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Tracking of MIMO Propagation Parameters under

Spatio-Temporal Scattering Model
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Helsinki University of Technology
Espoo, Finland

Abstract- The paper presents novel, computationally efficient
methods for tracking radio propagation path parameters from
measured tensor-valued MIMO observations. The measurement
covariance model is comprised of spatio-temporal scattering plus
measurement noise, leading to a shifted Kronecker structure.
We derive novel expressions to handle these large (105 X 105)
covariance matrices in the Extended Kalman Filter, used for
tracking the dominant propagation paths. Furthermore, we intro-
duce a method to model signals with a given angular distribution,
observed with arbitrary antenna arrays. Finally, results for
estimating dominant propagation paths from simulated data
having an angular (von Mises-Fisher), and temporal (exponential)
distributed scattering component are presented, accompanied by
a real world example.

I. INTRODUCTION

Future wireless communication systems will exploit the
rich spatial and temporal diversity of the radio propagation
environment. This calls for new advanced channel models,
which need to be verified by real-world channel sounding
measurements. In this context the reliable estimation and
tracking of the model parameters from measured data is of
particular interest.

In this paper, we discuss the modeling and estimation
of radio propagation channels for wireless Multiple-Input-
Multiple-Output (MIMO) communication systems based on
channel sounding measurements. Our model consists of two
components

1) Dominant propagation paths (plane waves) described by
geometric and polarimetric parameters

2) The Dense Multipath Component (DMC) describing
the spatio-temporal distributed diffuse scattering in the
channel.

The DMC is incorporated in the channel covariance. In earlier
work [3]-[6] the DMC had a structure in delay, but the spatial
distribution was assumed to be uniform. In this paper we
extend the DMC model to have structure in the spatial domain
as well. Such extension has been discussed in [1]. In that
work the authors derived a maximum likelihood estimator for
a covariance model having von Mises distribution in azimuth
at one link end, as well as an exponential delay profile. The
analysis in [1] was also limited to simulations with linear
antenna arrays. Our first contribution in this work lies in
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extending the spatial model to describe signals given any
angular distribution in azimuth and elevation using arbitrary
antenna arrays.

The measurement covariance matrices in channel sounding
are, in general, very large. Therefore we propose to approx-
imate the covariance matrices with a Kronecker structured
matrix. This is motivated by the fact that the channel ob-
servation can be interpreted as a tensor, for which efficient
computational techniques exist [2]. Our covariance model is
comprised of additive white Gaussian measurement noise plus
the DMC component [3], which takes the spatial correlation
at Tx and Rx as well as the exponential delay profile into
account. This results in a shifted Kronecker structure for the
measurement covariance matrix. Our second contribution is to
show the feasibility of applying these improved covariance
models with the previously established Extended Kalman
Filter (EKF) expressions used for propagation path parameter
estimation [4], [5]. Additionally, in order to reduce the com-
putational complexity, we present an approximation technique
for expressing n-way arrays (tensors) based on Singular Value
Decompositions (SVD). To evaluate the performance of the
proposed techniques, we use simulations as well as real world
radio channel measurements.

II. PROPAGATION PARAMETER ESTIMATION

In our previous work, we have investigated the estimation of
radio channel model parameters using a two component model
comprised of the sum of concentrated propagation paths and
the DMC [3]. We have then formulated a state-space model
for tracking these parameters using an EKF [4]-[6]. The first
model component, i.e. the concentrated propagation paths,
are described with L number of parameters (L depending
on the measurement setup, typically L - 10) such as Time
Delay of Arrival (TDoA) T, Direction of Arrival (DoA) PoR,
9R and Direction of Departure (DoD) PT, 9T as well as
polarization weights 7y. These parameters are illustrated in
Fig. l(a). The total number (LP) of parameters to estimate
for the propagation paths depends on the number of paths P
(typically P 10 -100). A histogram for the number of
tracked paths P in a measurement campaign of over 27000
snapshots is shown in Fig. 1(b).
The second component in our model, the DMC, describes

the diffuse scattering in the radio channel, and is modeled
as a stochastic circular-complex Gaussian distributed process

978-1-4244-2110-7/08/$25.00 C2007 IEEE 666

Authorized licensed use limited to: Teknillinen Korkeakoulu. Downloaded on April 28, 2009 at 04:17 from IEEE Xplore.  Restrictions apply.



Rx

(a) Propagation path parameters.
6000

400(

I200(

20 30 40 50 60 70 80 90 100 110 120
Number of Tracked Paths

(b) Histogram of tracked paths P.

Fig. 1. Illustration of the propagation path parameters as well as the histogram
of the number of tracked paths.

with specific correlation properties. Using a stochastic model
for the DMC has several advantages. First of all, partly
due to measurement system limitations, it is impossible to
estimate all the necessary information for all observed diffuse
scattering in a radio channel by using the discrete propagation
path model. Thus DMC provides a better fitting measurement
model. Another obvious gain is in the model complexity, since
only a few parameters need to be estimated to characterize the
underlying stochastic process.

So far we have developed an estimation procedure [4]-
[6] based on a simplifying assumption of the DMC being
angular-white, i.e., the diffuse scattered signal components
arrive uniformly from all directions, having an exponentially
decaying delay profile. Based on the analysis ofmany different
channel sounding measurements it has turned out that the
assumption of angular-white DMC does not necessarily hold.
In particular, it has been observed that this assumption is
violated in e.g. street canyon scenarios. Besides the incom-
plete channel description, this modeling error also leads to
deteriorated propagation path parameter estimates, which rely
on the estimates of the unknown DMC parameters. Especially
detection of new paths as well as path quality assessment
suffer from the inadequate DMC model. Fig. 2 illustrates a
street canyon measurement conducted in downtown Ilmenau,
Germany (setup described in [7]). These 3-D Power-Delay-
Direction Profiles have been estimated using beamforming
at the transmitter (Tx) end for a 16-element circular array.
After removing the dominant propagation paths from the
measured data (Fig. 2(a), using about P = 50 high resolution
estimates for propagation paths in this case), the resulting
residual (Fig. 2(b)) clearly reveals that the remaining scattering
component has a non-uniform spatial distribution.

III. STATE-SPACE MODEL
The state-space model used in this paper includes the state

equation, describing the dynamic behavior of propagation path
parameters 0 E RLP, and the measurement equation, with

(a) All data averaged over Rx chan- (b) Same as Fig. 2(a) with dominant
nels. propagation paths removed.

Fig. 2. Instantaneous Power-Delay-Direction-Profile from a MIMO measure-
ment with 16 element circular array in a street scenario.

nonlinear mapping s(O) of the double-directional propagation
model [8] parameters to the channel sounder output data.

For a full channel sounding measurement setupi , the state
vector is defined as

(1)ok = [ T APT aT T AX5TT,

5Px1 5Pxl 4Pxl 4Pxl Pxl

where ,t are the structural path parameters (delays, angles),
Ait being their rate of change, a contains the logarithms of
the polarimetric path weight magnitudes, ¢b are the path weight
phases, and AO are the short time mean of the phase changes
(also related to the Doppler shift). This parametrization pro-
vides linear, zero-mean, and stationary state transition process,
well suited for EKF implementation. The state transition is
thus given by

ok = .kk-k + Vk,

where b is the state transition matrix and Vk
the state noise with covariance matrix Q.

The measurements are assumed to obey

y -A/c (s(0), RO(ODMC)) E (CM 1

J(O, Q) is

(2)

where the noise process covariance RO(ODMC) has structure
in delay as well as in angular domain. It should be noted
that the dimension of a measurement is currently M =

MfMTMR > 105 >> LP. For example a setup with
Mf 510 frequency (delay) samples, MT = 32 Tx ports and
MR 32 Rx ports, yields M - 5 105 complex samples per
observation. Thus any approach involving the use of the full
105 X 105 covariance matrix is clearly infeasible with current
computational resources.

IV. ALGORITHMS

A. EKF Expressed in terms of Score function and FIM

The high level description of the algorithm is sketched in
Fig. 3. The EKF uses Taylor series expansion for linearizing
the state-space model. The EKF equations for the filtering

'The term full refers here to a setup able to capture both azimuth and
elevation, as well as dual polarization at both link ends.
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Fig. 3. High level description of the propagation path estimation method.

error covariance P(klk) and the filtered state O(k1k) can be
expressed in terms of the Score function

q(yIO,R) = ajL(yIO, R)
= 2 X {DH (O)R-1y}, (3)

where
y y - s (0), (4)

and the Fisher Information Matrix (FIM)

J(O,R) =-E { ZL(yjOR) ( L(yo, R) }

= 2. X{DH(0)R-1D(0) } (5)

Expression L(yI0, R) denotes the log-likelihood function of
(2), and D E CAMxLP is the Jacobian matrix (first order
partial derivatives a s(0)). Applying (3) and (5) to the EKF
equations yields

Then (3) and (5) could be expressed as2

qH = 2 (RR1DRORT1DTORf1Df)y}, (9)

JH = 2 {DHRR1DR TTHR DT DHRfDf}, (10)

where D = DRODTODf. Utilizing a known solution [3]
for memory efficient computation of expressions of type
(A3OA20Ai)Hx in (9), it can be concluded that the ex-
pressions (9) and (10) involve matrices, whose size are only
Mi x Mi and Mi x LP, i E ff,R,T} with Mi A< M. The
computational complexities (multiplications + additions) are
o (2(LP) Ei Mi2 + 7(LP) Hi Mj) (9 (108) for (9), and
o (2(LP) Yi Mi2 + 2(LP)2 i Mi) 0 (108) for (10).

2) Shifted Kronecker Structure: The model (8) assumes that
the angular (Tx and Rx) and delay domains in the measured
data tensor are uncoupled (suggested also e.g. in [9], [10]).
However, the model (8) is not adequate for our purposes, since
it does not take the measurement noise into account. We model
the measurement noise as an additive white circular complex
Gaussian process with variance u2, yielding

Ro RRx RT xRf + 2iM. (11)

The additive term cT2IM destroys the Kronecker structure of
RH in (8), and the expressions (9) and (10) used in [3] for
computing products involving Ro are no longer applicable. In
previous work [4]-[6], the Kronecker structure was recovered
by making some very limiting assumptions, namely RR = IR
and RT = IT, yielding

RI = IR X IT X (Rf + ou2if ) . (12)

P(klk) (P-1 + J(J(Oklk-1), Rk) 1 (6)

O(k1k) = O(kjk-1) + P(klk)q Yk 10(klk-1) Rk) (7)

AO,

One should note that the straightforward computation of (3)
and (5) involves huge matrices D E CAM LP and R-1 E
CMAM and is thus infeasible.

B. Covariance Model vs. Computational Complexity

In the following discussion on computational complexity
(number of additions and multiplications) we assume the
system dimensions according to Table I.

1) Full Kronecker Structure: Computationally feasible and
efficient solutions for (3) and (5) were presented in [3]. There,
the assumption was that the full covariance matrix of the
measured radio channel RH is structured as

RH = RR x RT x Rf E C (8)

TABLE I

SYSTEM DIMENSIONS IN THE COMPLEXITY EXAMPLES.

Mf MT MR L P
193 16 16 13 40

This allowed the use of, and even simplified, the expressions
(9) and (10) with the expence of modeling error.

C. Solutionsfor the Score and the FIM-with ShiftedKronecker
Structured Measurement Covariance

In the following, we consider the most general of the
presented approaches, i.e., the shifted Kronecker structure Ro
(11), and present computationally feasible expressions to solve
the Score function (3) and the FIM (5).

The matrix Ro can be expressed using the eigenvalue
decomposition of (1 1) as

R,=UAUH +H 7IM

=(UR x UT X Uf)(AR
(UR X UT X Uf).

AT X Af + ( 2IM).
(13)

This allows us to formulate the Score function as

q= 2X{ (D D/ D/f)H (A -Yu) },

where
Di = UiHDi, i E ff,T,R},

AO = (AR X AT X Af +o-2IM),

(14)

(15)

(16)

2The operator 0 denotes the Khatri-Rao product, i.e., column-wise Kro-
necker product and the operator O denotes the Schur product, i.e., element-
wise product of matrices.
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and Yu is a vector having the matrices of eigenvectors Ui
multiplied dimension-wise with y (4). The complexity and
matrix dimensions of (14) are similar to those of (9).

The expression of the FIM (5), on the other hand, involves
additional operations. The FIM using R, (13) can be ex-
pressed as

Jo = 2{ (D/ OD/OD/f)H Ao- (D/jOD/TOD/) }.(17)

The inverse of the diagonal matrix AO (16) in (17) cannot
be factorized to a Kronecker product, and thus the form (10)
is not applicable, whereas the straightforward computation is
infeasible due to huge matrix dimensions. A feasible solution
for (17) can be expressed as

Mf MR MT 1

Jo = i m:1 m: Af,mfAT,mTAR,mR + 7
(18)

(df mf dfm dm d ,mT R,MR RMR)

where Ai,M, are the mrnh singular values on the individual
diagonal matrices Ai in (16), and d/'m are the m'h row
vectors of the matrices D/ in (17). The expression (18)
includes only outer products of LP-length and Schur products
of matrices with size LP x LP. The complexity after taking
f and T related common terms out of the sums is still very
high, namely (9 ((LP)2 Hi M,) (9 (1010).

D. SVD based Tensor Approximation of the FIM

To reduce the complexity of (18), or dimensions in (17),
we introduce a method, which is essentially a Singular Value
Decomposition (SVD) based approximation of a tensor [2].

Let us form a 3-D tensor lCf,T,R E ,MXMT MR, consist-
ing of the diagonal elements of A'1 (16). The tensor lCf,T,R
is reshaped into a matrix Kf,TR E IRMJ MTMR, whose SVD
is given by

Kf,TR Uf-f,TRVTR (19)

For each m/ I ... M} highest singular values (f,TR (mf)
in -f,TR we reshape the m'th column of VTR to form a
matrix KT,R(M/)E RMTXMR and compute its SVD asf~~~~

matrixKT,R(~F) ~MT M and computeit SVDHa
KT,R(Mn)= UT(mT)ET,R(r)VRT(mn)l (20)

Now mS=+ I ... MI} largest singular values (T,R(m/, MS)
in -T,R(M/f) for each m/ are selected to form an approxi-
mation of the FIM as

Mf

Ja (0, Ro) = { (Df Af (m/f)D'f) (21)
mf

MT

5E { (DTTAT m> rn+)D'T)
(T

(3(/AR(Tn/ mTn)D/R)

The diagonal matrices Ai in (21) are defined as

Af (m'[1) diag {uf (mf ),f,TR(mf)}7
AT(m> mM) diag{UT(Mrn Mn ) T,R(Mn rMn )},
AR(m>7n)= diag {VR(Mfl 7rmn)},7

where uj(Mn) denotes the M/lh column of matrix Uj. This
solution has computational complexity

(9 ((LP)2MI (2MT(MT + MR) + Mf)) (9 (09), (22)

assuming Mf = 12 << Mf and MTI= 5 << MT based on
the analysis in Section V-B.

V. RESULTS

A. DMC Modeling
To simulate spatially distributed scattering, we introduce a

method to map an angular power distribution to a real world
antenna array output. The model for simulating the antenna
array can be expressed as

Ra = G,Ap,,SKp,,SAH (;H E CMoxMo. (23)
where the subindex a E [T, R] denotes either transmitter or
receiver, respectively. The matrix Ga E CM_xN9N* denotes
the Effective Aperture Distribution Function (EADF) [11].
EADF is a mode domain expression obtained from an an-
tenna array calibration through a two-dimensional Fourier-
transformation, and it defines the array response for a given
signal direction. The matrix A.(,, E cN,NXNs is the
Fourier transformation from angular domain to mode domain,
and K(p, t95) E RN xNs denotes an approximation of the
angular domain covariance for N5 sampling points (p5,s)
on a sphere. Initially, we select a diagonal matrix having the
angular pdf values evaluated at the sampling points.
As an initial approach we use the von Mises-Fisher angular

distribution [12] to model the diffuse scattering in the angular
domain. Fig. 4(a) shows the Power-Delay Profile (PDP) of
the residual in Fig. 2(b) averaged over all Tx-Rx channels.
Also two simulated PDPs are shown. The first simulation
(Approach #1) is using angular-white DMC (12), and the
proposed Approach #2 (11) uses the von Mises-Fisher angular
distribution. Both fit well to the measured PDP in the delay
domain in Fig. 4(a), but Fig. 4(b) reveals the difference in the
angular domain. The von Mises-Fisher distributed model in
(Approach #2) is very similar to the measured one, whereas
the assumption on angular-whiteness (Approach #1) is clearly
not valid.

B. Evaluation of the SVD Tensor Approximation
The performance of the SVD based tensor approximation

(21) is analyzed by running the EKF on measurement data,
using different thresholds jf for selecting how many compo-
nents MI and MT are used for evaluating (21). The thresholds
are defined as

(f,TR(Mf)
>

f,TR(MfH+ 1)
(f,TR(I) (f,TR(l)

(24)
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PDP of DMC Averaged Over Spatial Domain

Measured ANALYSIS RESULTS OF SVD BASED APPROXIMATION ( SAME DIMENSIONS
Approach #I

- - -Approach #2 AS IN TABLE I, EXCEPT HERE P 53 PATHS ON AVERAGE).
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(a) PDP of DMC in the delay domain (averaged over Rx and Tx channels).
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(b) Spatial PDP of DMC.

Fig. 4. Illustration of different approaches to model DMC. In the delay
domain (Fig. 4(a)) both approaches #1 and #2 fit well to the measured DMC.
In the angular domain (Fig. 4(b)) Approach #1 clearly fails to match the
measured DMC, whereas the proposed angular distribution (Approach #2)
fits well to the real world equivalent.

and

(T,R (Tn', MIT)
(T,R(Tnm, 1) f

where CT (m') = j (j1) (f . Thus, setting qf = 0 provides
the exact solution, i.e. M' = Mf and MT = MT.

Let us define two error criteria:
1) The approximation error is propagated to the filtering

update AOk of the EKF in (7), and compared with the
estimated filtering error variance 02(klk) = diagfP(klk)}
(6), yielding a relative RMSE of N samples

el(cf) (AOk AOk(ef l2)kT2 (26)

2) The second error criterion is the one used in e.g. [10],
given by

e2 (Ef ) E (f) F (27)
e2~Cf) N

n
Ro F

The results are listed in Table II for the full decomposition
cf = 0, and approximations using three different thresholds.
Also the average run time in Matlab for evaluating (21), the
average number of modes M' and MT, and the complexity
(22) are listed. Table II indicates that choosing cf 10 6
gives a good trade-off with the update error being on average
only 0.4% of the filtering error, and the measurement time
being 1/3 of the (in practice exact3) solution with Cf = 10-12.

All approximations give at least one decade improvement on

the computation time compared to the exact solution.

VI. CONCLUSIONS
In this paper we consider the tracking of the MIMO prop-

agation model parameters. We introduced a novel approach
to model the DMC with the shifted Kronecker structured
measurement covariance model allowing arbitrary angular and
delay distributions. We present a method for approximat-
ing the large tensor-valued measurement covariance, yielding
significant computational savings in the FIM, without loss
of performance in terms of estimation error. Evaluating the
approximation error of the covariance matrices by propagating
the error to the parameter update step gives insight on choosing
a proper threshold for approximation order adjustment.
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