible, the C2-C3 
fragments of Pep were used in the mass balance equations. The conserved con-
nectivity of the C2-C3 fragment in Pyrcyt could be observed from Phe-Cα and 
Tyr-Cα that represent the C2 carbon of Pep (Equation 8). 
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The upper and lower bounds for Pyrmit originating from the malic enzyme reac-
tion, denoted by  ubMAEX _  and lbMAEX _  respectively, were calculated from a 
mass balance of intact C2-C3 fragments of Pyrmit (Equations 9 and 10). The up-
per and lower bounds were obtained from the assumption that the substrate 
fragment for malic enzyme has an equally conserved connectivity as Oga and 
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Oaamit. The intact fragments in Oaamit were obtained from the intact fragments in 
Oga since the C2-C3-C4 fragment of Oaamit is conserved in the TCA cycle in 
synthesis of Oga. The intact fragments in biosynthetic precursor Oga were de-
duced from the f-values of Glu and Pro carbons (Equations 9 and 10). 
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4.7 Metabolic modelling for 13C-metabolic flux analysis 

In Publication I metabolic flux analysis (MFA) was used to determine intracellu-
lar net fluxes of S. cerevisiae under different conditions of oxygen provision 
(20.9%, 2.8%, 1.0%, 0.5% and 0.0% O2 in the chemostat inlet gas), with 
METAFoR analysis providing additional experimental constraints to render the 
MFA system solvable [Fischer et al., 2004]. A stoichiometric model of central 
carbon metabolism of S. cerevisiae was formulated. The system boundary was 
set around the central carbon metabolism and the model thus included the glyco-
lytic and the pentose phosphate pathways, the TCA cycle and the fermentative 
pathways, production of glycerol and anabolic fluxes from metabolic intermedi-
ates to biosynthesis. The glyoxylate cycle was omitted from the model since the 
METAFoR analysis data showed that the pathway was inactive (Publication I). 
Separate pools of Pyr, AcCoA and Oaa in the two cellular compartments, cyto-
plasm and mitochondria, were included in the model. Thus, they were modelled 
as two distinct metabolites. Mal was lumped in the same pool with Oaamit. Also 
the pentose phosphates formed a single pool and the triose phosphates were 
combined in the pools of G3P and Pep. DHAP, the precursor for glycerol syn-
thesis, was also combined with the G3P pool. Lumping of the metabolite pools 
in the model is reasonable when it is meaningful to assume fast exchange be-
tween the metabolites, faster than between the metabolites and other compounds. 
TCA cycle metabolites were represented by the pools of citrate, Oga and Oaamit. 
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Scrambling of 13C-labels in the symmetric molecules succinate and fumarate was 
taken into account [Bernhard and Tompa, 1990]. 

However, despite the symmetry, partial channelling of succinate and fumarate 
has also been seen [Sumegi et al., 1993]. The transport of Pyr and Oaa across the 
mitochondrial membrane were included in the model but the transport of Ac-
CoA, the final step of the cytosolic pyruvate dehydrogenase (PDH) bypass, was 
omitted since exogenous carnitine would be required for the carnitine shuttle to 
be active [Lange, 2002; Swiegers et al., 2001; van Roermund et al., 1999], and 
carnitine was not provided in the medium. In addition, carnitine acetyltrans-
ferase activity has not been detected in S. cerevisiae grown in anaerobic chemo-
stats at 0.1 h-1 [Nissen et al., 1997]. However, contradictory observation has 
been made by Frick and Wittmann (2005) in S. cerevisiae strain ATCC 32167. 
Pyruvate by-pass via transport of AcCoA into mitocnodria was observed to be 
active during both respirative and fermentative growth under different dilution 
rates between 0.10 h-1 and 0.45 h-1. Since acetaldehyde can freely diffuse across 
the mitochondrial membrane and acetaldehyde dehydrogenase (EC 1.2.1.3) and 
AcCoA synthetase (EC 6.2.1.1) enzymes have both been isolated in the mito-
chodrial proteome [Sickmann et al., 2003], PDH bypass could also be partially 
located in mitochondria and contribute directly to the formation of AcCoAmit. In 
absence of fluxes inducing significantly dissimilar labelling patterns to the C2-
C3 fragments of Pyrcyt and Pyrmit i.e. in conditions of low malic enzyme fluxes as 
observed in this study, 13C-labelling cannot solely reveal the possible contribu-
tion of PDH bypass pathways to the carbon flux to mitochondria. However, in 
the cultivations performed, the expression of ACS1 encoding the mitochondrial 
AcCoA synthetase, essential for the contribution of mitochondrial PDH bypass 
to the formation of AcCoAmit, was negligible and the expression of ACS2 encod-
ing the cytosolic isoenzyme was substantially higher [Wiebe et al., 2008]. 
Therefore, the mitochondrial PDH bypass was not included in the model. 

A model of central carbon metabolism of S. cerevisiae with the same extent as 
above was formulated for development of the systematic and analytic framework 
for determination of flux ratios in Publication IV. In the model, some simplifica-
tions common to 13C-MFA were applied by pooling metabolites whose iso-
topomer pools can be assumed to be fully mixed (cf. [Kleijn et al., 2007]). Pool-
ing of metabolites was carried for the pentose-phosphates in PPP, phopshotrioses 
between G3P and Pep in glycolysis, and Oaa and Mal in the TCA cycle. In these 
cases, pooling was justified by the existence of fast equilibrating, bidirectional 
reactions between the listed intermediates and the empirical evidence that their 
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isotopic labelling is not distinguishable with the current analytical tools. Cofac-
tor metabolites were excluded from the model as cofactor specificities and ac-
tivities are not accurately known for many reactions. The bulk of the carbon 
mappings of reactions in the metabolic network were provided by ARM project 
[Arita, 2003]. Carbon mappings from amino acids to their precursors conformed 
to [Szyperski, 1995] and [Maaheimo et al., 2001]. For empirical verification of 
the framework it was tested by estimation of flux ratios for junction metabolites 
in the metabolic network of S. cerevisiae from the artificial data generated by the 
13C-FLUX software [Wiechert et al., 2001]. 

In Publication I the metabolic fluxes were modelled as net fluxes so that a net 
flux in the forward direction was assigned with a positive value and a net flux in 
the reverse direction was assigned with a negative value. As an exception, the 
transport of Oaa across the mitochondrial membrane was modelled as two one-
directional transport reactions by not allowing negative net fluxes. In S. cerevisiae 
the transport of Oaa across the mitochondrial membrane can occur via mito-
chondrial Oaa transporter OAC1 facilitated transport [Palmieri et al., 1999]. 

The stoichiometric model for experiments under 20.9%, 2.8% and 1.0% oxy-
gen conditions consisted of 38 reactions coupling 34 metabolites including du-
plicated extracellular metabolites and uptake and production fluxes (Publication 
I Figure 4). The 14 fluxes across the system boundary included glucose uptake 
and excretion fluxes of ethanol, acetate and glycerol and the fluxes of the meta-
bolic precursors to macromolecule synthesis for biomass production. The 
METAFoR analysis results were used to identify inactive reactions, to constrain 
the stoichiometric models for the experiments with 0.5% and 0.0% oxygen by 
omitting inactive fluxes to avoid numerical problems in optimization. The 
stoichiometric model for experiments under 0.5% oxygen consisted of 37 reac-
tions, coupling 34 metabolites and excluding the malic enzyme activity from the 
first model of the network of active reactions. The compartmentalization of cen-
tral carbon metabolism in anaerobic conditions is evident from the vital anabolic 
role of mitochondria in the absence of oxygen [Visser et al., 1994]. However, in 
completely anaerobic conditions only the net transport of Oaa across the mito-
chondrial membrane is resolvable and the activities of PEPck and malic enzyme 
reactions cannot be quantified. Since, according to the METAFoR analysis, the 
PEPck reaction showed only slight activity in the other conditions studied and its 
activity decreased as the oxygen provided was reduced, it was omitted from the 
anaerobic stoichiometric model. MAE1 has been shown to be induced in anaero-
bic conditions and its possible role in provision of NADPH in mitochondria in 
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anaerobic conditions has been discussed [Boles et al., 1998]. However, the malic 
enzyme reaction also showed only slight activity in all the conditions where 
quantification was possible and had its lowest activity in 0.5% oxygen. Thus, the 
malic enzyme reaction was omitted from the anaerobic model. Under anaerobic 
conditions the stoichiometric model of the active pathways consisted of 34 reac-
tions and 34 metabolites. 

After including the measured uptake and excretion rates and the rates of meta-
bolic precursor depletion to biomass synthesis, as determined from the composi-
tion of S. cerevisiae biomass previously reported [Gombert et al., 2001], in the 
models, the linear equation systems remained underdetermined. The composi-
tion of S. cerevisiae biomass was assumed to be the same in all the conditions 
studied, since the biomass composition in the two extreme conditions, i.e. in 
fully aerobic and in anaerobic conditions, has been experimentally shown to be 
essentially the same [Gombert et al., 2001; Nissen et al., 1997]. Solvable sys-
tems were obtained by further constraining the MFA systems with one to six 
linearly independent constraints, depending on the structure of the network of 
active reactions from the METAFoR analysis as described by Fischer and co-
workers (2004) for MS 13C-labelling data. Using the constraints from the 
METAFoR analysis, it was not necessary to include redox cofactor mass bal-
ances in the mass balance constraints in 13C MFA. Cofactor mass balances are 
sources of errors since the correct balancing requires detailed knowledge of the 
relative activities of different isoenzymes and the enzymes’ redox cofactor 
specificities on a cell wide scale under the studied conditions. Under the condi-
tions of different oxygen provisions, the external conditions posed different chal-
lenges on the redox homeostasis systems of the cells and their effect are not 
known. The mass balances of the metabolites were formulated as a linear equa-
tion system as described in [Fischer et al., 2004] (Equation 11): 

mi RbvN =−  (11) 

where iN is the stoichiometric matrix of the active network i  determined from 
the METAFoR analysis fragmentomer data, v  is the flux distribution vector, 
b is the vector of the measured extracellular fluxes and mR is the vector of the 
residuals of metabolite mass balances. 
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Figure 4 (Publication I). Metabolic network model of S. cerevisiae for net flux determina-
tion utilising flux ratios as additional constraints. 
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The flux ratio equations were set up according to the METAFoR analysis for the 
reactions in the stoichiometric models of the central carbon metabolism of 
S. cerevisiae (Equations 12 to 16, the reaction numbers are defined in Figure 4). 
Depending on the structure of the network of active reactions the flux ratio equa-
tions included one to six of the following (Equations 12 to 16): 

the fraction of Pep from PPP assuming a maximal contribution of PPP 
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The following constraint equations were thus obtained from the flux ratio equa-
tions (Equations 17 to 22): 

( ) 02123 645765 =++−++ vvvfrvvv   (17) 

( ) 02 81515 =+− vvfrv  (18) 

( ) 03 132121 =+− vvfrv  (19) 
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( ) 04 221616 =+− vvfrv  (20) 

( ) 05 91414 =+− vvfrv  (21) 

( ) 06 14914 =−+ vvvfr  (22) 

Irreversibility was assumed for the intracellular fluxes 3v , 4v , 8v , 9v , 10v , 11x , 
12v , 13v , 14v , 15v , 16v , 21v , 22v , 23v , 24v , for extracellular fluxes 25v , 26v , 
27v , 28v  and for the depletion of precursors to biosynthetic reactions and thus, 

only positive values were allowed for the fluxes. The minimization of the sum of 
the weighted square residuals of the metabolite mass balances was done using 
the Matlab function fmincon for optimization of constrained nonlinear multivari-
able function. The extracellular metabolite mass balances were assigned weights 
according to the experimental measurement error estimates. The biomass precur-
sor metabolite mass balances were assigned ten-fold larger weights, relative to 
their stoichiometric coefficients in the biomass composition, since the assump-
tion of constant biomass composition was expected to be harsh [Furukawa et al., 
1983]. The flux ratio constraints were included as strict constraints. The optimi-
zation was started 10000 times from random initial values to evaluate the 
uniqueness of the optimal flux distribution. The sensitivity of the flux distribu-
tion solutions to the noise in the flux ratio data and in the extracellular flux data 
was studied by Monte Carlo -simulations [Antoniewicz et al., 2006]. Additive 
normally distributed noise with zero mean and experimentally determined vari-
ances of the flux ratios and the extracellular fluxes was sampled to the flux ratios 
and to the extracellular flux data, separately and simultaneously. A flux distribu-
tion was solved for each of the 100 sets of input data from 12 random initial flux 
distributions. Confidence intervals (95%) of the fluxes were determined. 

4.8 Pathway reconstruction 

In Publication III metabolic flux ratio (METAFoR) analysis was performed for 
T. reesei which lacks a genome-wide metabolic reconstruction. It was essential 
for the METAFoR analysis to reconstruct the biosynthetic pathways for pro-
teinogenic amino acids of T. reesei. The reconstruction of amino acid biosyn-
thetic pathways from their precursors in T. reesei was performed with ReTrace 
which is a recent computational carbon path analysis method [Pitkänen et al., 
2009], which can be queried to discover branching metabolic pathways in a uni-
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versal metabolic database. ReTrace aims to find pathways which transfer as 
many atoms from source to target metabolites as possible. 

The reaction database used in ReTrace analysis was KEGG LIGAND, re-
trieved in March 2009 [Kanehisa et al., 2008]. Reaction database contained 7827 
reactions, 15400 compounds. Atom mappings, that describe how atoms are trans-
ferred in a reaction from substrate to product metabolites, were defined for 
33795 substrate-product pairs in the RPAIR database [Kotera et al., 2004], 
which is a subdatabase of KEGG. All reactions were considered bidirectional. 
To compute reaction scores, a database consisting of 101136 sequences anno-
tated with an EC number in UniProt version 9.3 [The UniProt Consortium, 
2007] was queried with the 9129 protein sequences in T. reesei genome [Marti-
nez et al., 2008] by blastp [Altschul et al., 1997] using e-value cutoff 10 to de-
tect remote homologs. Each reaction in the KEGG database was assigned a score 
by taking the maximum BLAST score over all UniProt-Trichoderma sequence 
pairs, where UniProt sequence had been annotated with an EC number corre-
sponding to the reaction. A total of 3974 reactions received a score in this proce-
dure, while the remaining 3853 reactions were assigned a zero score. Reaction 
scores reflected the degree of evidence from the detection of sequence homology 
that there exists an enzyme catalyzing the reaction in T. reesei. 

ReTrace operates on an atom-level graph representation of the metabolic net-
work of all the reactions in the reaction database [Pitkänen et al., 2009]. First, 
the metabolic network is converted into an atom graph, where nodes correspond 
to the atoms of metabolites and edges the atom mappings between the individual 
atoms. Atom mappings of carbon atoms were utilised in the reconstruction of the 
biosynthetic pathways of amino acids in T. reesei. Other atoms than carbons, 
such as nitrogen and sulphur, were not considered in the analysis performed in 
Publication III. 

ReTrace [Pitkänen et al., 2009] utilises a K shortest paths algorithm [Epp-
stein, 1994] to discover a number of connections between nodes in the atom 
graph. Given a query to find pathways from source to target metabolites (to 
amino acids in Publication III) ReTrace searched for shortest paths in the atom 
graph from any atom in source metabolites to any target metabolite atom [Pit-
känen et al., 2009]. Each shortest path was then processed. ReTrace traces back 
the target metabolite atoms along the atom mappings. Then branching points 
were identified as atom mappings that did not transfer the traced carbon atom 
towards the source [Pitkänen et al., 2009]. Possible metabolites that could pro-



4. Research methods 

61 

vide the missing carbon were determined and shortest paths from source to these 
metabolites were searched to determine the branches. 

4.9 Localization of amino acid biosynthetic enzymes in 
T. reesei 

In Publication III, TargetP, a machine learning method based on neural networks 
that predicts both chloroplast and mitochondrial targeting peptides and secretory 
signal peptides was utilized to predict the probable subcellular localization of 
some enzymes on the biosynthetic pathways of amino acids in T. reesei 
[Emanuelsson et al., 2007; Emanuelsson et al., 2000]. 
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5. Results and discussion 
In Publications I, II, III and IV ratios of intracellular fluxes were determined 
utilising 13C-labelling experiments and the established metabolic flux ratio 
(METAFoR) analysis approach was extended. In Publication I flux ratios from 
METAFoR analysis combined with NMR spectroscopy as the analytical tool 
was utilized as experimentally derived additional constraints that enabled solv-
ing intracellular net fluxes under S. cerevisiae in different oxygenation condi-
tions and determination of the dependence of the flux phenotype of S. cerevisiae 
on oxygen provision. In Publication II the Established METAFoR analysis was 
extended to a two-carbon source case to investigate the metabolism of 
P. pastoris under process conditions of recombinant protein production where 
methanol is used as inducer and glycerol as a carbon source. In Publication III 
the previously scarcely studied metabolism of filamentous fungus T. reesei was 
studied under different conditions of carbon catabolite repression. Since 
T. reesei lacks a genome-wide metabolic reconstruction the METAFoR analysis 
was coupled to essential reconstruction of the biosynthetic pathways of amino 
acids from genome level evidence. Comparison of the flux ratios of T. reesei to 
the ones observed in S. cerevisiae confirmed that the regulation of the central 
pathway fluxes is programmed in distinct ways in the two organisms. In Publica-
tion IV a systematic and analytic framework for derivation of flux ratio equa-
tions from a given model and 13C-labelling data that constrains isotopomer dis-
tributions was developed. Comparison of the automatically derived flux ratios to 
manually by METAFoR analysis approach derived flux ratios was not straight-
forward because the biological information encoded in the METAFoR analysis 
approach by domain experts is diverse. When the model employed in the auto-
matic derivation corresponded to the METAFoR approach, the derived flux ra-
tios agreed well. 
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In Publication V NMR spectroscopy was utilized in verification of the recon-
struction of a metabolic pathway in T. reesei. A reaction product of a step on the 
D-galacturonic acid catabolic pathway was identified by 1D and 2D NMR spec-
troscopy. 

5.1 Utilization of 13C-metabolic flux analysis excluded 
cofactor mass balances 

In Publication I the dependence of intracellular flux distribution of S. cerevisiae 
on the level oxygenation was quantified by 13C-MFA. S. cerevisiae was grown in 
glucose-limited chemostat cultures at a low dilution rate of 0.1 h-1 that ensured 
that the maximum respiratory rate was not reached even under fully aerobic 
conditions. The cultures were aerated with five different fractions of oxygen in 
the chemostat inlet gas: 20.9%, 2.8%, 1.0%, 0.5% and 0.0%. Wiebe et al. (2008) 
observed that at aeration of 20.9% O2 in the chemostat inlet gas the metabolism 
of S. cerevisiae was fully respiratory and ethanol was observed in the medium 
under all the rest of the conditions. Duplicate cultures at each oxygenation con-
dition were 13C-labelled with uniform-labelling approach for 13C-MFA analysis 
in Publication I. Quantitative ratios of merging fluxes in central carbon metabo-
lism of S. cerevisiae were obtained by METAFoR analysis approach utilizing 
NMR spectroscopic detection of  13C-labelling [Szyperski, 1995; Szyperski et al., 
1999; Maaheimo et al., 2001]. The flux ratios were utilised as additional con-
straints to solve the mass balance equation system of the stoichiometric model of 
central carbon metabolism of S. cerevisiae as was earlier done for another eu-
karyote P. anomala with MS detected constraints by Fredlund et al. (2004) with 
the approach published by Fischer et al. (2004). 13C-MFA enabled solving the 
intracellular net fluxes without including the redox cofactors in the mass bal-
ances which was essential since oxygen availability strongly affects the systems 
that maintain the redox homeostasis in cells. 

5.2 Pyruvate branching point distribution responsive 

The quantification of the net flux distributions of S. cerevisiae in response to 
different oxygenation conditions showed that the fluxes were redistributed not 
only between the cells grown in the fully aerobic conditions, under conditions of 
reduced oxygen provision and under anaerobic conditions but also between cells 
grown with different levels of low oxygen (2.8%, 1.0% and 0.5% O2 in the 
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chemostat inlet gas) (Publication I). Although the metabolism of S. cerevisiae 
was respiro-fermentative under each of these low oxygen conditions, the actual 
amount of oxygen available resulted in different distribution to the respirative 
and fermentative pathways. The flux distribution at the pyruvate branch point, 
where the respirative and the fermentative pathways and the anaplerotic path-
way, that operates to replenish the TCA cycle, diverge was particularly respon-
sive to the level of reduction in oxygen provision. The respirative pathway flux 
decreased progressively under reduced oxygenation conditions where the avail-
ability of terminal electron acceptor limited the respiratory rate. However, the 
respiratory energy generation, that is highly efficient because of the high elec-
tronegativity of oxygen, provided a large fraction of ATP even under the low 
oxygen conditions (Table 1). 

Table 1 (Publication I). Estimated fractions of respiration coupled ATP generation in 
S. cerevisiae under different oxygenation conditions. 

 O2 provided in the fermentor inlet gas 

 20.9% 2.8% 1.0% 0.5% 0.0% 

ATP from respiration (%) 59 55 36 25 0 

OUR (mmol g-1h-1) 2.7 2.5 1.7 1.2 0 

ATP/ Oa 0.9 1.0 1.1 1.1 - 

ATP/ 2e-b 1.0 0.9 1.0 1.2 - 

a Calculated from the oxygen uptake rate (OUR), bCalculated from the flux of electron donors to 
the respiratory chain. 

5.3 Methanol and glycerol co-utilization extension 

In Publication II a biosynthetically directed fractional 13C-labelling approach 
was established for yeast P. pastoris growing on carbon substrate mixture of 
methanol and glycerol. Methanol is utilised as an inducer of protein production 
in P. pastoris processes. The approach allowed the quantification of the meta-
bolic state of the TCA cycle and associated pathways under production condi-
tions and thus was an important methodological expansion of the metabolic flux 
ratio (METAFoR) analysis [Szyperski, 1995; Szyperski et al., 1999; Maaheimo 
et al., 2001]. 
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5.4 Flux distributions robust against different fractions 
of methanol 

It was shown that co-assimilation of methanol as a carbon source does not alter 
the way the common amino acids are synthesized in P. pastoris growing on a 
sole multicarbon source, and that the growth on different glycerol/methanol mix-
tures at a given growth rate results in rather similar flux ratio profiles in the TCA 
cycle and related pathways as the fraction of methanol is increased (Publication 
II). In contrast, a clear effect of specific growth rate on the relative activity of the 
TCA cycle and related pathways was observed, regardless of the methanol frac-
tion in the feed, consistent with the observation that TCA cycle activity in 
S. cerevisiae is strongly correlated with the environmentally determined specific 
growth rate [Blank and Sauer, 2004]. Co-assimilation of methanol as a carbon 
source has a clear impact with respect to the activity of the PPP, which is consis-
tent with the increasing flux of methanol molecules towards the synthesis of 
central carbon metabolism intermediates (e.g. Pep), as observed when the frac-
tion of methanol in the feed medium is increased. However, this pattern was not 
observed in cells growing at the higher dilution rate (where methanol is partially 
accumulated in the medium) suggesting that the distribution of methanol carbon 
into assimilatory and dissimilatory pathways may be different. Earlier 
13C-labelling studies of methanol metabolism of the methylotrophic yeast H. 
polymorpha [Jones and Bellion, 1991] showed that the linear methanol oxidation 
pathway to CO2 only operates under extreme conditions (e.g. methanol accumu-
lation to toxic levels), suggesting a role in detoxification. 

The information from the 13C-labelling and METAFoR analysis [Szyperski, 
1995; Szyperski et al., 1999; Maaheimo et al., 2001] of P. pastoris on glycerol 
and methanol mixtures is valuable for the optimization of culture processes for 
the production of recombinant proteins in P. pastoris, where parameters such as 
the residual methanol concentration, specific growth rate, as well as mixed sub-
strate culture strategies have been shown to have a dramatic impact on overall 
process productivity (Publication II). In addition, the information derived from 
the study may be relevant for the design of isotopic labelling experiments of 
recombinant proteins (or other cell components, e.g. cell wall glucans) for struc-
tural studies. 
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5.5 Metabolic flux ratio analysis of T. reesei necessitated 
reconstruction of biosynthetic pathways of amino acids 

In Publication III the biosynthetic pathways of T. reesei were reconstructed for 
most of the proteinogenic amino acids with a computational carbon path analysis 
method ReTrace [Pitkänen et al., 2009]. The method was used to search for 
pathways from a metabolic network consisting of all reactions found in a com-
prehensive metabolic reaction database, and to subsequently rank the pathways 
according to the degree of support from the T. reesei’s genome. Contiguous 
pathways, identical to the amino acid biosynthetic routes of S. cerevisiae, were 
found with high genome-level evidence. Origins of amino acids in T. reesei 
relevant for METAFoR analysis are shown in Figure 5. 
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Figure 5 (Publication III). The origins of the carbon backbones of the proteinogenic amino 
acids in T. reesei that are relevant for METAFoR analysis and for which the biosynthetic 
pathways were reconstructed by computational pathway analysis method ReTrace [Pit-
känen et al., 2009]. If the biosynthetic pathway was not directly found by ReTrace, the 
amino acid abbreviation is denoted in red italics. The amino acid carbons are denoted in 
the following way: a = α, b = β, g = γ, d = δ, e = ε, ksi = ξ. 

5.6 Primary respiratory metabolism 

T. reesei wild type and Δcre1 strains were 13C-labelled with uniform 13C-labelling 
approach in batch cultures in flasks on repressive carbon source glucose and on 
sorbitol. The 13C-labelling patterns of proteinogenic amino acids were in good 
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accordance with the compartmentalized model of eukaryotic central carbon me-
tabolism, originally developed for S. cerevisiae [Maaheimo et al., 2001]]. How-
ever, in contrast to S. cerevisiae, in both T. reesei strains Asp synthesis was ob-
served to occur primarily from the mitochondrial pool of Oaa, under all the stud-
ied conditions. 

The T. reesei wild type strain is known to exhibit carbon catabolite repression 
of hydrolytic gene expression during growth on glucose, whereas in the Δcre1 
strain the repression is partially disturbed [Ilmén et al., 1996]. The respiratory 
pathway does not become transcriptionally downregulated by the carbon catabo-
lite repression in T. reesei as in S. cerevisiae [Chambergo et al., 2002]. How-
ever, it is the in vivo fluxes that are the ultimate phenotype of an organism. The 
ratios of in vivo fluxes of T. reesei were solved with METAFoR analysis from 
the 13C-labelling patterns of proteinogenic amino acids [Szyperski, 1995; 
Szyperski et al., 1999; Maaheimo et al., 2001] in the different conditions of car-
bon catabolite repression. This was the first time that the effect of carbon catabo-
lite repression T. reesei on in vivo fluxes was quantitatively studied. 

The relative anaplerotic flux, the flux that replenishes the TCA cycle, com-
pared to the respiratory pathway flux was characteristic to primarily respiratory 
metabolism in the both T. reesei strains under all the studied conditions (Table 
2). This indicated that T. reesei utilizes primarily respiratory metabolism also on 
preferred carbon source glucose. However, the observed relative anaplerotic 
fluxes suggested that the respirative activity of the TCA cycle in T. reesei was 
even slightly higher on the neutral carbon source sorbitol than on glucose. Only 
minor differences were observed between the in vivo flux distributions of the 
wild type and the Δcre1 strains. Therefore, CRE1 the key repressor of utilization 
of alternative carbon sources, does not mediate carbon source dependent meta-
bolic state alterations in central carbon metabolism in T. reesei. The sophorose 
induction of cellulase gene expression did not result in significant changes in the 
relative requirements of proteinogenic amino acids or in the ratio of anabolic to 
oxidative activities of the TCA cycle. 
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Table 2 (Publication III). Comparison of Metabolic Flux Ratio (METAFoR) analysis of 
T. reesei to the crabtree positive and negative yeasts S. cerevisiae and P. stipitis. META-
FoR analysis from fractional 13C-labelling of T. reesei wild type and Δcre1 strains in aero-
bic batch cultures on glucose and on sorbitol (Publication III), compared with the ones 
observed in S. cerevisiae and P. stipitis in aerobic batch cultures on glucose and in aero-
bic glucose-limited chemostat cultures [Maaheimo et al., 2001; Fiaux et al., 2003]. 

organism T. reesei T. reesei T. reesei T. reesei S. cerevisiae S. cerevisiae P.stipitis P.stipitis
strain wild type delta cre1 wild type delta cre1
carbon source glucose glucose sorbitol sorbitol glucose glucose glucose glucose
culture batch batch batch batch batch chemostat batch chemostat
reference Maaheimo Fiaux Fiaux Fiaux

% sd % sd % sd % sd % sd % sd % sd % sd
Pep from PPP (UB, no PEPck) 39 2 47 4 36 7 45 9 0-4 40 8 57 9 61 11
R5P from T3P and S7P 51 1 42 1 72 3 79 4 68 2 59 2 57 2 72 2
R5P from E4P 25 2 23 1 46 2 54 3 10 2 33 2 35 2 43 2
Anaplerotic flux ratio 35 1 33 2 26 3 42 5 76 4 31 2 36 2 32 2
MAE (UB) 4 0 9 1 12 2 6 5 25-30 <13 <6 <7
MAE (LB) 2 0 6 1 9 1 4 3 nd nd nd nd nd nd nd nd  

UB upper bound, LB lower bound, nd not determined 

5.7 Framework for analytic and systematic derivation of 
flux ratio equations 

In Publication VI a systematic and analytic framework for 13C-metabolic flux 
ratio analysis was introduced. Previously the utilisation of the METAFoR analy-
sis [Szyperski, 1995; Szyperski et al., 1999; Maaheimo et al., 2001] has been 
relying on manual derivation of the equations that constrain the flux ratios. The 
systematic and analytic framework for 13C-metabolic flux ratio analysis is a gen-
eralization and formalization of existing analytic methods for computing meta-
bolic flux ratios [Maaheimo et al., 2001; Zamboni et al., 2005; Szyperski 1998] 
and facilitates an efficient and analytic computation of the ratios between the 
fluxes producing the same junction metabolite in a given metabolic network. 

The model of the central carbon metabolism of S. cerevisiae was formulated 
also in a 13C-FLUX [Wiechert et al., 2001] format and artificial substrate label-
ling was employed to obtain simulated 13C-labelling data for verification of the 
implementation of the framework for flux ratio determination. Then NMR spec-
troscopy data from 1H-13C HSQC experiments, relative intensities of fine struc-
tures that represent different combinations of 13C and 12C atoms coupled to a 
central 13C atom in proteinogenic amino acids, was utilized to compare the flux 
ratios derived with the implemented framework with manually derived flux ra-
tios. The experiment showed that the framework was able to provide relevant 
quantitative information on the distribution of metabolic fluxes, even when only 
constraints to the isotopomer distributions of proteinogenic amino acids are 
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measured. Detection of the 13C-labelling status of 15 proteinogenic amino acids 
resulted in flux ratios for junctions in four cytosolic metabolites (Oaa, Pep, Gly 
and Ser) and in three mitochondrial metabolites (Oaa, AcCoA and Pyr). In addi-
tion, an upper bound for G3P molecules that had gone through a transketolase 
reaction could be solved when the model was first manually simplified to corre-
spond to the model utilised in the manual derivation of the G3P flux ratio. The 
computed flux ratios where compared to the manually derived ones whenever 
the assumptions made in the manual derivation were consistent with the general 
model employed in the automatic derivation of the flux ratios. The automatically 
derived flux ratios agreed well with the manually derived ratios. Differences 
between the estimations could be explained by numerical instabilities and by 
differences in computational procedures: in manually derived ratios the estima-
tions are based on the breakage of a single bond in different routes leading to a 
metabolite while in the developed framework more isotopomer information is 
possibly utilized in the estimation. 

5.8 L-threo-3-deoxyhexulosonate is a reaction product of 
L-galactonate dehydratase 

In Publication V the metabolism of fungus T. reesei was further studied and an 
L-galactonate dehydratase and the corresponding gene were identified from 
T. reesei. The enzyme converts L-galactonate to L-threo-3-deoxy-hexulosonate 
(2-keto-3-deoxy- L-galactonate) and belongs to the fungal pathway for D-
galacturonic acid catabolism. L-galactonate dehydratase is the second enzyme of 
the pathway after the D-galacturonic acid reductase. L-galactonate dehydratase 
activity is present in T. reesei mycelia grown on D-galacturonic acid but absent 
when other carbon sources are used for growth. L-galactonate dehydratase is 
active on sugars L-galactonate and D-arabonate in which the hydroxyl groups of 
the C2 and the C3 in the Fischer projection are in L- and D-configuration, re-
spectively. The enzyme was not active with sugar acids having the hydroxyl 
groups of C2 in D-configuration and C3 in L-configuration as in D-galactonate, 
D-gluconate and D-xylonate and with sugar acids having the hydroxyl groups of 
C2 and C3 in D-configuration as in D-gulonate. 

In order to define the reaction product of L-galactonate dehydratase it was 
analysed by NMR spectroscopy. To generate a sufficient amount of reaction 
product L-galactonate was incubated in the yeast extract of the strain expressing 
the L-galactonate dehydratase gene. In this extract the reaction product did not 



5. Results and discussion 

70 

react further, which facilitated the NMR spectroscopic analysis. In the T. reesei 
mycelia extract the reaction product was degraded, making the NMR spectro-
scopic analysis more difficult. The NMR spectroscopic analysis showed that 
erythro- or threo-3-deoxy-hexulosonate was formed. Knowing the substrate of 
the dehydratase reaction it was concluded that the product was L-threo-3-
deoxyhexulosonate. The NMR spectroscopic analysis also revealed that it was 
predominantly in the pyranose form. For the pyranose form two anomers are 
possible; the carboxyl group in R1 and the hydroxyl group in R2 or vice versa. 
The NMR spectroscopic analysis suggested that one of the anomers was pre-
dominant but it did not allow determination of which of the two anomers it was. 
The NMR spectroscopic analysis revealed also that the axial hydrogen at C3 is 
the hydrogen that was added in the reaction. However, as there are two possible 
chair conformations of the pyranose ring it remained unclear which of the two 
protons is in the axial position. 
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6. Conclusions and prospects 
The analyses of flux ratio of different organisms revealed phenotypic differences 
in detail. In the studies of this thesis the differences between the regulatory prin-
ciples of two eukaryotic organisms, S. cerevisiae and T. reesei, were observed 
on flux phenotypic level (Publications I and III). The former pursues high rate of 
ATP production whereas the latter seeks a high ATP yield. The distributions of 
fluxes to respirative and fermentative pathways were similar when S. cerevisiae 
was growing slowly with unlimited oxygenation and low glucose and T. reesei 
was growing on high glucose at maximum rate. However, the fast growing 
S. cerevisiae on high glucose diminishes the respirative pathway flux and speeds 
up the glycolytic flux and fermentative pathway activity [De Deken, 1966; Maa-
heimo et al. 2001; Gombert et al. 2001]. The differences in regulatory principles 
of the two organisms can be explained by the different natural habitats of the 
organisms and adaptive evolution of the regulatory systems. Pfeiffer et al. 
(2001) have further claimed that the preference to high ATP yield has contrib-
uted to the development of multicellular organisms. 

6.1 Robust regulatory system enables stable flux 
phenotype 

Complex and multi-level regulatory mechanisms can maintain fairly stable dis-
tribution of fluxes in altered conditions. However, attenuating changes can 
though be observed in the underlying levels of transcription, proteome and me-
tabolome [Davies and Brindle, 1992; Schaaff et al., 2004; Raamsdonk et al., 
2001]. Furthermore, an adaptation of the flux phenotype to altered conditions 
can occur through sequential changes in the underlying levels of cell function 
[van der Brink et al., 2008]. There is interdependence between metabolite con-
centrations, enzyme concentrations and fluxes through the metabolic network, 
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enzyme kinetics and regulation of enzyme activity [Stryer, 1995]. Enzyme con-
centration is set by hierarchical regulatory system that is closely linked to the 
metabolic status of an organism. Nutrient sensing and feedback regulation trig-
ger signalling cascades that affect the hierarchical regulatory system [Zaman et 
al., 2008; Zaman et al., 2009]. Coordinated responses have been observed even 
between metabolites and transcripts [Bradley et al., 2009]. The enzyme activity 
cannot affect the equilibrium constant of a chemical reaction but the network can 
enable a shift of an effective equilibrium constant through futile cycles [Qian 
and Beard, 2006]. The multilevel regulatory system provides robustness that 
enables stability of flux phenotypes. Are the robust response mechanisms to 
different perturbations mechanistically similar? How has the robustness of an 
organism against fluctuations in its natural environment developed? The same 
multilevel regulatory system provides fine-tuned adaptation in some conditions. 
A fine piece of work was published by Bennet and co-workers (2008) where 
they could conclude that the regulatory system of galactose metabolism in 
S. cerevisiae functions as a low-pass filter that in dynamic conditions enables 
adaptation to slow changes and robustness against fast perturbations. Thus the 
same mechanisms can provide both robustness and adaptation. Are they different 
depending on the perturbation? How are the decisions between robust response 
and adaptation made when the cells are exposed to different perturbations? 
These are interesting questions that are expected to be answered by sophisticated 
systems biology studies when the experimental and modelling tools are reaching 
an adequate performance level. 

It should eventually be possible to integrate data of all measurable cell con-
stituents and integrate it with models of cellular interaction networks and com-
pose a predictive model of cell function. There are methods for recording data 
on all the effector types. Quantitative metabolomics methods in particular by MS 
have been established [Ewald et al., 2009; Buscher et al., 2009]. Enzyme con-
centrations are determined by rates of transcription, mRNA degradation, transla-
tion and protein degradation and both protein and transcript levels can be ob-
served in large-scale [de Groot et al., 2007]. Regulatory mechanisms that affect 
fluxes are for example enzyme phosphorylations which can currently be moni-
tored [Ptacek et al., 2005; Huber et al., 2009]. Information on allosteric interac-
tions has been reported in literature and some is collected for example in data-
base BRENDA (http://www.brenda-enzymes.org) [Schomburg et al., 2002]. All 
effectors are tied together by interaction networks that are dynamic in reality. 
However, the static interaction network models provide a framework for the 
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dynamic system responses that give rise to the observed flux phenotypes. Hin-
drances can still be pinpointed both in experimental methods and in modelling 
tools. Not all the levels of cell function can be monitored in genome-wide scale 
and modelling tools need to be able to handle that missing data and uncertainties 
as well as to find suitable means to model different types of interactions and 
information transfer through them. Ishii et al. (2007) performed a pioneering 
data integration study in a limited system were flux phenotypic data and data on 
underlying regulatory levels was simultaneously recorded from central carbon 
metabolism of single gene deletion mutant strains of E. coli under different 
growth conditions. However, since the scale of the system was limited to the 
central carbon metabolism, integrative visualisation of the metabolic network 
was adequate for interpretation of the data. Figure 6 shows an example of inte-
grative data analysis of the switch from fully respiratory to respiro-fermentative 
phenotype of S. cerevisiae in context of interaction network of limited extent 
(unpublished results). The systemic co-responses are almost too complex to 
visually comprehend even though the system is limited. Multiomics data integra-
tion requires tools that generate hypotheses of systemic response mechanisms. 
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Figure 6. Co-response interactions in S. cerevisiae between components of central car-
bon metabolism in switch from fully respirative to respiro-fermentative metabolism in 
limited oxygen provision (unpublished results). Co-responses are calculated according to 
Raamsdonk et al. (2001) as ratios of the log fold changes in the quantities of components 
between the two conditions [Publication I; Rintala et al., 2009]. Co-response interactions 
are drawn for the components having strong positive (in green) or negative (in red) co-
responses. 

6.2 Determinants of energy generation processes 

The biological features studied in the Publications included in the thesis were 
effects of oxygen and different carbon sources on flux distributions of three eu-
karyotes S. cerevisiae, T. reesei and P. pastoris. Carbon sources among other 
nutrients [Rohde et al., 2008] are known to trigger regulatory cascades that can 
ultimately determine the active energy production processes as in case of high 
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glucose sensed by S. cerevisiae [Zaman et al., 2009]. Oxygen on the other hand 
is a major determinant of active energy processes in aerobic organisms. Regula-
tion of energy processes in bioproduction hosts is naturally of importance for 
developed bioprocess control. Many of the regulatory mechanisms are conserved 
among eukaryotes and thus, the studies of simple eukaryotes such as yeasts and 
fungi provide a basis also for understanding the function of higher cells. Under-
standing of the regulation of energy generation processes is central in investiga-
tions of for example human metabolic diseases. One of the metabolic diseases, 
type II diabetes, is at present increasing in population of western countries [Wild 
et al., 2004]. Energy generation processes are central also in sports. Oxygen 
uptake rate and carbohydrate refuelling are central parameters of sports perform-
ance [Hulston and Jeukendrup, 2009]. Oxygen provides not only an electron 
acceptor for efficient energy generation but also a threat of cell component dam-
age as a strong oxidant. Both features of oxygen are related to cell ageing and 
thus, of major interest [Koc et al., 2004; Oliveira et al., 2008; Finkel and Hol-
brook, 2000; Lin et al., 2002]. 

6.3 Prospects of local flux ratio analysis 

Local flux ratio analysis is an efficient approach for quantitative profiling of the 
flux phenotype. The conventional method is extendable from inferring 13C-
labelling patterns of proteinogenic amino acids to detection of free metabolites 
and from established network structures to novel or engineered organisms by 
systematic derivation of constraint equations (Publication IV). The strength and 
advantage of the local flux ratio analysis is the independence of external fluxes 
and therefore, also an independence of the definition of biomass effluxes [Zam-
boni et al., 2009]. Biomass effluxes are usually derived from growth rate and 
biomass composition and the experimental determination of the detailed macro-
molecular composition of biomass is laborious [Lange 2002; Lange and Heijnen, 
2001]. Thus, flux ratios provide independent quantitative measures of distribu-
tion of fluxes also when the effluxes from the system to macromolecule synthe-
sis is not exactly known. Analysis can be targeted to metabolic junctions of in-
terest or as many junctions can be analysed as possible to gain constraints for net 
flux determination by 13C-MFA. 
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6.4 Large-scale flux analysis 

Global iterative fitting becomes computationally unfeasible when the number of 
isotopomer balance equations explodes. System extension requires also addi-
tional measurements of 13C-labelling patterns to gain constraints for isotopomer 
distributions of added metabolites. Without enough constraints the flux distribu-
tion cannot be accurately solved. Combinations of 13C-labelling based con-
straints and an objective function have been proposed for example by Blank et 
al. (2005). Nevertheless, the large-scale models can always be utilised as scaf-
folds where the active networks can be identified and more detailed models built 
[Suthers et al., 2007]. 

Flux balance analysis (FBA) is feasible in well-defined genome scale meta-
bolic networks. The difficulty of definition of a relevant objective function limits 
the utilisation of FBA in flux determination. In determination of metabolic capa-
bilities of organisms it is highly efficient. Automatic means to infer or to identify 
objective functions have been proposed [Knorr et al. 2007; Gianchandani et al. 
2008]. As interest in systems biology is also on higher cells, intelligent defini-
tions of objective functions have been proposed [Heuett and Qian, 2006] and are 
under development. 

6.5 Flux analysis in dynamic conditions 

Flux analysis is turning dynamic since stationary metabolic flux analysis is not 
convenient for those time-dependent processes that are of biotechnological inter-
est or compatible with analysis of fluxes in higher cells. If the specific growth 
rate is low, prolonged labelling time is required to reach an isotopic pseudo 
steady-state in macromolecule components. During prolonged labelling time the 
steady state may alter. Furthermore, the non-growing cells are completely in-
compatible with stationary biosynthetically directed 13C-labelling. Direct meas-
urement of the labelling patterns of metabolic intermediates was thought to 
shorten the required labelling times but the investigations showed that the label-
ling patterns of intermediates stabilize much later than expected. Large pools of 
storage compounds, protein turnover and compartmentalized pools increase the 
stabilisation times of the labelling patterns of metabolic intermediates to the 
timescale of label stabilisation in macromolecule components [Aboka et al., 
2009; Grotkjaer et al., 2004; den Hollander et al., 1981]. 
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Dynamic 13C-MFA that significantly shortens the required labelling times 
emerged first to metabolic stationary but isotopically non-stationary conditions 
[Nöh et al., 2007; Selivanov et al., 2006; Schaub et al., 2008; Hoffmann et al., 
2008]. Due to the shorter labelling times, the dynamic 13C-flux analysis has 
broader applicability to mammalian cell cultures than the conventional stationary 
flux analysis. Mammalian cells grow usually slower than microbial cells and 
steady states are hard to sustain. Recently Munger et al. (2008) utilised dynamic 
13C-labelling of cultured human fibroblasts to determine metabolic targets for 
antiviral therapy. Extension of 13C-MFA to metabolic non-stationary states was 
shown in silico by Wahl et al. (2008) and applied already to E. coli cultures by 
Schaub et al. (2008), and to hepatic cells in a two-part study [Hoffmann et al., 
2008; Maier et al., 2008]. 13C-MFA in transient state takes advantage of a kinetic 
model of the metabolic system, measurements of metabolic pool sizes and time-
dependent labelling patterns. Integration of data yields different things depend-
ing on the approach. The kinetic parameters can be determined more reliably, 
non-measured metabolite pools can be solved and sensitivities of flux distribu-
tion solutions can be decreased by integrating stationary and non-stationary data 
[Nöh et al., 2007; Selivanov et al., 2006; Schaub et al., 2008]. Dynamic 13C-flux 
analysis is also suitable for stimulus-response experiments were the systemic 
time-dependent responses to perturbations are investigated [Wahl et al., 2008]. 
13C-labelling experiments in dynamic conditions enable direct probing of ro-
bustness and control of the metabolic system and the data also reveals compart-
mentalization of metabolite pools [Schryer et al., 2009]. Furthermore, the short 
time-scale 13C-labelling reduces the cost of experiments and thus, is compatible 
with high-throughput experiments. 
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Metabolisms of microorganisms contain possibilities for conversions of simple 
source molecules to unlimited number of biochemicals and for degradation 
of even hazardous compounds. Rates of metabolic reactions are called fluxes. 
They are in sense process streams of a cell factory in case of biotechnologically 
important organisms. Since the fluxes are time-dependent, they cannot be directly 
measured but have to be inferred from other, measurable, quantities by modelling 
and computational analysis. 13C-labelling is crucial for quantitative analysis 
of fluxes through alternative pathways inside the cells. Fluxes emerge as an 
ultimate phenotype of an organism from an integrated regulatory function of the 
underlying networks of complex and dynamic biochemical interactions. Inferring 
fluxes and their regulation in simple model organisms aids in understanding for 
example metabolic disorders in human. The dissertation considers modelling of 
metabolism and 13C-labelling for quantitative analysis of metabolic fluxes in yeast 
Saccharomyces cerevisiae that is an important biotechnological production and 
model organism, and in yeast Pichia pastoris and in fungus Trichoderma reesei that 
serve as efficient hosts for protein production. 
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