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Abstract- The development of future wireless communication
systems requires modeling of the radio propagation environment.
These models need the estimation of the model parameters from
channel sounding measurements. In this paper, we build a state-
space model, and estimate the propagation parameters with the
Extended Kalman Filter in order to capture the dynamics of
the channel parameters in time. The model also includes the
effect of distributed diffuse scattering in radio channels. The
issue of varying state variable dimension, i.e., the number of
propagation paths to track, is investigated. For this purpose, we
rely also on maximum likelihood based estimation techniques.
The proposed algorithm is investigated using both simulated and
measured data.

I. INTRODUCTION

The development of radio channel models for wire-
less MIMO communication systems requires multidimen-
sional channel sounding measurements. The measurements
are processed to estimate the radio channel parameters using
double-directional channel models [1]. The double-directional
modeling allows removal of the influence of the measurement
antennas from the observation. This is necessary for using
the measurement results for studying and comparing different
MIMO transceiver structures.

The extraction of the channel model parameters from the
measurement data is done using some parameter estimation
algorithm, e.g., SAGE [2] or RIMAX [3]. A straight-forward
approach for estimating the radio channel parameters (propa-
gation path delays, angles of arrival and departure, polarized
path weight components) is to do the estimation for each
snapshot independently. However, it can be observed from
measurements, that the specular component of the radio chan-
nel contains typically propagation paths which persist over
a relatively large number of snapshots. The parameters of
these paths change slowly in time. This observation can be
exploited to track the path parameters over time, in order to
reveal dynamic properties of the radio channel.

In this paper we use a state-space approach for tracking
the radio propagation path parameters over time. This is done
by deriving a state-space model based on the nonlinear data
model presented in [3], and applying an Extended Kalman
Filter (EKF) for parameter estimation. The approach for prop-
agation path parameter estimation using Kalman filtering was

introduced in [4]. It was pointed out that the use of recur-
sive estimation algorithm is computationally less demanding
compared to snapshot-by-snapshot estimation where the time
correlation of the parameters is not exploited. One of the
drawbacks of the proposed method in [4] is the fact that the
state dimension, which is given by the number of paths, is kept
fixed. This is not the case in practice, since paths may appear
or disappear in time due to the dynamics in the propagation
environment.

In this paper we propose a method which allows a dynamic
adaptation of the state dimension. This makes the algorithm
more reliable for the time characterization of the estimated
parameters. In the following section we present the observation
and the state-space models. In Section III we discuss the
algorithm and its initialization. In Section IV we show some
estimation results with both artificial, and measurement data.
Section V concludes this paper.

II. SYSTEM MODEL

The state-space model and Extended Kalman Filter were
used for estimating a few propagation path parameters (Time
Delay of Arrival (TDoA) T, azimuth Direction of Arrival
(DoA) 0R, and the path weight a for some fixed number
of propagation paths in [4]. In this paper, the estimator is
extended to take care of double directional channel model [3]
with the propagation path parameters: TDoA T, Direction of
Departure (DoD) azimuth 0OT and elevation ?§T, DoA azimuth
0OR and elevation VR, and four polarimetric path weights YHH
,yHV' yVH' and yvv. We address a problem related to the
dynamics of the environment, i.e., how to choose the number
of paths to track at a given time.

A. Model for a Radio Channel Observation
The employed radio channel model consists of two compo-

nents: the specular (concentrated) propagation component and
a multivariate circular complex normal distributed process to
describe the dense multipath component (distributed diffuse
scattering) of the radio channel [3]. In the following, the
delay and angular parameters (for P paths) are referred to
as structural parameters of the model

II= [roT oT TRoTT] 5Px 1 (1)
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whereas the path weights
7=7TyT yT T ]T C :4pX 1 (2

HH '"HV -YVXH TV]1 (2)

are referred to as linear parameters. For notational conve-
nience, we have dropped the time dependency, i.e., ,i =

,Ik (k denotes discrete time), from all the parameters. Let
us introduce the matrix valued function B(,tt) C CMx4P
describing the nonlinear mapping of the structural parameters
,1t as

B(t) [BRHOBTHOBf BRvOBTH1OBf ...

BRHOBTvOBf BRVOBTVOBf ], (3)
where X denotes the Khatri-Rao product (column-wise
Kronecker-product). For a complete description of the struc-
ture of the basis functions Bi, see [3]. For future purposes we
define also a parameter vector 0 C RLPxl containing the L
parameters for each of the P specular propagation paths as

0 = [,T {R _TH}I a{HH}I . {. V } _7V{ }]T,
(4)

where Rtj*} and St*} denote the real and imaginary parts.
Using (3), the specular propagation path parameters 0 are
mapped to an observation vector of length M = MfMTMR
with the double-directional channel model as

s(O) = B(tt) . ay .C mx'1 (5)
The second part of the observation model constitutes of

the combination of the dense multipath components (DMC)
and the measurement noise. The DMC is modeled with a
multivariate circular Gaussian process nd -Aj(0, Rd) C
CMxl. Furthermore the measurement noise is modeled by
a zero-mean circular Gaussian process n,m N,(0, or2I) C
CM x1, where j2 denotes the measurement noise variance. We
combine these random processes nd and nm into one process
yielding

ny = nd+ nm N7,)(O,RY) (6)
with the covariance matrix Ry = Rd + 72i
The complete model for a radio channel observation is thus

approximated as a superposition of P specular propagation
paths s(0) and the random process ny as

Yk = S(Ok) + ny,k (7)

The vector Yk models the output of the channel sounder at
time k.

B. State-Space Model
We assume that the specular propagation path parameters

of the radio channel can be described using a Gauss-Markov
model [5]. This allows us to formulate the problem as a state-
space model:

Ok = bOk-1 + Vk C RLPxl

Yk = S(Ok) + nyfk C CMxI
(8)
(9)

where (8) is the linear state equation and (9) is the nonlinear
measurement equation at time k. The parameters in the state

vector Ok are assumed to be uncorrelated, which leads to a
diagonal structure of the state transition matrix (D. The spectral
radius of (D is assumed to be less than unity to ensure stability.
The state noise Vk is a real valued white Gaussian process,
and it is assumed to be uncorrelated with the state. The
covariance matrix of the state noise Q is a LP x LP diagonal
matrix containing the noise variance of each parameter on the
diagonal. The observation noise ny,k (6) is assumed to be
uncorrelated with the state and it has the covariance matrix
Ry,k.

III. PATH PARAMETER ESTIMATION

The proposed parameter estimation procedure consists of
multiple estimators. The core of the algorithm, tracking the
propagation path parameters over time, is the EKF. For search-
ing new paths for each observation a Maximum Likelihood
(ML) based (RIMAX [3]) estimator is applied. Also, an inde-
pendent ML estimator is used for estimating the parameters
of the DMC component, i.e., to estimate Ry,k. The general
principle of the estimation procedure is presented in Figure 1,
whereas Figure 2 reveals the algorithm in closer detail.

I II
Data- in--EKF State dimensionality Data-ou
Yk, 0kf-)I determinationJ ,

Fig. 1. Estimation procedure principle. The state vector ek-1 (as well
as other EKF system matrices) of previous time instant may have different
dimensions than the current one ek.

Channel sounding Initiai value (k-11k-1) kand -l)
data from the ML-estimator.data Q{O ,{OI empirically.

Calculate prediction for structural parameters klk. 1
and calculate prediction of linear parameters ty(l)

Read observatlon yk based on yk and (klk-l)

Estimate the DMC and noise covariance
j RY from yk -s(O(klk)) with ML-estimator.

Compute required matrix functions
~J ((klk-1), RP) and q(yk1 (kjk-1), RY).

Compute the EKF equations
! P(lk 1) Pk and0(klk!

Update linear parameters y
with structural parameter estimates #kIL

Search for P,,,, new paths from yk -s((klk)) with
the ML-estimator. The new paths are added to the

state equations P(k 11k-), 0(k 11k1), Q and ,P
for the next observation k + 1.

. Check the reliability of propagation paths with the
relative variance of the path weights as a criterion.

Drop paths that have been unreliable for n
consecutive observations. Reduce P(l), o(k1k),o

Q and + accordingly.

Store the parameter
estimates.

Fig. 2. Complete estimation procedure. The upper level concepts in Figure 1
are marked with areas I and II.
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A. Extended Kalman Filter
The Extended Kalman Filter uses Taylor series expansion

to linearize a nonlinear state-space model about the current
estimates. To apply the EKF one needs to compute the first
order partial derivatives to the parameters 0 of the data model
s(0), i.e., the Jacobian (see [3])

to determine if new paths are valid or not. If new paths are
found, they are taken into account in the state equations for
the subsequent observations trough

^{new}
(tk-lk-1) = OML (18)

and
a

D(0) = Ts(0) = s(0) ...* (0) . (10)
aoT &0,OLP

The expressions for the computation of the EKF can be
summarized as [4]:

jk -1): =DO(k-1lk-1)_
jk -l)= 4P(k-1jk-1)4b + Qk (12)

,Ry)=2. {D H(0)RyDk(0)} (13)

P(k,k,)(P(j 1l) +J(O(k,kk i),Ry)) (14)

Ry)=2. R{DHRy (Yk - (o(k-k 1)))} (15)

Abk=P(k_lk-)I-J(6,Ry)P(klk)q(YklO,Ry)
(16)

0(klk)=0(klk-1) + A0k, (17)

where

q(y 0,Ry)= aC(y 0,RY)
is the score function, i.e., the partial derivative of the log-
likelihood function with respect to the parameters 0, and

J(0Ry))= -E{i-L(Yl0ORy) (i(Yo0RY)T}

is the Fisher information matrix [6]. Equations (11-17) are in
the information form of the EKF, which is derived from the
covariance form using the matrix inversion lemma. It should be
noted that the computation of the Kalman gain is embedded in
equations (15) and (16). These expressions have computational
advantages over a separate expression for the Kalman gain
(see [3] for a discussion).

B. Initialization of the Proposed Algorithm
We propose a dynamic initialization procedure for the EKF

algorithm. The number of propagation paths to be tracked
should not be restricted, due to the time-varying nature of the
mobile radio channel. This, in terms of state-space modeling,
means that the dimension of the state vector 0 may change in
time. As can be observed from the flow chart in Figure 2, we
use a maximum likelihood estimator for searching parameter
estimates of new paths. This is done for a larger number
of paths at the very beginning of the estimation, and for,
e.g., Pnew = 2, paths from the residual Yk -S(O(klk)) of
each observation. In addition to the parameter estimates for
the state vector, the ML-estimator also provides information
on the estimation error variance in form of the inverse of
the Fisher information matrix [3]. These estimation error

variance estimates are used already inside the ML-estimator

p{new}
l (k-lk-1)1)

{ {J(0ML,Ry)R }ij
0

,i jjt =j
,~,z 3fS

(19)

Changing the state vector dimension results in modifying (the
dimensions of) other system matrices (Q and 4b) also. The
state noise covariance Q is, for now, chosen through trial and
error. Too low values result in the estimator losing its track,
whereas too high values prevent the Kalman filter from fully
utilizing its filtering capabilities.

C. Reducing the Number of Paths
As new path parameter estimates are added to the state, also

paths which have faded out or whose tracking is lost must
be dropped out. This is done based on the estimated relative
variance of the path weight estimates as it was proposed in [3]
for a ML-estimator. The relative variance is used as a path
reliability criterion and it can be formulated as

Np., 2 2 2 2 2r,prrn,p + 2 oYrn,,P,in,~,P(ri,p+ p 17,p5 n,p< E2+4<
n=l N)tn,p

(20)
where 7 nP denotes the real part of polarization n (n C
{HH,HV ,VH ,VV }) of the ph path. The values Grun,p Irina
and (7iin,p denote the path weight real (r) and imaginary (i)
part estimation error variances and covariances extracted from
the filtering error covariance matrix P(klk) (14). If a path fails
this criterion then it can be dropped from the state. This can
be done either immediately, or after some consecutive fails
during multiple observations.

To conclude, the number of paths, i.e., the dimensionality
of the state, is determined for each snapshot based on the
reliability of the path weight estimates. This criterion is also
used in the ML estimator, while searching for new paths from
the data after removing the contribution of the known paths.

IV. ESTIMATION EXAMPLES

A. Estimation Performance in Simulations
The performance of the proposed estimation algorithm is

first demonstrated using simulated data. The artificial sounder
output is created using the data model (7) with generated
time evolving parameters. A Power Delay Profile (PDP) of the
simulated observation is shown in Figure 3. Figure 4 shows
the parameters used for azimuth DoA over 100 snapshots, as
well as the EKF estimates. Also the estimates using ML based
RIMAX [3] algorithm are shown. It should be kept in mind
that, although we present here only estimates of one parameter
for demonstration purposes, the actual algorithm estimates all
the L P parameters jointly. Knowing the original parameter
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Fig. 3. Power Delay Profile (PDP) of a simulated observation.
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Fig. 4. Rx azimuth angle estimation over 100 snapshots of simulated obser-
vations. Both the EKF and the ML estimates follow the original parameters
with the correct number of paths.

performance of the EKF algorithm is better compared to the
ML-ss estimator.
The simulation in Figure 4 (STD error labeled EKF in

Figure 5) was conducted with manually selected, fixed values
for the state transition matrix Q. Our simulations show that
using a better estimate for Q, results in lower estimation
error. This can be seen in Figure 6, showing estimation result
from simulations, where the variance for the state covariance
matrix Q were computed from the original parameters. In

10 20 30 40 50
Snapshot index

Fig. 6. DoA azimuth angle estimates of a single path in simulations. The
elements of the matrix Q for the EKF were computed from the variance of
the known original parameters.

values enables us to compute the estimation error for the ML-
ss (snapshot-by-snapshot) and the EKF estimates. After pairing
the path estimates of different estimators, we can compute
the standard deviations (STD) of the estimation error for the
angular parameters as

P K

(7 jZZE (k,p k,p)2, (21)
p=lk=1

where P stands for the number of paths and K is the number
of snapshots. The STD errors of the angular parameters
computed from 20 paths over 100 observations are shown
in Figure 5. From this figure it can be observed that the

Tx Elevation

practice, the optimal values for Q are difficult to obtain. Thus,
for running the algorithm with measurement data in the next
section, we use some manually fixed values.

Figure 7 shows the time taken by the estimation of the
artificial data comparing the EKF with the ML-ss (RIMAX)
algorithm. The recursive computation of the EKF has lower
complexity than the iterative ML algorithm, resulting in better
performance in terms of computation time (Matlab implemen-
tation).

450C

400

350

300

250
1 -X-----1

0'9 _ -0- ML-ss
EKF

0.8 - EKF (improved Q)

0.7

6-

05~~~~~~~~~~9La0.5 ___ - - -_ _ _----------

0.4

A 0.0

0.2 - - )

Rx Azimuth Tx Azimuth Rx Elevation
Estimated Parameter

Fig. 5. Standard deviation for estimation error of simulated parameters for
20 paths over 100 observations. The smallest error is obtained by using Q
which is computed from the known original parameters.
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Fig. 7. Processing time taken per snapshot for ML vs. EKF implementation
with simulated data (Matlab implementation).

B. Estimation of Measurement Data
In spring 2004 an indoor MIMO measurement campaign

was conducted at Helsinki University of Technology, in the
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building of Electrical and Communications Engineering De-
partment. The measurement was conducted at 5.3 GHz carrier
frequency with semispherical antenna arrays of 15 dual-
polarized antenna elements at both the static transmitter and
the moving receiver. The excitation signal was a pseudo ran-
dom BPSK signal of code length LC = 255 and a bandwidth
of Bm = 60 MHz [7].

Figure 8(a) shows the azimuth DoA estimates for a L-
shaped Rx measurement route inside an office room, with
the transmitter situated in another room about 10 m down
the corridor. For comparison, Figure 8(b) shows estimates
generated by a commercial ISIS/SAGE based estimator. From

15(

10(

the reference estimator is limited by a fixed number for the
maximum number of paths, in this case 30.
The benefit of the proposed propagation path tracking pro-

cedure can be observed from Figure 9. With estimators such
as ISIS/SAGE, the snapshots were processed independently,
and it was very tedious to pair parameters belonging to one
path over time. Figure 9 shows that by using the proposed
algorithm, many paths are tracked over tens of snapshots, what
is useful in dynamic channel modeling research.

150 -i

ct
I

X. _s Im
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Path lifetime in snapshots

-50
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.~
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-15(
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Snapshot index k

(a) Estimates produced by EKF implementation.

aL)
aL)

aL)

.~

¢Z

SU UUa o inUdU k
Snapshot index k

(b) Estimates produced by a reference estimator (ISIS/SAGE).

Fig. 8. DoA azimuth angle estimates processed from measurement data.
Lighter color denotes stronger paths (the color scales are not comparable).
Due to differences in path dropping criterion, the EKF (Figure 8(a)) doesn't
produce estimates of the weakest (darkest tones) values seen in Figure 8(b),
but otherwise the results have a clear resemblance.

Figures 8(a) and 8(b) it can be observed that the DoA azimuth
estimates have good resemblance. The main difference comes
from the fact that Figure 8(a) (EKF) shows less estimates of
weak paths due to the conservative path dropping criterion.
Also, many of the estimates seen in Figure 8(b) are probably
caused by the DMC component, which is not modeled as
a separate component in the ISIS. The number of paths in

Fig. 9. Histogram of the lifetime of tracked (with EKF) propagation paths
(total number of snapshots was 486). Tens of paths were tracked for over 50
snapshots, some even over 100.

V. CONCLUSION

In this paper we propose a procedure for radio propagation
channel parameter estimation and tracking using a state-space
model with varying state dimensionality. The method uses
the EKF algorithm for the nonlinear tracking problem. The
algorithm has good performance in simulations, as well as in
experiments with real world measurement data. The imple-
mented EKF solution is able to track propagation paths over
time in a reliable manner. The estimator is also computation-
ally less demanding compared to observation-by-observation
based, e.g., iterative maximum likelihood based estimation
algorithms.
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