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Multiantenna (MIMO) transceivers are a key technology in emerging broadband wireless communication systems
since they facilitate achieving the required high data rates and reliability. In order to develop and study the
performance of MIMO systems, advanced channel modeling that captures also the spatial characteristics of the radio
wave propagation is required. This thesis introduces several contributions in the area of measurement-based modeling
of wireless MIMO propagation channels. Measurement based modeling provides realistic characterization of the
space, time and frequency dependency of the physical layer for both MIMO transceiver design and network planning.

The focus in this thesis is on modeling and parametric estimation of mobile MIMO radio propagation channels. First,
an overview of MIMO channel modeling approaches is given. A hybrid model for characterizing the spatio-temporal
structure of measured MIMO channels consisting of a superposition of double-directional, specular-like propagation
paths, and a stochastic process describing the diffuse scattering is formulated. State-space modeling approach is
introduced in order to capture the dynamic channel properties from mobile channel sounding measurements. Extended
Kalman filter (EKF) is employed for the sequential estimation problem and also statistical hypothesis testing for
adjusting the model order are introduced. Due to the improved dynamic model of the mobile radio channel, the EKF
approach outperforms maximum likelihood (ML) based batch solutions both in terms of lower estimation error as well
as computational complexity.

Finally, tensor representation for modeling multidimensional MIMO channels is considered and a novel sequential
unfolding SVD (SUSVD) tensor decomposition is introduced. The SUSVD is an orthogonal tensor decomposition
having several important applications in signal processing. The advantages of applying the SUSVD instead of other
well known tensor models such as parallel factorization and Tucker-models, are illustrated using application examples
in channel sounding data processing.
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Moniantenniset (MIMO) radiopäätelaitteet ovat avainteknologia tulevaisuuden langattomien laajakaistaisten
tietoliikennejärjestelmien kehityksessä, sillä ne mahdollistavat suuren tiedonsiirtonopeuden sekä yhteyden
luotettavuuden. MIMO tekniikoiden tutkimus- ja kehitystyö edellyttää kehittyneitä kanavamalleja, jotka kuvaavat
radiotie-etenemisen ominaisuuksia myös tilan suhteen. Tässä työssä esitetään useita parannuksia langattomien MIMO
radiotie-etenemiskanavien mittauspohjaiseen mallintamiseen. Mittauspohjainen mallinnus mahdollistaa
radiojärjestelmien fyysisen rajapinnan tila-, aika- ja taajuusriippuvuuden realistisen kuvauksen, mikä on tärkeää sekä
lähetin-vastaanotin että verkkosuunnittelussa.

Väitöskirjassa keskitytään mobiilin MIMO radiotie-etenemiskanavan mallinnukseen ja parametriseen estimointiin.
Työ sisältää katsauksen kirjallisuudessa esitettyhin malleihin. Lisäksi työssä kehitetään hybridimalli esittämään MIMO
radiokanavien tila-aika rakennetta. Malli koostuu äärellisestä määrästä kaksisuuntaisesti mallinnettuja
radiotie-etenemispolkuja, sekä radiokanavan diffuusia sirontaa kuvaavasta satunnaismuuttujasta. Radiokanavan
dynaamiset ominaisuudet saadaan hyödynnettyä soveltamalla tila-avaruus-mallinnusta mobiilien
radiokanavaluotainmittausten tietojenkäsittelyssä. Mallin parametrien rekursiivinen estimointi suoritetaan laajennetulla
Kalman suotimella (EKF) ja mallin laajuutta arvioidaan tilastollisten hypoteesintestausmenetelmien avulla. Mobiileja
mittauksia varten kehitetty parannettu dynaaminen malli ja siihen sovellettu EKF tuottavat sekä tarkempia estimaatteja
että pienentävät laskennallista kuormaa verrattuna staattiseen malliin perustuviin suurimman todennäköisyyden (ML)
estimaattoreihin.

Lopuksi työssä esitetään MIMO kanavamalli tensorihajotelmamuodossa. Lisäksi johdetaan uusi hierarkinen
tensorimalli sekä sen tehokkaaseen laskentaan soveltuva tensorihajotelma. Saavutetulla ortogonaalisella
tensorihajotelmalla on monia tärkeitä sovelluskohteita signaalinkäsittelyssä. Uuden menetelmän etuja suhteessa hyvin
tunnettuihin PARAFAC (parallel factorization) ja Tucker tensorimalleihin havainnollistetaan radiokanavaluotaimen
mittaustietojen käsittelyesimerkkien avulla.
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Jääskeläinen (former) for support in any practical matters.

I would like to thank the two main sponsors of my post graduate studies,
the Graduate School in Electronics, Telecommunications and Automation
(GETA, 2007-2009) and the Graduate School of Electrical and Commu-
nications Engineering (Faculty Grad School, 2005–2007) for financial sup-
port. Especially, I would like to acknowledge the GETA secretary Marja
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Chapter 1

Introduction

1.1 Motivation of the thesis

In recent years, the available data rates in wireless systems have grown by
several orders of magnitude, and the demand for higher rates continues to
increase in the future. The increasing data rates in wireless communications
enable new emerging services. A shift of general Internet traffic from wired
broadband access (DSL) to wireless networks is inevitably taking place as
well. Already the amount of data traffic in cellular networks is locally ex-
ceeding the voice traffic.

While providing enabling technologies to the ever growing demands for
increasing data rates, the researchers and system designers are, at the same
time, required to take into consideration several issues such as reliability
of the connection, reception coverage, interference among wireless systems
and/or users, spectrum allocation, power management, cost effectiveness etc.
One key technology considered for future wireless systems is the utilization of
multiple antennas at both ends of a communication link [149]. These MIMO
(Multiple-Input-Multiple-Output), MISO (Multiple-Input-Single-Output),
or SIMO (Single-Input-Multiple-Output) systems provide improved perfor-
mance in several different aspects [19, 98]. Multiantenna techniques rely
on multipath propagation phenomenon in the radio channel. While for a
conventional, single antenna radio link the multipath channel is consid-
ered disadvantageous, for multiantenna radio links the multipath can be
exploited to gain improved performance. A MIMO system in combination
with a rich multipath channel allows to separate signals in space, in ad-
dition to traditional time, frequency and code division multiplexing. This
feature can be utilized in order to either increase data rate of a single com-
munication link, increase the reliability of the link, or allow multiple user
to share the same radio resources. Hence, a multiantenna system can im-
prove the utilization of the scarce radio resources locally. Other advantages
of wireless multiantenna communications include improved link reliability
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and extended coverage (spatial diversity), interference management (coop-
erative MIMO) as well as new services such as direction finding for indoor
positioning. The MIMO concept has already been adopted in recent and on-
going wireless standardization, including IEEE 802.11n (WLAN) [56], IEEE
802.16 (WIMAX) [57], MIMO HSDPA (3/3.5G) [2], IMT-Advanced [58] and
3GPP Long Term Evolution (LTE) [1]. So far, these standards deal with
very limited MIMO configurations. Utilization of the full potential of MIMO
requires further research in several aspects.

1.2 Scope of the Thesis

One of the important research fields in the area of multiantenna communica-
tions is the measurement-based modeling of the space-, time-, and frequency
dependent wireless channels. Realistic channel models are important for
studying the theoretical gains of multiantenna communications, transceiver
development and design, as well as network planning. The approach of
building models based on measurements provides realistic tools for analyz-
ing the potential of new technological solutions. This is crucial in order to
compare the performance of real systems in simulations, without the need
of implementing everything in a prototype hardware.

This doctoral thesis deals with measurement-based modeling of propaga-
tion channels. The focus is on the estimation of the space, time, frequency,
and polarization dependent double directional mobile MIMO radio chan-
nel model parameters [136, 137] from dynamic channel sounding measure-
ments [5, 62–64, 68, 70, 73, 74, 90, 142, 144, 145]. The term double directional
refers to the fact that the channel is characterized by directional properties
at both ends of the radio link, revealing the overall spatiotemporal multi-
path structure of the MIMO propagation channel. An advanced channel
sounding measurement setup along with sophisticated estimation techniques
allows separation of the influence of the measurement equipment from the
properties of the wireless channel itself. Such methodology provides a gen-
eral characterization of the radio channel at a certain signal bandwidth and
specified carrier frequency, without imposing any restrictive assumptions on
a specific communication scheme or antenna configuration. The obtained
results of such a measurement-based channel modeling (MBCM) scheme can
be later applied for analyzing specific, realistic systems with given antennas
and other operational parameters [51,84,140,143,147,151,155].

In mobile communications the channels are always time-varying and un-
derstanding the dynamic behavior of channel is crucial in order to obtain
a realistic view on the performance of the system. Conventional techniques
for obtaining estimates of the double directional propagation parameters are
based on models which do not utilize the time dependence in the measured
radio channel conditions. In this thesis the focus is on sequential estimation
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techniques and state-space modeling of the dynamic radio channel. The pro-
posed Extended Kalman filter (EKF) solution provides improvements both
in terms of accuracy of the parameter estimates, as well as computational ef-
ficiency due to recursive operation. The approach to track the propagation
paths over time also captures the evolution of individual paths over time
providing further insight essential for the development of dynamic channel
models.

Another important aspect in wireless channel characterization is to have
the underlying measurement model as realistic as possible. At the same time
the identifiability of the parametrization should be maintained. In this thesis
the physical channel model includes both the contribution of deterministic,
dominant propagation paths — characterized by the double directional path
model [136, 137] — as well as a stochastic model for the distributed diffuse
scattering, or the dense multipath component (DMC) [108]. It is shown that
having both of these components in the channel model provides a better fit
to the physical reality.

Part of the thesis focuses on methods, which enable computationally at-
tractable solutions to the sequential estimation problem. These techniques
are necessary in order to reduce the computational complexity, which results
from processing high-dimensional data sets. At the same time it is impor-
tant to avoid making simplistic assumptions on the channel model. For
this purpose, a novel decomposition technique for multidimensional data
arrays (tensors) has been developed. This so-called Sequential Unfolding
SVD (SUSVD) has several applications in array signal processing. An im-
portant application — especially relevant in the context of this thesis —
is the low rank tensor approximation. The PARATREE/SUSVD low rank
approximation is applied to reduce computational complexity in the sequen-
tial estimation algorithm (EKF). Tensor decompositions also allow to reveal
relevant information from very high dimensional data.

As the scope of this thesis is on characterization and estimation of the
physical radio channel, it does not deal with communication theoretical or
implementation aspects of MIMO systems. These subjects are comprehen-
sively considered in [43,96,98,149]. The discussion on the estimation of the
MIMO propagation channel is also limited to the estimation of the parame-
ters of the double directional propagation path model. Hence, the stochastic
model for the DMC is treated as an underlying colored noise process and its
estimation is out of the scope of this thesis. Further discussion on the DMC
and its estimation can be found in [108,111,112,114,115,117].

1.3 Contributions

The main contribution of the thesis is a novel framework for dynamic mod-
eling and sequential estimation of the MIMO propagation path parame-
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ters from channel sounding measurements. The proposed approach has
several advantages compared to current state-of-the-art methods such as
SAGE [38,39] or RIMAX [108–110] especially in terms of improved dynamic
modeling and computational performance. The individual contributions of
the thesis are the following:

1. Derivation of a state-space model for describing the dynamics of double
directional propagation paths.

2. Developing a sequential estimation method stemming from EKF for
tracking propagation parameters over time.

3. Expressing the EKF in a form that is computationally attractable
even in the case of very large data dimensions and a large number of
parameters tracked within the state vector.

4. Developing a method for adjusting the model order using statistical
hypothesis testing for path detection and evaluation of the significance
of the estimates.

5. Employing the hybrid channel model comprised of the propagation
paths and a generalized model for the dense multipath component
(DMC). The generalized DMC model relies on Kronecker model with
unconstrained structure of the individual covariance matrices in dif-
ferent data dimensions.

6. Introducing a novel tensor decomposition having several applications
in signal processing. An example application is a low rank approxima-
tion, employed to facilitate efficient computation of specific expressions
in the EKF — a problem that has been emphasized by the generaliza-
tion of the DMC model.

7. Identifying and expressing MIMO channel models in terms of well
known tensor decompositions.

1.4 Structure of the Thesis

This compendium-type thesis is divided into an introductory part, and a
collection of the seven original publications. The introductory part of the
thesis is structured as follows. Chapter 2 provides a literature review of dif-
ferent approaches to wireless MIMO channel modeling. The measurement
based channel modeling approach is described in detail, and the hybrid
channel model characterizing the underlying physical propagation phenom-
ena based on channel sounding measurements is introduced. Chapter 3
gives an overview of the state-of-the-art in the field of multidimensional pa-
rameter estimation for propagation models. The author’s contributions in
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state-space modeling of propagation path parameters are described, as well
as illustrative estimation examples are provided to demonstrate the benefits
of the proposed method. Chapter 4 gives a brief introduction into tensor
modeling and decompositions. A novel PARATREE model and the SUSVD
technique developed in this thesis work are described, with application ex-
amples in array signal processing involving low rank tensor approximation.
Chapter 5 summarizes the thesis.

1.5 Summary of Publications

This section provides a summary of the original publications listed on
page xi. In all the listed publications the derivations, the programming and
the writing has been performed by the author, whereas the co-authors have
contributed to the development of the system model, estimation methods
and designing the experiments.

In publication [I], the state-space model for the complete double di-
rectional propagation path model is derived. The Extended Kalman filter
(EKF) is applied to sequentially estimate (track) the propagation path pa-
rameters. The issue of varying the state dimension, i.e., the number of paths
to track is also addressed. The algorithms are implemented in MATLAB
computing software [89]. The performance of the proposed solution is com-
pared by simulation against a state-of-the-art iterative maximum likelihood
(ML) solution, namely RIMAX [108, 109]. Also real world measurements
from the TKK’s channel sounder [74] are evaluated. In addition, it is shown
by simulation that the proposed solution is very fast in computation time
compared to RIMAX.

In publication [II] the dynamic model is extended by including the rate
of change variables to improve the prediction performance. Also the model
order reduction problem is formulated in the form of the Wald test [66].
Simulations results are provided to confirm the usefulness of the model ex-
tension. Real world data from a RUSK channel sounder [90] measured by
TU Ilmenau is used in the analysis [146]. The publication [II] was awarded
the “Best Student Paper Award” at EUSIPCO 2006 conference in Florence,
Italy.

In publication [III] the main contribution is the derivation of a
CUSUM [47] path detection scheme in order to increase the model order
in the sequential estimation when necessary. The proposed path detection
technique is based on statistical evaluation of the whiteness of the residual
sequence after subtracting the estimated paths and pre-whitening the data.
The method provides further savings in computational cost compared to an
exhaustive Maximum Likelihood (ML) based grid search.

In publication [IV] the model for the diffuse scattering is extended to a
Kronecker model with unconstrained structure of the individual covariance
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matrices in different data dimensions. Compared to earlier solutions where
the diffuse scattering was assumed to be spatially white, this more general
model adds computational complexity in the EKF expressions. A low rank
tensor approximation is proposed in order to reduce the computational cost
of the solution. This tensor decomposition has been later refined and studied
in detail in publications [VI] and [VII].

Publication [V] is a comprehensive description of the state-space mod-
eling approach discussed in publications [I–IV]. Additional contributions
include the derivation of the dynamic model and its parametrization, espe-
cially focusing on the prediction model of the complex-valued path polariza-
tion coefficients. The state dimension adjustment is also described in detail
and several illustrations on the estimation results with real world channel
sounding data are provided.

In publication [VI] the low rank approximation introduced in publica-
tion [IV] is formulated in detail. The new tensor model is named PARA-
TREE. The name stems from having close relation to PARAFAC [54, 79]
family of tensor models. Moreover it relies on a hierarchical tree structure
resulting from the proposed Sequential Unfolding Singular Value Decompo-
sition (SUSVD) — a method to form the PARATREE model from orthogo-
nal rank-1 tensors. An application example in noise suppression for channel
sounding data is provided.

Publication [VII] is an extended description of the PARATREE/SUSVD
decomposition. The proposed solution is compared against well known
PARAFAC [54, 79] and Tucker [150] (HOSVD [29]) tensor models. The
advantages of the proposed solution are illustrated through two application
examples, the complexity reduction in algorithms [IV] and the measurement
noise suppression [VI].
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Chapter 2

MIMO Radio Channel
Modeling

This chapter discusses modeling of Multiple-Input Multiple-Output (MIMO)
Radio Channels. MIMO systems has been an increasingly popular re-
search area in the wireless communications community during the last 10–15
years [41]. Wireless MIMO systems are based on the spatial degrees of free-
dom that arise from the utilization of multiantenna transceivers. MIMO
offers improvements in terms of increased capacity, link reliability, interfer-
ence mitigation, and SNR gain. However, not all of these benefits can be
obtained simultaneously. Only recently MIMO has been adopted in tech-
nology standardization as well (IEEE 802.11n [56], WiMAX [57], 3GPP
LTE [1]). The proposed MIMO configurations in these standards use only
few transmit and receive antennas. This is partly due to hardware limita-
tions, especially lack of space, manufacturing cost, as well as constraints on
power consumption in battery operated mobile terminals. Another aspect is
that the formulation of proper channel models to support the development of
MIMO terminals, and related network planning, is still under development.
Realistic modeling is necessary in order to fully understand and exploit all
the gains available in MIMO systems.

The focus in this chapter is in MIMO channel modeling. For further
reading on MIMO communications in general, including detailed description
on information theoretic aspects, different space-time coding techniques,
and fundamental tradeoffs in MIMO communications, see [96, 98, 149]. A
thorough description of wireless communications in general can be found
in [93].

This chapter is structured as follows. Section 2.1 introduces the MIMO
communication system model. Also the concept of multipath propagation
is introduced to facilitate the description of MIMO channel modeling ap-
proaches. Section 2.2 provides a review of various approaches to model the
MIMO radio channel. Section 2.3 is dedicated to the measurement-based
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channel modeling approach, which is one of the main topics of this thesis.
Furthermore, the underlying propagation model, which is considered as the
measurement model in the parameter estimation in Chapter 3, is introduced.
Section 2.4 concludes the discussion on MIMO modeling.

2.1 MIMO System Model

2.1.1 MIMO Principle

The principle of a MIMO communication system [98, 149] is illustrated in
Figure 2.1. The system in Figure 2.1 has multiple (MT ) transmit (Tx) an-
tennas and multiple (MR) receive (Rx) antennas. The coefficients hmRmT

of the spatial channel between each Tx-Rx antenna pair are typically repre-
sented by a narrowband MIMO channel matrix

H =

 h11 · · · h1MT

...
. . .

...
hMR1 · · · hMRMT

 . (2.1)

The input-output relation of a MIMO system may be given by the linear
model

y = Hx + n, (2.2)

where the vector y ∈ CMR×1 denotes the received signal sampled at MR Rx
antenna ports, the vector x ∈ CMT×1 contains the samples of the transmitted
symbols transmitted from MT Tx antenna ports, and the vector n ∈ CMR×1

denotes samples of the receiver noise. Note that the coefficients in (2.1)
include the influence of both the physical wireless propagation medium as
well as the response of individual antennas and the corresponding RF (radio
frequency) parts. The main driver for MIMO technology is the fact that
MIMO systems have the potential to increase the capacity of a communica-
tion system as a linear function of min(MR,MT ) without increasing transmit
power or expanding bandwidth. This requires that the channel matrix H in
(2.1) has full rank [149].

2.1.2 Multipath Propagation

Radio communications are based on transmitting signals via electromagnetic
wave propagation through a given medium. Before reaching the receiver, the
signal is subjected to various physical propagation phenomena. These inter-
actions include reflections, diffraction, scattering, absorption etc. [126]. The
result is that each of the receiving antennas observes multiple realizations
of the transmitted signal having individual delays, magnitudes, polarization
behavior, as well as directional characteristics. In wireless communications
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Figure 2.1: Description of the multiantenna communication, i.e., MIMO
principle.

these mechanisms are commonly classified under the term multipath prop-
agation, which is illustrated in Figure 2.2. Multipath propagation has a
deteriorating influence on the received signal due to the constructive and
destructive superposition of incoherent signal components leading to fad-
ing. Therefore, in conventional radio systems it has been considered as an
impairment. Furthermore, the information carrying signal has some band-
width. In a multipath environment the result is that all the frequencies in
the signal band reach the receiver along each of the propagation paths, and
the observed phase shift of the signal at different frequencies depends on
the electric length of the individual signal paths. As a result, the fading
of the received signal is frequency dependent due to either destructive or
constructive effect from the combination of the individual components. In
addition the channel may not be static, i.e., either the Tx or the Rx (or both)
may be mobile, or interacting objects in the environment may be moving.
Hence, the channel is also varying over time, which translates to Doppler
shift. This kind of dynamic wireless channel is called selective. The time-
frequency-space selectivity of the channel is commmonly characterized by
respective measures of coherence time, coherence bandwidth, and coherence
distance. Without going into details, these measures describe the correla-
tion of the channel in each domain, i.e., how rapidly the channel changes in
each dimension, respectively (see e.g. [93, 149] for details).

Double Directional Propagation Path Model

The effects of different electromagnetic propagation mechanisms leading to
multipath fading are commonly modeled by considering the channel as a
sum of discrete propagation paths. This model assumes that the paths re-
sult from interactions in the far-field of the antennas. Hence, the signal
components can be modeled as plane waves and the propagation interac-
tions can be described through ray-optical simplifications. An illustration
of a propagation path is shown in Figure 2.3. A path is characterized by
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Figure 2.2: Illustration of multipath propagation. Different electrical path
lengths not only yield different signal amplitudes, but result in a received
signal having frequency dependent phase. The superposition of such signal
components yields frequency dependent fading.

geometrical parameters such as time delay of arrival τ (TDoA), direction of
arrival (DoA) in ϕR (azimuth), ϑR (elevation), direction of departure (DoD)
in ϕT (azimuth), ϑT,p (elevation), as well as complex coefficients γHH , γHV ,
γV H , and γV V , describing co- and cross polarimetric properties of the path.
The instantaneous MIMO channel transfer function as a superposition of
such propagation paths can be written as

H(f,θ) =
GR(f)

∑P
p=1

{
BR(ϕR,p, ϑR,p)Γp ·BT

T (ϕT,p, ϑT,p)e−j2πfτp
}
GT (f),

(2.3)

where GR(f) and GT (f) denote the frequency responses of the receiver and
transmitter RF-chains, and BR(ϕR, ϑR) = [bRH

(ϕR, ϑR) bRV
(ϕR, ϑR)] ∈

CMR×2 and BT (ϕT , ϑT ) = [bTH
(ϕT , ϑT ) bTV

(ϕT , ϑT )] ∈ CMT×2 model the
response of each port in the antenna arrays for two polarizations as a
nonlinear function of the signal direction ϕi, ϑi. The antenna responses
can be modeled using, e.g., the Effective Aperture Distribution Function
(EADF) [62, 82, 83, 108] or spherical harmonics [33, 52]. These models can
be obtained either through analytical description of the array geometry or
based on calibration measurements. The matrix Γp contains the polarization
coefficients of the pth path, and is defined as

Γp =

[
γHH,p γV H,p

γHV,p γV V,p

]
. (2.4)

It should also be noted that this double-directional superposition of prop-
agation paths model (2.3) is a wideband model. However, it is valid as
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Figure 2.3: An illustration of a discrete propagation path and the geomet-
rical and polarimetric parameters characterizing it.

such only over a limited frequency band, as the response of the antenna
arrays as well as the interaction of the propagating waves with objects in
the environment should be uniform within the signal bandwidth. The in-
stantaneous realization of the propagation channel itself is characterized by
the parameters

θS =
[
τT ϕT

T ϑ
T
T ϕ

T
R ϑ

T
R γ

T
HH γ

T
HV γ

T
V H γ

T
V V

]T
, (2.5)

whereas the complete MIMO channel is comprised of the system specific
responses, i.e., Gi(f) and Bi in (2.3). The mapping of the parameters
(2.5) to the basis functions Bi is defined in [V], and a more comprehensive
description may be found in [108]. The MIMO channel modeled as a su-
perposition of propagation paths is often referred as the double directional
channel model [91, 136, 137]. The model (2.3) has a very nice property of
isolating the influence of the measurement system, including the antenna
arrays, from the propagation channel. This is crucial for the measurement-
based channel modeling approach, discussed in Section 2.3. The beauty
of such framework is that after obtaining the propagation path parameters
in (2.5) from measurements or simulation, one can reconstruct the channel
for arbitrary antenna configurations, whose description Bi can equally be
obtained either by simulation or calibration measurement. This approach is
extremely powerful for analyzing the performance of a MIMO system.

2.1.3 MIMO System in a Fading Channel

As it has been illustrated in the previous section, the wireless MIMO channel
varies over frequency. Relating this into the system level MIMO description,
the time and frequency dependent version of the MIMO channel matrix
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in (2.1) can be written as

H(t, τ) =

 h11(t, τ) · · · h1MT
(t, τ)

...
. . .

...
hMR1(t, τ) · · · hMRMT

(t, τ)

 . (2.6)

Note that each of the coefficients hmRmT can be expressed as a linear time-
varying channel filter

hmRmT (t, τ) =
∑
i

ai(t)δ(τ − τi(t)), (2.7)

where δ denotes the Dirac delta function and ai are complex coefficients for
delays τi. Hence, the effect of mobile users, arbitrary propagation mech-
anisms of (possibly moving) scatterers, and all the complexities of solving
Maxwell’s equations can be reduced to a sum of complex coefficients ai at
different delays τi in (2.7). The frequency dependence under multipath fad-
ing is evident from the equivalent frequency domain presentation of (2.7),
given by the Fourier transform of h as

HmRmT (t, f) =
∫ ∞
−∞

hmRmT (t, τ)e−j2πfτdτ =
∑
i

ai(t)e−j2πfτi(t). (2.8)

To conclude, the input-output relation in (2.2) for a fading channel (2.6) is
given by the convolution of the channel and the transmitted signal as

y(t) =
∫
τ

H(t, τ)x(t− τ)dτ + n(t). (2.9)

For a frequency flat channel, i.e., if the signal bandwidth is less than the
coherence bandwidth, a single delay tap is sufficient to describe the channel,
and H(t, τ) in (2.9) simplifies to H(t) in (2.2). If the channel is constant
over time, i.e., the channel coherence time is larger than the time span of
interest, then the channel simplifies to H.

In the following section different approaches to model the MIMO chan-
nel (either only the spatial MIMO matrix (2.1) or the wideband MIMO
channel (2.6)) are reviewed.

2.2 MIMO Channel Models — a Review

There are several types of models available for characterizing the spatio-
temporal wireless medium for multiantenna communications. The models
can also be classified in various ways. The choice of a model — as well
as the classification among them — depends on given objectives and sys-
tem assumptions. A convenient classification of MIMO channel models is
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Physics-based

Deterministic:

- Ray tracing (TR)

- Method of moments (MoM)
- Finite difference time domain (FDTD)

Measurement based:

Stochastic:

• COST273, IST-WINNER, 3GPP

- Geometry based stochastic models (GSCM)

- Nongeometrical stochastic models

- Measurement system independent
- Application specific

- Full correlation
- Spatially white (i.i.d.)
- Kronecker model
- Weischelberger (WB) model

Analytical

Mixed

- Finite scatterer model (FSM)
- Virtual channel representation (VCR)
- Maximum entropy model

MIMO Channel Models

• Extended Saleh-Valenzuela (SVA), Zwick model

Figure 2.4: Classification of MIMO channel modeling approaches.

given in [4] along with a comprehensive model survey. A modification of
that classification that suits better for the purpose of this thesis is given in
Figure 2.4. The fundamental distinction of models is made among physics-
based, analytical, and mixed models. However, it should be noted that many
alternative classifications are possible, such as narrowband vs. wideband,
field measurements vs. scatterer models [163]. Even for the classification in
Figure 2.4, it is possible to argue about a particular model belonging to one
class or another. The details of the models classified in Figure 2.4 will be
discussed in the following.

2.2.1 Physics-based Models

The term physics-based model refers to the fact that such a model explic-
itly characterizes the electromagnetic propagation environment between the
transmitter and receiver locations. This allows separate description of the
antenna (array) structure at the transceivers and the description is also in-
dependent of the signal bandwidth. The characterization is typically based
on the double directional multipath propagation model (2.3) [91, 136, 137],
which constitutes an important part of the underlying measurement model
in this thesis as well. The physics-based models can be further classified
into deterministic models, stochastic models, and measurement-based models.
Stochastic models can be further divided into geometrical stochastic channel
models (GSCM) and nongeometrical stochastic models. Measurement-based
modeling is discussed in detail in Section 2.3, whereas the others are sum-
marized in the following.
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Deterministic Propagation Models

Deterministic propagation models seek to characterize a specific radio en-
vironment in a predetermined level of detail. They can be very accurate
and physically meaningful, but on the other hand they are only represen-
tative for a specific propagation environment of interest. In order to apply
deterministic models, a detailed description of the environment is required.
Depending on the approach, these requirements may include accurate de-
scriptions of the geometry (2D/3D), material properties, weather conditions,
people etc. The most widely used deterministic modeling approach is so-
called ray tracing (RT) [18, 42, 80]. RT is typically based on the uniform
geometrical theory of diffraction [75]. The idea is to find all possible paths
that the signal can travel between the Tx and the Rx, and then apply a
set of rules on the interactions between the propagating wave and the en-
vironment along each of the signal paths. In this way a good prediction
of the received signal can be formed. The deterministic models may also
include a statistical component to account for uncertainties such as diffuse
scattering from surface roughness etc. [32]. RT tools are computationally
very expensive. Therefore several methods have been developed in order to
reduce the complexity [19]. RT modeling is best applicable in man made
environments, where also the structural database can be assumed to exist.
Other deterministic modeling approaches include the method of moments
(MoM) [53], and the finite difference time domain (FDTD) [159]. These are
very accurate field prediction models, but due to computational complexity,
their applicability is constrained to structures with limited dimensions, e.g.
antennas and their close vicinity.

Stochastic Propagation Models

Stochastic propagation models can be further divided into geometry-based
stochastic channels models (GSCM) [10, 91, 92, 94, 95, 101] and nongeomet-
rical stochastic models [156, 164]. The idea in GSCM is to determine the
locations of terminals and scatterers in a random fashion according to some
probability distributions, and apply simplified models for the interactions
of the propagating wave with the scatterers. GSCM facilitates describing
a physically meaningful time-evolution of the channel, as the time-varying
behavior is determined by the motion of the transmitters, receivers, as well
as the interacting objects. The influence of different scatterers can be con-
trolled by employing visibility regions, i.e., not all of the generated scatterers
necessarily contribute to the channel at all time instants. The parameters
of the GSCM models are typically derived based on measurements, and are
expected to represent typical values for each defined model scenario. The
scattering in GSCM may be modeled as a single-bounce [10,91,94,101,157]
(one interaction per path component) or double bounce [19, 92]. Single
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Figure 2.5: The GSCM principle. The channel is modeled as a superposition
of paths interacting with different types of geometrically specified clusters
of scatterers.

bounce models are suitable in macrocellular environment, where the scat-
tering typically occurs only in vicinity of the mobile station (base station
antennas are typically on a high mast). Double bounce models are valid
also in micro- and picocell environments, such as indoors. Different GSCM
models differ mainly in the way the scatterers are placed and how their in-
teractions with the propagating radio wave are defined and parameterized.
An illustration of the GSCM principle is shown in Figure 2.5 [19].

An example of a recent standardized GSCM type model is the COST273
channel model [19, 23]. The COST273 model is based on three types of
clusters of scatterers. These include i) the local cluster, which is a ring
of scatterers around mobile station (MS), basestation (BS), or both. ii)
The single-interaction cluster, which is a single-bounce model representing
a group of scatterers. iii) The multiple-interaction cluster, which describes
the angular distribution of a cluster seen from the BS and mobile station
MS independently. The COST273 model defines a large number of (in total
22) different environments. Although the number of parameters required
for applying the model is limited, one of the remaining problems is to find
realistic parameters for the clusters for each scenario [23]. Other popular,
standardized GSCM type models include the WINNER models [8, 81] and
their implementations [55,124], which are based on the 3GPP Spatial Chan-
nel Model (SCM) [3,125].

Nongeometrical stochastic models differ from the geometrical ones in
that they do not explicitly model the geometry of the scattering environ-
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ment. Instead, the channel realizations are based on paths, which are drawn
from some statistical distributions of the parameters. Hence, the time evo-
lution of the MIMO channel does not have a direct physical interpreta-
tion. An example of such model is the Saleh-Valenzuela angular extended
(SVA) model [156], which extends the well known Saleh-Valenzuela (SV)
model [120] by including angle of arrival (AoA) and angle of departure (AoD)
information. The original SV model [120] uses doubly exponential decaying
power model. The first profile models the power of each cluster and the
second profile models the decaying power of the multipaths within clusters.
The SVA model [120] includes additionally a uniform angular distribution of
the clusters, and assumes a Laplacian distribution for the multipaths within
each cluster [135]. Another example of a nongeometrical stochastic chan-
nel model is the so-called Zwick model [164]. The main difference to the
SVA model is that the multipath components are not clustered, i.e., each
component is treated independently.

Measurement-Based Channel Modeling

Measurement-based channel modeling (MBCM) refers to the method where
a measurement system along with parameter estimation techniques are em-
ployed in order to characterize the MIMO channel. A detailed discussion of
the approach is given in Section 2.3. The approach differs from the other
physical modeling approaches as follows:

• The results are specific to the measured environment as in determin-
istic modeling, but no environment database is explicitly required.

• Measurement-based modeling is often needed for determining the clus-
ter/multipath parameter statistics for the stochastic models.

• The applied measurement system limits the generality of the results
(bandwidth, antenna arrays, carrier frequency etc.).

An example of a physical modeling framework, which combines the SCM
approach with the MBCM approach, has recently been introduced in [22].
The Random-Cluster Model [22] is based on the COST273 [19], and its
cluster parameters are automatically estimated from channel sounding mea-
surements. The model does not specify the geometry, but is solely based on
cluster parametrization. Hence, the results of the model are specific to the
measured environment.

2.2.2 Analytical Models

The purpose of the analytical models is to characterize the MIMO channel
matrix (either (2.1) or (2.6)) without explicitly accounting for the propaga-
tion channel or having a detailed description of the array geometry. This
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simplifies the simulation complexity significantly, which is especially desir-
able for large scale system level simulations. This subsection focuses on
analytical modeling of the spatial MIMO matrix H ∈ CMR×MT (2.1), i.e.,
the time- and frequency selectivity is ignored for now.

Correlation-Based Analytical Models

Correlation-based analytical models typically assume that the coefficients
of the MIMO channel matrix H (2.1) are zero-mean, complex circularly
symmetric, normal distributed random variables. Then the second order
statistics, i.e., the covariance matrix1

Rfull = E
[
vec
(
H
)
vec
(
H
)H] (2.10)

completely characterizes the spatial MIMO channel [19]. A realization of
the channel can be simply drawn as

vec
(
Hfull

)
= R

1
2
fullvec

(
Hw

)
, (2.11)

where Hw denotes a matrix having each of its values drawn from NC(0, 1),

and R
1
2
full denotes any square root of a full rank matrix Rfull, e.g., given by

Cholesky Factorization [44], satisfying R
1
2
fullR

1
2

H

full = Rfull. This is the most
general form of a correlation model. However, as the array dimensions grow,
the number of elements in the covariance matrix (2.10) increases quadrati-
cally, which can be an issue in terms of complexity and identifiability.

Spatial Whiteness

Spatial whiteness is the simplest analytical correlation-based model. In that
model all the elements of the MIMO matrix H are assumed to be independent
and identically distributed (i.i.d.) with variance σ2. The full covariance
matrix for this model is given by

Ri.i.d. = σ2I, (2.12)

which yields a trivial realization of the channel as Hi.i.d. = σHw. Physical
interpretation of this model is that the MIMO channel branches would be
uncorrelated. Obviously this assumption is unrealistic, but the simplicity of
the expression allows to derive closed form expressions for e.g. information
theoretic analysis of MIMO systems [141]. The i.i.d. model has also been
used for describing the spatial covariance matrices of a stochastic part of the
radio channel model, namely the diffuse scattering component in [84, 108,
111,145], as well as in publications [I–III].

1The operation h = vec
(
H
)

stacks all the columns of a matrix H as h =

vec
(
[h1 · · ·hMT ]

)
=
[
hT

1 · · ·hT
MT

]T
as in the respective MATLAB [89] command.
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Kronecker Model

The Kronecker model is a popular analytical correlation-based model [131].
It assumes that the spatial channel is separable at both link ends, yielding
a model for the covariance matrix as2

Rkron = RT ⊗RR. (2.13)

A realization of the Kronecker modeled MIMO channel matrix is given by

Hkron = R
1
2
RHwR

1
2

T

T . (2.14)

A physical interpretation of the Kronecker model is that the spatial distri-
bution of the scattering at both link ends is independent. The implication
of this is that the transmitted signal at any DoD contributes to the re-
ceived signal at each DoA (having nonzero angular power spectrum). Note
that this independence is also assumed in the COST273 multiple-interaction
cluster description [19,23]. However, although single clusters have this Kro-
necker separability, this property does not hold for the complete channel
which is a superposition of several clusters of scatterers [23]. The Kro-
necker model (2.10) has significantly fewer parameters than the full covari-
ance model (2.10). This reduces memory requirements and complexity of the
model. Moreover, it increases model identifiability from measured data as
the matrices can be estimated with less parameters, and from fewer realiza-
tions of the MIMO channel matrix. The Kronecker model is considered for
the diffuse scattering of the measurement model in publications [I–V,VII],
which is discussed in detail in Section 2.3.3.

Weichselberger Model

The Weichselberger model (WB) [158] can be viewed as a generalization of
the Kronecker model. It is based on the eigenvalue decomposition of the Tx
and Rx correlation matrices

RT = UTΛTUH
T , (2.15)

RR = URΛRUH
R, (2.16)

where UT/R are unitary matrices having the eigenvectors of RT/R at their
columns, and ΛT/R is a diagonal matrix containing the corresponding eigen-
values. The Weichselberger model introduces a power coupling matrix Ω

2The Kronecker product of A (m× n) and B (p× q) is a mp× nq matrix defined as

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Cmp×nq
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connecting different Tx and Rx eigenmodes. Hence, a realization of the WB
MIMO channel is given by

HWB = UR

(
Ω̃WB �Hw

)
UT
T , (2.17)

where� denotes Schur (element-wise) product, and Ω̃WB is the element-wise
square root of ΩWB, defined as ΩWB = Ω̃WB � Ω̃WB. In Section 4.3.1 the
WB model is described using tensor notation, and the approach described
in [158] for computing the coupling matrix is extended for the coupling
tensor. It should be also noted that the Kronecker model is obtained as a
special case of the WB with a rank-1 coupling matrix Ω = λRλT

T , where3

λT/R = diag
(
ΛT/R

)
.

2.2.3 Mixed models

The term mixed models refers to a class of (spatial) MIMO models, which
have some characteristics of both physical and analytical models. In [4] these
were referred to as propagation motivated analytical models, since they have a
stronger relation to the physics of the radio wave propagation than the purely
analytical models. Mixed models include the finite scatterer model [13],
the virtual channel representation [127], as well as the maximum entropy
model [31].

Finite Scatterer Model

The Finite Scatterer Model (FSM) [13] describes the MIMO channel as a
superposition of a finite number of multipath components, that are treated
according to ray-optical concepts (plane waves). In [4, 19] the FSM model
is classified among analytical models, although it explicitly allows for the
separation of the physical propagation channel from the antenna arrays and
other system responses. The formulation of the FSM for the spatial MIMO
matrix is given as [19]

HFSM = BR

(
Ω̃FS �Hw

)
BT
R, (2.18)

where BT/R ∈ CMT/R×P denotes the matrices of Tx/Rx steering vectors
corresponding to P multipaths, and Ω̃ is defined as for the WB model.
The coupling matrix ΩFS is always diagonal if single bounce scattering
is assumed, and it can be formulated as a diagonal matrix for multiple
scattering as well by increasing P . The multipath parameters defining the
steering vectors may be drawn from, e.g., assumed statistical distributions.

3The operation a = diag
(
A
)

extracts the elements on the diagonal of A into a column
vector a.
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Virtual Channel Representation

The Virtual Channel Representation (VCR) [127] models the MIMO channel
in beamspace, which effectively means that the channel is transformed from
the domain of the antenna elements to the angular domain. The spatial
coupling is then modeled using virtual DoAs and DoDs. This is done by
combining contributions from predefined, unitary steering matrices B̃T/R as

HV CR = B̃R

(
Ω̃V CR �Hw

)
B̃T
T . (2.19)

Hence, the matrices B̃T/R represent the virtual DoAs and DoDs, and the
coupling matrix Ω̃ determines their connections. The linearity of the model
in the fixed virtual directions facilitates convenient expressions for informa-
tion theoretical analysis, but the physical relation of the representation to
the actual DoAs and DoDs is not explicit in the model.

Maximum Entropy Model

The Maximum Entropy Model [31] is based on formulating the MIMO chan-
nel model from an information theoretic point of view. The model is based
on maximum entropy principle, i.e., for any given state of knowledge on
the physical constraints, the model is expressed through probability distri-
butions maximizing the model entropy. This approach avoids any limiting
model assumptions that are not supported by prior information. The model
is hence given in as general form as possible, and additional prior informa-
tion, such as bandwidth, angular distributions or specific DoAs etc., can be
flexibly incorporated in the model as necessary. Any unknown parameters
can be treated through marginal probability distributions [31].

2.3 Measurement-Based Channel Modeling

This section is dedicated to the concept of measurement-based channel mod-
eling (MBCM). The approach is motivated in Section 2.3.1. The channel
sounding measurement methodology is introduced in Section 2.3.2. Sec-
tion 2.3.3 describes the MIMO propagation channel measurement model
applied in the parameter estimation in Chapter 3.

2.3.1 Motivation

In this thesis, the MBCM is considered to be an approach to model the time-,
frequency- and space-dependent MIMO radio channel using measured data.
The goal is to derive and estimate the parameters of a MIMO propagation
channel model, that are independent of the applied measurement system.
These model parameters can then be utilized for various purposes. An
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Figure 2.6: Measurement-based channel modeling (MBCM) framework.

illustration of the MBCM framework is given in Figure 2.6. The MBCM
framework includes (either requires or enables) the following procedures

• Conducting MIMO channel sounding measurements (necessary re-
quirement),

• Estimating the channel model parameters from measurement data,

• Deriving model statistics for parameterizing and improving current
channel models,

• Reconstructing channel realizations for simulation purposes using
measurement-based parameters or, alternatively,

• Applying the measured channels directly in simulations (propagation
effects remain coupled with the antennas used in the measurements).

Also the quality of the parameter estimates should be evaluated for model
refinement and estimator development purposes.

The measurement-based channel modeling approach allows ideally to
separate the influence of the measurement antenna system from the MIMO
propagation channel. This requires that the measurement equipment is
properly calibrated, both in terms of the system frequency response as well
as the directional and polarimetric response of the antenna arrays, see (2.3).
If these requirements are met, then the estimation results obtained by em-
ploying a proper high resolution parameter estimator along with a realistic
channel model, can achieve a valid description the propagation environment.
However, the applicability of such results is limited in several ways, including
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Figure 2.7: MIMO channel sounding architectures: virtual arrays (VA),
switched architecture (TDM), and semi-parallel (SP) architecture.

• Carrier frequency — the interaction of radio waves with the propa-
gation environment is typically very different at different frequencies,
e.g., 100 MHz, 1 GHz, or 5 GHz.

• Signal bandwidth — influences especially the delay resolution, but has
influence also on model assumptions such as frequency selectivity of
the antennas and other propagation interactions.

• Transmit power — regulated by standards or licenses in order to avoid
interference with other systems.

• Angular and polarimetric resolution — depends on the employed an-
tenna arrays and their calibration.

The results are also specific to the measurement location. For further discus-
sion on MBCM limitations, see [83]. The advantage of the MBCM approach
is that the obtained results of such a scheme can be later applied for ana-
lyzing specific, realistic systems with given antennas and other operational
parameters (see, e.g., [51, 84,140,143,147,151,155]).

2.3.2 Channel Sounding Measurement Methodology

There are three basic architectures for measuring the MIMO radio channels:
virtual arrays (VA), switched architecture (or time division multiplexed,
TDM), and semi-parallel (SP) architecture. The classification of these in
terms of implementation cost vs. measurement speed is illustrated in Fig-
ure 2.7.
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Table 2.1: Typical parameter values for the TKK channel sounder [74].
Label Value

Frequency samples Mf 193
Transmitter ports MT 32

Receiver ports MR 32
Bandwidth B = 1

Ts
120 MHz

Snapshot duration Tm ∼ 3 ms
Snapshot interval ∆t ∼ 40 ms

Virtual Array

The virtual array (VA) approach refers to a setup where a single antenna at
both ends of the link is mechanically moved by a scanner [104]. The pattern
of movement can be modified to form an arbitrary virtual MIMO array con-
figuration. This approach is cost effective. However, the measurement of a
single MIMO channel matrix takes a very long time. Hence, only completely
static environments can be considered. Other drawbacks in the VA approach
include: 1) The coupling of the antenna elements is not captured as there
is only a single element present. This is good from a channel measurement
point of view, but it limits the applicability of the data as such in a MIMO
system simulation. 2) The phases of the local oscillators at Tx and Rx must
be stable.

Switched Array

The switched array (TDM) architecture is probably the most widely applied
technique, especially among the commercial channel sounders [36,90]. In the
TDM approach an antenna array is employed at both link ends, and the or-
thogonality of the measured channels between each Tx-Rx antenna pair is
achieved by synchronized switching of the antenna ports. The structure of
a snapshot of data from a TDM sounder is illustrated in Figure 2.8. The
achievable measurement rate 1/∆t is limited by the number of channels to
measure MT ·MR, the sampling frequency fs = 1/Ts and sampling duration
Mf ·Ts, as well as data buffering capacity and storage speed (∆t = N ·Tm).
Additionally, each channel is typically measured twice to ensure sufficient
guard time to avoid any effects from antenna switching. To conclude, achiev-
ing sufficient temporal sampling rate while conducting TDM MIMO channel
sounding measurements, involves making a tradeoff between the number of
channels to measure vs. mobility of the environment or transceivers (the
maximum Doppler frequency should be less than 1/(2∆t)). Table 2.1 lists
the parameters of a typical measurement configuration used for the TKK
channel sounder [74].
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Figure 2.8: The structure of a snapshot obtained by switched channel
sounder.

Figure 2.9 shows an example of three antenna arrays along with their
switches. The Stacked Polarimetric Uniform Circular Array (SPUCA) [85]
has in total 4 · 16 = 64 elements (2 · 64 = 128 ports), but the switch seen
in Figure 2.9 limits the operability to 32 ports. Also the Polarimetric Semi-
Spherical Arrays (PSSA) have 20 elements (40 ports), but the switches limit
the operability to 32 ports.

Semi-Parallel Architecture

The semi-parallel architecture in Figure 2.7 refers to a setup where the Tx
uses time-division to separate the channels, whereas all the Rx elements
measure at the same time. As switching is conducted only at one link end,
this approach allows significantly faster measurements speeds. However, the
measurement rate is also limited by the data buffering and storage capabil-
ities. Also the cost of such system is much higher due to MR receivers
required at the Rx.

Recently, channel sounding measurements have been conducted using a
dual-sounder setup (one Tx and two Rx units) for multi-link characteriza-
tion [5,70,73]. This setup allows to capture the truly simultaneous channel
conditions for two interfering radio links. The approach can be viewed as
something between the TDM and SP approaches, as both Rx units measure
simultaneously (although individually the switching is purely TDM-based).
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Figure 2.9: Three antenna arrays applied in dual link channel sound-
ing measurements [5, 70, 73]: Stacked Polarimetric Uniform Circular Array
(SPUCA) [85] and two Polarimetric Semi-Spherical Arrays (PSSA) [72,74].

2.3.3 The Hybrid Channel Model

The MIMO propagation channel model employed for characterizing the mea-
sured MIMO channel transfer functions in [I–VII] is comprised of three
model components: 1) Dominant propagation paths (hS), 2) Dense Multi-
path Component (DMC, or diffuse scattering, hD), and 3) Measurement
noise (hN ). The model is called a hybrid channel model, as it contains both
a deterministic component, i.e., the propagation paths, as well as a random
component, i.e., the DMC (and measurement noise). The vector form of the
discretized, time-invariant version of the model with Mf frequency samples,
MR Rx ports and MT Tx ports is defined as4

h = hS + hD + hN ∈ CM×1, (2.20)

where M = MfMTMR. The individual model components are described in
the following.

Dominant Propagation Paths

The dominant propagation paths component hS is a superposition of discrete
multipaths obeying the double directional path model (2.3). The sampled
version of (2.3) is given by

hS =
∑

Tpol={H,V }

∑
Rpol={H,V }

BTpolRpol
· γTpolRpol

, (2.21)

4The tensor version of the model is described in [VII] and Chapter 4.
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where the matrices5

BTpolRpol
= BRpol

♦BTpol
♦Bf ∈ CM×P (2.22)

contain the basis functions (including systems responses Gi in (2.3)) for
different polarization configurations of P paths (see [V] for details). The
paths are described by geometrical parameters (DoAs, DoDs, propagation
delays) as well as polarization coefficients, which are defined with respect to
some reference directions of the Tx and Rx arrays and are assumed to obey
ray optical (plane wave) modeling principles. The model does not explicitly
include details on the nature of the interactions from which the individual
paths result from (reflection, scattering, diffraction), or the multitude of
them (line-of-sight, single bounce, double bounce). However, the nature and
source of multipath components may be determined in post-processing, see
e.g. [103]. The estimation of the parameters of the dominant propagation
paths from dynamic channel sounding measurements [I–V] is the topic of
interest in this thesis, and it will be further discussed in Section 3.4.

Dense Multipath Component

The Dense Multipath Component (DMC) is a necessary part of the MIMO
channel model in order to provide means to mathematically describe the
contribution of the rich diffuse scattering in the propagation channel, which
can not be modeled by the dominant propagation paths. Another way to
distinguish between a propagation path and DMC is through their time
varying nature. If a channel would be constant, one may be able to fully
reconstruct the whole channel transfer function using a very high number
of propagation paths. However, this model fails if the channel changes even
slightly. This is due to the fact that most of the individually less significant
channel contributions result from a superposition of signals having differ-
ent spatio-temporal structure. Moreover, the true dominant propagation
paths will prevail within a larger spatial region. Especially in a dynamic
channel while either one of the terminals, or possibly a source of propaga-
tion mechanism is moving, it is evident that, regardless of the measurement
system, only part of the radio channel can be modeled using the domi-
nant propagation paths. Figure 2.10 illustrates the influence of the DMC
in a Power-Angular-Delay spectrum of a measured MIMO channel. After
removing the estimated propagation paths (the peaks in Figure 2.10a), it
is evident that a significant amount of energy in the channel remains unac-
counted for. It should be noted that the profile in Figure 2.10b also contains
measurement noise, which hides part of the DMC profile (as well as some
weak propagation paths).

The DMC, i.e., the vector hD in (2.20), is assumed to be comprised of a
large number of individually weak signal components. Therefore, owing to

5Operator ♦ denotes the Khatri-Rao product (column-wise Kronecker-product).
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(a) The full measured channel h (2.20). (b) Channel after subtracting the influence
of the dominant propagation paths h−hS .

Figure 2.10: Instantaneous Power-Tx Azimuth-Delay-Profile from a MIMO
measurement with 16 element circular array in a street scenario. The data
is averaged over all receiver elements.

the central limit theorem, it can be modeled as a zero-mean complex circular
symmetric normal distributed random vector

hD ∼ NC(0,RD), (2.23)

with a covariance matrix RD ∈ CM×M . As this matrix can become very
large (see Table 2.1 for typical dimensions) it is necessary to enforce some
structure for the DMC model. This is crucial for i) ensuring the identifiabil-
ity (estimation) of the model, and ii) constraining computational complexity
and memory requirements. The DMC is assumed to have structure both in
delay as well as in angular domain, see publication [IV], [112]. In addition,
the DMC is assumed to obey the Kronecker model (2.13), and the covariance
matrix is defined as

RD = RR ⊗RT ⊗Rf . (2.24)

Estimation of the DMC covariance matrices is out of the scope of this thesis.
An algorithm to estimate (2.24) is introduced in [115], whereas estimation of
a simplified, spatially white (RR = IMR

, RT = IMT
) DMC model (applied

also in publications [I–III]) is described in [105, 107, 108, 111, 113]. Further
discussion on modeling the DMC can be found in [V], [112] and its contri-
bution to MIMO capacity is analyzed in [114].
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Measurement Noise

The measurement noise hN in (2.20) is assumed to be a white complex
circular symmetric normal distributed random vector

hN ∼ NC(0, σ2
NI), (2.25)

with variance σ2
N . The measurement noise results from both thermal noise

from the receiver electronics as well as ambient noise not induced by the
transmitted signal.

2.4 Summary and Discussion

This chapter provides an overview of MIMO radio channel modeling. Ta-
ble 2.2 summarizes the discussion on different modeling approaches by con-
sidering their applicability for specific purposes. The differences in the use of
models depends on many factors, and the choice of a proper model depends
on the task at hand. Typically higher level simulations require a model for
the physical layer to be valid for a wide variety of environments, simple to
implement and fast to compute, such as SCM or ACM. On the other hand,
link level studies can afford a more detailed model having physical relevance,
such as DCM or MBCM. Such models are also necessary for network cov-
erage and transceiver design. On the other hand, ACM type of models are
well suited for studying theoretical MIMO performance gains as they often
facilitate establishing information theoretical results even in a closed form.
To obtain similar statistically relevant results based on DCM or MBCM may
require a large set of possible channel conditions to be representative, which
can turn out to be very tedious in practice.

Table 2.2: Summary of MIMO channel modeling approaches.
Approach

Applicability DCMa SCMb MBCMc ACMd

System level simulations - ++ + +++
Network coverage + - + -
Link level analysis + (+) ++ -
Statistical analysis (+) - (+) ++
Physical relevance ++ - +++ - -
Simplicity - - + + +++
Generality - - + - - ++

aDeterministic Channel Models [18, 32,42,80]
bStochastic Channel Models [8, 10,19,81,91,92,94,95,101,156,157,164]
cMeasurement-Based Channel Models [22, 51,84,140,143,147,151,155]
dAnalytical (and mixed) Channel Models [13, 31,127,131,141,158]
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Measurement-based modeling is somewhat coupled with all the other
modeling approaches as all models should be based on observations of the
physical phenomena. On the other hand, MBCS also employs some underly-
ing model(s), which typically belong to some of the other model categories.
The hybrid channel model described in Section 2.3.3 is a combination of a
deterministic propagation path model and a stochastic model for the diffuse
scattering. This modeling approach is a good tradeoff between limiting the
model dimensionality in terms of the number of parameters in the model
vs. compliance with physical reality. It is also well suited for dynamic mod-
eling and the related sequential estimation method introduced in the next
chapter.
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Chapter 3

Estimation of Propagation
Model Parameters

This chapter addresses the problem of parameter estimation in the context of
extracting the parameters of deterministic propagation paths of the hybrid
channel model introduced in Section 2.3.3 from MIMO channel sounding
measurements (see Section 2.3.2). The estimation problem is first defined
in Section 3.1. Sections 3.2 and 3.3 provide a review of the estimation tech-
niques developed for this application. Section 3.4 introduces the proposed
state-space model and the sequential estimator. Some estimation examples
are provided in Section 3.5. The discussion in Section 3.6 concludes this
chapter.

3.1 Estimation Problem

The measurement model for MIMO channel sounding data observed at dis-
crete time instances k ∈ {1, . . . ,K} is based on the hybrid channel model
introduced in Section 2.3.3, and is given by

yk = hS(θS,k) + hD(θD,k) + hN,k ∈ CM×1. (3.1)

The vectors hS , hD and hN,k, denote the model components for the dom-
inant (specular-like) propagation paths, the diffuse scattering (DMC), and
the measurement noise, respectively. The estimation problem boils down
to finding the respective parameters θS,k, θD,k, (and σ2

N ) that minimize a
given cost function while fitting the model to the observations y1,...,k. The
parametrization depends on the choice of models for the individual com-
ponents in (3.1), the employed measurement setup, as well as the dynamic
nature of the model.

This thesis focuses on the estimation of the deterministic part hS (2.21)
only, i.e., the parameters θS of the dominant propagation paths. Hence,
the parameters θD,k and σ2

N of the distribution functions of the random
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vectors hD (2.23) and hN (2.25) are assumed to be known, i.e., in practice
they are estimated from the same set of data. From the estimation of the
dominant propagation paths point of view, the measurement model can thus
be reformulated as

yk = hS(θS,k) + nk ∈ CM×1, (3.2)

where nk ∼ NC(0,Rk), with Rk = RD,k + σ2
N,kI, and RD,k is defined in

(2.24). The probability density of (3.2) is given by yk ∼ NC(hS(θS,k),Rk).
Hence, the DMC is treated as a colored normal distributed noise in the
measurement model for the propagation paths.

The vector hS(θS) models the propagation paths, see (2.3) and (2.21).
The propagation path parameters θS defined in (2.5) can be further divided
into structural parameters

µ =
[
τT ϕT

T ϑ
T
T ϕ

T
R ϑ

T
R

]T ∈ R5·P×1 (3.3)

and weight parameters

γ =
[
γT
HH γ

T
HV γ

T
V H γ

T
V V

]T ∈ C4·P×1, (3.4)

yielding
θS = [µ γ]. (3.5)

The relationship of these parameters with the observation model for hS is
revealed as the model (2.21) can be simplified to

hS = B(µ) · γ, (3.6)

where B(µ) = [BHH(µ) BHV (µ) BV H(µ) BV V (µ)] ∈ CM×4·P , see (2.22).
The model (3.6) is nonlinear w.r.t. the structural parameters µ (3.3). These
real valued parameters describe the geometry of the double directional prop-
agation paths and they are mapped to the observation through complex shift
operations, see publication [V]. On the other hand, the complex valued po-
larization weights γ (3.4) are linear in the model. This is useful since it
allows for minimizing a given cost function w.r.t. µ only, as an estimate of
γ can be computed in closed form for any µ using a linear (weighted) least
squares method.

To conclude, the problem of estimating the propagation path parameters
is very demanding since it involves colored normal distributed noise, high
data dimensionality, possibly correlated and closely spaced sources, polariza-
tion aspects, arbitrary array configurations as well as model order selection.
In addition, as the channel sounding measurements are often acquired in
mobile scenarios, there is typically only a single snapshot of data available
for estimating the parameters of a channel realization.
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Dynamic Model

Sequential Monte Carlo

- Extended Kalman filter (EKF)

- Unscented Kalman filter (UKF)

- Particle filter

- Beamforming (Bartlett, MVDR)

- MUSIC (spectral)

Spectral-based

Subspace-based

- ESPRIT (parametric)

Maximum likelihood

Stochastic ML

Deterministic ML
- SAGE

- RIMAX

Static Model

Kalman filters

Figure 3.1: Classification of nonlinear parameter estimation techniques
based on different modeling assumptions.

A classification of nonlinear parameter estimation techniques is given
in Figure 3.1, where the main distinction is made between static and dy-
namic modeling of the time evolution. In the following sections 3.2 and
3.3, a literature review is given covering different approaches for solving the
propagation parameter estimation problem described in this section. The
considered methods vary in several aspects, including underlying modeling
assumptions. These differences are pointed out along with the description.
The applicability of different methods for the given problem is also ad-
dressed.

3.2 Estimation of Static Model Parameters

Parameter estimators relying on the static model assume that the parame-
ters of interest remain unchanged over the observation period. The classi-
fication of the static parameter estimation techniques in Figure 3.1 follows
mainly the one presented already over 10 years ago in [77]. Since then, the
interest in the context of MIMO radio channel parameter estimation has
focused on ESPRIT-type algorithms, such as UNITARY-ESPRIT [50] and
R-D-ESPRIT [48], as well as maximum likelihood (ML) based approaches
including stochastic ML methods [59,97,106], and deterministic ML methods
such as SAGE [38,39] and RIMAX [108–110]. The ML-based high-resolution
parametric estimators are capable of estimating also the parameters of co-
herent signals, unlike the spectral-, or subspace-based techniques, whose
performance may suffer drastically under such conditions. An overview of
these techniques may be found also in [160].

3.2.1 Methods Based on Second Order Statistics of the
Channel

The methods discussed in this subsection are based on the assumption that
the measurement model, denoted by ỹk to distinguish from yk in (3.2), is
defined as
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ỹk = h̃S(θS,k) + ñk ∈ CM̃×1, (3.7)

where h̃S,k ∼ NC(0, B̃(µ)PSB̃H(µ)), and ñk ∼ NC(0, σ2
NI). The ma-

trix PS ∈ CP×P in (3.8) is called the signal covariance matrix, and
B̃(µ) ∈ CM̃×P is defined as in (3.6), with the exception that B̃(µ) here
may denote only a subset of the model B(µ) defined in (3.6) and (2.22). In
fact, the •̃ notation is used here to point out the fact that the model in (3.7)
may represent only a subset of the full model in (3.2). This model dimen-
sionality reduction can be in terms of number of measurement apertures,
e.g., M̃ = MR, or polarization, e.g., B̃(θS) = bRV

(ϕR, ϑR). Furthermore,
it is assumed that E[h̃S,kh̃H

S,l] = 0, for k 6= l. Hence, contrary to (3.2) where
hS is considered as a deterministic mean, the model (3.7) indicates that ỹk
is a zero-mean circularly symmetric normal distributed random vector with
the covariance matrix

R̃ = B̃(µ)PSB̃H(µ) + σ2
NI. (3.8)

The methods described in this subsection are essentially based on these
modeling assumptions.

Beamforming

Beamforming (BF) [152] is a basic spectral-based estimation method. In
fact, it can be viewed as the direct spatial extension of the periodogram [139].
The idea is to mathematically steer the radiation main lobe of the antenna
array in each direction and measure the corresponding energy level. Beam-
forming methods rely on an estimate of the covariance matrix (3.8), which
is given by the sample covariance matrix as

R̂ =
1
K

K∑
k=1

ỹkỹH
k . (3.9)

The classical form of BF is the so-called Bartlett beamformer, and its power
spectrum is given by

PBF (ϕ, ϑ) = wH(ϕ, ϑ)R̂w(ϕ, ϑ), (3.10)

where the weight vectors are defined as the normalized steering vectors (re-
sponse of the antenna array)

w(ϕ, ϑ) = b(ϕ, ϑ)/
√

bH(ϕ, ϑ)b(ϕ, ϑ). (3.11)

As a BF example, let us consider a reduced model ỹk = yR ∈ CMR×1 for
a vector of samples corresponding to the Rx array elements obtained from
the transmitted signal of a single Tx antenna at a single frequency. Then
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b(ϕ, ϑ) = bRH/V
(ϕR, ϑR), i.e., one also needs to consider the polarizations

independently. The advantage of BF is that the obtained spectrum can
be interpreted as the signal power of the channel in each DoA/DoD. The
BF is simple to implement, and it also represents the maximum likelihood
estimate for a signal direction in case of a single source [77]. Furthermore,
BF in (3.10) does not require R̂ to be full rank. The downside is that
the resolution is very limited and — regardless of the signal quality —
the resolution can only be enhanced by increasing the number of sensors,
which is often not possible due to physical limitations. This essentially
prevents beamforming from providing statistically consistent DoA estimates
for multiple-signal case [139].

The minimum variance distortionless response (MVDR) beamformer,
also known as Capon’s BF [14], is a modification of BF, and its spectrum is
defined as

PMVDR(ϕ, ϑ) =
1

wH(ϕ, ϑ)R̂−1w(ϕ, ϑ)
, (3.12)

The MVDR maintains a fixed gain in the direction of interest while minimiz-
ing the power contributed from any other direction. This leads to a signifi-
cant improvement in the resolution compared to conventional BF. However,
the MVDR has a requirement for the sample covariance matrix (3.9) to be
invertible. The BF solutions do not scale well with an increasing number of
parameters. Therefore, their applicability is mainly limited to a grid search
to obtain an (initial) estimate of a single or a few parameters related to a
specific measurement aperture, e.g., Rx/Tx data vector.

Subspace-Based Methods

The subspace-based methods include the MUSIC (MUltiple SIgnal Classi-
fication) [9, 129, 130], different types of ESPRIT (Estimation of Signal Pa-
rameters via Rotational Invariance Techniques) algorithms [99,119], as well
as the RARE (RAnk Reduction estimator) [100]. The subspace methods
are based on the model (3.7). They rely on the eigenvalue decomposition of
the covariance matrix (3.8), which may be defined as

R̃ = E
[
ỹỹH

]
= UΛUH = UsΛsUH

s + UnΛnUH
n , (3.13)

where Us ∈ CM̃×P and Λs ∈ RP×P denote the eigenvectors and eigen-
values associated with the signal subspace with P sources, whereas Un ∈
CM̃×(M̃−P ) and Λn ∈ R(M̃−P )×(M̃−P ) denote those of the noise subspace,
which is orthogonal to the signal subspace. The model (3.13) of the covari-
ance matrix (3.8) is the basis of the subspace-based techniques.

The idea in the MUSIC algorithm [9, 129, 130] is to find the P < M
directions that minimize the projection of the steering vector to the whole

35



noise subspace. The so-called MUSIC pseudo-spectrum is then defined as

PMUSIC(ϕ, ϑ) =
1

wH(ϕ, ϑ)ÛnÛH
nw(ϕ, ϑ)

, (3.14)

where wH(ϕ, ϑ) is defined in (3.11). The MUSIC pseudospectrum (3.14)
should exhibit high peaks at P angles corresponding to the steering vectors
orthogonal to the noise subspace. In general, the resolution of MUSIC is
significantly better than beamforming methods. However, the performance
of the MUSIC algorithm depends on the quality of the subspace estimates.
This can be very limiting in high dimensional dynamic measurements where
availability of independent realizations is scarce. Degraded performance
occurs also if the weights γ in (3.6) for the signals of different directions
are highly correlated [76]. The MUSIC algorithm can be extended for joint
estimation of parameters in multiple dimensions, as in the JADE (Joint
Angle and Delay Estimation) [153,154].

The ESPRIT algorithm [99,119] and its extensions [48,50] rely on the
rotational invariance property of the signal subspace induced by a transla-
tional invariance in the array used in the measurement. This means that
it is only applicable for parameter estimation with array geometries, where
the array may be divided into a number of equidistantly spaced and identi-
cal subarrays. However, ESPRIT doesn’t require knowledge of the specific
antenna responses, as long as the radiation patterns are identical for all the
antenna elements. If these requirements are met, the parameters related to
the dimensions for which the translational invariance property of the array
applies can be estimated in a closed form.

The subspace methods require that there is a sufficient amount of real-
izations available to obtain reliable estimates of the subspaces. In dynamic
channel sounding measurements the parameter estimation is typically based
on a single snapshot of the measured data. Spatial smoothing [102] is a
method that can be used to build up the rank of the covariance matrix
for applying subspace-based techniques for multidimensional parameter es-
timation in such scenarios. However, this method decreases the effective
measurement aperture dimensions, which translates to lowering the maxi-
mum number of separable signals, as well as degrading the accuracy of the
estimates. Unlike for beamforming methods, the accuracy of both ESPRIT
and MUSIC increases significantly with increasing number of available mea-
surements or signal-to-noise ratio (SNR).

Stochastic Maximum Likelihood Methods

Stochastic ML methods [59,97,105,106] are based on modeling the measured
signal as a zero-mean normal distributed random vector as in (3.7) and (3.8).
The estimation of the parameters is then based on maximizing the likelihood
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function
p(y|θS) =

1
πM det(R(θS))

e−yHR−1(θS)y. (3.15)

For estimating the propagation path parameters, the stochastic ML ap-
proach typically leads to a solution, which is computationally more demand-
ing than the one relying on deterministic ML model discussed in the next
subsection, see also discussion in [139, Appendix B]. However, it provides a
natural means to estimate the parameters of the DMC [108]. Such an ap-
proach has been investigated for simplified model in [105], where the DMC
was modeled using a mixture of Von Mises distributions [87] in azimuth
direction.

3.2.2 Deterministic Maximum Likelihood Methods

Given the measurement model (3.2), the likelihood function, i.e., the prob-
ability distribution associated with an observation y resulting from the de-
terministic model hS(θS) (3.6) and a known noise covariance matrix R, is
given by

p(y|θS ,R) =
1

πM det(R)
e−(y−hS(θS))H·R−1·(y−hS(θS)). (3.16)

Then a maximum likelihood estimate of θS would be obtained as the param-
eter vector θ̂S,ML maximizing the likelihood (3.16). However, maximizing
(3.16) is essentially a nonlinear weighted least-squares (NWLS) problem,
and it is straightforward to show that, using the relation (3.6), an optimal
solution is found by minimizing the cost function

µ̂ = arg max
µ

[(
yHR−1B(µ)

) (
BH(µ)R−1B(µ)

)−1 (
BH(µ)R−1y

)]
, (3.17)

and
γ̂ =

(
BH(µ̂)R−1B(µ̂)

)−1
BH(µ̂)R−1y. (3.18)

Minimizing the cost function (3.17) is, however, a difficult and computation-
ally demanding task due to high dimensionality and multiple local maxima.
This becomes more evident by recalling the dimensions of B ∈ CM×P , R ∈
CM×M , and y ∈ CM×1, where the (unknown) number of paths P ∼ 101−102,
and the dimension of the observation M = MR ·MT ·Mf ∼ 104 − 106, can
be very high, see also Table 2.1 and the discussion in publication [V].

SAGE

The Space-Alternating Generalized Expectation-maximization (SAGE) [38]
is a popular numerical technique to find ML estimates. It as been introduced
in the context of propagation parameter estimation for a SIMO configura-
tion in [39], and since then it has been extensively applied in the estimation
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of parameters from MIMO configuration as well [40]. The principle in SAGE
is to evaluate the likelihood function (3.16) iteratively using the current pa-
rameter estimates. Then, a subset of the parameters is kept fixed while the
likelihood is maximized w.r.t. a complementary subset of the parameters.
These new estimates are then fixed and employed in the computation of the
likelihood while it is being maximized w.r.t. to another subset of the pa-
rameters. The convergence to a (possibly local) maximum is guaranteed as
in the conventional EM. The advantage of SAGE is that the computational
cost of maximizing the likelihood function in a single iteration can be scaled
as the subsets of simultaneously updated parameters can be chosen arbitrar-
ily small. However, the rate of convergence can depend significantly on the
choice of the parameter subsets. Examples of the parameter subsets include
i) the parameters of each of the individual paths, or ii) parameters of all
paths related to specific measurement aperture. In principle, SAGE would
also be suitable for including the DMC in the measurement model, either
as the colored measurement noise as in (3.2), or even having the parameters
of the DMC θD in (3.1) estimated within the SAGE algorithm. However,
such an approach has not been pursued in the literature.

In [148] it is shown that both the Unitary ESPRIT and the SAGE both
provide reliable results in terms of finding the correct estimates in prac-
tice in a 3-D (azimuth, elevation and delay) parameter estimation example.
However, the performance of the algorithms, also in terms of computational
complexity and memory requirements, depends on how the subarrays are
chosen in Unitary ESPRIT, and on the other hand on the discretization of
the parameter space in SAGE.

RIMAX

The RIMAX [108–110] estimation method is the first known approach to
model the channel using both the superposition of specular propagation
paths (2.21) as well as DMC (2.23). The estimation of the parameters
belonging to these two model components is performed in an alternating
fashion similarly to SAGE. However, the core of the algorithm is a gradient-
based iterative optimization method, namely Levenberg-Marquardt algo-
rithm [86, 88]. The parameter estimates are initialized by a SAGE-like
grid search (or a subspace-based technique when applicable), but the ML-
iterations are performed by alternating between jointly optimizing all the
parameters belonging either to the specular propagation paths or the DMC.
RIMAX also addresses the reliability of the path estimates. This assess-
ment is based on the estimates of the estimation error variance of the path
weights, which is provided by the diagonal elements of the inverse of the
Fisher Information Matrix (FIM) approximated using the Hessian [128].

As both SAGE and RIMAX rely on the deterministic ML assumption,
their statistical performance can be very close to optimal, see e.g. discussion
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in [139, Appendix-B]. However, both SAGE and RIMAX suffer from the fact
that they neglect the dynamic nature of the problem. Hence, significant
computational effort is spent on iterations for maximizing the likelihood
function (3.16) based on noisy measurements without utilizing the time-
evolution of the parameters. All the batch solutions based on the static
model suffer from the fact that everything needs to be recomputed at the
arrival of a new observation.

3.3 Estimation of a Dynamic Model

This section provides a general overview of sequential estimation algorithms.
A detailed discussion on the proposed state-space model for the propagation
path parameter estimation is given in Section 3.4.

3.3.1 State-Space Modeling Principle

The estimation methods for static models described in Section 3.2 are de-
rived under the assumption that the propagation path parameters remain
constant during an observation period, and are independent from observa-
tion to observation. Sequential estimation techniques differ from the static
methods by employing a state-space model to describe the time-evolution
of the state of the system. Sequential estimation techniques stem from con-
trol engineering, but have been extensively applied in navigation and target
tracking applications, where the state is typically defined as the position
and velocity of the targets. The state in the context of this work consists
of the propagation path parameters (3.5) and possibly their respective rates
of change. The state is modeled as a Markov model, i.e., one is interested
in estimating an unobservable discrete-time Markov sequence θk at time
instances k ≥ 1, while the observations are given by a sequence yk.

State-space models are comprised of two model equations: the state
transition equation, modeling the time evolution of the unobservable signal,
and the measurement equation, describing the relation of the unobservable
state to the observed signal. The state transition equation is defined as

θk = f (θk−1) + vk. (3.19)

The relation f (θk−1) models the state transition, i.e., the expected evolution
of the state between time instances, whereas vk is called the state noise,
modeling the perturbations related to the state transition. The measurement
equation is given by

yk = h (θk) + nk, (3.20)

where h (θk) denotes the mapping of the state variables to the observation
yk, and nk models the underlying noise.
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The modeling assumptions associated with (3.19) and (3.20), including
the choice between linear vs. nonlinear models for f (θ) and h (θ) as well as
forms of the respective noise distributions, have significant influence on the
selection of the employed sequential estimation method and are discussed in
the next subsection.

3.3.2 Sequential Estimation Techniques

Available sequential estimation techniques (also known as Bayesian track-
ing) include different Kalman filters (Kalman Filter (KF) [65], Extended
Kalman Filter (EKF) [34], Unscented Kalman Filter (UKF) [60, 61]), as
well as Sequential Monte-Carlo methods, commonly known as Particle Fil-
ters (PF) [6, 35, 45]. An overview of these methods and their applicability
to propagation parameter estimation are discussed in the following.

Kalman Filter

The Kalman Filter [7,12,46,65,134] is the optimal solution in terms of mini-
mizing the mean square error while recursively solving the conditional mean
for θk|y1,...k in the case when the state transition (3.19) and the measure-
ment equation (3.20) are linear, and all the associated probability densities
are normal distributed. In such case the linear state transition equation for
a vector-valued state θk ∈ RP×1 is given by

θk = Φθk−1 + vk, (3.21)

where Φ denotes the state transition matrix describing the time-evolution of
the state, and v ∼ N (0,Q) is the state noise. Hence, the probability density
of the predicted state is given by θk|k−1|θk−1 ∼ N (Φθ(k−1|k−1),Q). The
linear measurement equation for a vector valued measurement yk ∈ RM×1

is defined as

yk = Hθk + nk, (3.22)

where H ∈ RM×P is the system matrix, and n ∼ N (0,R) denotes
the measurement noise. Assuming this linear state-space model (3.21)–
(3.22), an optimal solution for the conditional mean is given by θk|y1,...k ∼
N (θ(k|k),P(k|k)), where θ(k|k) as well as the associated filtering error covari-
ance matrix P(k|k) are estimated by the Kalman filter equations. Further
details of the algorithm may be found in several textbooks [7,12,46] and are
omitted here. Examples on how Φ and Q are constructed can be found in
publication [V]. As the measurement equation in this thesis (3.2) mapping
the propagation path parameters to channel sounding data is nonlinear, the
linear Kalman filter is not directly applicable.
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Extended Kalman Filter (EKF)

The Extended Kalman filter (EKF) [7, 12, 34, 46] is an extension of the
linear Kalman filter to state-space models where either the state transition
(3.19), the measurement equation (3.20) or both are nonlinear. It is based on
the Taylor series approximation for linearizing the model about the current
estimate and applying conventional Kalman filter equations on the linearized
model. The associated probability densities are assumed to obey normal
distributions. A typical nonlinear state-space model is formulated as

θk = f (θk−1) + vk, (3.23)
yk = h (θk) + nk, (3.24)

where the noise processes vk and nk are defined as in (3.21)–(3.22). To apply
the Kalman filter equations the model is linearized using the, commonly first
order, Taylor series approximation. Hence the state transition matrix Φ in
the Kalman filter equations is replaced by the Jacobian matrix

Φ̃ =
∂f (θk−1)
∂θk−1


θk−1=

ˆθ(k−1|k−1)

, (3.25)

and the measurement matrix H is replaced by the Jacobian matrix

H̃ =
∂h (θk)
∂θk


θk=

ˆθ(k|k−1)

. (3.26)

A major benefit of the EKF is that, except for the differentiation re-
quired for the linearization, the complexity and memory requirements of
the solution are in the same order as for the linear Kalman filter. A poten-
tial drawback is that the EKF may be sensitive to the linearization error
and hence it can be prone to diverge. However, EKF has proven to suit well
for the estimation of the propagation path parameters in channel sound-
ing measurements [I–V], and the employed approach is described in detail
Section 3.4.

Unscented Kalman Filter (UKF)

The Unscented Kalman Filter (UKF) [60,61] is another approach to apply
Kalman filtering framework for a nonlinear state-space model. The idea in
UKF is to apply a nonlinear, normal distributed state-space model such as
(3.23)–(3.24). The difference compared to EKF is that the estimation of
the prediction and posterior means and covariances is based on determinis-
tic sampling of the originating distribution. These samples, also known as
sigma points, are then propagated through the nonlinear functions. With
this approach, the conditional mean and covariance estimates can achieve
accuracy comparable to third order Taylor series expansion (in comparison
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to first order for EKF) for any nonlinearity. Furthermore UKF does not
require explicit calculation of Jacobian or Hessian matrices. The main rea-
son for which the UKF has not been applied in large-scale problems, such
as the estimation of propagation path parameters from channel sounding
data, is that it requires explicit computation of the cross-covariance matri-
ces between the state and the observation. The dimensions of such matrices
(∼ 103 × 105) become prohibitively large in the application at hand.

Particle Filters (PF)

Particle Filters (PF) [6, 35, 45] can be applied to a state-space model of
arbitrary level of nonlinearity or any assumed distribution. The idea in
PF methods is to apply sequential Monte Carlo methods such as importance
sampling and resampling, and estimate the distributions of interest based on
a large number of particles sampled, propagated through the nonlinearities,
and resampled in an (asymptotically) optimal fashion. The computational
complexity of a particle filter can become prohibitively high if the state
dimension is assumed to be high, as is the case for the estimation of prop-
agation path parameters. Particle filtering has recently been applied to the
problem of propagation path parameter estimation from channel sounding
measurements as well [161, 162]. However, the PF in [161] is formulated
essentially for a single path only (multiple paths tracked by separate PFs),
and also the associated PDFs were assumed to obey normal distribution.
As PF is most useful for estimating multimodal or asymmetric parameter
distributions or highly nonlinear models, its use in the context of propaga-
tion path parameter estimation is questionable. Moreover, the number of
particles required for tracking a large number of parameters can make the
computational complexity of PF prohibitive. It is also doubtful how well
the PF approach applies for detecting multiple paths, i.e., how to associate
the particles with individual paths. Benefits over EKF in this case may be
minor or nonexistent. On the other hand, PF may be suitable for the esti-
mation of the parameters of a purely stochastic channel model with possibly
multi-modal distribution, such as the DMC.

3.4 State-Space Modeling for Propagation Path
Tracking

This section introduces the developed state-space model, the derived EKF,
and the related model order selection techniques for the estimation of the
propagation path parameters introduced in original publications [I–V]. The
combination of the described methods constitute the main contribution of
this thesis, namely a complete framework for the estimation of the propa-
gation path parameters based on dynamic modeling.
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3.4.1 Dynamic Model

The dynamic model is based on the assumption that the parameters of the
propagation paths are correlated over subsequent measurement instances.
The state vector θk at time k is then defined as

θk =
[
µT
k ∆µT

k α
T
k φ

T
k ∆φ

T
k

]T
. (3.27)

The parameters µ defined in (3.3) are called the structural parameters, as
they define the spatial structure of the propagation paths. The vector ∆µ
contains their rate of change. The complex path weight parameters (3.4) are
parameterized as αi = <{log(γi)}, φi = ={log(γi)} (i ∈ {TpolRpol, p}), and
∆φ denotes phase evolution common to all the path weight polarization
components of each individual path.

The state transition is given by a linear model as in (3.21), i.e.,

θk = Φθk−1 + vk, (3.28)

where vk ∼ N (0,Q) is the state noise. Details on how Φ and Q are struc-
tured are given in publication [V].

The measurement equation is identical to (3.2) and is defined as

yk = hS(θk) + nk, (3.29)

where hS(θk), defined in (3.6) and (2.21) denotes the nonlinear mapping of
the propagation path parameters to the measured channel. The noise term
nk ∼ NC(0,R), with R = RD + σ2

NI models the contribution of both the
DMC and the measurement noise, see (2.23)–(2.25).

Some remarks on the dynamic model

It should be noted that the introduction of the dynamic parameters ∆µ in
publication [II] and ∆φ in [V] essentially improves the prediction of the pa-
rameters in the dynamic model. In other words, neglecting the dynamic pa-
rameters would result in a requirement to increase the corresponding values
in the state noise covariance matrix Q in order to account for a deterministic
change in the parameters. This fact has been illustrated in publication [V,
Section III] for the phase evolution ∆φ, but similar conclusions could be
drawn for the structural parameters ∆µ. In addition, it is shown in [II] that
having ∆µ in the state improves the estimator performance in terms of lower
estimation error variance. The dynamic parameter ∆αi for the path weight
magnitudes, on the other hand, is not considered in the model since any
deterministic temporal variation is assumed to be hidden by other sources
of randomness. Therefore the tracking of the long term time evolution has
not been considered. In low mobility measurements, also some or all of the
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Figure 3.2: Interplay of the state noise model vs. dynamic parameters.
The unit of the x-axis is normalized to √qµi . If a mean ∆µi of the true
distribution, here ∆µi ∼ N (∆µi, qµi), of the change ∆µi = µi,k−µi,k−1 of a
parameter µi over time is neglected, it has to be compensated by increasing
the state noise variance. In this conceptual example the variance is tripled.

∆µ parameters may be considered to be left out of the model in order to
reduce the complexity.

Figure 3.2 shows a conceptual illustration for the interplay between the
state noise and the dynamic modeling. Let us assume that the true distribu-
tion of ∆µi = µi,k−µi,k−1 is given by ∆µi ∼ N (∆µi, qµi). Then, if the mean
∆µi in the rate of change is neglected, a variance value higher than qµi must
be chosen for the state noise to ensure tracking is not lost. Increasing the
state noise variance would, however, increase the estimation error as well.

Another important contribution, first introduced in publication [III], is
the parametrization of the path magnitudes in a logarithmic scale αi =
log(|γi|). It is shown in publication [V, Section III] that this parametrization
results again in a normal distributed time evolution, see publication [V] for
further discussion.

3.4.2 EKF Formulation

The EKF is a suboptimal solution for estimating the parameters of the
dynamic model due to the employed Taylor series linearization. However, it
has been selected as the method of choice for the sequential estimation in
this work for the following reasons.

• The linear approximation of the nonlinear model is sufficient for the
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problem at hand, as indicated by simulation results ,e.g., in publica-
tion [I].

• The assumption of the associated probability densities being normal
distributed holds, see discussion in [V].

• The formulation of the EKF facilitates computationally efficient im-
plementation [I–V].

• The implementation has turned out to produce reliable results in real
world dynamic measurements [I–V], [73, 103,121].

The formulation of the EKF employed in publications [I–V] is based
on the alternative form of the Kalman filtering equations, see e.g., [12].
Replacing the linear system matrix H in the Kalman filter by the Jacobian
matrix D(θ) = ∂

∂θ
T hS(θ) yields equations for the EKF. From those one

can identify some useful expressions, namely the Score function:

q (y|θ,R) =
∂

∂θ
L(y|θ,R)

= 2 · <
{
DH(θ)R−1 (y − hS (θ))

}
, (3.30)

and the Fisher Information Matrix (FIM):

J(θ,R) = −E

{
∂

∂θ
L(y|θ,R)

(
∂

∂θ
L(y|θ,R)

)T
}

= 2 · <
{
DH(θ)R−1D(θ)

}
, (3.31)

both of which are well known from estimation theory [128]. The EKF equa-
tions can be summarized as

θ̂(k|k−1) = Φθ̂(k−1|k−1) (3.32)

P(k|k−1) = ΦP(k−1|k−1)Φ
T + Q (3.33)

P(k|k) =
(
P−1

(k|k−1) + J(θ̂(k|k−1),Rk)
)−1

(3.34)

∆θ̂k = P(k|k)q
(
yk|θ̂(k|k−1),Rk

)
(3.35)

θ̂(k|k) = θ̂(k|k−1) + ∆θ̂k. (3.36)

The advantage of this formulation for the EKF is that the Score function
(3.30) and the FIM (3.31) can be solved in a computationally efficient man-
ner. Similar expressions were derived for a simplified DMC model in [108].
An exact, as well as a computationally efficient approximate solution for the
FIM (based on a novel SUSVD tensor decomposition) for the more general
Kronecker model for the DMC in (2.23)–(2.24) have been derived in the
original publications [IV] and [VII].
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3.4.3 Model Order Selection

In dynamic channel sounding measurements the number of dominant prop-
agation paths P is varying over time. This takes place especially at street
or corridor crossings or at the transitions between line-of-sight (LOS) and
non-line-of-sight (NLOS) channel conditions. The state-space model in Sec-
tion 3.4.1 is formulated for joint estimation of the propagation path param-
eters. Consequently, it is necessary to adapt the state dimension within the
EKF according to the number of significant paths present in the channel.
An optimal solution for determining the correct number of components to
estimate could be formulated based on the Minimum Description Length
(MDL) [118], which is also related to Bayesian Information Criterion (BIC),
see [138] for discussion. However, the computational complexity involved in
evaluating these criteria renders them infeasible as they would require eval-
uation of likelihood functions for a very large number of path combinations
and parameter values. The approach adopted in this work for detecting the
number of paths is based on applying two one-sided statistical tests. The
first one is used to determine if the channel contains paths which are not
currently present in the state vector. The second one is used for testing
the significance of current estimates and — if necessary — removing the
insignificant paths from the state.

Detection of New Paths

The detection of new paths is performed in, [I]-[II], [122] by applying the
RIMAX algorithm [108–110] on the residual

yk − hS(θk) (3.37)

in order to search initial estimates for a fixed number of new paths at each
snapshot. In publication [III] a cumulative sum (CUSUM) test [47] is pro-
posed for this purpose. The idea in [III] is to apply a hypothesis test to
evaluate the whiteness of the residual (3.37) to detect whether new paths
were present. The whitening is based on the estimated DMC covariance ma-
trix. In practice the CUSUM approach turned out to be rather sensitive to
modeling errors, especially since the previously employed simplified model
for the DMC was unable to produce reasonable whitening of the residual
due to model mismatch.

Another approach that has turned out to work well in practice for de-
tecting new paths is introduced in [V]. The idea is to form a grid in the
space of the structural parameters, and evaluate the likelihood function at
these points. The statistics of the proposed test follows a χ2 distribution
with degrees of freedom equal to the number of polarization components
Npol ∈ {1, 2, 4}. A detection threshold can be formed based on specifying
a probability of false alarm, see [V]. If a detection threshold is exceeded
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estimates.

Observation yk

Initialize ∆φ for new paths

Initial values:

θ̂(k−1|k−1), P(k−1|k−1), Q, and Φ

Prediction: θ̂(k|k−1) and P(k|k−1)

Estimate the noise covariance (DMC)
Rk from yk − hS(θ(k|k−1)).

Filtering: θ̂(k|k) and P(k|k).

Test significance of the estimates using the Wald test.

Re-initialize weak polarization coefficients if necessary.

Test current model for underfitting (detect new paths)

Modify P(k|k), θ̂(k|k), Q and Φ accordingly.

k ⇒ k + 1
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Figure 3.3: Complete estimation procedure (see [V] for details).

for any point, an initial estimate for a path is obtained by iteratively mak-
ing the detection grid denser in the vicinity of that point until convergence
is reached. The convergence criterion can be chosen individually for each
parameter, see [V, Section V-C] for details.

Reduction of Paths

The reduction of paths from the state is proposed in [II], and it is based
on a statistical test known as the Wald test [66]. The idea of the test is
to evaluate the significance of each estimated path based on the validity of
their respective polarization path weight estimates. These values can be
shown to follow a χ2 distribution with Npol degrees of freedom, allowing to
formulate a hypothesis test with a detection threshold for deciding whether
a path should be removed from the state [V].

A flow chart of the estimation process for a single snapshot is shown in
Figure 3.3.
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3.5 Estimation Examples

3.5.1 Measurement Setup

The performance of the estimator introduced in Section 3.4 has been vali-
dated with measurement data. The estimation examples in this section are
from a measurement campaign conducted by Institute of Communications
and Measurement Engineering, Ilmenau University of Technology and Me-
dav GmbH on August 12th 2004 at Ilmenau city center using the RUSK
channel sounder [90]. The Tx antenna array is a 16 element UCA (Uniform
Circular Array) placed on a measurement trolley. The receive Rx array is
an 8 element dual polarized PULA (Polarimetric Uniform Linear Array) at
3.7 m height. The bandwidth of the sounding signal is 120 MHz at a carrier
frequency of 5.2 GHz. The time separation between the snapshots is 20.48
ms. This setup enables the estimation of the propagation path parameters,
excluding the elevation at the receiver (ϑR) due to elevation ambiguity of
the PULA. Furthermore, only the polarization components (γV H and γV V )
are estimated due to single (vertically) polarized elements in the Tx array.
For a detailed description of the measurement, see [146].

3.5.2 Goodness of Fit

In order to describe how well the estimated model fits into the measured
data, estimation results from two different measurement routes are pre-
sented, see [121] for a full description. Figure 3.4 and Figure 3.5 show a
comparison of both Power-Angular Profiles (PAP) for Tx and Rx azimuth
angles, as well as Power-Delay Profiles (PDP) over the measurement time.
The plots show the aforementioned PAPs and PDPs for the measured chan-
nel h (equal to y in Section 3.4), estimated paths ĥS , estimated DMC and
noise ĥD + ĥN ∼ NC(0,R) (using reconstructed realizations of hD + hN ),
and the reconstruction of the whole channel ĥ ∼ NC(ĥS , R̂). The 0◦ az-
imuth angle is in the direction of the ULA broadside for the Rx, and in the
direction of movement for the Tx.

From Figures 3.4–3.5 the following conclusions can be drawn:

• The path estimates together with the estimated DMC achieve a very
good reconstruction of the channel in terms of visual evaluation of the
power profiles.

• The DMC is the dominating component of the model in NLOS,
whereas in LOS the radio link is dominated by the concentrated prop-
agation paths.

• In many cases the DMC has a structured angular profile in addition
to an exponentially decaying profile in the delay.
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Another illustration of the estimators performance is provided by exam-
ining the PDP’s of the whitened residual sequences, i.e., the PDP of

ĥw = R̂−
1
2

(
h− ĥS

)
, (3.38)

where, ideally, hw ∼ NC(0, I). Figure 3.6 depicts the PDP’s of the routes
in Figures 3.4–3.5 in three dimensional plots. It can be observed that the
PDP of the whitened residual resembles that of a normal distributed white
noise with standard deviation equal to one. The sample estimates σ̂w for
the standard deviation of ĥw ∼ NC(0, σ̂2

wI) for the two considered routes
are σ̂w,#2 = 1.0011 and σ̂w,#3 = 1.0009, respectively.

3.5.3 Path Parameter Estimates

In this section examples of parameter estimates are illustrated for a selected
path from each of the measurements described in the previous section. Fig-
ure 3.7 and Figure 3.8 include visualization of the magnitude of the path
weights in dB (20 log10(|γ

HV/V V
|)), the evolution of the path weight phases

(φk − φk−1), and estimates for the delay (τ), Rx azimuth (ϕR) and Tx an-
gles (ϕT ) and (ϑT ). The green line indicates the 90% confidence region of
the estimates. An explanation of the observed path behavior is given in the
figure captions.

3.6 Summary and Discussion

This chapter discusses the state-of-the-art in MIMO channel sounding pa-
rameter estimation techniques. The problem with methods relying on mod-
eling the channel through the second order statistics is that it can be very
difficult to obtain sufficient number of independent realizations to estimate
the channel parameters. This is also related to the fact that the weights of
the signals, i.e., the polarization coefficients, are coupled with the structural
parameters, i.e., a change in the path weights typically results from a change
also in the underlying structural parameters. The techniques such as beam-
forming, MUSIC and ESPRIT are also typically applicable for only a subset
of the parameters. The deterministic maximum likelihood methods SAGE
and RIMAX are probably the two most common methods for the task and
can be considered as the best candidates if a batch estimator relying on a
static model is desired.

As the underlying phenomenon in mobile radio channels is often dy-
namic, as in any cellular communication system, the proposed dynamical
model along with the sequential estimation approach employing the EKF
has several advantages over the ML-based static estimation methods.

1. EKF, being sequential and non-iterative, has significantly lower com-
putational complexity than SAGE or RIMAX, see, e.g., [I] and [II].
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(a) Map of the measurement route #2 (3 to
16).
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Figure 3.4: PAP and PDP plots for measured, estimated and reconstructed
data for route from point 3 to point 16. The DMC (hD) clearly dominates
in the NLOS region until k ≈ 1700. Then the Tx enters LOS and the
propagation paths (hS) begin to prevail.

50



(a) Map of the measurement route #3 (16
to 26).
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Figure 3.5: PAP and PDP plots for measured, estimated and reconstructed
data for route from point 16 to point 26. In the NLOS (after k = 500)
it can be observed that the DMC has clearly a bimodal distribution in Rx
azimuth, which should be taken into account while considering an angular
model for the DMC.
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(a) Route #2 (3 to 16) (Figure 3.4).

(b) Route #3 (16 to 26) (Figure 3.5).

Figure 3.6: PDP’s of the measurement h, estimated paths ĥS , estimated
DMC and measurement noise ĥD + ĥN , and the whitened residual ĥw ∼
NC(0, σ̂2

wI), defined in (3.38). The estimated standard deviations for the
whitened residuals were σ̂w,#2 = 1.0011 and σ̂w,#3 = 1.0009, respectively.
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Figure 3.7: Example path parameters from route #2 (in Figure 3.4). The
signal for this path propagates at a low elevation angle at the Tx and im-
pinges a structure on the right hand side of the Rx. The path power de-
cays while the Tx moves behind a van, causing changes also in Tx azimuth
and elevation. The polarizations have mostly equal power levels, except at
k ≈ 2100, when the V H-coefficient is fading in (a). This fade also deterio-
rates the tracking of the V H-phase in (b).
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(b) Path Weight Phase evolution.
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Figure 3.8: Example path parameters from route #3 (in Figure 3.5). The
point of reflection seen from the Rx is very stable, see (d). The dominance
of the V V -polarization implies that the main reflector or scatterer strongly
supports the vertical electric field (e.g. a vertical metal structure such as a
lamp post) or at least it does not mix the polarizations. The lengthening
of the path in (c) can also be observed from (b) as a large negative rate of
change of the phase (directly related to the Doppler shift).
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2. Tracking the propagation paths maintains the identities of individual
paths allowing, e.g., to study the time evolution and to identify the
dominant propagation mechanism as well as type and source of radio
wave interactions, as it has been shown in [103].

3. A better dynamic model provides better statistical performance in
terms of lower estimation error, see publications [I] and [II].

Table 3.1 concludes the chapter on propagation path parameter esti-
mation techniques by summarizing the features of different methods. This
evaluation relies on the modeling assumptions associated with each tech-
nique, as presented in Sections 3.2 and 3.3. Scalability refers to both scal-
ability in the number of parameter dimensions, as well as number of esti-
mated paths. Resolution describes the ability to distinguish closely spaced
paths. Dynamic modeling refers to the estimator’s applicability to process
time-varying data and track time-varying parameters. Computational com-
plexity gives an idea of the computational effort required to process the
data. Statistical performance indicates the asymptotic (large sample) per-
formance of the estimators. However, such a comparison is not important
in the application at hand, as the estimation has to rely on relatively small
number of realizations. Also the fundamental limits such as Cramér-Rao
lower bound [21] are different depending on the modeling assumption and
dimensionality. Finally, the last row in Table 3.1 indicates the suitability
of the method for propagation parameter estimation from channel sounding
measurements. The value of ESPRIT is bracketed due to requirement on
translational invariance of the arrays.

Table 3.1: Summary of parameter estimation techniques suitable for esti-
mation of propagation parameters from channel sounding measurements.

Approach
Feature ESPRITa SAGEb RIMAXc EKFd PFe

Scalability (+) +++ ++ ++ - -
Resolution (+) ++ ++ ++ +
Dynamic modeling - - - - ++ +++
Comp. complexity + - - - ++ - -
Stat. Perf. + ++ ++ + ++
Suitability to MBCM (+) + ++ +++ -

aEstimation of Signal Parameters via Rotational Invariance Technique [48,50,99,119]
bSpace-Alternating Generalized Expectation-Maximization [38–40]
cRIMAX [108–110]
dExtended Kalman Filter [I–V]
eParticle Filter [161,162]
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Chapter 4

Tensor Decompositions and
Modeling for High
Dimensional Data

Tensor representation is a natural approach to model data having more
than two variable dimensions. Tensor techniques stem from applications in
psychometrics [16, 150], sociology, chromatography and chemometrics [37,
133], but have recently found their way into many signal processing problems
as well [24, 25,49,132].

The data obtained from MIMO channel sounding measurements are a
good example of tensor-valued data, as the samples of the channel trans-
fer function are obtained for a set of frequencies, a number of Tx and Rx
ports, and over time. Adopting a tensor representation for the data allows
for applying tensor decomposition techniques [133], which are essentially
generalizations of the well known matrix decompositions such as the Singu-
lar Value Decomposition (SVD) [44] for higher dimensional arrays of data.
Tensor decompositions can be used, for example, for model identification,
dimensionality reduction, compression of data, low rank approximation etc..

In publication [IV] a computationally efficient method for finding the
Fisher Information Matrix based on a novel low rank tensor approximation
is introduced. This approach is necessary in order to reduce the compu-
tational complexity of the developed EKF, introduced in Section 3.4.2. In
fact, the proposed method was only later identified as a tensor decomposition
technique, and it turned out to have several other interesting applications
as well. The so-called PARATREE tensor model and Sequential Unfold-
ing SVD (SUSVD) decomposition are refined in publication [VI] along with
an application example for suppressing measurement noise from channel
sounding data. A comprehensive treatment of the PARATREE/SUSVD
approach including comparison to PARAFAC and HOSVD is given in pub-
lication [VII].
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In this chapter, some basic tensor modeling approaches and concepts,
namely the PARAFAC and the Tucker models, are reviewed in Section 4.1.
In Section 4.2 the PARATREE model and the novel Sequential Unfolding
SVD (SUSVD) [IV, VI, VII] are introduced. The presented tensor mod-
els are applied to MIMO channel modeling in Section 4.3. Section 4.3 also
includes other application examples for the novel PARATREE/SUSVD ap-
proach.

4.1 Tensor Models

There are two major tensor model families, namely the PARAFAC [54, 79]
(CANDECOMP [15]) and the Tucker [150] models. PARAFAC is based on
modeling the N -dimensional tensor as a sum of R rank-1 tensors, whereas
Tucker models decompose a tensor using a smaller dimensional core tensor
and possibly orthonormal basis matrices for each mode. A good descrip-
tion of the properties and differences of the two approaches can be found
in [71, 133], for example. A general model unifying the two approaches is
introduced in [26].

4.1.1 PARAFAC Model

The PARAFAC model is essentially a description of the tensor as a sum of
R rank-1 tensors. The rank of a tensor is defined as the minimum num-
ber of rank-1 components yielding the tensor as their linear combination.
There are a number of ways to express a PARAFAC decomposition [71,133].
Consider an N -dimensional tensor X ∈ CM1×M2×···×MN and N matrices
A(n) ∈ CMn×R, where R is the number of factors that is ideally equal to the
rank of the tensor. Then the matrices A(n), n ∈ [1, . . . , N ], with columns
a(n)
r , r ∈ [1, . . . , R] can be formed such that the tensor X is given by the

sum of outer products

X =
R∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r , (4.1)

where each outer product of the vectors a(n)
r is a rank-1 tensor. For the

definition of the rank-1 tensor as well as the outer product of N vectors see
publication [VII, Section II-A].

An illustration of the PARAFAC model for the case N = 3 is given in
Figure 4.1, where the relation to (4.1) is obtained by setting a(1)

r = ar, a(2)
r =

br and a(3)
r = cr. Each of the outer products of the three vectors forms a

rank-1 tensor. For further discussion on the tensor rank, see [17,30,69].
The PARAFAC model is typically fitted to data by using an Alternating

Least Squares (ALS) approach, see [71,133], [VII, Section III-A]. Alternative
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X = + · · ·+ +
b2

c2

a2

b1

a1

c1

bR

cR

aR

Figure 4.1: Illustration of the PARAFAC decomposition — a sum of R
rank-1 tensors. The relation to (4.1) is established by setting the factors
a(1)
r = ar, a(2)

r = br and a(3)
r = cr.

approaches are introduced in [27,28], and a survey of several different meth-
ods is provided in [37]. In principle, the PARAFAC decomposition can not
be deflated in contrary to the SVD for matrices. In general, the best rank
R−1 approximation of a tensor does not consist of the same rank-1 compo-
nents as the rank R approximation [30, 69]. Consequently, the PARAFAC
decomposition has to be evaluated for each rank R = 1, . . . , Rmax separately
to obtain the best fit. Methods for finding a proper rank are discussed
in [11,17].

4.1.2 Tucker/HOSVD Model

Tucker models [71, 133, 150] are another commonly used way to represent
a tensor decomposition. The idea is to form a limited set of basis vectors
for each mode, and express the tensor as a linear combination of the outer
products of different basis vectors of each mode. A tensor X can be expressed
using the Tucker model as

X = S ×1 U(1) ×2 U(2) . . .×N U(N), (4.2)

where S ∈ CR1×...×RN is called the core tensor, and the matrices U(n) ∈
CMn×Rn contain the basis vectors. The notation ×n denotes the nth-mode
product and is defined in publication [VII, Section II-A]. The Tucker de-
composition (for N = 3) is illustrated in Figure 4.2.

Several approaches for fitting a Tucker model to data have been pro-
posed. Perhaps the most intuitive approach is the so-called Tucker’s
“Method I” [150], later known as the HOSVD [29]. HOSVD is formed by
computing the basis matrices U(n) in (4.2) as the left singular vectors of the
SVD of the nth mode unfolding (defined in publication [VII, Section II-A])
of X , see [VII, Section III-B]. The orthogonality property of this decompo-
sition makes it convenient for deflation in order to form a low rank tensor
approximation [67]. However, it should be again noted that, as opposed to
the SVD for matrices, a low rank approximation trough deflation is subop-
timal for higher order tensors, albeit it may be a good one [30]. Also an
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Figure 4.2: Illustration of the Tucker3 decomposition. The tensor is decom-
posed as a linear combination of basis vectors in different modes according
to (4.2).

ALS solution exists for fitting a Tucker model [78,133], but it requires that
the number of factors in different modes Rn must be fixed.

4.2 PARATREE/SUSVD

4.2.1 PARATREE Model

In this subsection a novel PARATREE tensor decomposition studied in pub-
lications [IV, VI, VII] is introduced. It is based on a novel hierarchical for-
mulation for a PARAFAC-type model having not only different number of
factors in different modes, but additionally the number of factors in each
mode can vary in each branch in the hierarchical tree structure. The term
branch refers to a set of factors having common factor(s) in previous mode(s)
(see Figure 4.3). The total number of factors used to form the decomposi-
tion depends on the magnitude of the factors of the previous modes of that
branch. The product of the magnitudes indicates the significance of each
branch.

The PARATREE model for an N -mode tensor can be expressed as a
sum of outer products as

X =
R1∑
r1=1

a(1)
r1 ◦

 R2∑
r2=1

a(2)
r1,r2 ◦ · · · ◦

RN−1∑
rN−1=1

(
a(N−1)
r1,...,rN−2,rN−1

◦ a(N)
r1,...,rN−2,rN−1

) .

(4.3)
The vector a(n)

r1,...,rn above denotes the rthn column of the nth mode matrix
of basis vectors A(n)

r1,...,rn−1 . The subscript r1, . . . , rn−1 indicates the depen-
dency of these matrices on the indexes of the previous factors of that branch
in the decomposition tree. Also the number of factors Rn within each mode
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Figure 4.3: Illustration of the three-way PARATREE decomposition that
is a hierarchical sum of R rank-1 tensors. The basis vector ara of the rtha
factor in the first mode may be common for several factors in the remaining
modes.

n can vary within different branches. Hence, Rn in (4.3) can be viewed as a
shorthand notation for R(n)

r1,...,rn−1 .
The PARATREE model is illustrated for a three-way tensor in Fig-

ure 4.3. The difference to the PARAFAC model depicted in Figure 4.1
is seen in the rtha basis vector ara in the first mode, since it may be common
for several factors in the remaining modes. To clarify the illustration in
Figure 4.3, the notation of (4.3) can be simplified (for N = 3) to

X =
Ra∑
ra=1

ara ◦
Rb∑
rb=1

(bra,rb ◦ cra,rb) , (4.4)

where the relation to (4.3) is obtained by setting {ara ,bra,rb , cra,rb} ≡
{a(1)

r1 ,a
(2)
r1,r2 ,a

(3)
r1,r2}.

4.2.2 Sequential Unfolding SVD

SUSVD, introduced in this thesis, is a computational method for obtaining
an orthogonal PARATREE model. It is based on the idea of sequentially
applying the matrix SVD [44] on an unfolded tensor formed from each of
the right singular vectors of the SVD in the previous mode. The SUSVD
method and its reconstruction is visualized for a 2× 2× 2 three-way tensor
in Figure 4.4. The 2× 2× 2 tensor in Figure 4.4a can be reconstructed with
the PARATREE model as

X =
R1∑
r1=1

σ(1)
r1 · u(1)

r1 ◦
R2∑
r2=1

σ(2)
r1,r2 · u(2)

r1,r2 ◦ u(3)
r1,r2 . (4.5)
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Figure 4.4: The SUSVD for a 2 × 2 × 2 tensor. Different colors refer to
different dimensions of the tensor. A circled σ denotes a singular value,
dashed blocks are elements of the tensors, and solid lines are used to separate
the column vectors. (a) The tensor is first unfolded to a matrix T(1)

0 . After
applying SVD on this matrix, each of the right-hand singular vectors are
reshaped and another SVD is applied on them. The procedure is repeated
for each “branch” and “sub-branch”, until no additional dimensions remain
in the right hand basis vectors, i.e., the matrix V(N−1) has only MN rows.
(b) The tensor is reconstructed as a sum of outer products of weighted (by
σr1 , σr1,r2) unitary basis vectors u(1)

r1 , u(2)
r1,r2 and u(3)

r1,r2 .
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The full (R1 = 2, R2 = 2) reconstruction is illustrated in Figure 4.4b. A
detailed description of the algorithm is given in publication [VII, Section III-
C].

It should be noted that all the rank-1 components in the PARATREE
model given by the SUSVD are orthogonal to each other (see the proof in
publication [VII, Appendix B]). This facilitates deflating the full decompo-
sition and obtaining a low rank approximation having a precisely specified
fitting error, which is a highly desirable feature in several applications.

4.3 Application Examples of Tensor Models

4.3.1 Tensor Valued MIMO Channel Modeling

To support the discussion in this section on the relations between the hybrid
MIMO channel model (2.20) and tensor decompositions, let us first introduce
the tensor equivalent to the vectorized channel model (2.20) as

H = HS +HD +HN ∈ CMf×MT×MR , (4.6)

where HS , HD, and HN denote the tensor valued model parts for the prop-
agation paths, DMC and measurement noise, respectively. The relation to
the vector model (2.20) is simply given by h = vec

(
H
)
.

Double Directional Propagation Path Model as a PARAFAC
Model

An example of a PARAFAC model is obtained by expressing the double
directional propagation path model (2.21) in tensor form as

H =
P∑
p=1

b(f)
p ◦

 ∑
Tpol={H,V }

∑
Rpol={H,V }

γTpolRpol
,p · b(T )

Tpol,p
◦ b(R)

Rpol,p

 , (4.7)

where the relation of the basis vectors b(i) to (2.22) is given by BT/Rpol
=

[b(T/R)
T/Rpol,1

· · · b(T/R)
T/Rpol,p

] and Bf = [b(f)
f,1 · · · b(f)

f,p ]. Equation (4.7) can be
further simplified to

H =
P ′∑
p′=1

(
γp′ · b(f)

p′ ◦ b(T )
p′ ◦ b(R)

p′

)
, (4.8)

where the index p′ includes also the polarization effects, i.e., P ′ = NpolP .
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Double Directional Propagation Path Model as a Tucker Model

As an example of a Tucker model, the instantaneous Mf×MT ×MR channel
may be written as

H =

 ∑
Tpol={H,V }

∑
Rpol={H,V }

GTpolRpol
×2 B(T )

Tpol
×3 B(R)

Rpol

×1 B(f), (4.9)

which is essentially a sum of four Tucker3-type tensor decompositions with
super diagonal core tensors GTpolRpol

, one for each polarization component
(HH, HV , V H, and V V ), and a common basis matrix B(f) in the frequency
dimension.

Realization of DMC as a Tucker Model

Another example of a Tucker model is provided by considering a random
realization of the DMC in (2.23). The distribution of the vector valued DMC
is given by hD ∼ NC(0,RD). The eigenvalue decomposition (EVD) of the
covariance matrix RD in (2.24) may be written as

RD = UΛUH

= (U(R) ⊗U(T ) ⊗U(f))(Λ(R) ⊗Λ(T ) ⊗Λ(f))(U(R) ⊗U(T ) ⊗U(f))H

= (U′(R) ⊗U′(T ) ⊗U′(f))(U′(R) ⊗U′(T ) ⊗U′(f))H, (4.10)

where U′(i) = U(i)Λ(i)1/2, i ∈ {f, T,R}. It can be seen from this relation
that a realization of the DMC in a tensor form HD ∈ CMf×MT×MR can be
written using a Tucker notation as

HD = Hw ×1 U′(f) ×2 U′(T ) ×3 U′(R)
, (4.11)

whereHw denotes a matrix having each of its elements drawn from NC(0, 1).
An alternative expression is given by

HD =
(
Hw � (λ(f) ◦ λ(T ) ◦ λ(R))

1
2

)
×1 U(f) ×2 U(T ) ×3 U(R), (4.12)

where λ(i) = diag(Λ(i)), and � denotes an element-wise product. The form
in (4.12) allows a simple way to include the measurement noise, see (2.25),
as its variance can be directly summed with the DMC eigenvalue tensor,
yielding

HD +HN =
(
Hw � (λ(f) ◦ λ(T ) ◦ λ(R) + σ2

N )
1
2

)
×1 U(f) ×2 U(T ) ×3 U(R).

(4.13)
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Tensor Generalization of the Weichselberger Model as a Tucker
Model

The spatial Weichselberger model (WB) in (2.17) can be extended to include
additional dimensions, such as frequency in our task at hand, using the
Tucker notation. This extension for the wideband MIMO channel using
tensor notation has been discussed also in [20]. A realization of the three
dimensional channel is given by

HWB =
(
Hw � W̃WB

)
×1 U(f) ×2 U(T ) ×3 U(R), (4.14)

where W̃WB denotes the element-wise square root of a power coupling ten-
sor, which is the equivalent of the power coupling matrix ΩWB in (2.17).
Following the derivation for the spatial model in [158], an estimate of the
power coupling tensor can be obtained as follows. Let us define K(t) as the
channel tensor at time t in the eigendomain, given by

K(t) = H(t)×1 U(f)H ×2 U(T )H ×3 U(R)H . (4.15)

An estimate of the power coupling tensor is then obtained by

ŴWB =
1
T

T∑
t=1

(K(t)�K∗(t)) . (4.16)

4.3.2 Applications for PARATREE/SUSVD in Array Signal
Processing

Reduction of Computational Complexity

The SUSVD was first introduced in publication [IV] to facilitate computa-
tionally efficient approximate solution for the FIM used in the developed
EKF, see Section 3.4.2. In earlier work [I–III] a simplified structure (spa-
tial whiteness RT = RR = I) was assumed for the Kronecker structured
covariance matrix of the DMC model (2.24)). However, as pointed out in
publication [IV] and [112] this assumption may not be realistic in general.
Nevertheless, the more general model (2.24) increases the computational
complexity significantly (see [IV], [VII, Section IV-B]). Fortunately, the com-
plexity can be reduced by rewriting the problem by using a low rank tensor
approximation considered in publications [IV, VII].

Figure 4.5 shows an example comparison of computational complexity
while computing the FIM for different low rank decompositions as a func-
tion of approximation error. The best performance is obtained using the
PARATREE/SUSVD solution. The detailed description of the problem can
be found in publication [VII, Section IV].
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Figure 4.5: Complexity relative to an exact solution for computing the Fisher
information matrix with PARATREE, PARAFAC, and HOSVD. PARA-
TREE was applied for different ordering of the dimensions with Mf = 193,
MT = 30, and MR = 31. Having the largest dimension first yields the most
reduction in computational complexity with PARATREE. The PARAFAC-
ALS failed to converge while fitting higher rank models. The considered
HOSVD strategy has the highest complexity in this task, and the complex-
ity can even grow higher than that of the exact solution.

Filtering of Channel Sounding Data

Another application utilizing the low rank tensor approximation is the fil-
tering of the measurement noise in channel sounding data. This application
was first proposed in [116], and it has been further analyzed in publica-
tions [VI] and [VII]. The basic idea is to compute the full SUSVD for a
set of tensor valued MIMO channel sounding data. This decomposition is
then deflated by subtracting the least significant orthogonal components
that cumulatively contribute to noise energy present in the data.

Figure 4.6 illustrates the SNR gain obtained by using the proposed so-
lution in a PDP averaged over all Tx-Rx channels of a measured MIMO
snapshot. In this example the SNR improvement is in the order of 15 dB. De-
tailed description of the proposed method can be found in publications [VI,
VII]. The latter also contains comparison against equivalent approach using
HOSVD.

4.4 Summary and Discussion

In this chapter MIMO channel sounding data has been represented in tensor
form. Well known tensor models such as PARAFAC [54,79] and Tucker [150]
are employed. Furthermore, a novel PARATREE tensor model and a non-
iterative orthogonal decomposition technique SUSVD have been introduced
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Figure 4.6: The SNR of a measured MIMO snapshot with poor initial SNR
is improved by 15 dB by applying SUSVD-based noise removal method.

in publications [IV, VI, VII]. Application examples are provided in ar-
ray signal processing and MIMO channel sounding. The proposed PARA-
TREE/SUSVD method is very suitable for low rank tensor approximation
in applications involving MIMO channel sounding data. Other applications
and desirable features include, but may not be restricted to

• Reducing computational complexity in high dimensional problems (in-
cluding the FIM computation for the EKF)

• Measurement noise suppression (subspace filtering)

• Data compression and analysis (similar to low rank matrix approxi-
mation)

• Fast and reliable computation and possibility to do adaptive selection
of the rank

• Revealing hidden structures and dependencies in data.

Table 4.1 provides a comparison of the properties of different tensor de-
compositions. PARAFAC based models are most suitable for model identifi-
cation, such as blind source separation or chemical analysis, whereas Tucker
models provide an orthogonal decomposition best suitable for compression
or low rank approximation. Also PARATREE possesses the orthogonality
property through SUSVD, which makes it an attractive representation for
low rank approximation. In addition, while fitting the model to data with a
fixed fitting error, PARATREE allows an individual set of basis vectors for
each branch yielding smaller rank compared to Tucker-based models such
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Table 4.1: Summary of tensor decompositions.
Approach

Feature PARAFAC Tucker PARATREE

Orthogonality - + +
Identification + - -
Compression - + +
Low rank approx. - + ++
Computation - + +

as HOSVD [29]. This property is very useful for example in the FIM com-
putation example, see publication [VII].

As tensor representation provides natural means to express multidimen-
sional problems it can be expected that tensor modeling will increase its
popularity in the design and analysis of wireless communication systems
and array signal processing. This claim is also supported by the growing
dimensionality in wireless communications through introduction of diversity
and multiantenna techniques. Seminal work in this area has already been
conducted in e.g., [24, 25,49,123,132].
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Chapter 5

Summary

This thesis contains several contributions to measurement-based dynamic
MIMO channel modeling and related propagation parameter estimation.

Modeling of the physical wireless MIMO channel is an important and
necessary enabler for several tasks in the development of MIMO systems.
These tasks include information theoretical studies, transceiver algorithm
and hardware design, antenna design, and network planning, to name a few.
However, different tasks impose different and often contradicting require-
ments for models. Chapter 2 provides an overview of different modeling
approaches and their applicability and limitations in specific tasks. Spe-
cial attention is given to measurement-based channel modeling (MBCM),
which aims at modeling the measured MIMO channel independently of the
measurement system, i.e., regardless of the transmitted waveform, antenna
configuration and other properties of the employed hardware. The double
directional propagation path channel model (2.3) is an example of a model
capable of decoupling the MIMO channel from the radio front-ends. How-
ever, in practice it is necessary to model also the dense multipath component
(DMC) of the channel resulting from the diffuse scattering in the environ-
ment. Together the superposition of concentrated propagation paths and
the DMC constitute the hybrid channel model described in Section 2.3.3.

In mobile communication systems the channels are time-varying and
studying the wireless MIMO channel for such systems requires dynamic
channel sounding measurements. In order to obtain realistic characterization
of such dynamic channel conditions it is necessary to formulate also the chan-
nel model in a dynamic form. Chapter 3 discusses the estimation of propa-
gation parameters from channel sounding measurements. Conventional and
state-of-the-art methods such as SAGE [38–40] and RIMAX [108–110] rely
on a static channel model and fail to capture the dynamic properties of the
mobile channel. Moreover, they rely on batch computation and everything
needs to be re-computed at the arrival of new observation. In Section 3.4
the hybrid channel model is formulated as a dynamic state-space model in
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order to track the parameters of the double directional propagation path
model. The method of choice for the sequential estimation problem is the
Extended Kalman filter (EKF) due to its suitability considering given mod-
eling assumptions, along with its significantly lower computational complex-
ity. Another important part of the estimation procedure is the model order
adjustment since the number of significant propagation paths contributing
to the overall MIMO channel varies over time. In this thesis an approach
based on hypothesis testing is proposed. A detailed description of the state-
space modeling approach summarized in Section 3.4 for propagation path
tracking can be found in the original publications [I–V].

The last part of this thesis deals with tensor decomposition techniques.
Tensor representation provides a natural means for expressing multidimen-
sional data. Tensor decompositions have several applications in signal pro-
cessing including rank and basis identification, data compression, dimen-
sionality reduction through low rank approximation etc. In Section 4.2 a
novel PARATREE/SUSVD method is introduced. The low rank tensor ap-
proximation obtained using this method provides significant reduction in
computational complexity, for example, while solving the Fisher Informa-
tion matrix (FIM), which is included in the formulation of the employed
EKF in Section 3.4. The need for such complexity reduction arises from the
underlying data covariance model comprised of the superposition of the gen-
eral Kronecker model for the DMC (2.24) and the measurement noise (2.25).
This general DMC model was employed in publications [IV,V], whereas in [I–
III] the Tx and Rx covariance matrices were assumed to be spatially white —
a fact that allowed significant computational simplification. In publications
[VI, VII], the PARATREE/SUSVD is identified as a more general tensor de-
composition and its performance is compared against well known PARAFAC
and HOSVD decompositions. The SUSVD provides an orthogonal PARA-
TREE decomposition, which makes it suitable for low rank approximation
through deflation. Comparing against HOSVD with a similar deflation ap-
proach and a fixed approximation error, the SUSVD yields a smaller rank
due to a richer set of basis functions, i.e., an individual set is computed for
each branch in the PARATREE model.

Research work not only solves some research problems, but also leads to
identifying new research topics and open problems. In the following is a list
of some future research topics, which deserve to be further studied based on
the findings made in this thesis:

• Analyzing the propagation parameter estimates obtained from various
measurement campaigns in order to develop realistic dynamic MIMO
channel models.

• Development of the dynamic model used in the estimator in terms of
relating the state noise quantities more rigorously to different environ-
mental variables such as velocity of the terminals.
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• Comparing the estimation performance while applying different an-
tenna models and array manifold representations, for example,
EADF [62,82,83,108] vs. spherical harmonics [33,52].

• Improving the path detection scheme in terms of optimizing the mul-
tidimensional and possibly correlated detection grid.

• Development of the DMC model in terms of mixture modeling, time-
evolution, and deriving realistic parametric models for the covariance
matrices of the different data dimensions.

• Investigating the possibility to employ tensor techniques in MIMO
communications. Prospective applications include multidimensional
channel estimation, as well as low-rank approximation and compres-
sion to support channel state information (CSI) feedback.

• Finding new signal processing applications for the SUSVD and other
tensor decompositions.
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S.-G. Häggman, “Wideband radio channel measurement system at
2 GHz,” IEEE Transactions on Instrumentation and Measurement,
vol. 48, no. 1, pp. 39–44, Feb. 1999.

[69] E. Kofidis and P. A. Regalia, “On the best rank-1 approximation of
higher-order supersymmetric tensors,” SIAM J. Matrix Anal. Appl,
vol. 23, pp. 863–884, 2002.

[70] J. Koivunen, P. Almers, V.-M. Kolmonen, J. Salmi, A. Richter,
F. Tufvesson, P. Suvikunnas, A. Molisch, and P. Vainikanen, “Dy-
namic multi-link indoor MIMO measurements at 5.3 GHz,” in The 2nd
European Conference on Antennas and Propagation (EuCAP 2007),
Edinburgh, UK, Nov. 2007, pp. 1–6.

[71] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-
tions,” SIAM Review, vol. 51, no. 3, Sept. 2009, to appear.

[72] V.-M. Kolmonen, “Kolmiulotteinen 5 GHz:n MIMO-kanavaluotaimen
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channel parameter estimation from multidimensional channel sound-
ing measurements,” in The 57th IEEE Vehicular Technology Confer-
ence (VTC 2003-spring), vol. 2, Apr. 2003, pp. 1056–1060.

[111] A. Richter, J. Salmi, and V. Koivunen, “An algorithm for estimation
and tracking of distributed diffuse scattering in mobile radio channels,”
in IEEE International Workshop on Signal Processing Advances in
Wireless Communications, Cannes, France, Jul. 2–5 2006, pp. 1–5.

[112] A. Richter, J. Salmi, and V. Koivunen, “Signal processing perspec-
tives to radio channel modelling,” in Proceedings of the 2nd European
Conference on Antennas and Propagation (EuCAP 2007), Edinburgh,
UK, Nov. 11–16 2007, pp. 1–6.
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