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The Perfect Binary One-Error-Correcting Codes of
Length 15: Part I—Classification

Patric R. J. Östergård, Olli Pottonen

Abstract—A complete classification of the perfect binary one-
error-correcting codes of length 15 as well as their extensions of
length 16 is presented. There are 5 983 such inequivalent perfect
codes and 2 165 extended perfect codes. Efficient generation
of these codes relies on the recent classification of Steiner
quadruple systems of order 16. Utilizing a result of Blackmore,
the optimal binary one-error-correcting codes of length 14 and
the (15, 1 024, 4) codes are also classified; there are 38 408 and
5 983 such codes, respectively.

Index Terms—classification, Hamming code, perfect binary
code, Steiner system

I. INTRODUCTION

Consider the space Fn
2 of dimension n over the Galois

field F2 = {0, 1}. A binary code of length n is a sub-
set of Fn

2 . The (Hamming) distance d(x,y) between two
codewords x, y is the number of coordinates in which they
differ, and the (Hamming) weight wt(x) is the number of
nonzero coordinates. The support of a codeword is the set of
nonzero coordinates, supp(x) = {i : xi 6= 0}. Accordingly,
d(x,y) = wt(x− y) = |supp(x− y)|.

A code has minimum distance d if d is the largest integer
such that the distance between any distinct codewords is at
least d. Then the balls of radius b(d− 1)/2c centered around
the codewords are nonintersecting, and the code is said to
be a b(d − 1)/2c-error-correcting code. If these balls tile the
whole space, then the code is called perfect. The parameters
of perfect codes over an alphabet of prime order are well
known [1], and perfect binary codes exist with d = 1; d = n;
d = (n− 1)/2 for odd n; d = 3, n = 2m − 1 for m ≥ 2; and
d = 7, n = 23. The first three types of codes are called trivial,
the fourth has the parameters of Hamming codes, and the last
one is the binary Golay code. A perfect code with minimum
distance d is also called a b(d− 1)/2c-perfect code.

A binary code with length n, minimum distance d, and M
codewords is called a (n, M, d) code. In this notation a binary
1-perfect code is a (2m − 1, 22m−m−1, 3) code. Two related
families are the extended and shortened 1-perfect codes, which
have parameters (2m, 22m−m−1, 4) and (2m−2, 22m−m−2, 3),
respectively.

Existence of binary 1-perfect codes follows from the exis-
tence of Hamming codes, which are the unique linear 1-perfect
codes. Still constructing all 1-perfect codes is a longstanding

This work was supported in part by the Graduate School in Electronics,
Telecommunication and Automation and by the Academy of Finland, Grant
Numbers 107493 and 110196.
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open problem. It makes sense to approach this issue by con-
sidering the number of inequivalent codes (or more formally
the number of equivalence classes). Two codes are said to
be equivalent if one is obtained from the other by permuting
coordinates and adding a constant vector; a formal definition
appears in Section II.

There is trivially a unique 1-perfect code of length 3.
Zaremba [2] showed that also the 1-perfect code of length
7 is unique. However, already the next case of length 15 has
until this work withstood all attempts of complete classifica-
tion, although several constructions of such codes have been
published; see the surveys [3], [4]. It turns out that these results
were not far from a complete classification as for the number
of codes found. The growth of the number of 1-perfect binary
codes is double exponential in the length of the code, see [5]
for a lower bound on this number. For an in-depth treatment
of the topic of classifying combinatorial objects, see [6].

The aim of the current work is to obtain a complete
classification of inequivalent 1-perfect binary codes of length
15. By computer search it is here shown that their number
is 5 983. Also the codes obtained by extending, shortening
or extending and shortening are classified; the numbers of
(16, 2 048, 4), (14, 1 024, 3) and (15, 1 024, 4) codes turn out
to be 2 165, 38 408 and 5 983 respectively.

In the rest of the paper we document the classification
of the extended 1-perfect codes of length 16, which yields
classifications of the 1-perfect codes of length 15 and the
shortened 1-perfect codes of length 14. In Section II we define
some concepts and consider construction of extended 1-perfect
codes via Steiner systems. In Section III we present algorithms
for detecting and rejecting equivalent codes, and in Section IV,
we take a brief look at the results; a separate, more detailed
study of the classified codes will appear in a separate paper [7].
Finally, in Section V we give a consistency check for gaining
confidence in the computational results.

II. PRELIMINARIES AND CONSTRUCTION

A permutation π of the set {1, 2, . . . , n} acts on code-
words by permuting the coordinates: π((c1, c2, . . . , cn)) =
(cπ−1(1), cπ−1(2), . . . , cπ−1(n)). Pairs (π,x) form the wreath
product S2 o Sn, which acts on codes as (π,x)(C) = π(C +
x) = π(C) + π(x). Two codes, C1 and C2, are isomorphic if
C1 = π(C2) for some π and equivalent if C1 = π(C2 + x)
for some π,x.

The automorphism group of a code C, Aut(C), is the group
of all pairs (π,x) such that C = π(C + x). Two important
subgroups of Aut(C) are the group of symmetries,

Sym(C) = {π : π(C) = C}
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and the kernel

Ker(C) = {x : C + x = C}.

If the code contains the all-zero word, 0, then the elements of
the kernel are codewords.

A Steiner system S(t, k, v) can be viewed as a code S ⊂ Fv
2

with the property that each codeword of S has weight k, and
for any y ∈ Fv

2 with wt(y) = t, there is a unique x ∈ S such
that supp(y) ⊆ supp(x). Usually Steiner systems are defined
as set systems rather than codes, but our definition is more
directly applicable for this work. The parameter v is the order
of the system. Steiner systems S(2, 3, v) and S(3, 4, v), which
are called Steiner triple systems and Steiner quadruple systems,
respectively, are related to 1-perfect codes in the following
way. If C is a 1-perfect binary code of length v and x ∈ C,
then the codewords of C+x with weight 3 form a Steiner triple
system of order v. Similarly, if C is an extended 1-perfect
binary code and x ∈ C, then the codewords of C + x with
weight 4 form a Steiner quadruple system. These systems are,
respectively, the neighborhood triple system and neighborhood
quadruple system associated with the code and the codeword.

As a starting point for the classification of the extended
1-perfect binary codes of length 16, we have the classifica-
tion [8] of Steiner quadruple systems of order 16; there are
1 054 163 such designs. We want to find, for each S(3, 4, 16),
all extended 1-perfect binary codes in which it occurs. This
can be done by puncturing any coordinate, augmenting the
resulting code to 1-perfect codes in all possible ways, and
finally extending every resulting code with a parity bit.

When augmenting a set of codewords to a 1-perfect code,
we consider a 1-perfect code as a set of balls with radius
one that form a partition of the ambient space. Accordingly,
finding a code (with specified codewords) is a special case
of the exact cover problem, where we are given a set S
and a collection U of its subsets, and the task is to form
a partition of S by using sets in U . Let the set Q contain
the codewords obtained by puncturing the all-zero codeword
and its neighborhood quadruple system. In this case we have
S = F15

2 \B(Q), and U = {B(x) : B(x)∩B(Q) = ∅}, where
B(x) = {y : d(x,y) ≤ 1} and B(C) = {B(x) : x ∈ C}.
We use the libexact software [9] for solving such instances
of the exact cover problems. In the search we could in fact
have made use of the fact that all 1-perfect binary codes
are self-complementary—in other words, the all-one word is
always in the kernel—but this would not have had any practical
significance as the search was rather fast.

Since the all-zero word and its neighborhood quadruple
system contain 141 of the 2 048 codewords, 1907 new code-
words are needed. Searching for these was a remarkably easy
computational task; on average the search trees in which codes
were found had 1978 nodes and those in which no codes were
found had 3 nodes.

III. ISOMORPH REJECTION

The general framework by McKay [10] was used to carry
out isomorph rejection, although a less sophisticated method
would have sufficed in this work.

Recall that we augment a Steiner quadruple system Q to
an extended 1-perfect code C. We accept C if it passes the
following two tests; otherwise it is rejected. First we require
that C shall be the minimum (with respect to some practically
computable total order of codes) under the action of Aut(Q).
Second, we compute the canonical equivalence class represen-
tative cE(C), consider π,x for which π(C +x) = cE(C) and
require that x and 0 are on the same Aut(C) orbit (we define
cE so that x ∈ C always holds).

When the extended 1-perfect codes have been classified,
classifying the 1-perfect codes is straightforward. All 1-perfect
codes are obtained by puncturing the extended codes, and the
resulting 1-perfect codes are equivalent if and only if they are
obtained by puncturing the same extended code at coordinates
which are in the same orbit of the automorphism group.

A complete classification of the (14, 1 024, 3) codes is ob-
tained similarly, since each such code is obtained by shortening
a unique (up to equivalence) 1-perfect code of length 15; this
result was proved by Blackmore [11]. Although a code can
be shortened at any coordinate in two ways, by selecting the
codewords with 0 or 1 in a certain coordinate, both selections
lead to equivalent codes. This follows from the fact that every
1-perfect binary code is self-complementary.

Furthermore we note that any (15, 1 024, 4) code is obtained
by extending a (14, 1 024, 3) code with a parity bit. Hence
all such codes are obtained by shortening and extending a
perfect code, or equivalently removing all words of chosen
parity. As the perfect codes are self-complementary, we get
(up to equivalence) same code by chosing either odd or even
parity. As this mapping is reversible, we conclude that there
is one-to-one correspondence between equivalence classes of
(15, 2 048, 3) codes and equivalence classes of (15, 1 024, 4)
codes, and in both cases their number is 5 983.

Let C be a (15, 1 024, 4) code C and let C ′ be the
corresponding perfect code. The group Aut(C ′) contains
Aut(C) as a subgroup, and Aut(C ′) has one more genera-
tor than Aut(C), namely the all-one codeword. Accordingly
|Aut(C ′)| = 2|Aut(C)|.

We still have to describe an algorithm for canonical label-
ing. The most straightforward approach of using the general
purpose isomorphism nauty [12] is rather slow on codes as
large and regular as the (16, 2 048, 4) codes; this was also
noted by Phelps [13]. Hence a tailored approach is necessary.
The method presented below has a lot in common with the one
described in [13]. An alternative method based on minimum
distance graphs would also work [14], cf. [15].

A triangle consists of 3 codewords with mutual distance 4.
Triangles constitute an easily computable and rather sensitive
invariant of Steiner quadruple systems. Distinguishing the
isomorphism classes of the neighborhood quadruple systems
of a code also constitutes an invariant of the extended 1-
perfect codes. These two invariants turned out to be useful
for speeding up our computations.

A canonical isomorphism class representative cI(C) for a
code C can be computed by using nauty to label a correspond-
ing graph canonically. Moreover, nauty computes generators of
the group Sym(C). Canonical equivalence class representative
can be defined as cE(C) = min{cI(C + x) : x ∈ C}, where
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the minimum is again taken with respect to some practically
computable total order of codes.

Note that two codewords, x and y, are in the same orbit
of Aut(C) if and only if cI(C + x) = cI(C + y). Because
of this, if we know that x and y are in the same orbit, and
cI(C+x) has been computed, then there is no need to compute
cI(C + y). Also if cI(C + x) = cI(C), then nauty yields a
permutation π such that π(C + x) = C. The pairs (π,x) are
coset representatives of Aut(C) with respect to Sym(C), so
we get generators of the group Aut(C).

IV. RESULTS

There are exactly 2 165 inequivalent extended 1-perfect
codes of length 16, 5 983 inequivalent 1-perfect codes of
length 15, 38 408 shortened 1-perfect codes of length 14 and
5 983 (15, 1 024, 4) codes. The orders of the automorphism
groups of the codes are presented in Tables I, II and III. As
noted in Section III, the order of the automorphism group of
a (15, 1 024, 4) code is half of the order of the automorphism
group of the corresponding perfect code.

Only 15 590 of the 1 054 163 nonisomorphic S(3, 4, 16)
can be augmented to a 1-perfect code, and the total number
of extensions is 22 814. The computationally intensive part
of this result was the earlier classification of S(3, 4, 16),
which required several years of CPU time, while all searches
described in this paper took only a couple of hours of CPU
time.

A detailed study of the properties of the classified codes
will appear in a second part of this article [7].

Table I
AUTOMORPHISM GROUPS OF (16, 2 048, 4) CODES

|Aut(C)| # |Aut(C)| # |Aut(C)| #
128 11 5 376 1 196 608 6
192 5 6 144 23 262 144 3
256 105 8 192 174 344 064 1
384 9 10 752 2 393 216 3
512 377 12 288 22 524 288 2
672 2 16 384 103 688 128 1
768 19 24 576 12 786 432 2

1 024 416 32 768 47 1 572 864 3
1 344 1 43 008 2 2 359 296 1
1 536 21 49 152 18 2 752 512 1
1 920 1 61 440 1 3 145 728 1
2 048 394 65 536 33 5 505 024 2
2 688 1 86 016 3 6 291 456 1
3 072 18 98 304 12 660 602 880 1
4 096 298 131 072 6

V. CONSISTENCY CHECK

To get confidence in the results, we performed a consistency
check similar to the one used, for example, in [8]. In this check
we count the total number of codes in two different ways and
ensure that the results agree.

First we consider the set C of equivalence class represen-
tatives obtained in the classification. By the orbit-stabilizer
theorem, the total number of extended 1-perfect codes is∑

C∈C

16! · 216

Aut(C)
,

Table II
AUTOMORPHISM GROUPS OF (15, 2 048, 3) CODES

|Aut(C)| # |Aut(C)| # |Aut(C)| #
8 3 512 1 017 24 576 7

12 3 672 3 32 768 8
16 5 768 32 43 008 4
24 10 1 024 697 49 152 10
32 138 1 536 17 65 536 5
42 2 2 048 406 98 304 1
48 12 2 688 1 131 072 1
64 542 3 072 37 172 032 1
96 22 3 840 1 196 608 5

120 1 4 096 202 344 064 2
128 1 230 5 376 4 393 216 2
192 18 6 144 35 589 824 1
256 1 319 8 192 94 41 287 680 1
336 3 12 288 7
384 30 16 384 44

Table III
AUTOMORPHISM GROUPS OF (14, 1 024, 3) CODES

|Aut(C)| # |Aut(C)| # |Aut(C)| #
1 5 168 1 8 192 80
2 75 192 80 12 288 18
3 8 256 4 392 16 384 14
4 425 336 5 21 504 1
6 39 384 114 24 576 15
8 1 162 512 2 469 32 768 14

12 56 768 30 49 152 1
16 3 465 1 024 1 346 65 536 1
21 4 1 344 1 86 016 1
24 39 1 536 54 98 304 2
32 7 311 2 048 527 172 032 1
48 59 2 688 6 196 608 2
64 9 068 3 072 55 1 376 256 1
96 49 4 096 222

128 7 172 6 144 18

where 16! ·216 is the order of the wreath product group acting
on the codes.

Let Q consist of the representative Steiner quadruple sys-
tems, and let E(Q) be the number of all extended 1-perfect
codes obtained by augmenting Q. Applying the orbit-stabilizer
theorem, we get the expression

1
2 048

∑
Q∈Q

16! · 216 · E(Q)
Aut(Q)

,

where the division by 2 048 is necessary since each code
is counted once for each codeword. Both formulas yield
the same result, 2 795 493 027 033 907 200. Similarly we also
counted the 1-perfect codes and shortened 1-perfect codes in
two different ways; their number is 1 397 746 513 516 953 600.
Indeed, there are twice as many extended 1-perfect codes as
there are 1-perfect codes, since each 1-perfect code admits
two extensions: one with even parity bit and one with odd.
Similarly, we get a bijection from the 1-perfect codes to
shortened 1-perfect codes if we shorten each code by taking,
for instance, the codewords with value 0 in coordinate 15
and removing that coordinate. Thus there are equally many
1-perfect codes and shortened 1-perfect codes.
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