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State-Space Modeling and Propagation Parameter
Tracking: Multitarget tracking based approach

Jussi Salmi, Andreas Richter and Visa Koivunen
Signal Processing Laboratory/SMARAD CoE

Helsinki University of Technology
Espoo, Finland

Abstract—The paper describes a state-space approach for
retrieving the parameters of the double directional MIMO propa-
gation channel model from channel sounding measurements. We
address the issues arising from tracking a varying number of
jointly estimated targets (propagation paths) from a vast amount
of data. We focus on state dimensionality estimation, i.e., how to
drop paths from the state as well as augmenting the state with
new path estimates. We propose a whiteness test for detecting the
time instances when to increase the number of paths to track.
Simulation results are presented to illustrate the benefits of the
path detection algorithm.

I. INTRODUCTION

In this paper we discuss a parameter estimation application,
namely the estimation of the parameters of concentrated prop-
agation paths of the double-directional radio channel model
from MIMO (Multiple-Input-Multiple-Output) measurements.
The measurements and their analysis plays a crucial role in the
development of increasingly accurate modeling of radio wave
propagation. The modeling is needed for the development of
future communication systems [1] utilizing the spatial degrees
of freedom offered by the radio propagation environment.

The extraction of the channel model parameters from the
measurement data is done using a parameter estimation algo-
rithm, such as SAGE [2] or RIMAX [3]. A straight-forward
approach for estimating the radio channel parameters (such
as propagation path delays, angles of arrival and departure,
polarized path weight components) is to estimate them for
each snapshot independently. However, it can be observed
from measurements, that the specular component of the radio
channel contains typically propagation paths, which persist
over a relatively large number of snapshots (time). Also, the
parameters of these paths vary slowly in time (with respect to
the measurement interval). This observation can be exploited
to track the path parameters over time in order to reveal dy-
namic properties of the radio channel. Furthermore, sequential
computation usually reduces complexity of the estimator.

In this paper we use a state-space approach for tracking
the radio propagation path parameters in time. This is done
by using a state-space model based on the nonlinear data
model presented in [3], and applying an Extended Kalman
Filter (EKF) for parameter estimation. The approach for prop-
agation path parameter estimation using Kalman filtering was
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introduced in [4]. The method was extended and applied to real
world measurements in [5]. In [6] the state-space model of [5]
was enhanced, and also the model order selection problem was
addressed. In this paper we refine the model order selection
by introducing a CUSUM based whiteness test to improve the
detection of new paths.

The paper is organized as follows. Section II describes the
channel sounding procedure briefly, and provides the necessary
expressions to express the measurements using state-space
modeling. In Section III we describe the estimation procedure
including the EKF and the state dimension determination.
Section IV presents the simulation results, and Section V
concludes the paper.

II. SYSTEM AND MODEL DESCRIPTION

A radio channel sounder measures the complex channel
response (either in time or frequency domain) sequentially for
each Mt transmit (Tx) and Mr receive (Rx) antenna pairs
at a time. The measurement can take place either in time- or
frequency domain. The channel sounder at Helsinki University
of Technology (TKK) uses a pseudo noise (PN) code generator
at Tx. The number of channels is Mt ·Mr = 32 · 32, and the
length of the measured impulse responses is Mf = 510. This
results in M = MfMtMr ≈ 5 · 105 complex samples per
measurement cycle (observation). A single observation takes
∼ 8.7 ms to measure. Another example is the Medav’s RUSK
sounder, which relies on the multi carrier spread spectrum
technique. More about channel sounding can be found in [7].
One should note that all state of the art channel sounders
use the same basic principle of fast correlation based network
analyzers. Therefore the models described in the following are
applicable to both of the aforementioned sounder architectures.

A. Double Directional MIMO Channel Model

To extract the spatial and temporal information of the
MIMO radio channel from the measurements we use the
double directional channel model [8]. The frequency response
of the channel with the antenna arrays is expressed as a
superposition of P propagation paths

H(f) =
P∑

p=1

{BR(ϕR,p, ϑR,p) ·
[

γ
HH,p

γ
HV,p

γ
V H,p

γ
V V,p

]

·BT (ϕT,p, ϑT,p)
T · e−j2πfτp}, (1)
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Fig. 1. The double directional radio channel model parameters for a single
propagation path. Tx denotes transmitter and Rx receiver.

where BR and BT are the nonlinear mappings of the angles
of arrival (ϕR, ϑR) and departure (ϕT , ϑT ) to the antenna
array responses. The parameter τ denotes the time delay of
arrival of a path, and γi are the radio wave polarization
coefficients (Horizontal-to-Horizontal, Horizontal-to-Vertical,
etc.). The meaning of the propagation path parameters is
illustrated in Fig. 1.

B. State-Space Model

State-space modeling of the radio channel propagation para-
meters is based on the assumption that the parameters evolve
slowly (w.r.t. the measurement interval) over time and are
correlated in subsequent time instances. Then the process can
be described using a Gauss-Markov model, i.e., the probability
(density) of the next state θk+1 depends only on the current
state p(θk+1|θk,θk−1 . . . θ0) = p(θk+1|θk), and is Gaussian
distributed.

The state-space model used in this paper consist of the state
equation, describing the dynamic behavior of the propagation
parameters of Pk paths, and the nonlinear measurement equa-
tion, mapping the double-directional model (1) parameters to
the channel sounder output data.

C. State Equations

The state in our model is comprised of the structural
parameters

μ =
[
τT ϕT

T ϑT
T ϕT

R ϑT
R

]T

∈ R
5P×1, (2)

related to the propagation environment geometry, the rate of
change of the structural parameters Δμ, and the path weight
parameters

γ =
[
γT

HH
γT

HV
γT

V H
γT

V V

]T ∈ C
4P×1. (3)

The path weight parameters are the magnitude αi = loge(|γi|)
in logarithmic scale, and the phase ωi = arg(γi), i.e., γi =
eαi+jωi . Another option is to use the real and imaginary parts
of the path weights, but tracking of these becomes impossible
at our measurement rate.

The state vector at time k is given by

θk = [ τT ΔτT ϕT
T ΔϕT

T ϑT
T ΔϑT

T ϕT
R ΔϕT

R ϑT
R ΔϑT

R

αT
HH ωT

HH αT
HV ωT

HV αT
V H ωT

V H αT
V V ωT

V V ]T,

i.e., the number of parameters per path in the state is L = 18.
In our application the observation interval is constant. The
choice of parameters enables us to utilize the time dependency
of the structural propagation path parameters in the state
transition equation

θk = Φθk−1 + vk,

where vk ∼ N (0,Q) is the state noise with (diagonal)
covariance matrix Q. The state transition matrix Φ is chosen
to provide linear prediction μk|k−1 = μk|k−1 + Δμk−1|k−1

of the structural parameters.

D. Measurement Equations
The structural parameters (2) are related to the channel

sounder output through a complex shift operation [3]

A(μi) =

⎡
⎢⎢⎣

e−j(−
Ni−1

2 )μi,1 · · · e−j(−
Ni−1

2 )μi,P

...
...

e−j(+
Ni−1

2 )μi,1 · · · e−j(+
Ni−1

2 )μi,P

⎤
⎥⎥⎦ ∈ C

Ni×P .

(4)
The shift matrices Ai are multiplied by the corresponding
system responses Gi ∈ C

Mi×Ni (provided by calibration
measurements), yielding1

Bf = Gf · A(τ ) ∈ C
Mf×P

BRH
= GRH

· (A(ϑR)♦A(ϕR))∈ C
MR×P

BRV
= GRV

· (A(ϑR)♦A(ϕR))∈ C
MR×P

BTH
= GTH

· (A(ϑT )♦A(ϕT ))∈ C
MT×P

BTV
= GTV

· (A(ϑT )♦A(ϕT ))∈ C
MT×P . (5)

The system functions G(R/T )(H/V )
for the antenna array

responses are calculated from antenna calibration measure-
ments using the Effective Aperture Distribution Function
(EADF) [7]. This allows numerically effective and differen-
tiable representation of the antenna beam patterns through a
2D-Fourier series expansion. To obtain the frequency response
Gf of the system a back-to-back cable calibration measure-
ment is required.

Given the expressions for the basis functions (5) we intro-
duce the matrix valued function B(μ) ∈ C

M×4P

B(μ) = [ BRH
♦BTH

♦Bf BRV
♦BTH

♦Bf . . .

BRH
♦BTV

♦Bf BRV
♦BTV

♦Bf ]. (6)

Using (3) and (6) the propagation path parameters μ and γ are
mapped to an observation vector of length M = MfMT MR

with the double-directional channel model (sampled version
of (1)) as

s(μ,γ) = B(μ) · γ ∈ C
M×1. (7)

The nonlinear measurement equation is given by

yk = s(θk) + ny,k ∈ C
M×1,

where s(θk) is the mapping of the propagation paths pa-
rameters to the observation (7), and ny,k ∼ N (0,Rdmc)

1♦ denotes the Khatri-Rao product (column-wise Kronecker-product).
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Fig. 2. Illustration of a power delay profile using the division to the
concentrated propagation paths and the dense multipath component.
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State dimension

Fig. 3. Estimation procedure principle. The state vector θ̂k−1 (as well
as other EKF system matrices) of previous time instant may have different
dimensions than the current one θ̂k .

is a colored noise process with a known covariance matrix
Rdmc. This noise process consists not only of white Gaussian
measurement noise, but also of the dense multipath component
(DMC) [3]. The DMC is caused by the distributed diffuse
scattering in the radio channel resulting in an exponentially
decaying (with delay) Power Delay Profile (PDP). Fig. 2
illustrates a realization of a PDP (squared complex impulse
response) averaged over MtMr channels.

The DMC component is assumed to be a white process in
the angular domain and independent at both link ends. This
assumption leads to the covariance structure

Rdmc = RT ⊗RR ⊗R′f + α0I = IT ⊗ IR ⊗Rf , (8)

where α0 denotes the measurement noise variance and Rf =
R′f + α0I. This structure makes the implementation of the
EKF feasible, because the inversion of R−1

dmc requires now
only inverting the Mf × Mf matrix Rf . In this paper we
assume Rf known. The estimation and tracking of the DMC
parameters (using the EKF) is discussed in [9] and [10], where
the latter extends the model to a nonwhite distribution also in
angular domain (RT and RR).

III. PROPAGATION PATH PARAMETER ESTIMATION

The proposed parameter estimation procedure consists of
the following components. The core of the algorithm, tracking
the propagation path parameters over time, is the EKF. After
the EKF the reliability of the estimated paths is evaluated.
The path estimates that fail the designated criterion are then
dropped from the state. To check if the model order Pk is
high enough, we propose a CUSUM [11] based whiteness test
in the delay domain. The general principle of the estimation
procedure is presented in Fig. 3.

A. Extended Kalman Filter
The propagation parameters are tracked using the Extended

Kalman Filter. The EKF uses Taylor series expansion to

linearize the nonlinear data model about the current estimates.
To apply the EKF one needs to compute the first order
partial derivatives to the parameters θ of the data model s(θ),
i.e., the Jacobian matrix D(θ) = ∂/∂θT (s(θ)), which is
derived in [3]. We use the “Alternative form of the discrete
Kalman filter” [12], allowing some algebraic simplifications.
The equations can be summarized as

θ̂(k|k−1) = Φθ̂(k−1|k−1) (9)
P(k|k−1) = ΦP(k−1|k−1)Φ

T + Qk (10)

P(k|k) =
(
P−1

(k|k−1) + DH
k R−1

k Dk

)−1

(11)

Kk = P(k|k)D
H
k R−1

k (12)

θ̂(k|k) = θ̂(k|k−1) + Kk

(
yk − s

(
θ̂(k|k−1)

))
, (13)

where the Jacobian is evaluated as Dk = D(θ̂(k|k−1)).
Equations (11-13) can be expressed in terms of the score
function of maximum likelihood estimation [3]

q (y|θ,R) =
∂

∂θ
L(y|θ,R)

= 2 · �{
DH(θ)R−1 (y − s (θ))

}
, (14)

and the Fisher information matrix [3]

J(θ,R) = −E

{
∂

∂θ
L(y|θ,R)

(
∂

∂θ
L(y|θ,R)

)T
}

= 2 · �{
DH(θ)R−1D(θ)

}
. (15)

This simplifies (11) and (13) as

P(k|k) =
(
P−1

(k|k−1) + J(θ̂(k|k−1),Rk)
)−1

θ̂(k|k) = θ̂(k|k−1) + P(k|k)q
(
yk|θ̂(k|k−1),Rk

)
.

The structure of the data model (equations (6) and (8))
allows for several computational simplifications for computing
J(θ,Rk) and q (yk|θ,Rk) as suggested in [3].

B. State Dimensionality Determination

Due to the nature of the dynamic radio channel new
propagation paths may arise, as well as old paths disappear
during the measurements. Therefore adaptation of the state di-
mensionality is required over time. In this section we describe
a two stage procedure for determining the state dimension.
This procedure comprises of dropping insignificant paths and
detecting new paths.

In the first step the significance of the paths currently being
tracked by the EKF is evaluated. This is done the statistical
Wald hypothesis test [13] with the estimated variance of the
magnitude of the path weights as the test statistics (see [6]
for details). The threshold value for the hypothesis that a path
is significant can then be selected as a confidence level of
a χ2 distribution. If a path is considered insignificant, its
corresponding elements are removed from the state vector
θ(k|k), and the filtering error covariance matrix P(k|k).
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The second step, i.e. the detection of new path parameters
is investigated here more thoroughly. The first approach de-
scribed in [6] is to simply compute the residual sequence

ỹk = yk − s(θ(k|k)), (16)

and feed it to the RIMAX [3] algorithm, which would do a
coarse grid search and an iterative ML optimization for a given
number of new path estimates Pnew. This is problematic in two
senses. First of all, it is usually unnecessary as well as com-
putationally tedious to run the search for new paths “blindly”
for each observation. Secondly, a fixed number Pnew = P 0

new,
which typically has to be chosen to overestimate the actual
requirement, is used for the initial number of new paths to
search from the grid2.

In the following we propose an approach based on a
whiteness based change detection (CUSUM [11]) algorithm
to address both of the aforementioned deficiencies. Intuitively
this test checks whether its test statistic gk = gk−1 +fk−d, is
resulting from white noise input fk. The drift d is subtracted
to avoid random walk. If gk exceeds threshold h, an alarm is
given and the test is reset.

We apply the test to each delay bin as follows. For each
observation k (the subscript k is dropped from the expres-
sions for convenience), we apply whitening to the residual
vector (16), using the Cholesky decomposition of the mea-
surement covariance matrix Rf = LfL

H
f . The resulting matrix

Zf ∈ C
Mf×MtMr is given by3

Zf = L−1
f ·mat {ỹk,Mf ,MtMr} . (17)

Due to the whitening, Zf cannot be transformed to delay
domain using a straight-forward IDFT. Instead, let us define a
whitened DFT matrix

Aw = L−1
f ADFT ∈ C

Mf×Mf , (18)

where ADFT is defined as (4) with N = Mf points.
Normalizing the columns of Aw gives

Ãw = Aw

(
AH

wAw � I
)− 1

2 , (19)

which can be then applied to (17), yielding the delay domain
expression

Zτ = ÃH
wZf . (20)

The elements of Zτ are then squared and summed over the
second dimension (i.e., all the MtMr spatial channels). The
resulting test vector fk is given by4

fk =
1√

MtMr

diag{ZτZ
H
τ } −

√
MtMr ∈ R

Mf×1. (21)

The normalization yields that each element of fk is drawn
from N (0, 1) distribution (exact distribution being a χ2 with

2The number of new estimates is finally determined by the ML optimiza-
tion.

3The operator mat {a, N1, N2} formes a N1×N2 matrix out of a N1 ·N2

length vector a by taking the first N1 elements as the first column, second
N1 elements as the second column, etc., up to the Nth

2
set of N1 elements

as the last column.
4The operator diag{•} returns the diagonal values of • in a column vector.

Mt ·Mr degrees of freedom), under the hypothesis there are no
additional paths in the residual (assuming perfect whitening).
Given fk, we update the ith element of the CUSUM vector
gk ∈ R

Mf×1 by adding the current fk,i value and subtracting
a drift parameter d as

gk,i = max{(gk−1,i + fk,i − d), 0}. (22)

In this one sided test the CUSUM values gk,i are not allowed
to go below zero. The drift d is subtracted from gk,i to prevent
random walk [11].

The search for new paths is based on setting a threshold
h for the elements in gk. At each time instant k the search
for new paths is performed in the vicinity of the delay bins
corresponding to the gk values exceeding the threshold h.
The selection of the values for d and h is a compromise
between the probability of false detection vs. probability of
missing a weak path. The drift d can also compensate for
some model mismatch, e.g., if the estimate for Rf is poor.
More on selecting these values can be found in [11].

IV. SIMULATION RESULTS

A simulation was performed to compare two path detection
approaches. Approach A1 is one where a fixed number of new
paths (in this simulation Pnew = 5) is searched for at each
time instant [6], and Approach A2 is the proposed CUSUM
path detection described in Section III-B. For A2 we selected
d = 2 (corresponding approximately 98% confidence level of
N (0, 1) distribution) as the drift, and h = 4 as the threshold
parameters.

In the simulation we use EADF’s of a real 8-element dual
polarized uniform linear array as a receiver (access point) and
a real 16-element uniform circular array as a transmitter (user).
The simulation is run for 300 snapshots in an environment with
10-30 propagation paths shown by the solid blue line in the
lower part of Fig. 6. The path parameters are derived using
randomly placed scatterers in an area around the receiver (a
single-bounce model). The magnitudes of the path weights
fade in/out gradually (seen as darker colors in Fig. 5) as
the paths appear/dissapear. The phase and magnitude (as well
as delay of arrival) of the paths depend on the path length.
Fast and slow fading of the path weights are neglected, but
measurement noise as well as DMC is included in the simu-
lation. An example of the power delay profile of a simulated
observation is shown in Fig. 4.
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Fig. 4. Example PDP of a simulated observation with 30 paths.
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Fig. 5 shows a comparison between the true azimuth angles
at the transmitter and the estimates from the two approaches
A1 and A2 (only one parameter dimension illustrated due
to limited space). It can be observed that both capture the
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Fig. 5. Azimuth Tx (user) angles in the simulation for 10-30 paths. The
lighter the color the stronger the path weights. The approach A2 produces
often false alarms.

significant propagation paths reasonably well. The approach
A2 (CUSUM) fails to catch some of the weaker paths (seen
from the number of paths remaining below true value in Fig.6),
whereas A1 (Pnew) suffers from some false detections (num-
ber of paths larger than the true value in Fig.6). The failure
to detect weaker paths with the CUSUM-approach is due to
the selection of the drift parameter (d = 2 in this example).
Choosing lower d value can cause more false detections,
whereas d = 2 in this case obviously prevents weaker paths
from reaching the detection threshold. It should also be noted
that it can be a question of taste whether a weak path should
be interpreted as a concentrated path or as part of the DMC.

From practical point of view the more interesting conclusion
lies in the computational load of the two approaches. The right
hand side (red curves) in Fig. 6 shows the time taken to process
each snapshot. It can be observed that A2 takes in average only
25% of the processing time required by A1.

V. CONCLUSION

In this paper we discuss the estimation of propagation path
parameters using state-space modeling. The emphasis is on the
model order selection, i.e., propagation path (target) detection
from complex and large nonlinear channel measurements. We
propose a path detection algorithm based on the CUSUM
method on the whitened residual in delay domain. This ap-
proach leads to computational efficient solution which allows
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Fig. 6. Left hand axis shows the number of true and estimated propagation
paths. A1 estimates also some noise whereas A2 fails to detect weakest
paths. Curves related to right hand axis show the time taken to process each
observation. A1 is in average 4 times slower than A2.

for a flexible compromise between false alarms and missed
detections. Further research is required to derive optimal ways
to choose the drift and threshold parameters for different
scenarios.
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