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Abstract— This paper contributes to the field of N-way (N ≥ 3)
tensor decompositions, which are increasingly popular in various
signal processing applications. A novel PARATREE decompo-
sition structure is introduced, accompanied with Sequential
Unfolding SVD (SUSVD) algorithm. SUSVD applies a matrix
SVD sequentially on the unfolded tensor, which is reshaped from
the right hand basis vectors of the SVD of the previous mode. The
consequent PARATREE model is related to the well known family
of PARAFAC tensor decompositions, describing a tensor as a sum
of rank-1 tensors. PARATREE is an efficient model to be used
for orthogonal lower rank approximations, offering significant
computational savings in algorithm implementations due to a
hierarchical tree structure. The performance of the proposed
algorithm is illustrated through an application of measurement
noise suppression in wideband MIMO measurements.

I. INTRODUCTION

A tensor is any N -dimensional collection of data (a second

order tensor N = 2 is a matrix). In many applications,

measurement data is composed of information in more than

two dimensions. Recently, researchers in several application

domains have contributed to generalizing well established

matrix operations to their tensor counter parts. Unfortunately,

these extensions from their matrix counterparts are not trivial.

For instance, the Singular Value Decomposition (SVD) has

proven to be a powerful tool for analyzing two way tensors

(matrices). However, its generalization to higher order tensors

is not straightforward. There are in practice two major classes

of models for higher order tensor decomposition, namely

Tucker [1] and PARAFAC [2], [3] (parallel factorization),

which is also known as CANDECOMP (canonical decomposi-

tion [4]). A well written overview of the two approaches can

be found in [5]. We use the same notational conventions in

this paper, too.

PARAFAC tensor decompositions are based on multilin-

ear analysis in the fields of psychometrics [1], sociology,

chromatography and chemometrics [6]. PARAFAC has been

recently applied in several signal processing applications,

such as image recognition, acoustics, wireless channel esti-

mation [7] and array signal processing [8]. Also Tucker-type

(HOSVD) models have been proposed for multidimensional

harmonic retrieval [9]. In this paper a novel tensor representa-

tion stemming from the PARAFAC model is introduced. The

new model will be referred to as PARATREE. The key idea

is to sequentially unfold the tensor and to apply the singular

value decomposition (SVD) on the resulting matrix. This is

repeated for the remaining tensor dimensions remaining in the

right-hand singular vectors of the SVD, until a hierarchical

tree structure for the factors in each dimension is obtained.

This decomposition procedure will be referred to as Sequential

Unfolding SVD (SUSVD).

In general, PARAFAC does not provide an orthogonal

decomposition unless some additional constraints are imposed.

The proposed SUSVD forms an inherently orthogonal decom-

position, which allows efficient selection of the number of fac-

tors used in the resulting PARATREE model — independently

for each branch of factors.

The formulation of a tensor decomposition as a sum of

orthogonal rank-1 tensors is suitable for many applications

(see e.g. [10]), where there is advantage of processing or re-

constructing multidimensional data from smaller dimensional

orthogonal elements. One important class of applications is

the reduction of computational complexity in linear algebraic

expressions, involving tensor valued measurement data im-

paired by colored noise. An example of such application was

discussed in [11] involving low rank tensor approximation to

reduce the complexity of finding a Fisher Information Matrix

for a tensor valued data model.

In this paper the low rank PARATREE approximation is

applied to suppress measurement noise in wideband MIMO

channels, obtained by channel sounding measurements [12],

[13]. Improving the SNR is crucial in order to apply noisy

measured channel realizations in simulations (see e.g. [14]).

An improved estimate of the channel is obtained by estimating

the signal subspace from the measured tensor.

To summarize, the benefits of the proposed

SUSVD/PARATREE approach include:

• Measurement noise suppression

• Compression of data (similar to low rank matrix approx-

imation)

• Reduced data dimensions and consequently relaxed mem-

ory requirements

• Orthogonality, which facilitates scalable decomposition

order selection

• Fast and adaptive computation.

II. PARATREE MODEL

The PARATREE model is related to the family of

PARAFAC [2], [3] tensor decompositions. The basic idea

in PARAFAC is, as with SVD for matrices, to express the



tensor as a sum of rank-1 components. Each of these rank-

1 components is an outer product of the N corresponding

basis vectors. Hence, for a three dimensional (N = 3) tensor

XC
M1×M2×M3 , a rank-R PARAFAC decomposition is given

by

X =

R
∑

r=1

a
(1)
r ◦ a

(2)
r ◦ a

(3)
r , (1)

where ◦ denotes the outer product (see e.g. [5]). The tensor

X can be expressed element-wise as

xm1,m2,m3
=

R
∑

r=1

a(1)
r,m1

· a(2)
r,m2

· a(3)
r,m3

, (2)

where mi denotes the index of the tensor element in ith

dimension. The PARAFAC model is illustrated in Figure 1.

The PARATREE differs from PARAFAC by introducing

hierarchy for the factors in different dimensions. PARATREE

decomposition for a three dimensional (N = 3) tensor is

defined as

X =

R1
∑

r1=1

a
(1)
r1

◦

R2|r1
∑

r2=1

{

a
(2)
r2|r1

◦ a
(3)
r2|r1

}

, (3)

where each of the basis vectors a
(1)
r1 may be common to

several (R2|r1
) vectors in latter dimensions. The subscript

|r(1), . . . , r(n−1) indicates the dependency of the basis vectors

on the indexes of the previous factors of that branch in

the decomposition tree. The structure of the factors in the

full PARATREE decomposition for a N = 4 tensor X ∈
C

2×2×2×2 is illustrated in Fig. 2.

The main difference between PARATREE and HOSVD [15]

is that PARATREE allows an independent set of basis vectors

a
(n)
rn|r1,...,rn−1

for each branch (|r1, . . . , rn−1), whereas in

HOSVD the number is limited to Rn = Mn.

III. SEQUENTIAL UNFOLDING SVD (SUSVD)

ALGORITHM

The SUSVD algorithm can be applied to estimate the

PARATREE model for given tensor-valued data. The power

of the algorithm lies in its recursive and inherently orthogonal

structure. Furthermore, it allows adaptive selection of the order

of the decomposition. SUSVD can be applied to any N -

dimensional (real or complex) tensor, and for N = 2 it equals

the matrix SVD.
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Fig. 1: Illustration of the PARAFAC decomposition — a sum

of R rank-1 tensors. The relation to (1) is given by a
(n)
r =
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Fig. 2: An example of a full PARATREE for a four-way, (2×
2×2×2) tensor. Different colors represent different modes n =
{1, 2, 3, 4} ≡ {green, red, blue, cyan}, and the tone within

each mode represents decreasing magnitude.

A. Full SUSVD

The description of a complete SUSVD for a N-way tensor

XM1×···×MN (M1 ≥ · · · ≥ MN ) is provided in Table I, and

visualized for a 2 × 2 × 2 three-way tensor in Fig. 3a.

The core idea of the algorithm is to apply the matrix SVD

on the 1-mode matrix unfolding1 of the tensor to form the

factors of the first mode. Then each of the conjugated right-

hand singular vectors
(

v
(1)

r(1)

)∗

are reshaped into tensors, and

the procedure is repeated on the 1-mode unfoldings of these

tensor. This is repeated to construct the PARATREE model,

until there is only the last mode contained in the right-hand

singular vectors. Note that for a full SUSVD (all possible

factors included) described in Table I, the number of factors

in each mode is the same for all branches and is given by

Rn = max(min(Mn,

N−1
∏

j=n+1

Mj), 1). (4)

Hence, the total number of orthogonal components in the

decomposition is given by

R =

N−1
∏

n=1

Rn. (5)

The 2 × 2 × 2 tensor in Fig. 3a can be reconstructed with

the PARATREE model as

X =

R1
∑

r1=1

σr1
· u(1)

r1
◦

R2
∑

r2=1

σ(2)
r2|r1

· u(2)
r2|r1

◦
(

v
(2)
r2|r1

)∗

. (6)

1The 1-mode matrix unfolding sets the indexes of the first mode as the row
indexes, and stacks the rest of the modes in the columns.



TABLE I: Description of the SUSVD algorithm for a complete

decomposition. The output variables {S}, {U}, and {V }
denote abstract tree structures to store the elements of the

decomposition.

[{S}, {U}, {V }] = SUSVD (X )

• Set T
(1)
0 = X .

• Set R(0) = 1
• For each n = {1, . . . , N − 1}:

– For each r(n−1) = {1, . . . , R(n−1)}

1) Unfold T
(n)

|r(n−1) into a matrix

T
(n)

|r(n−1) ∈ C
Mn×

∏N
q=n+1 Mq on the first dimension.

2) Compute the SVD

T
(n)

|r(n−1) = U
(n)

|r(n−1)Σ
(n)

|r(n−1)

(

V
(n)

|r(n−1)

)H
.

3) Pick R(n) = min
(

Mn,
∏N

q=n+1 Mq

)

) largest singular

values σ
(n)

r
(n)

|r(n−1)

, and for each r(n) ∈ {1, . . . , R(n)}

a) Store σ
(n)

r
(n)

|r(n−1)

in {S} and u
(n)

r
(n)

|r(n−1)

in {U}, and

b) if n < N − 1,

– Reshape



v
(n)

r
(n)

|r(n−1)





∗

into a tensor

T
(n+1)

|r(n) ∈ C
Mn+1×···×MN .

or else,

– Store the vectors



v
(N−1)

r
(n)

|r(n−1)





∗

in {V }.

The full (R1 = 2, R2 = 2) reconstruction is illustrated in

Fig. 3b. The relation of the values in (6) to the ones in the

3D-PARATREE formulation (3) is given by

a
(1)
r1

= σ(1)
r1

u
(1)
r1

a
(2)
r2|r1

= σ(2)
r2|r1

u
(2)
r2|r1

a
(3)
r2|r1

=
(

v
(2)
r2|r1

)∗

.

B. Low Rank SUSVD Approximation

The PARATREE model build with SUSVD can be deflated

to form a reduced rank approximation of a tensor. This

can be done either offline after bulding the full SUSVD, or

online during the computation of the decomposition. Here the

discussion is limited to the offline approach.

The approximation error is expressed as the normalized

error, defined as

ǫr =
||X − XA||F

||X ||F
, (7)

where X denotes the original tensor and XA its approximation.

Due to orthogonality of the decomposition [16], the approx-

imation error can be equivalently expressed in terms of the

sum of the product of the singular values of the factors. These

SVD

SVD

SVD

Unfold

Reshape each column ra of
(

V(1)
)∗

X = T
(1)
0

T
(2)
|2

to a tensor T
(2)
|ra

U
(2)
|2

σ
(2)
1|2

σ
(2)
2|2

(V
(2)
|2

)H

T
(2)
|1

U
(2)
|1

σ
(2)
2|1

(V
(2)
|1

)H

σ
(2)
1|1

U
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σ
(1)
1

σ
(1)
2

(V(1))H

T
(1)

(a) The SUSVD computation. The tensor is first unfolded to a matrix T
(1)
0 .

After applying SVD on this matrix, each of the right-hand singular vectors

are reshaped (into T
(n)

|r(n−1) ∈ C
Mn×

∏N
k=n+1 Mk ) and another SVD is

applied on them. The procedure is repeated for each “branch” and “sub-
branch”, until no additional dimensions remain in the right hand basis vectors,

i.e.
(

v
(N−1)
ij

)∗
has only MN elements.

σ
(2)
1|1

σ
(1)
1 +

u
(1)
1

u
(1)
2

u
(2)
1|1

u
(2)
2|1

(

v
(2)
11

)∗ (

v
(2)
2|1

)∗

(

v
(2)
1|2

)∗ (

v
(2)
2|2

)∗
u

(2)
2|2

u
(2)
1|2

+ +σ
(1)
2 σ

(2)
1|2

σ
(2)
2|1

σ
(2)
2|2

=

X

(b) A PARATREE tensor is reconstructed as a sum of outer products

of weighted (by σ
(n)
rn|r1...rn−1

) unitary basis vectors u
(n)
rn

|r1...rn−1

and
(

v
(N−1)
rN−1

|r1...rN−2

)∗

. The tree structure allows common basis vectors in

the previous dimensions (main branch).

Fig. 3: SUSVD computation (Fig. 3a) and PARATREE recon-

struction (Fig. 3b) for an arbitrary 2× 2× 2 tensor . Different

colors refer to different dimensions of the tensor. A circled

σ denotes a singular value, dashed blocks are elements of the

tensors, and solid lines are used to separate the column vectors.



can be interpreted as the magnitudes of the single rank-1

components in the PARATREE, given by

σ̃|r(1),...,r(N−1) = σ
(1)

r(1) · σ
(2)

r
(2)

|r(1)

· · · · · σ
(n−1)

r
(n−1)

|r(1),...,r(n−2)

. (8)

By stacking all the R (4)-(5) magnitude values (8) in descend-

ing order to a vector σ̃ ∈ R
R×1, the normalized approximation

error (7) can be expressed as

ǫr =
||X − XA||F

||X ||F
=

√

√

√

√1 −

∑RA

i=1 σ̃2
i

∑R
i=1 σ̃2

i

, (9)

or equivalently

ǫ2r = 1 −
||σ̃A||

2
F

||σ̃||2F
. (10)

The described approach allows to define the achieved rel-

ative approximation error (7) precisely. It should be noted

that applying a similar target error requirement for a general

PARAFAC model would require a trial and error approach for

finding a proper rank (as well as for determining the tensor-

rank in general). Also the convergence of the alternating least

squares (ALS [17]) algorithms used for PARAFAC is very

slow for high dimensional or ill-conditioned problems [18],

[19].

IV. APPLICATION EXAMPLE: NOISE SUPPRESSION FOR

MEASURED WIDEBAND MIMO CHANNELS

The SUSVD may be used for estimating the signal subspace

of the wideband MIMO radio channel. A 3-way tensor model

for an instantaneous measured MIMO channel [13], [20]

transfer function is given

H = HS(θS) + HD(θD) + HN (σ2) ∈ C
Mf×MT ×MR , (11)

where Mf , MT and MR denote the number of frequency

samples, transmit antennas and receive antennas, respectively.

The tensor HS denotes the superposition of dominant prop-

agation paths (deterministic plane waves) parameterized by

θS , HD models diffuse scattering (a colored complex Normal

distributed noise process) parameterized by θD, and HN is

measurement noise modeled as a circular symmetric white

Normal distributed process with variance σ2. Detailed model

description may be found in [20] and references therein.

The nominal signal-to-noise ratio (SNR) of the measure-

ment model is defined as

SdB (H) = 10 · log10

(

||HS + HD||2F
||HN ||2F

)

, (12)

which can be approximated from measurement data as

SdB (H) ≈ 10 · log10

(

||H||2F − ||HN ||2F
||HN ||2F

)

. (13)

These quantities are assumed to be known, which is a valid

assumption in channel sounding measurements . The suppres-

sion of the measurement noise is achieved by the following

procedure:

1) Compute the SUSVD of H, as described in Table I.

2) Define a threshold ǫr (7) for selecting the factors for the

approximation. Here

ǫr =

√

||HN ||2F
||H||2F

(14)

is chosen, i.e., only the factors whose cumulative en-

ergy exceeds the total noise energy are included in the

decomposition.

3) Approximate H by ĤA, where ĤA is obtained by

sorting the values (8) and choosing the corresponding

branches σ̃A whose magnitude exceeds ǫr.

This method effectively suppresses the measurement noise as

is shown in Section V.

V. RESULTS

To test the performance of the proposed method, realizations

of the wideband MIMO channel (11) were generated. The

parameters θS and θD (11) were estimated (see [20]) from

actual channel sounding measurements [12]. The SNR (12)

was controlled by adjusting the level of receiver noise variance

σ2.

Fig. 4 shows Power-Delay Profiles (PDPs) of simulated

data, transformed into delay domain and averaged over MT ·
MR antenna pairs. Fig. 4a shows a realization with SdB = 0.

One can observe that the proposed low rank approximation

suppresses the noise level by G(SdB = 0) ≈ 15 dB. For

the same data set, but SdB = 10 in Fig. 4a, the suppression is

about G(SdB = 10) ≈ 12 dB. This performance difference re-

sults from the definition of the signal/noise subspace threshold

criteria (14). Higher initial SNR yields higher rank approxima-

tion, and the obtainable SNR improvement is upper bounded

by the (inverse of the compression) ratio 10 log10(R/RA).
Table II summarizes these numbers for the examples in Fig. 4

(R = 5790).

The performance of the algorithm using measured data [12]

directly is shown in Fig. 5. The SNR in the beginning of the

measurement was very low, and filtering provides about 15 dB

improvement. In the end of the route the SNR is far better,

and the improvement from filtering is not as significant.

VI. CONCLUSIONS

In this paper, we introduce a novel PARATREE tensor

model and SUSVD algorithm. Together these form an efficient

approach for applying an orthogonal tensor decomposition

with a sum of rank-1 tensors. The proposed approach provides

fast and reliable tensor compression, and it is applicable in

TABLE II: Rank of the approximation (total number of com-

ponents R = 5790), compression ratio, and SNR improvement

for the examples in Fig. 4.

SdB = 0 SdB = 10
Rank RA 99 249

10 log10(R/RA) 18 dB 14 dB

GdB 15 dB 12 dB
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Fig. 4: Example of the noise suppression performance with

different SNR conditions.

many signal processing applications. An application exam-

ple was provided for a low rank approximation, providing

measurement noise suppression for wideband MIMO channel

sounding measurement data.
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