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Avaruuden Zn
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1 Introduction

In 1950 Richard Hamming published one of the first results concerning error-
tolerant transmission and storage of data [21]. Since then coding theory
has advanced immensely, and now techniques like low-density parity check
codes and turbo codes [48] can transmit information at rates very close to
the theoretical bound derived by Claude Shannon [59]. Nevertheless the
Hamming codes have not been obsoleted.

Consider digital communication where a string of n symbols is transmit-
ted, each symbol being an element of an alphabet of size q. Such strings are
modeled as words of Zn

q , or if q is prime power we can use the vector space
Fn

q over a finite field. Most common, and simplest, is the binary case with
q = 2.

The Hamming distance between two words is the number of coordinates
in which they differ. Some errors may be introduced to a codeword during
transmission, but we may reasonable expect that the resulting word is rather
close, in Hamming distance, to the original one. It is obviously desirable to
be able to recover the original codeword.

An erroneous word can only be corrected if it is not close to more than
one codeword. More precisely, up to r errors can always be corrected if
the distance between any two codewords is at least 2r + 1, or equivalently,
if the balls of radius r around the codewords are nonintersecting. At the
extreme these balls cover the entire ambient space, which leads to maximum
transmission capability for the length and minimum distance in question.
Codes with this property are called perfect, or r-perfect. The Hamming
codes are 1-perfect.

An obvious necessary condition for the existence of r-perfect codes is
that the cardinality of a ball of radius r divides the cardinality of the space.
For example a binary 1-perfect code of length n may exist only if (n+1)|2n.
The Hamming codes prove that this condition is also sufficient: 1-perfect
binary codes exist for lengths n = 2m − 1.

Are there any other perfect codes? Yes; there are families of trivial
codes with r = 0, r = n, and r = (n + 1)/2 for odd length n. In his
remarkable half page paper Golay [19] described a 3-perfect binary code
of length 23, a 2-perfect ternary code of length 11, and Hamming codes
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over alphabets of prime size. Hamming codes further generalize over any
finite field alphabet. In 1971 Tietäväinen and Perko [69] proved that every
perfect binary code must have the same parameters—length, cardinality
and minimum distance—as some aforementioned code. Two years later van
Lint [70] and Tietäväinen [68] generalized the result for perfect codes over
alphabets of prime power size—every perfect code has the same parameters
as a Hamming code, a Golay code or a trivial code. The same result was
independently proved by Zinov’ev and Leontiev [74]. For other alphabet
sizes the matter is not completely settled, but in this case the nonexistence
of nontrivial r-perfect codes has been proved for r ≥ 3. Progress towards
this result was started by Bannai [6], the cases r = 3, 4, 5 were solved by
Reuvers [57], r = 7 and r ≥ 9 by Best [7] and finally r = 6, 8 by Hong [27].

Now we know the possible parameters of perfect codes of prime power
alphabets, but do we know all codes? It turns out that the Golay codes are
(up to equivalence) the only codes with their parameters [13, 55, 61]. The
same holds for Hamming codes of length 3 and 7; the former case is trivial
and the latter was proved by Zaremba [73]. Originally it was thought that
this would be the case for all lengths [60], but Vasil’ev [71] constructed non-
linear perfect codes, that are not equivalent to the linear Hamming codes.
Nonbinary nonlinear codes were constructed by Schönheim [58] and Lind-
ström [39].

The binary Hamming codes exist for lengths n = 2m − 1. The lengths 3
and 7 are not very interesting, as the only codes are the Hamming codes, and
there are not many interesting properties to study. For length 31 there are
at least 218543128 ≈ 10619 codes [25], each consisting of 226 codewords. Con-
sequently computational study of these codes is hardly feasible. This makes
length 15 the only interesting case for computational study, and indeed this
specific case has gathered a lot of attention [23, 41, 42, 52, 53, 75, 76]

Different analytical constructions yield numerous nonequivalent codes,
but not a complete catalog of the codes. However an exhaustive computer
search based on the connection between Steiner systems and codes turns
out to be possible, and is described in this thesis. A complete classification
enables further study of the codes. All these results are computational.
Indeed, computational methods allow us to solve problems which are beyond
the reach of traditional mathematics. This approach requires knowledge
of computer science in addition to mathematics, and special consideration
should be given to correctness of the results.

1.1 Contribution of the thesis

The main result of this thesis is a classification of the perfect binary one-
error-correcting codes of length 15 [P4] and the subsequent computational
study of miscellaneous properties of these codes [P5], especially the nonex-
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istence of codes which contain certain Steiner triple systems [P2, P5]. The
classification relies on the classification of Steiner quadruple systems of or-
der 16 [P1]. The classification of these quadruple systems is also utilized
in proving that no Steiner system S(4, 5, 17) exists [P3]. In addition it is
proved that extended 1-perfect codes are equivalent if and only if they have
isomorphic minimum distance graphs [P6].

1.2 Basic concepts

A binary code of length n is a nonempty subset of Zn
2 . The Hamming

distance d(x,y) between the words x and y is the number of coordinates
in which they differ, the Hamming weight wt(x) of a word x is the number
of its nonzero coordinates, and the support supp(x) of x is the set of these
coordinates. Formally, supp(x) = {i : xi 6= 0}, wt(x) = |supp(x)| and
d(x,y) = wt(x − y). The minimum distance of a code is the minimum
amongst distances between distinct codewords. An r-perfect code is a code
such that the balls B(x, r) = {y : d(x,y) ≤ r} form a partition of the space
Zn

2 .
A permutation π of Zn acts on a word x of Zn

2 by permuting the coor-
dinates, π(x) = (xπ−1(1), . . . , xπ−1(n)), and another word z acts additively,
giving z+x. A pair (π, z) acts on a codeword x as (π, z)(x) = π(z+x). Two
codes C1, C2 are isomorphic if π(C1) = C2 for some π, and they are equiv-
alent if (π, z)(C1) = C2. The automorphism group of a code C is defined
as

Aut(C) = {(π, z) : (π, z)(C) = C}.
Two important subgroups of the automorphism group are the kernel and
the group of symmetries, which are obtained by imposing the additional
conditions π = e (the identity mapping) or z = 0 (the all-zero word), re-
spectively.

An (n, M, d) code is a code of length n with M codewords and minimum
distance d. A binary code is 1-perfect if and only if it is has parameters

n = 2m − 1, M = 2n/(n + 1) = 22m−m−1, d = 3.

A code can be extended by adding a coordinate. Unless stated otherwise,
the value of the new coordinate is chosen so that each codeword gets even
weight. Since this does not decrease distances and results in them being
even, an extended 1-perfect code has minimum distance 4. The inverse
operation of extending is puncturing, which means removing a coordinate.
Note that a code has a unique extension, but can be punctured at several
different coordinates. A code is an extended 1-perfect code if and only if it
has parameters

n = 2m, M = 2n−1/n = 22m−m−1, d = 4.
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2 Designs and codes

Consider a 1-perfect binary code C with 0 ∈ C. For any word z with weight
2 there is a unique codeword at distance 1. This means that the (supports)
of the codewords with weight 3, which can be considered as the neighbor-
hood of the codeword 0, form a combinatorial design called a Steiner triple
system. The definition of Steiner systems and related results are presented
in Section 2.1 and subsequent sections. For more information the reader is
referred to [8, 10, 11].

2.1 Steiner systems

A Steiner system S(t, k, v) with t ≤ k ≤ v is a pair (V,B) where V is a set
of v points and B is a set of blocks such that each block consists of k points,
and any set of t points occurs in a unique block. The parameter v is called
the order of the design. Of special interest are the Steiner triple systems
and Steiner quadruple systems, which are S(2, 3, v) and S(3, 4, v) designs,
respectively. These are denoted as STS(v) and SQS(v) for short.

For a code C with minimum distance 3 we define the neighborhood triple
system of a codeword x ∈ C as

NTS(x, C) = {supp(x− y) : x,y ∈ C, d(x,y) = 3}.

By the reasoning above the neighborhood triple system of any codeword
of a 1-perfect code is a Steiner triple system. Also the converse holds: a
(nonempty) binary code is perfect if the neighborhood triple system of every
codeword is an STS [54].

The derived design of (V,B) induced by x is the design (V ′,B′) with

V ′ = V \ {x}, B′ = {B \ {x} : x ∈ B ∈ B}.

The derived design of an S(t, k, v) is an S(t− 1, k − 1, v − 1).
For codes with minimum distance 4 we can consider neighborhood quadru-

ple systems, defined in the obvious fashion. The neighborhood quadruple
systems of an extended perfect code are Steiner quadruple systems. By
puncturing the extended code and considering neighborhood triple systems
one gets derived triple systems of the neighborhood quadruple systems.
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If all neighborhood quadruple systems of a nonempty code are Steiner
quadruple systems, puncturing the code yields a code in which all neigh-
borhood triple systems are Steiner systems. By the earlier result this code
must be a perfect code. Hence the original code must be an extended perfect
code.

There are also other connections between codes and designs. For example
the codewords of weight 8 of the extended binary Golay code form the unique
Steiner system S(5, 8, 24), and the codewords of weight 5 of the extended
ternary Golay code form the unique S(5, 6, 12) [40, Chapter 20]. Other con-
nections between codes and t-designs are analyzed in [1] and [40, Chapter 6].

Clearly Steiner triple systems exist for v = 2k−1 as they can be obtained
from perfect codes, but also other orders are admissible. Counting the total
number of blocks and the number of blocks containing given element show
that the requirement v ≡ 1, 3 (mod 6) is necessary. One of the earliest
results in design theory was proving the sufficiency of this condition [33].

2.2 Derived designs

It is not known whether all Steiner triple systems are derived. For order 15
they are, as constructions by Diener, Schmitt and de Vries [16] and earlier
results show. Already the next case, STS(19), is open. A related question is
whether every STS(2k−1) is a neighborhood triple system—being a derived
design is a necessary, but not sufficient condition. In [P2] this is answered
in negative for k = 4. However, Avgustinovich and Krotov [4] showed that
an STS, or any 1-error-correcting code, occurs in a perfect code of greater
length.

Since some STS(15) does not occur in a perfect code, none of the SQS(16)
containing it as a derived design occurs in an extended perfect code. This
result is not new, as Hergert had found a SQS(16) which is not a neighbor-
hood quadruple system [26]. In [P5] it is concluded that exactly 33 of the 80
nonisomorphic STS(15) and 15,590 of the 1,054,163 nonisomorphic SQS(16)
occur in perfect and extended perfect codes, respectively.

Steiner quadruple systems exist for v ≡ 2, 4 (mod 6). Again simple
counting arguments show that the requirement is necessary, and construc-
tions by Hanani show that it is sufficient [22]. Note that this gives an alter-
native proof for the existence of Steiner triple systems, as they are derived
designs of quadruple systems. For S(4, 5, v) the matter is more difficult.
The condition v ≡ 3, 5 (mod 6) is necessary, but not sufficient, as neither
S(4, 5, 9), S(4, 5, 15) nor S(4, 5, 17) exists [46, P3]. No general sufficient
conditions are known.
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2.3 Classification

This section briefly surveys classification approaches for designs; for a com-
prehensive introduction to classification algorithms, the reader is referred
to [31].

There are two basic approaches to classification of Steiner systems and
other designs. One can construct the designs either point by point or block
by block. It is also possible to mix these approaches [65] or use other tech-
niques. In any case efficient isomorph rejection is essential; although it is
in principle possible to iterate over generated designs and reject each that
is isomorphic to an earlier one, this is very inefficient in terms of processing
time, memory and parallelizability.

When proceeding point by point, isomorph rejection is typically accom-
plished by a technique called orderly generation, which was pioneered inde-
pendently by Faradžev [17] and Read [56]. The basic idea is to require that
all intermediate objects are canonical. There are several examples of this
approach being applied for classification of Steiner systems [66] and similar
designs [14, 15, 29, 49].

Progressing block by block has lately been accompanied by isomorph
rejection with generation by canonical augmentation, which was discovered
by McKay [45]. In typical application of this isomorph rejection technique
one starts with a set of incomplete objects, called seeds, which are augmented
to complete designs. To decide whether a designs is to be rejected or not,
one does not only consider the design but also its relation to the seed.
More generally generation by canonical augmentation may contain several
augmentation and isomorph rejection steps.

The block by block approach has been used for classification of Steiner
triple system, starting with the early manual [12, 72] and later computer-
ized [20] classification of STS(15). Also SQS(14) have been classified with
this type of approach [46]. More recenly the STS(19) have been classified
with this type of approach [30], as have been the STS(21) with nontrivial
automorphisms [28].

In [P1] the SQS(16) are classified using a block by block approach. The
80 nonisomorphic STS(15) are extended to quadruple systems in all possible
ways with a straightforward computer search. Isomorphic designs are pruned
with generation by canonical augmentation.

After advancing from a classification of STS(15) to a classification of
SQS(16), it seems natural to take one step further and classify the quin-
tuple systems S(4, 5, 17). This is accomplished with a two-phase computer
search [P3]. In the first phase, pairs of SQS(16) are combined to get poten-
tial pairs of derived designs, and in the second one a straightforward search
attempts to extend those to complete designs. It turns out that none exist.

Once a classification has been achieved, it is definitely worthwhile to
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run a consistency check on the results. The main method used in this work
is a double counting check, which apparently was first used by Lam and
Thiel [37]. A survey of correctness checks appears in [31, Chapter 10].

We will now demonstrate the check for extended 1-perfect codes. The
same idea works just as well for other codes and Steiner systems. If C is
the set of equivalence class representatives of the codes, the total number of
codes is given by orbit-stabilizer theorem:∑

C∈C

|G|
Aut(C)

. (2.1)

Here G is the group of pairs (π,x), so |G| = 16! · 216.
The orbit-stabilizer theorem can also be used as follows. Each code can

be obtained by extending an SQS(16). Let the set S contain isomorphism
class representatives of the quadruple systems, and let N(S) be the number
of extensions of the quadruple system S. Each code can be obtained by
extending any of its 2048 neighborhood quadruple systems. Thus the total
number of codes is

1
2048

∑
S∈S

|G| ·N(S)
Aut(S)

(2.2)

The values of (2.1) and (2.2) are equal. By computing both of them from the
classification data and verifying that they agree, we can gain more confidence
in the correctness of the data.
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3 Constructions of perfect
binary codes

One of the central themes in the research on perfect codes has been con-
structing codes, the goal being to prove the existence of a code with a certain
property or to produce a family of such codes. This chapter surveys some
of the constructions.

We start with Hamming codes. Let Hm be an m× (2m − 1) matrix, the
columns of which contain every nonzero vector of Zm

2 . The Hamming code
of length n = 2m − 1 is the set

Cn = {x ∈ Zn
2 : Hmx = 0}.

In the nonbinary case the parity check matrix H has dimensions
m× (qm − 1)/(q − 1) and it contains one vector from each one-dimensional
subspace of Fm

q as a column.

3.1 Increasing length

Let Cn be a perfect code of length n, let f : Zn
2 → Z2 be an arbitrary

function and define the parity function as σ(x) =
∑n

i=1 xi, with addition
carried out modulo 2. Now the following construction by Vasil’ev [71] gives
a perfect code of length 2n + 1:

C2n+1 = {(x|x + y|σ(x) + f(y)) : x ∈ Zn
2 ,y ∈ Cn}.

If f(0) = 0 and f is nonlinear, then 0 ∈ C2n+1 and C2n+1 is nonlinear, which
implies that it is not equivalent to the Hamming code. Note that since all
admissible lengths are of the form n = 2m − 1, the above construction
produces codes of all such (lengths except the shortest one.) However for
n ≤ 3 it is not possible to choose nonlinear f with f(0) = 0.

One of the most general constructions is due to Krotov [35], and is a
generalization of Phelps’s work [51]. Heden [24] proved that this construction
produces all non-full-rank codes; the rank of a code is the dimension of the
linear space it spans (we assume that the code contains the word 0). This
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construction is most conveniently expressed for extended perfect codes. Let
n = st where both s and t are powers of 2. We consider vectors of Zn

2 as
concatenations of s vectors of length t, x = (x1,x2, . . . ,xs) ∈ Zn

2 , xi ∈ Zt
2.

The parity function σ is defined above, and the generalized parity function
is σ : Zn

2 → Zs
2, (x1,x2, . . . ,xs) 7→ (σ(x1), . . . , σ(xt)).

A Krotov component or µ-component Kµ is a subset of Zn
2 with minimum

distance 4 and cardinality 2n−s−log2 t such that that each word has even
weight and σ(x) = µ for every x ∈ Kµ. When Cs is an extended perfect
code of length s, then

Cn =
⋃

µ∈Cs

Kµ

is an extended perfect code.
In a series of papers Zinov’ev and Zinov’ev [75, 76, 77] classified the

non-full-rank extended perfect codes of length 16. These papers use inde-
pendently discovered techniques instead of utilizing Krotov’s work, and in
any case finding all possible Krotov components is a difficult problem. The
work in [75] corresponds to t = s = 4, Cs = {0000, 1111}, and the work
in [77] to t = 8, s = 2 and Cs = {00}. The latter case is presented as a
doubling constructing for extended perfect codes of length 8.

3.2 Translating components

Some general techniques employ i-components and α-components. An i-
component is a subset of a code such that switching the value of the ith
coordinate in the subset does not decrease the minimum distance of the
entire code. An α-component is an i-component for each i ∈ α. It is
not difficult to prove that each 1-perfect code consists of at least two i-
components [62]. For length 15 all possible structures of i-components and
α-components are tabulated in [P5]. Malyugin has classified the perfect
codes obtained from the Hamming code with a certain kind of i-component
switches [41, 42].

The best known lower bound for the number of distinct perfect codes was
obtained by Krotov [36] by switching α-components and using Phelps’s [51]
construction. The lower bound for length n is

22(n+1)/2−log(n+1)
32(n−3)/4

22(n+5)/4−log(n+1)
.

It turns out [P5] that all perfect codes of length 15 can be obtained
by combining Krotov’s construction and switching i-components. However,
there is no good explanation for this fact, and it is not known whether the
same holds for larger lengths.
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3.3 Codeword-by-codeword search

When constructing general one-error-correcting codes computationally, we
can consider a graph where the vertices correspond to potential codewords,
and edges connect pairs of codewords with Hamming distance at least three.
Now cliques correspond to the codes, and maximum cliques to optimal codes.
This approach is succesfully employed in [50], although without explicit
graph theoretical terminology.

In search of perfect codes we can utilize the additional constraint that the
entire space must be covered by the balls of radius one around the codewords,
and in [P4] 1-perfect codes are constructed computationally by searching for
partitions of the space Z15

2 into such balls. In computer science the task of
partitioning a set by using given collection of its subsets is called the exact
cover problem. This problem was one of the first that were proven to be
NP-complete, and the best known algorithm is a brute force search with
some optimization heuristics. Knuth has suggested clever data structures
very suitable for this task [34]. The idea is to use double linked lists which
allows fast insertion and removal of elements. The implementation used in
this work is the libexact library [32].

Some additional information is needed to make the exact cover search
feasible. As stated in Chapter 2, the neighborhood of a codeword in an
extended perfect code corresponds to a Steiner quadruple system, and a
complete classification of SQS(16) is available [P1]. This way we get all (up
to isomorphism) possible combinations of codewords with weight at most 4,
which restricts the search immensely making it very fast.
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4 Equivalence of codes

Once a family of codes has been constructed, equivalent codes need to be
rejected in order to obtain a classification. This kind of isomorph rejection
problems have been encountered several times in the literature [31]. In many
isomorph rejection methods the objects are labelled canonically using the
graph isomorphism software nauty [43, 44]. A code can be transformed into
graph by creating a vertex for each codeword and for each pair of coordinate
and alphabet symbol. A codeword is adjacent to the pairs corresponding to
the values it has at different coordinates, and pairs with the same coordinate
form a clique. For small codes this works well [50], but for 1-perfect codes of
length 15 it results in graphs that nauty can not process within reasonable
time [P4, 52].

Phelps [52] used a canonical labeling method that is based on consid-
ering the code as the kernel and its cosets. The kernel can be computed
quickly [38], and the kernel and canonical coset representatives can be han-
dled with nauty.

In the classification of perfect codes [P4] the following method is em-
ployed. A canonical isomorphism class representative cI(C) of the code C is
computed with nauty—this is reasonably fast. Canonical equivalence class
representative is defined as cE(C) = minx∈C cI(C +x), where the minimum
is taken with respect to some total order.

Some methods have been tailored for codes obtained by a specific con-
struction. For example Zinov’ev and Zinov’ev used this approach [77].

No matter which method is used, suitable invariants can speed up the
computation. For example one can count some configurations in the Steiner
triple and quadruple systems contained in the code. Moreover it may be of
use to consider automorphisms of the code.

4.1 Minimum distance graphs

Phelps and LeVan [53] made use of the fact that equivalent codes have iso-
morphic minimum distance graphs; the minimum distance graph has the
codewords as vertices. Two vertices are adjacent if the corresponding code-
words have Hamming distance equal to the minimum distance of the code.
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It turns out that canonical labeling of these graphs is rather fast.
Isomorphism of minimum distance graphs is connected to isometricity;

two codes are isometric if some distance-preserving functions maps one code
onto the other. Clearly equivalence implies isometricity, and only isometries
of the entire space are the pairs (π,x) considered in Section 1.2. Isometricity
does not in general imply equivalence, but for several families of codes it
does [5, 64].

Since the neighborhood of a vertex corresponds to the neighborhood
triple (quadruple) system of the codeword, for (extended) 1-perfect codes
the minimum distance graphs are regular. However, they are not strongly
regular.

Spielman [67] proved that STS(v) with v ≥ 19 can be reconstructed
from their block intersection graphs by considering the maximum cliques.
By applying the same idea for the neighborhood triple system, Avgusti-
novich proved that 1-perfect binary codes with length strictly greater than
15 are equivalent if and only if they have isomorphic minimum distance
graphs [2]. The same holds also for length 15; also this result was proved by
Avgustinovich [3]. The proof relies on the fact that these codes are isometric
if they have isomorphic minimum distance graphs, and on a tedious analy-
sis by Solov’eva and others [64] showing that most (not necessarily binary)
perfect codes are equivalent if they are isometric.

Also (extended) Preparata codes have isomorphic minimum distance
graphs only if the codes are equivalent. This was independently proved
by Fernández-Córboda and Phelps [18] and Mogilnykh [47]. Fernández-
Córboda and Phelps demonstrated that by considering the maximum cliques
and their connections the code can be reconstructed. Mogilnykh proved that
codes with isomorphic minimum distance graphs are isometric. The general
result by Avgustinovich and Solov’eva [5] show that isometricity of these
codes imply equivalence for large enough length.

Extended 1-perfect codes with isomorphic minimum distance graphs are
isometric [P6], and a the work of Avgustinovich and Solov’eva [5] show that
isometricity of these codes imply equivalence for length n ≥ 256. A more
careful analysis shows that the isomorphism of minimum distance graphs
implies equivalence for smaller lengths as well [P6], and furthermore auto-
morphism groups of the codes and of the graphs are isomorphic for n ≥ 16.
It appears that the proof is most difficult for n = 16.

The proof in [P6] relies on the fact that neighborhood quadruple system
of a codeword can be reconstructed, up to isomorphism, from the graph.
Once that is done, the rest of the code can be reconstructed inductively.
The quadruple systems are reconstructed by showing that maximum cliques
in their block intersection graphs have useful combinatorial interpretation.
Similar ideas have been used in most of the works cited above.
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5 Conclusions

The 1-perfect binary codes of length 15 have now been classified [P4]. This
classification has enabled a broad computational study of the properties of
the codes; these properties include automorphisms, occurrences of Steiner
systems, i-components and α-components, systematicity, embedded codes,
defining sets and connections to orthogonal arrays and mixed perfect
codes [P5].

Now the work of studying these codes computationally appears to be
mostly completed, although there are still some interesting problems which
might admit at least a partial computational solution. These include classi-
fying the partitions of Z15

2 with nonintersecting perfect codes, finding all pos-
sible cardinalities of intersections of perfect codes, and determining whether
each (13, 512, 3) code can be obtained by shortening a prefect code; for
(14, 1024, 3) codes the answer is affirmative, as shown by Blackmore [9].
It appears unlikely that computational research could be continued by a
complete classification for length 31.

A closely related topic of further research is the classification of nonbi-
nary 1-perfect codes using an analogous approach. In this case the neigh-
borhood of a codeword corresponds to a generalized Steiner triple system.

Prior to this work 11 was the largest length for which classification of
optimal binary one-error-correcting codes was known [50]. Now classification
is known for n = 14, 15 [P4], but the cases n = 12, 13 remain open.

The classifications of Steiner quadruple systems and perfect codes fall
within the scope of combinatorial classification, and rely on techniques typ-
ically encountered there. Although the techniques are already mature and
sophisticated, there is still room for further work, especially with software
tools. Also answers to some deep theoretical questions, such as whether
NP = P, are of great interest.

Finally, the correctness of results should be addressed, as complex com-
puter programs are likely to contain errors. Accordingly attempts to detect
erroneous results should be made on all levels: software implementation,
algorithm designs and mathematical analysis. In the author’s experience a
double counting consistency check has proven really useful for this purpose.
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