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Sequential Unfolding SVD for Tensors with
Applications in Array Signal Processing

Jussi Salmi, Student Member, IEEE, Andreas Richter, Senior Member, IEEE, Visa
Koivunen, Senior Member, IEEE

Abstract—This paper contributes to the field of higher order
(N > 2) tensor decompositions in signal processing. A novel
PARATREE tensor model is introduced, accompanied with Se-
quential Unfolding SVD (SUSVD) algorithm. SUSVD, as the
name indicates, applies a matrix singular value decomposition
sequentially on the unfolded tensor reshaped from the right
hand basis vectors of the SVD of the previous mode. The
consequent PARATREE model is related to the well known family
of PARAFAC [1] tensor decomposition models. Both of them
describe a tensor as a sum of rank-1 tensors, but PARATREE has
several advantages over PARAFAC, when it is applied as a lower
rank approximation technique. PARATREE is orthogonal (due
to SUSVD), fast and reliable to compute, and the order (or rank)
of the decomposition can be adaptively adjusted. The low rank
PARATREE approximation can be applied for, e.g., reducing
computational complexity in inverse problems, measurement
noise suppression as well as data compression. The benefits of the
proposed algorithm are illustrated through application examples
in signal processing in comparison to PARAFAC and HOSVD.

Index Terms—array signal processing, channel modeling, low
rank approximation, MIMO, SVD, tensor decompositions

I. INTRODUCTION

A tensor is any N -dimensional collection of data (a
second order tensor N = 2 is a matrix). In many

signal processing applications, instrumental data contains in-
formation in more than two dimensions. Recently, researchers
in several application areas have contributed to extending
well established matrix operations to their tensor equivalents.
Unfortunately, these extensions from their matrix counterparts
are not trivial. For instance, even though the Singular Value
Decomposition (SVD) has proven to be a powerful tool for
analyzing second order tensors (matrices), its generalization to
higher order tensors is not straightforward. There are several
approaches for doing this, and none of them is superior in all
aspects. In practice there are two major classes of models for
higher order tensor decomposition, namely Tucker-model [2]
and PARAFAC (parallel factorization [1], [3]). The latter is
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also known as CANDECOMP (canonical decomposition [4]).
PARAFAC-based tensor decomposition stem from multilinear
analysis in the fields of psychometrics [2], [5], sociology,
chromatography and chemometrics [6]. It has been applied
in many signal processing applications, such as image recog-
nition, acoustics, wireless channel estimation [7] and array
signal processing [8], [9]. Recently, also a Tucker-model
based HOSVD (Higher Order SVD) [10] tensor decomposition
subspace technique has been formulated to improve multidi-
mensional harmonic retrieval problems [11]. In addition, the
PARAFAC and HOSVD have been represented in an unified
manner in a general framework in [12].

In this paper a novel tensor model is introduced, which
belongs to the class of PARAFAC techniques. The new model,
referred to as PARATREE, has a distinct hierarchical tree
structure. The key idea is to sequentially unfold the tensor
(reshape into a matrix), and to apply the singular value decom-
position (SVD) on this matrix. This procedure is repeated for
the right-hand singular vectors until no more data dimensions
remain encompassed in them. As a result, a hierarchical tree
structure for the factors is formed (see Section II-D for details).
In the following, this decomposition method will be referred
to as Sequential Unfolding SVD (SUSVD).

The formulation of a tensor decomposition as a sum of rank-
1 tensors (as in PARAFAC) is suitable for several applications.
By additionally imposing the rank-1 terms of the decom-
position to be orthogonal — a property which is inherent
in the SUSVD — the PARATREE model can be efficiently
applied to approximate higher-order (N > 2) tensors. One
example of such application involves interpreting the vector
of eigenvalues of a large covariance matrix as a tensor, which
is then used in a linear algebraic expression for finding the
Fisher Information Matrix. Approximating this tensor using
PARATREE decomposition allows for a significant reduction
in computational complexity over a straight-forward matrix
multiplication or any other exact solution. PARATREE also
achieves a significant complexity reduction against HOSVD
and PARAFAC. However, the use of PARATREE in practice
is far more convenient than PARAFAC since the SUSVD does
not suffer from convergence problems. Also the order of the
PARATREE decomposition can be easily controlled, and the
corresponding approximation error is well defined.

In a second novel application the PARATREE model is
applied to suppress measurement noise in multidimensional
MIMO radio channel measurements. This is performed by
identifying the PARATREE components spanning the noise
subspace, and removing their contribution from the channel
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observation.
To summarize, the benefits of the proposed PARATREE

method include:
• Reduced computational complexity in high dimensional

inverse problems
• Measurement noise suppression (subspace filtering)
• Compression of data (similar to low rank matrix approx-

imation)
• Fast and reliable computation and adaptive order (rank)

selection
• Revealing of hidden structures and dependencies in data.
The paper is structured as follows. In Section II a brief

introduction to tensor modeling is provided along with the
PARATREE description. Section III introduces the SUSVD
and the PARATREE approximation for tensors. In Section IV
two example applications are introduced in the field of array
signal processing. Section V contains results for applying the
algorithm on real world data and comparing the performance
against PARAFAC and HOSVD approaches.

The notation used throughout the paper is as follows:
• Calligraphic uppercase letters (A) denote higher order

(N > 2) tensors.
• Boldface upper case letters (Roman A or Greek Σ)

denote matrices and lower case (a, σ) denote (column)
vectors.

• The vector ai = (A)i denotes the ith column of a matrix
A and the scalar aj = (a)j denotes the jth element of a
vector a.

• Non-boldface upper case letters (N ) denote constants,
and lower case (a) denote scalar variables.

• Superscripts ∗, T, H, and + denote complex conjugate,
matrix transpose, Hermitian (complex conjugate) trans-
pose, and Moore-Penrose pseudo inverse, respectively.

• Different multiplication operators are defined for Kro-
necker ⊗, Schur (elementwise) �, Khatri-Rao ♦, outer
◦, and n-mode ×n products, respectively.

• Symbol Â denotes an estimate of the tensor A.
• Operation vec(•) stacks all the elements

of the input tensor into a column vector.
Operations diag(•), reshape(•, {M1, . . . ,MN})
(inverse of vec), permute(•, {j1, . . . , jN}), and
ipermute(•, {j1, . . . , jN}) (inverse of permute) are
defined as in MATLAB computing software [13].

• The Frobenius norm of a tensor is defined as

||A||F =

(∑
i

∣∣∣(vec(A)
)

i

∣∣∣2) 1
2

=
√

vec(A)Hvec(A).

II. TENSOR DECOMPOSITIONS

There are two major families of approaches to form a
tensor decomposition, namely the PARAFAC [1], [3] (CAN-
DECOMP [4]) and the TUCKER [2] models. PARAFAC
is based on modeling the N -mode tensor as a sum of R
rank-1 tensors, whereas the TUCKER model decomposes a
tensor using a (smaller dimensional) core tensor and (possibly
orthonormal) basis matrices for each mode. A good description

of the properties and differences of the two approaches can
be found in e.g. [14], [15]. In general, PARAFAC modeling
has a more intuitive interpretation with common instrumental
data, as the data can be often uniquely decomposed into
individual contributions. Therefore, owing to its uniqueness
properties [1], [3], [8], [16], [17], PARAFAC modeling is
commonly used for signal modeling and estimation purposes,
whereas orthogonal models such as HOSVD are better suited
for tensor approximation, data compression, and filtering ap-
plications.

A. Basic Tensor Operations
In order to ensure the clarity of the notation, some tensor

terminology is introduced in the following. The term N -mode
(or N -way) tensor can be used to describe any N -dimensional
data structure. A factor is an individual rank-1 contribution
used in forming the tensor decomposition. It is a successive
outer product of basis vectors (one from each mode), yielding
a rank-1 contribution to the tensor. The term rank refers to the
minimum number of rank-1 components yielding the tensor
in linear combination. Further discussion on tensor rank can
be found in [18], [19].

In the following some basic operations for an N-dimensional
tensor X ∈ CM1×...×Mn×...×MN are defined.

Definition 1 (The n-mode matrix unfolding): The n-mode
matrix unfolding X(n) of a tensor X comprises of:

1) Permutation of the tensor dimensions into an order
{n, n+ 1, . . . , N, 1, . . . , n− 1}.

2) Reshaping the permuted tensor into a matrix X(n) ∈
CMn×

∏
i6=n Mi , i.e.,

X(n) = reshape
(
permute(X , {n, n+ 1, . . . , N, 1, . . . , n− 1})
, {Mn,

∏
i 6=n

Mi}
)
. (1)

The order in which the columns of the matrix after unfolding
are chosen in the latter step is not important, as long as the or-
der is known and remains constant throughout the calculations.
A more general treatment of the unfolding (or matricization),
including nesting of several modes in the matrix rows, is given
in [20].

Definition 2 (The n-mode product): The n-mode product
X ×n U ∈ CM1×...×Rn×...×MN of a tensor X and a matrix
U ∈ CRn×Mn is defined as

X ×n U = ipermute (XU , {n, n+ 1, . . . , N, 1, . . . , n− 1}) ,
(2)

where

XU = reshape
(
UX(n), {Rn,Mn+1, . . . ,M1,MN . . . ,Mn−1}

)
.

Definition 3 (Rank-1 tensors and vector outer product): A
tensor X is rank-1 if it can be expressed as an outer product
of N vectors as

X = a(1) ◦ . . . ◦ a(N). (3)

The elements of X are then defined as

xm1m2...mN
=

N∏
n=1

(a(n))mn = a(1)
m1
· a(2)

m2
· . . . · a(N)

mN
(4)
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B. PARAFAC Model

The PARAFAC model is essentially a description of the
tensor as a sum of R rank-1 tensors. There are a number
of ways to express a PARAFAC decomposition [14], [15].
Consider an N-mode tensor X ∈ CM1×M2×···×MN and N
matrices A(n) ∈ CMn×R, where R is the number of factors
— ideally equal to the rank of the tensor. Then the matrices
A(n), n ∈ [1, . . . , N ], with columns a(n)

r , r ∈ [1, . . . , R] can
be formed such that the tensor X is the sum of outer products

X =
R∑

r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r , (5)

where each outer product of the vectors a(n)
r is a rank-1 tensor.

Equivalently, the PARAFAC model can be expressed element-
wise as

xm1,m2,··· ,mN
=

R∑
r=1

a(1)
r,m1
· a(2)

r,m2
· · · · · a(N)

r,mN
, (6)

where mi denotes the index in ith mode. A vectorized defini-
tion is given by

vec (X ) =
(
A(N)♦ · · ·♦A(1)

)
1R =

R∑
r=1

a(N)
r ⊗ · · · ⊗ a(1)

r ,

(7)
where 1R is a column vector of R ones.

An illustration of the (N=3) PARAFAC model is shown in
Fig. 1, where the relation to (5)–(7) is given by a(1)

r = ar,
a(2)

r = br and a(3)
r = cr. The following properties of the

PARAFAC decomposition should be pointed out:
• Finding the correct rank of a tensor may be tedious,

and it typically involves evaluating several decomposi-
tions with different number of components. An example
of such approach is the core consistency diagnostics
(CORCONDIA) [21], which is based on comparing the
weights of a PARAFAC decomposition mapped on a su-
perdiagonally constrained TUCKER3 core tensor against
an unconstrained TUCKER3 core tensor having the ba-
sis vectors of the PARAFAC model. Another approach
was introduced in [19] based on evaluating the rank of
the Jacobian, i.e., the matrix of partial derivatives of
the tensor w.r.t. the parameters of the decomposition.
However, as the tensor dimensions and the number of
factors grow, the computational complexity and memory
requirements involved in evaluating the Jacobian with
dimensions R(M1 + . . . + MN ) × ∏N

n=1Mn limit the
applicability of this approach.

X = + · · ·+ +
b2

c2

a2

b1

a1

c1

bR

cR

aR

Fig. 1: Illustration of the PARAFAC decomposition — a sum
of R rank-1 tensors. The relation to (5)–(7) is established by
setting the factors a(1)

r = ar, a(2)
r = br and a(3)

r = cr.

• The PARAFAC decomposition can not be deflated while
still maintaining optimality in the LS (least-squares)
sense for the reduced rank (as opposed to the matrix
SVD). The best rank R − 1 approximation of a tensor
does not consist of the same rank-1 components as the
rank R approximation [18], [22], [23]. Consequently, the
PARAFAC decomposition has to be evaluated for each
R = 1 . . . Rmax separately to obtain the best fit.

C. Tucker (HOSVD) Model

Tucker models [2], [14], [15] are another common way to
express a tensor decomposition. The idea is to form a limited
set of basis vectors for each mode, and express the tensor as
a linear combination of the outer products of the basis vectors
of the different modes. A tensor X can be expressed using the
Tucker model as

X = S ×1 U(1) ×2 U(2) . . .×N U(N), (8)

where S ∈ CR1×...×RN is called the core tensor, and the
matrices U(n) ∈ CMn×Rn contain the basis vectors. The
Tucker decomposition (N = 3) is illustrated in Fig. 2.

In this paper the discussion is limited to a special case of
the Tucker3 model, commonly known as the HOSVD [10].
In HOSVD, the unit norm columns of each of the matrices
U(n) form an orthonormal basis, and the core tensor S is
all-orthogonal [10], [12]. Both of these properties result from
the computational strategy of the HOSVD, which is briefly
described in Section III-B.

D. PARATREE Model

We introduce a novel hierarchical formulation for a
PARAFAC-type model having not only different number of
factors in different modes (as in block-PARAFAC [7] or
PARALIND [24]), but additionally the number of factors in
each mode can vary for each branch in the hierarchical tree
structure. The term branch refers to a set of factors having
common factor(s) in previous mode(s) (see Fig. 3).

The PARATREE model (for an N -mode tensor) can be

M3

M1

R1

R3

M3

M2

R2

M2

M1

S=
X

U(2)

U(3)

U(1)

Fig. 2: Illustration of the Tucker3 decomposition. The tensor
is decomposed as a linear combination of basis vectors in
different modes according to (8).
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expressed as the sum of outer products as follows

X =
R1∑

r1=1

a(1)
r1
◦
(

R2∑
r2=1

a(2)
r1,r2

◦ · · ·

◦
RN−1∑

rN−1=1

(
a(N−1)

r1,...,rN−2,rN−1
◦ a(N)

r1,...,rN−2,rN−1

))
. (9)

The vector a(n)
r1,...,rn in (9) denotes the rthn column of the

nth mode matrix of basis vectors A(n)
r1,...,rn−1 . The subscript

r1, . . . , rn−1 indicates the dependency of these matrices on
the indexes of the previous factors of that branch in the
decomposition tree. Also the number of factors Rn within
each mode n can vary over different branches, i.e. Rn in (9)
is actually a shorthand notation for R(n)

r1,...,rn−1 .
An example of the tree structure of a full PARATREE model

for a four-way (N = 4) tensor X ∈ C2×2×2×2 is given in
Fig. 3. Depending on the true rank of the tensor, some of the
branches may not contribute to the decomposition and can be
ignored.

The PARATREE model is illustrated for a three-way tensor
in Fig. 4. Compared to the PARAFAC model in Fig. 1, the rtha
basis vector ara

in the first mode may be common for several
factors in the remaining modes. To clarify the illustration in
Fig. 4, the notation of (9) can be simplified (for N=3) to

X =
Ra∑

ra=1

ara ◦
Rb∑

rb=1

(bra,rb
◦ cra,rb

) , (10)

where the relation to (9) is obtained by setting
{ara

,bra,rb
, cra,rb

} ≡ {a(1)
r1 ,a

(2)
r1,r2 ,a

(3)
r1,r2}. Note that

the number of factors Rb = R
(b)
ra for the second and third

mode (vectors bra,rb
and cra,rb

) may depend on the factor
index ra of the first mode (vectors a). In addition, the number
of factors in the last two modes is equal. For N = 2, the
PARATREE reverts to the regular matrix SVD model.

We would like to point out that connections among dif-
ferent tensor decomposition models have been established. A

a
(4)
1,1,1

n = 3n = 2n = 1

a
(2)
2,1

a
(3)
2,1,1

a
(3)
2,1,2 a

(4)
2,1,2

a
(4)
2,1,1

a
(2)
2,2

a
(4)
2,2,2

a
(4)
2,2,1a

(3)
2,2,1

a
(3)
2,2,2

a
(1)
2

a
(1)
1

a
(4)
1,2,2

a
(3)
1,2,1

a
(3)
1,2,2

a
(4)
1,2,1

X

a
(2)
1,1

a
(2)
1,2

a
(3)
1,1,1

a
(3)
1,1,2 a

(4)
1,1,2

n = 4

Fig. 3: An example of a full PARATREE for a four-way, (2×
2×2×2) tensor. Different colors represent different modes n =
{1, 2, 3, 4} ≡ {green, red, blue, cyan}, and the tone within
each mode represents decreasing magnitude.

+

· · ·
+

+

· ·
·+

+

· · ·
+

+

· ·
·+

+

· · ·
+

+
X =

bRa,Rb

bRa,rb

bRa,1

bra,Rb

bra,rb

bra,1

b1,Rb

b1,rb

b1,1

c1,rb

c1,1 cra,1

cra,rb

cra,Rbc1,Rb cRa,Rb

cRa,rb

cRa,1

a1 ara aRa

aRa

aRaara

ara

a1

· · ·
a1

++ · · ·++

· ·
·+

Fig. 4: Illustration of the three-way PARATREE decompo-
sition — a hierarchical sum of R rank-1 tensors. The basis
vector ara

of the rtha factor in the first mode may be common
for multiple factors in the remaining modes.

PARAFAC model can be written as a Tucker model with
a superdiagonal core tensor. On the other hand a Tucker
model can be written as a PARAFAC model (with R equal
to the number of elements in the core tensor). Hence, it
would be straightforward to write the PARATREE model in
terms of PARAFAC or Tucker models as well. A general
framework unifying the different decompositions has been re-
cently introduced in [12]. Appendix A provides links between
the PARATREE model and tensor decomposition in block
terms [12], as well as PARATREE and the recently introduced
CONFAC (constrained factor decomposition) [9].

III. ALGORITHMS

This section describes methods for computing the tensor de-
compositions introduced in Section II. The basic algorithms for
computing the PARAFAC and HOSVD tensor decompositions
are outlined in subsections III-A and III-B. Subsection III-C
introduces a novel Sequential Unfolding SVD (SUSVD) de-
composition proposed in this paper, and Subsection III-D
describes its use for low rank approximation of a tensor.

A. PARAFAC - Alternating Least Squares

The alternating least squares (ALS) [1] is the most common
algorithm for fitting a PARAFAC model. The basic idea is to
have the number of factors R fixed, and obtain an update of
the nth mode basis vectors A(n) as

Â(n)
ALS = (11)

X(n) ·
((

A(N)♦ . . .♦A(n+1)♦A(n−1)♦ . . .♦A(1)
)+
)T

,

while keeping the basis vectors of the other modes fixed.
An iterative update of the matrices A(n) is obtained by
altering n ∈ [1, . . . , N ] until a convergence is reached. The
improvement of fit is monotonic. However, depending on the
initial values for the matrices A(n), a local optimum may be
reached instead of the global one or the convergence may be
very slow. Therefore, A(n) are typically initialized by either
using multiple random initial values, or so called rational start
(based on either generalized rank annihilation or direct trilinear
decomposition (DTLD)), or a semi-rational start (based on
SVD/EVD) [15]. A discussion on different algorithms for
fitting a PARAFAC model may be found in [6], [25].
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B. Higher Order SVD (HOSVD)

The HOSVD [10] is obtained by computing the matrix
SVD for each 1-mode unfolding of the tensor X and se-
lecting the left singular vectors as the orthonormal basis
of each mode, respectively. For the complete HOSVD, the
basis matrices U(n) ∈ CMn×Rn are hence given by the first
Rn = rank(X(n)) left-hand singular vectors of the SVD of
X(n), defined as

X(n) = U(n)Σ(n)V(n)H . (12)

Having computed the matrices U(n), n ∈ [1, . . . , N ], the core
tensor S ∈ CR1×...×RN is given in closed form as

S = X ×1 U(1)H ×2 U(2)H . . .×N U(N)H . (13)

C. Sequential Unfolding SVD (SUSVD)

We introduce Sequential Unfolding SVD algorithm for
estimating the PARATREE model for given tensor-valued data.
The power of the algorithm lies in its recursive and inherently
orthogonal structure. Furthermore, it allows adaptive selection
of the order of the decomposition. SUSVD can be applied for
any N -dimensional (real or complex) tensor, and for N = 2
it equals the matrix SVD.

The full SUSVD decomposition for a N-way tensor
XM1×...×MN (M1 ≥ . . . ≥ MN ) is described in Table I, and
visualized for a 2×2×2 three-way tensor in Fig. 5. The core
idea of the algorithm is to apply the matrix SVD on the 1-
mode matrix unfolding of the tensor (see Definition 1) to form
the basis vectors of the first mode. Then each of the conjugated

TABLE I: Description of the SUSVD algorithm for a complete
tensor decomposition. The output variables {S}, and {U}
denote abstract tree structures to store the elements of the
decomposition (see also Fig. 5).

[{S}, {U}] = SUSVD (X )

• Set T (1)
0 = X .

• Set R(0) = 1

• For each n = {1, . . . , N − 1}:
– For each rn−1 = {1, . . . , Rn−1}:

1) Unfold the tensor T
(n)
r1,...,rn−1 =

(
T (n)

r1,...,rn−1

)
(1)

,

2) Compute the SVD T
(n)
r1,...,rn−1 = U(n)Σ(n)V(n)H ,

3) For each rn ∈ {1, . . . , R(n)}, with

R(n) = rank
(
T

(n)
r1,...,rn−1

)
:

a) Store σ(n)
r1,...,rn =

(
Σ(n)

)
rnrn

in {S},

and u
(n)
r1,...,rn =

(
U(n)

)
rn

in {U}.
b) Then, if n < N − 1,

– Reshape
(
V(n)∗

)
rn

into a tensor

T (n+1)
r1,...,rn ∈ CMn+1×···×MN ,

or else,

– Store the vector u
(N)
r1,...,rN−1 =

(
V(N−1)∗

)
rN−1

.

right-hand singular vectors v(1)∗
r1 are reshaped into tensors, and

the matrix SVD is applied on the 1-mode unfoldings of these
tensors. This is repeated to construct the PARATREE model,
until there are only the elements of the last mode contained
in the right-hand singular vectors. Note that for a full SUSVD
(all possible factors included) described in Table I, the number
of basis vectors within each mode is the same for all branches
and is given by

Rn = min(Mn,

N−1∏
j=n+1

Mj). (14)

Hence, the total number of orthogonal components in the
decomposition (tips of the branches in Fig. 3) is given by

R =
N−1∏
n=1

Rn. (15)

The 2×2×2 tensor in Fig. 5 can be reconstructed with the
PARATREE model as

X =
R1∑

r1=1

σ(1)
r1
· u(1)

r1
◦

R2∑
r2=1

σ(2)
r1,r2

· u(2)
r1,r2

◦ u(3)
r1,r2

. (16)

The full (R1 = 2, R2 = 2) reconstruction is illustrated in
Fig. 6. The relation of the values in (16) to the ones in the

Unfold

SVD

SVD

SVD

T(1)X = T (1)
0

T (2)
2

Reshape each column r1 of V(1)∗

V
(2)H

2

V
(2)H

1

V(1)H

U(1)

σ
(1)
1

σ
(1)
2

U
(2)
1

σ
(2)
1,2

σ
(2)
1,1

to a tensor T (2)
r1

U
(2)
2

σ
(2)
2,1

σ
(2)
2,2

T (2)
1

Fig. 5: The SUSVD decomposition for an arbitrary 2× 2× 2
tensor. Different colors refer to different dimensions of the
tensor. A circled σ denotes a singular value, dashed blocks
are elements of the tensors, and solid lines are used to
separate the column vectors. The tensor is first unfolded to
a matrix T(1)

0 . After applying SVD on this matrix, each of the
right-hand singular vectors are reshaped (into T(n)

r1,...,rn−1 ∈
CMn×

∏N
q=n+1 Mq ) and another SVD is applied on them. The

procedure is repeated for each “branch” and “sub-branch”,
until no additional dimensions remain in the right hand basis
vectors, i.e., the matrix V(N−1) has only MN rows (see also
Table I).
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3D-PARATREE formulation (10) or the general form (9) is
given by

ara
= a(1)

r1
= σ(1)

r1
u(1)

r1

bra,rb
=a(2)

r1,r2
= σr1,r2u

(2)
r1,r2

cra,rb
=a(3)

r1,r2
= u(3)

r1,r2
.

Note that the basis vectors of the SUSVD are exactly the
same for the first mode as those of the HOSVD (U(1)

SUSV D =
U(1)

HOSV D). However, the number of basis vectors of the latter
modes is limited to Rn = rank(X(n)) for HOSVD, whereas
in SUSVD the basis is formed independently for each branch.
The result is that the total number R of individual rank-1
contributions, e.g., as if the decomposition would be written
in PARAFAC form (5), is typically much less for the SUSVD
than for the HOSVD. Another difference between the two
decompositions is the fact that the HOSVD is unique, whereas
for the SUSVD the solution depends on the order of the modes.
This is further demonstrated in the application examples in
Section V.

D. Reduced Rank Approximations

The individual rank-1 contributions of the HOSVD and
SUSVD are orthogonal to each other. The practical implication
of this property is that for a reduced rank approximation
XA of a tensor X , the squared magnitudes of individual
terms directly contribute to the squared magnitude of the
approximated tensor. Hence, the squared Frobenius norm of
the tensor approximation is given for the SUSVD by

||XA,SU ||2F =
∑
rA

||a(1)
rA
◦. . .◦a(N)

rA
||2F =

∑
rA

σ(1)
rA
·. . .·σ(N−1)

rA
,

(17)
where σ(n)

rA denotes the nth mode singular value, and rA de-
notes an index of a rank-1 component included in the reduced
rank decomposition. Equivalently, the squared Frobenius norm
of the HOSVD approximation is given by

||XA,HO||2F =
∑
rA

| (S)rA
|2, (18)

where (S)rA
denotes an element of the HOSVD core tensor,

and index rA denotes the indexes contributing to the approx-
imation.

σ
(2)
1,1=

X

σ
(1)
1 +

u
(1)
1

u
(1)
2

u
(2)
1,1 u

(2)
1,2u

(3)
1,1 u

(3)
1,2

u
(3)
2,1 u

(3)
2,2u

(2)
2,2u

(2)
2,1

+ +σ
(1)
2 σ

(2)
2,1

σ
(2)
1,2

σ
(2)
2,2

Fig. 6: A PARATREE tensor is reconstructed as a sum of outer
products of weighted (by σr1 , σr1,r2 ) unitary basis vectors
u(1)

r1 , u(2)
r1,r2 and u(3)

r1,r2 . The tree structure allows common
basis vectors in the previous dimensions (main branch). The
symbol ◦ denotes outer product of vectors.

1) Deflating the full SUSVD: The PARATREE model built
with SUSVD can be deflated to form a reduced rank ap-
proximation of a tensor. This can be done either offline after
building the full SUSVD, or online during the computation of
the decomposition. Here the discussion is limited to the offline
approach.

Due to orthogonality of the decomposition (see Appendix
for the proof), the approximation error can be equivalently
expressed in terms of the sum of the product of the singular
values related to each factor. These can be interpreted as the
magnitudes of the single rank-1 components in the PARA-
TREE, and are given by

σ̃r1,...,rN−1 = σ(1)
r1
· σ(2)

r1,r2
· . . . · σ(n−1)

r1,...,rn−1
. (19)

By stacking all the R (14)–(15) magnitude values (19) in
descending order to a vector σ̃ ∈ RR×1, the normalized
SUSVD approximation error can be expressed as

εr,SU =
||X − XA||F
||X ||F

=

√√√√1−
∑RA

rA=1 σ̃
2
rA∑R

r=1 σ̃
2
r

, (20)

or equivalently

ε2r,SU = 1− ||σ̃A||2F
||σ̃||2F

. (21)

Table II describes the offline PARATREE approximation
method. The input data to the approximation function are the
abstract tree structures {S} and {U} from the (full) SUSVD
(see Table I), and a threshold εr for the target normalized
approximation error (20). The output data consist of similar
structures, but with reduced number of factors to approximate
the tensor.

The rank of the approximation (total number RA of rank-1
components) is given by

RA =
R1∑

r1=1

R(2)
r1∑

r2=1

· · ·
R(N−2)

r1,...,rN−3∑
rN−2=1

R(N−1)
r1,...,rN−2

. (22)

The number of factors R(n)
r1,...,rn−1 in each mode n of each

branch r1, . . . , rn−1, depends on how the factor magnitudes
are distributed among different branches.

The described offline approach allows for defining the
achieved relative approximation error (20) precisely at the

TABLE II: Description of the offline SUSVD tensor approxi-
mation.

[{SA}, {UA}] = PACK SUSVD OFFLINE ({S}, {U}, εr)

1) Compute the products of the singular values (19) for each of the
R possible branches (14)–(15) of the full PARATREE structure.

2) Sort all the products in descending order to a vector σ̃ ∈ RR×1.

3) Pick the minimum number RA of singular values σ̃A ∈ RRA×1,
fulfilling the criterion (20)

||σ̃A||2F ≥ (1− ε2r)||σ̃||2F .

4) Construct {SA}, {UA} based on the selected singular values σ̃A.
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price of having to form the full SUSVD. This is most useful
when saving in the computational complexity of the SUSVD
decomposition itself is not crucial for the application at hand.
This is the case in both of the example applications in Sec-
tion IV. Further improvements in computational complexity
could be achieved by truncating the decomposition in an
online fashion, but then controlling the normalized error of
the obtained approximation would not be as straightforward.

2) Deflating the full HOSVD: The HOSVD could be de-
flated either by reducing the least significant basis vectors from
the matrices U(n), or by considering the full decomposition,
and selecting the elements from the core tensor that one
wishes to include in the approximation. Here, the discussion
is limited to the latter approach as that strategy for controlling
the approximation error is similar to the one applied for the
SUSVD deflation. Hence, the deflation of the HOSVD is
obtained by setting the undesired contributions in the core
tensor to zero, yielding a sparse core tensor SA. The obtained
HOSVD approximation error is given by

ε2r,HO = 1− ||SA||2F
||S||2F

. (23)

It should be noted that the low rank tensor approximations
obtained by deflation are suboptimal both for the SUSVD and
the HOSVD. However, in the proposed application example in
Section IV-B, the optimality of the approximation in LS sense
may be sacrificed to the benefit of a computationally efficient
method yielding an approximation with a low number of rank-
1 factors in the decomposition (nonzero core tensor elements
for HOSVD). For HOSVD, the truncation could be performed
also by reducing the rank of each mode, which would allow
to further optimize the solution using Tucker3-ALS [14], [15],
[26]. However, this method is time consuming, the achievable
approximation error would not be as precisely controllable,
and the obtained decomposition may still contain numerous
insignificant rank-1 factors.

Applying a similar target approximation error requirement
for a general PARAFAC model would require a trial and
error approach for finding a proper rank (as well as for
determining the tensor-rank in general). Also the convergence
of the alternating least squares (ALS [26]) algorithms used for
PARAFAC is very slow for high dimensional or ill-conditioned
problems [27], [28].

IV. APPLICATION EXAMPLES

A. MIMO Propagation Channel Modeling

The concept of the SUSVD algorithm and the PARATREE
tensor model emerged while solving the problem of restor-
ing the Kronecker structure of a data model appearing in
multiantenna (MIMO) communications. Fig. 7a illustrates the
MIMO principle. Measurement based modeling of wireless
MIMO channels (H in Fig. 7a) is increasingly important as
MIMO technology is being employed in many recent and
emerging wireless transmission standards such as WLAN,
3GPP LTE and WiMAX. The measurements are crucial in
order to analyze the potential of MIMO communications,
develop advanced channel models, and to parameterize and

hMRMT
(f)

Data out

h11(f)

h1MT
(f)

H (θ)

x
1

Data in

x
MT

MIMO
Rx

MIMO

y
1

y
MR

hMR1(f)

Tx

(a) MIMO principle.

y
T

x
R

τ

y
R

z
R

z
T

ϑ
R

ϕ
R

x
T

Rx

ϕ
T

γ
V

γ
H

ϑ
T

Tx

(b) Propagation path parameters.

Fig. 7: Illustration of the MIMO principle (Fig. 7a). The
MIMO channel H is modeled as a superposition of propaga-
tion paths, whose parameters θ (25) are illustrated in Fig. 7b.

verify existing models. These are necessary for transceiver
development and network planning. In the following the
measurement model for a wideband multiple-input-multiple-
output (MIMO) radio channel measurement (also known as
radio channel sounding) [29]–[31] is introduced in tensor
notation.

The tensor valued measured radio channel H ∈
CMf×MT×MR contains the complex coefficients describing
the channel transfer function of the radio channel between
the MT transmitter antenna ports and MR receiver antenna
ports sampled at Mf frequencies. Realizations of such MIMO
channels are obtained from MIMO channel sounding mea-
surements [29]–[31]. The measurement model for the radio
wave propagation is assumed to be comprised of two model
components: the dominant (specular) propagation paths HS ,
and the diffuse scattering HD (also called Dense Multipath
Component, DMC). In the following, the polarization effects
are ignored to simplify the description.

The propagation paths can be expressed as a constrained1

PARAFAC model

HS(θ) = (24)
P∑

p=1

γp

(
b(f)(τp) ◦ b(T )(ϕT,p, ϑT,p) ◦ b(R)(ϕR,p, ϑR,p)

)
,

where P is the number of individual propagation paths. Each
rank-1 component (a path) in the model (24) is parameterized
with L parameters illustrated in Fig. 7b. The parameter vector
θ ∈ RLP×1 is defined as

θ =
[
τ T ϕT

T ϑT
T ϕR

T ϑR
T <

{
log
(
γT)}={log

(
γT)}]T

.
(25)

1The model is constrained on a limited set of basis functions b determined
by the (calibrated) measurement system.
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TABLE III: System dimensions in the complexity examples.
Label Value

Frequency samples Mf 193
Transmitter ports MT 30

Receiver ports MR 31
Total Number of Parameters L′ 800

The parameters are delay (τ ), azimuth (ϕ) and elevation (ϑ)
angles of departure (at Tx) and arrival (at Rx), and complex
path weights γ for each path. The vectors b(i)(θp) ∈ CMi×1,
i ∈ {f, T,R}, θ ∈ {τ, {ϕT , ϑT }, {ϕR, ϑR}} in (24) de-
note the basis functions for the frequency, transmit array,
and receive array modes, respectively. The description of
the mapping of the parameters within the basis functions is
rather lengthy, and hence omitted here. The interested reader
is directed to [29], [32] for additional details on how the
parameters characterize the channel. Parametric estimation of
(24) is discussed in [29], [32]–[34].

The diffuse scattering component is defined as a tensor
valued complex circular symmetric normal distributed random
variable

HD ∼ NC (0,RD) , (26)

with a covariance tensor R ∈ CMf×MT×MR×Mf×MT×MR .
The following Kronecker structure is assumed for the covari-
ance tensor reshaped into a (M ×M , with M = MfMTMR)
matrix

RD = E
{
vec(HD)vec(HD)H

}
= Rf⊗RT⊗RR ∈ CM×M .

(27)
The matrices Rf ∈ CMf×Mf , RT ∈ CMT×MT , and RR ∈
CMR×MR are the covariance matrices of the frequency, the
transmit array, and the receive array modes, respectively.
Estimation of these covariance matrices is discussed in [35].

Furthermore, a tensor HN (k) is defined, denoting zero
mean i.i.d. normal distributed complex circular symmetric
(measurement) noise with covariance

RN = E{vec(HN )vec(HN )H} = σ2
NI. (28)

Using (24), (26), and (28) the model for the full measured
complex transfer function of the radio channel tensor (a
snapshot) at time k is defined as

H(k) = HS(k) +HD(k) +HN (k) ∼ NC (HS ,R) , (29)

where the covariance tensor is defined as R = RD +RN . The
covariance tensor of (29) can be written in matrix form as

R = E{vec(H)vec(H)H} = Rf ⊗RT ⊗RR + σ2
NI. (30)

The contribution of the model components HS , HD, and
HN in the Power-Angular-Delay-Profile (PADP) of a MIMO
radio channel measurement is visualized in Fig. 8. The di-
mensions of the measurements used e.g. in [31], are listed
in Table III. These values will be used in the complexity
evaluations in the following sections, where O (M) is used for
denoting that M is the order of multiplications and additions
required by an algebraic operation in question. The total
number of parameters L′ = LP in Table III is a typical number

(a) Full measured channel H (29). (b) DMC and measurement noiseH−
HS = HD +HN .

Fig. 8: Illustration of the influence of dominant paths HS (24)
and the DMC HD (26) in a power-Tx azimuth-delay profile
of a measured channel. The data are averaged over all receiver
elements.

of paths (P ≈ 40) times a suitable number of estimated
parameters L ≈ 20 per path2.

B. The Fisher Information Matrix - Key Quantity in Parameter
Estimation

1) Computational Challenges of the FIM in Propagation
Parameter Estimation: The model for the propagation paths
(24) in vectorized form is defined as

hS(θ) = vec (HS(θ)) . (31)

The parameters (θ) used for identifying the model s (θ)
may be estimated using, e.g., iterative Maximum Likelihood
(ML) [29], or Extended Kalman Filter (EKF) [32], [33]. Both
of these estimation methods3 rely on the evaluation of the
expression

J = 2<{DHR−1D} (32)

which is commonly known as the Fisher Information Matrix
(FIM) — a measure of the amount of information about θ
carried in hS(θ). This expression contains an inverse of the
(full rank) measurement covariance matrix R (30), as well as
a Jacobian matrix

D =
∂hS(θ)
∂θ

∈ CM×L′ . (33)

Due to the structure of the data model in our example
application (24), the expression of the FIM (32) can be
expanded as

J = 2<{(Df♦DT ♦DR)H ·
(
Rf ⊗RT ⊗RR + σ2I

)−1

· (Df♦DT ♦DR)}. (34)

Straight-forward computation of (34) has very high computa-
tional complexity O

(∏
iM

3
i = M3 ≈ 1016

)
. Expression (34)

2The number of parameters L may include also dynamic parameters which
are not explicitly defined in the static data model (24)–(25), such as the rates
of change (first order derivatives). Also polarization modeling increases the
total number of parameters.

3A computationally efficient alternative form of the EKF can be formulated
in terms of the FIM [32], [33].
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also requires memory for storing the full matrix R ∈ CM×M

(and D ∈ CM×L′ ), resulting in the order of 600 GB (IEEE
double precision) assuming the dimensions in Table III (M =
MfMTMR = 197632, and L′ = 800).

To facilitate feasible computation of the FIM (32), the
positive definite covariance matrix R (30) can be expressed
in terms of its eigenvalue decomposition as

R=UΛUH + σ2IM

=(UR ⊗UT ⊗Uf )(ΛR ⊗ΛT ⊗Λf + σ2IM )
·(UR ⊗UT ⊗Uf )H. (35)

The FIM can thus be expressed as

J = 2<
{(

D′R♦D′T ♦D′f
)H

Λ−1
(
D′R♦D′T ♦D′f

)}
, (36)

where

D′i = UH
i Di, i ∈ {f, T,R}, (37)

and

Λ = (ΛR ⊗ΛT ⊗Λf + σ2IM ). (38)

This form has computational complexity
O
(
L′

2∏
iMi ≈ 1011

)
(with dimensions in Table III),

and it requires storing the full matrix D (33). Let us
reshape the diagonal elements of Λ−1 in (38) into a tensor
L ∈ CMf×MT×MR as

L = reshape
(
diag

(
Λ−1

)
, {Mf ,MT ,MR}

)
. (39)

This tensor is, in general, of full rank4. One feasible solution
for computing the FIM (36) is then given by

Jo =2<
{ Mf∑

mf =1

[
d′Hfmf

d′fmf
�

MT∑
mT =1

[
d′HTmT

d′TmT

�
MR∑

mR=1

[
lmf ,mT ,mR

· d′HRmR
d′RmR

]]]}
, (40)

where d′imi
, i ∈ {f, T,R}, denotes the mth

i row of the matrix
D′i in (37). Expression (40) is exact and does not require
storing the full matrix D in (33), but has the same (high)
computational complexity

O
(
L′

2
∏

i

Mi ≈ 1011

)
(41)

as (36).
2) Applying Tensor Decompositions for Solving the FIM:

The PARATREE model can be applied to reduce the computa-
tional complexity of (40). The tensor L in (39) is decomposed
into a PARATREE model with a single matrix of basis vectors
L(f) ∈ RMf×Rf for the f -mode, and Rf matrices L(T )

rf ∈
RMT×RT and L(R)

rf ∈ RMR×RT for the T - and R-modes (see

4In [36] it is shown that if the term σ2I would not be present, L would
be a rank-1 tensor, and solving (36) becomes computationally attractive.

Table I for details). Then a PARATREE approximation JPT

for the FIM can be expressed as

JPT = 2<
{ Rf∑

rf =1

[(
D′Hf Λ(f)

rf
D′f

)
(42)

�
RT∑
rT

[ (
D′HT Λ(T )

rf ,rT
D′T

)
�
(
D′HRdiagΛ(R)

rf ,rT
D′R

) ]]}
,

where Λ(R)
rf ,rT

= diag((L(R)
rf )rT

) denotes a diagonal matrix
formed from the rthT column of L(R)

rf etc. This solution has
computational complexity

O
(
L′

2 · 2Rf (Mf +RT (MT +MR)) ≈ 8 · 109
)
, (43)

where values Rf = 12 and RT = 5 were used. These
values correspond to εr ≈ 10−5 to compare with PARAFAC
and HOSVD, see Fig. 10. In practice Rf << Mf and
RT << MT , see [36], which provides a significant reduction
in computational complexity compared to (41).

Similar to (42), an expression for evaluating the FIM using
PARAFAC is given by

JPF = 2<
{

R∑
r

[(
D′Hf Λ(f)

r D′f
)

(44)

�
(
D′HT Λ(T )

r D′T
)
�
(
D′HRΛ(R)

r D′R
)]}

,

which has computational complexity in the order of

O
(
L′

2 · 2R(MT +MR +Mf ) ≈ 2 · 1010
)
, (45)

where R = 50 ∼ εr ≈ 10−5 was used (see Fig. 10).
Furthermore, a computational strategy for evaluating the

FIM using HOSVD is given by

JHO = 2<
{ Rf∑

rf

[(
D′Hf Λ(f)

rf
D′f

)

�
RT∑
rT

[ (
D′HT Λ(T )

rT
D′T

)
(46)

�
RR∑
rR

[
srf ,rT ,rR

·
(
D′HRΛ(R)

rR
D′R

) ]]]}
,

where srf ,rT ,rR
denotes an element of the core tensor. In (46)

only the terms corresponding to a nonzero core tensor value
need to be evaluated. Hence, the computational complexity of
(46) is given by

O
(
L′

2 · 2
(
RfMf +

∑
rf

[
R(T )

rf
MT +MR ·

∑
rT

R(R)
rf ,rT

])
≈ 3 · 1010

)
, (47)

where the numerical value is again based on the decomposition
yielding εr ≈ 10−5 (see also Fig. 9).

It should be mentioned that further reduction in computa-
tional complexity using HOSVD could be achieved, at the
cost of very high memory consumption, if all the terms
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D′Hi Λ(i)
ri

D′i would be stored while computed for the first
time. However, with the current system dimensions in Ta-
ble III (and also considering that a much higher value for
L′ is possible), the memory requirements for such strategy
become prohibitive. Given the proposed approaches to ap-
proximate the FIM using PARATREE (42), PARAFAC (44)
and HOSVD (46), the PARATREE/SUSVD provides the best
performance in terms of computational complexity. The dif-
ference is even more evident for smaller εr, as illustrated in
the results in Section V.

C. Noise Suppression of Multidimensional Radio Channel
Measurements

Another novel application to utilize the PARA-
TREE/SUSVD is noise suppression for MIMO channel
sounding measurement data [37], [38]. These data are
often directly used, e.g., in link-level simulations of a
wireless communication system (as opposed to drawing
channel realizations based on measurement-based parametric
modeling [39]). The tensor decomposition based filtering is
very useful for enhancing the SNR (Signal-to-Noise Ratio) of
the measured channel data to be used in the simulator. This
allows a wider range of noise power (or other interfering
signals) to be defined within the simulation.

For convenience, the time index k in (29) is dropped and
a single snapshot H of a channel sounding measurement is
considered. The nominal SNR of the measurement is defined
as

SdB (H) = 10 · log10

(
PH − PN

PN

)
, (48)

where PH = ||H||2F is the total power in the measurement,
and PN = ||HN ||2F is the power of the measurement noise.
These quantities are assumed to be known, which is a valid
assumption in channel sounding5. The suppression of the
measurement noise is achieved by the following procedure:

1) Compute the SUSVD of H, as described in Table I.
2) Define a threshold εr (20) for selecting the factors, i.e.

the signal subspace, for the approximation.

• Here εr =
√

PN

PH
is chosen, i.e., only the factors

whose cumulative power exceeds the noise power
are included in the decomposition.

3) Approximate H by HA, with the procedure described in
Table II.

This filter can be equivalently expressed using a projector
matrix to the signal subspace [37] defined as

ΠA =
(
U(R)

A ♦U(T )
A ♦U(f)

A

)(
U(R)

A ♦U(T )
A ♦U(f)

A

)H

, (49)

where the matrices U(i)
A ∈ CMi×RA contain all the RA (22)

factor combinations expanded in PARAFAC fashion (redun-
dancy in columns possible). The filtered channel estimate is
then given by

vec (HA) = ΠAvec (H) . (50)

5The noise power PN may be assessed, e.g., by sampling while Tx is off,
or by estimating it from excess delay samples.

This method effectively suppresses the measurement noise
as is shown in Section V-B. It will also be shown that the
approximation is beneficial in terms of data compression.

V. RESULTS AND VALIDATION USING REAL DATA

A. Computational Gain in FIM Computation

As discussed in Section IV-B, the PARATREE approxi-
mation can be used to reduce computational complexity of
calculating the FIM in certain applications. Fig. 9 illustrates
the performance of different tensor decompositions in terms
of computational complexity while computing the Fisher
information matrix (excluding the complexity of comput-
ing the tensor decomposition). The complexities are given
by the equations (41) (exact), (43) (PARATREE), and (45)
(PARAFAC), and are normalized by the complexity of the
exact solution (41). The complexities are averaged by approx-
imating 1500 realizations of the tensor L (39) with different
relative approximation errors (20). Additionally, the influence
of varying the dimension order is studied for PARATREE.
It can be seen that the complexity is clearly lowest while
applying PARATREE with the largest dimension decomposed
first. The comparison results for PARAFAC-ALS are obtained
using random initialization of the factors, and for two R
values (R = {10, 50}) only. For higher rank approximations
(R = {100, 200}), the algorithm failed to converge in a
reasonable time. The considered HOSVD strategy (46) has
the highest complexity in this task, and the complexity can
even grow higher than that of the exact solution.

Fig. 10 shows the average number of basis vectors for the
first mode (Rf ), as well as the total number of factors (Rtot)
of the PARATREE and HOSVD decompositions as a function
of the normalized approximation error. Also the rank of the
PARAFAC decomposition (RPARAFAC) is shown. The total
number of factors is given by (22) for PARATREE, whereas
for HOSVD it equals the number of nonzero elements in the
core tensor of the approximation. The numbers corresponding
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Fig. 9: Complexity relative to an exact solution (41) for
computing the Fisher information matrix with PARATREE
(43), PARAFAC (45), and HOSVD (47). Having the largest
dimension first yields the most reduction in computational
complexity with PARATREE. For the PARAFAC-ALS, only
the values corresponding to R = 10 and R = 50 are shown
for comparison. The considered HOSVD strategy (46) has the
highest complexity in this task, and the complexity can even
grow higher than that of the exact solution.
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to εr = 10−5 were used in the complexity evaluation in
Section IV-B ((43), (45), and (47)).

B. Filtering of MIMO Channel Sounding Measurements

Fig. 11 shows the Power-Delay Profile (PDP) of a MIMO
channel sounding measurement before and after applying a
PARATREE model for subspace-based noise suppression (see
Section IV-C). It can be observed that the SNR is significantly
improved (noise is suppressed) after filtering, especially in the
beginning of the measurement, where the initial SNR is also
very low.

Fig. 12 shows the PDP for three time instants of the
same measurement as Fig. 11. The two filtered PARATREE
estimates of the measurement Ĥ1 and Ĥ2 refer to different
ordering of the tensor modes as:

1) Set the significantly largest dimension as the first (M1 =
Mf = 193 for Ĥ1)

2) Set a lower dimension as the first (M1 = MT = 31 for
Ĥ2).

It can be observed that the first approach yields consistently
better performance, although both approaches provide excel-
lent performance while applied to low SNR measurements.
The HOSVD (HHO) also provides good results, the improve-
ment in SNR being slightly less than for H1 (PARATREE).

The upper part of Fig. 13 shows the SNR improvement
achieved with the PARATREE as well as HOSVD filtering as
a function of the original measurement SNR (48). It can be
observed that Ĥ1 approximation achieves better results than
Ĥ2, and it also outperforms HOSVD by a couple of dBs in
the low SNR regime.

The lower part of Fig. 13 illustrates the data compression
percentage (one minus the number of bits required by the
stored PARATREE or HOSVD structures divided by the
number of bits in the original data tensor) as a function of
initial SNR. In poor SNR conditions (SNRdB(H) < 0 dB),
the compression of data is close to 95 % and even in good
SNR (SNRdB(H) > 25 dB), the compression is in the order
of 60 %. The HOSVD outperforms PARATREE in terms of
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Fig. 10: The average of the total number of factors (Rtot) for
different decompositions as a function of normalized error, as
well as the number of basis vectors in the first mode (Rf )
for PARATREE and HOSVD. The value of Rf is similar for
PARATREE and HOSVD, whereas Rtot is higher (by a factor
of RR) for HOSVD. PARAFAC-ALS often failed to converge
with R = 100 and R = 200.

(a) Before filtering.

(b) After filtering.

Fig. 11: Power-Delay Profile over measurement time before
and after filtering. The PDPs are averaged over all Tx-Rx
channels. After filtering the SNR is improved by ∼ 15 dB
in the low SNR regime.

compression in the high SNR regime. This is because the
increase in the amount of data results mainly from including
more elements in the sparse core tensor instead of increasing
the number of actual basis vectors, whereas in PARATREE
the number of basis vectors has to increase to obtain better
fit.

VI. CONCLUSIONS

This paper introduces Sequential Unfolding SVD (SUSVD)
— a novel orthogonal, non-iterative tensor decomposition
technique, which is scalable to arbitrary high dimensional
tensors. The SUSVD provides a tensor model with hierarchical
tree structure between the factors in different dimensions. The
new model, named as PARATREE, is related to the family
of PARAFAC tensor models. Links between PARATREE and
other existing models are established in the paper as well.

The PARATREE model can be used for flexible low rank
tensor approximation with precisely defined approximation
error level through deflation of the orthogonal rank-1 compo-
nents. The low rank PARATREE approximation can be used
for reducing the computational complexity in high dimensional
problems, measurement noise suppression, data compression,
as well as providing insight on structures and dependen-
cies in the data. Whereas similar strategy is obtainable for
Tucker3 based HOSVD, the PARATREE clearly outperforms
HOSVD (as well as PARAFAC) in terms of computational
complexity while solving the Fisher Information matrix in a
given application example. This is due to rich structure of
the basis vectors resulting from the SUSVD, yielding more
precise approximation with smaller tensor rank. Another novel
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Fig. 12: Power-delay profiles from the measurement in Fig. 11
at three time instants with different SNR conditions.H denotes
measured data, Ĥ1 and Ĥ2 are PARATREE estimates with
M1 = Mf = 193, and M1 = MT = 31, respectively, and
ĤHO denotes HOSVD estimate. Note that the power (y-)axis
have different scales. Filtering provides the most improve-
ment for measurements with low SNR (see also Fig. 13).
PARATREE provides slightly better SNR improvement than
HOSVD.

application example involves noise suppression for tensor
valued MIMO channel sounding measurements. The results
for this application also indicate the superiority of PARATREE
over HOSVD.

APPENDIX A
CONNECTIONS BETWEEN MODELS

A. Relation between PARATREE and Decompositions in Block
Terms

The PARATREE-model can also be expressed in terms of
the block term decomposition notation introduced recently
in [12]. Hence, the expression (10) for the N = 3 PARATREE
is equivalent to a rank-(1,Rb|ra

,Rb|ra
) block term decomposi-

tion [12]

X =
Ra∑

ra=1

ara
◦
(
Bra
·CT

ra

)
, (51)

where the Ra pairs of matrices Bra
and Cra

may have differ-
ent number of columns (R(b)

ra ). The uniqueness properties (in
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Fig. 13: SNR improvement (upper part) and data compression
ratio (lower part) as a function of the initial measured SNR
(48). At low SNR values, the PARATREE H1 provides the
best performance both in terms of SNR improvement and data
compression.

the generic sense, without considering orthogonality) of this
decomposition were also addressed in [12]. In this paper, the
notation using the vector outer products (10) facilitates better
the description of the SUSVD algorithm (see Section III-C)
as well as the derivation of a low rank approximation strategy
based on the product of singular values related to each branch
(see Section III-D).

B. Relation between PARATREE and CONFAC

The relationship between the PARATREE (see Section II-D)
and CONFAC [9] models (for N = 3) can be shown by
defining the factor matrices [9] as

A(1) = [a(1)
r1

. . .a(1)
R1

] ∈ CM1×R1 ,

A(2) = [A(2)
r1

. . . A(2)
R1

] ∈ CM2×F ,

A(3) = [A(3)
r1

. . . A(3)
R1

] ∈ CM3×F , (52)

with F = R1

∑
r1
R

(2)
r1 . The constraint matrices [9] are given

by Φ = Ω = IF , and Ψ = [Er1 . . . ER1 ], where the
R1 × R(2)

r1 matrices Er1 consist of repeating R
(2)
r1 times the

canonical vectors er1
6.

APPENDIX B
ORTHOGONALITY OF SUSVD

The orthogonality of the SUSVD decomposition is proven
as follows.

Lemma 1: Let A ∈ CMa×Ra , B ∈ CMb×Rb , and
C ∈ CMc×Rc , have orthogonal columns ai⊥aj , bk⊥bl, and
cm⊥cn (for all i 6= j, k 6= l, and m 6= n). Then the Kronecker
products of these columns are orthogonal

(ai ⊗ bk ⊗ cm)⊥ (aj ⊗ bl ⊗ cn) , (53)

if at least one of the conditions i 6= j, or k 6= l, or m 6= n
holds.

6A canonical vector en is a unitary vector containing a 1 at nth position
and zeros elsewhere.
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Proof: The proof is given by evaluating the inner product

(ai ⊗ bk ⊗ cm)H (aj ⊗ bl ⊗ cn)

=
(
aH

i ⊗ [bk ⊗ cm]H
)

(aj ⊗ [bl ⊗ cn])

=
(
aH

i aj

)
⊗
(
[bk ⊗ cm]H ⊗ [bl ⊗ cn]

)
=
(
aH

i aj

)
⊗
(
bH

k bl

)
⊗
(
cH

mcn

)
. (54)

The expression (54) is zero if any of the three terms in the
Kronecker product of the last row are zero. Hence, the vectors
(ai ⊗ bk ⊗ cm) and (aj ⊗ bl ⊗ cn) are always orthogonal
((54) is nonzero), except when i = j, and k = l, and m = n.

Now let us consider the outer product form of PARATREE
for N = 3

X=
R1∑

r1=1

σ(1)
r1
· u(1)

r1
◦

R2∑
r2=1

(
σ(2)

r1,r2
· u(2)

r1,r2
◦ u(3)

r1,r2

)
(55)

=
R1∑

r1=1

R2∑
r2=1

(
σ(1)

r1
σ(2)

r1,r2
· u(1)

r1
◦ u(2)

r1,r2
◦ u(3)

r1,r2

)
.

The orthogonality of the conventional 2-D SVD decomposition
within the SUSVD computation yields(

u(n)
r1,...,rn

)H (
u(n)

r1,...,rn

)
= (56) = 0, rn 6= qn, {r1, . . . , rn−1} = {q1, . . . , qn−1},

= 1, {r1, . . . , rn} = {q1, . . . , qn},
6= 0, {r1, . . . , rn−1} 6= {q1, . . . , qn−1}.

Given the above conditions (56) along with Lemma 1, yields,
for the three-way example in (55),(

u(1)
r1
⊗ u(2)

r1,r2
⊗ u(3)

r1,r2

)H (
u(1)

q1
⊗ u(2)

q1,q2
⊗ u(3)

q1,q2

)
= 0,

(57)
for all values except if {r1, r2} = {q1, q2}. The summation
indexes in (55) result only in values for which the basis
vectors are orthogonal in at least one of the dimensions. Hence,
all the complete Kronecker (or outer) product terms in the
decomposition are orthogonal. The proof applies eqivalently
to higher order tensors.
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