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Abstract

We present results of low-temperature experiments on dilute mixtures of 3He
in 4He and on pure 3He, obtained by means of two kinds of mechanical oscillators
immersed in the liquid sample: vibrating wires and quartz tuning forks. The mea-
sured effect of the surrounding fluid on the mechanical resonance of the oscillators
is compared with existing theories. We also discuss resonances of second sound
and the state of supersaturation, both observed by a tuning fork in helium mixtures.
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1 Introduction
Dilute mixture of 3He in 4He is a fascinating subject of research as the only liquid
solution that remains miscible down to the absolute zero. Although the two helium
isotopes are chemically identical, their fundamental difference manifests itself at mil-
likelvin temperatures: the bosonic 4He component is practically in its ground state,
a perfect superfluid, whereas the 3He component forms a unique example of an un-
charged, weakly interacting degenerate Fermi system. At an extremely low, as yet
unknown, temperature the diluted 3He is also predicted to undergo a transition to the
superfluid phase. The possibility of the discovery of such transition to an unprece-
dented system of two different intermixed superfluids is a major motivation of past and
current research on dilute helium mixtures at ever lower temperatures. In this field, as
well as helium research in general, various kinds of immersed mechanical oscillators
have been widely used to probe the properties of the fluid under investigation. In this
article we present results obtained by two types of such oscillators, vibrating metal
wires and quartz tuning forks, in three experiments.

Vibrating wires have been a standard instrument of helium research for decades,
but their behavior in helium mixtures is still not fully understood, in particular at the
very lowest temperatures, that is, in the ballistic regime of the diluted 3He that interacts
with the wire. In the first experiment discussed in this article, helium mixtures were
cooled deep into the ballistic regime, to temperatures of order < 0.1 mK, by means
of nuclear demagnetization of copper. The mixture was probed by vibrating wires in
small sample cavities embedded inside blocks of the copper coolant.

The second experiment was the first sub-millikelvin realization of adiabatic melting
of 4He in presence of superfluid 3He, a method for cooling helium mixture through an
internal process. This new approach to the problem of reaching ultra-low temperatures
in helium mixtures has the advantage of avoiding the Kapitza thermal resistance barrier
that limits cooling by any external refrigerant. In the adiabatic melting experiment,
we employed two vibrating wires to probe pure 3He, both superfluid and normal, and
helium mixtures. Because of the cooling method, these vibrating wire measurements
were done at the highest pressure at which liquid helium mixture exists, the melting
pressure of 4He in saturated helium mixture.

In the third experiment we studied, among other things, the prospects of using
the quartz tuning fork, an oscillating probe relatively new to helium research, for our
purposes. The fork proved a fast and accurate detector of the state of a helium mixture
or pure 3He despite the lack of a satisfactory analytical description of its response
as a function of the properties of the fluid. Its sensitivity to the mass density of the
surrounding medium, and thus to the 3He concentration of helium mixture, enabled
us to collect data on the critical supersaturation of the mixture, the limit by which the
saturation concentration can be exceeded before spontaneous phase separation occurs.

Besides detecting the viscous damping and counterflow inertia as by vibrating
wires, the tuning fork was found to excite and sense second sound, or concentration
waves, in the helium mixture. This was seen in the vibration amplitude exercised by
the fork as a multitude of sharp anomalies, to which the only plausible interpretation
is that at certain wavelengths of second sound, there are resonant modes that increase
greatly the transfer of energy. The tuning fork is sensitive to this phenomenon because
at its resonance frequency, 32 kHz, the wavelength of second sound coincides with the
dimensions of the fork and its cylindrical container.

Before presenting the experimental results from our measurements, we briefly dis-
cuss various descriptions upon the effect of a surrounding fluid on an oscillating vibrat-
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ing wire. The theoretical work is later compared with experimental data.

2 Theory of vibrating wire
A typical vibrating wire resonator is semi-circular in shape, with loop diameter at least
two orders of magnitude larger than the wire thickness, so that the wire can be treated
as an infinitely long straight cylinder performing transverse oscillation. The effect of
surrounding viscous fluid on such an object was solved exactly by Stokes [1], with
the boundary condition that fluid velocity is zero at the cylinder surface. However,
in pure 3He and in the 3He component of dilute helium mixtures this treatment is not
valid at low enough temperatures because the mean free path of 3He quasiparticles,
l, becomes significant in comparison with the radius of the cylinder. The mean free
path increases with lowering temperature as T−2 because of the Pauli exclusion rule
limiting the scattering of the fermionic 3He quasiparticles. According to Ref. [2], in
helium mixtures the temperature dependence is roughly l = 0.2mm(T/mK)−2 at con-
centrations ranging from 1% to 9.5%. As the typical thickness of a vibrating wire is
of the order of 0.1 mm, l exceeds the size of the oscillating object below 1 mK. In the
temperature range where l is already significant but still below the size of the oscillator,
a phenomenon called “slip” arises; there are a few published works on analytical cor-
rections to the hydrodynamic solution of Stokes that take this into account [3, 4, 5]. At
still lower temperatures, even the slip corrections become invalid as the fluid no longer
behaves like a viscous continuum but rather like a gas of ballistic particles scattering
from the surface of the oscillator.

2.1 Hydrodynamic approach
The equation of motion for the displacement y of a cylindrical body can be written as

Aρwÿ+Aρwω2
v y = Fee−iωt +Fh, (1)

with A the cross-sectional area and ρw the density of the cylinder, ωv the resonance
frequency in vacuum, and Fe the amplitude of a periodic excitation force. Following
the notation of Stokes, the hydrodynamic force Fh on a cylinder oscillating at angular
frequency ω in a viscous, incompressible fluid with density ρ is

Fh = Aρω2y(k + ik′), (2)

where k and k′ are dimensionless reals. It is illustrative to compare different oscillators
in terms of these two numbers; therefore, we will next show how to determine them
from the measured response of an oscillator. The physical meaning of k and k′ becomes
apparent when we use the time derivatives of a periodic solution y = y0 exp(−iωt) to
express the equation of motion (1) as

A(ρw +ρk) ÿ = Fee−iωt −Aρωk′ẏ−Aρwω2
v y. (3)

This form shows that the real part of the hydrodynamic force contributes to the inertia
of the oscillator, whereas the imaginary part describes linear damping. When the fluid
is a mixture of superfluid and normal fluid, like a dilute mixture of 3He in 4He, ρ in
the damping term is replaced by ρn, the density of the normal component (calculated
from the effective mass), and in the inertia term, ρk becomes ρs + ρnk, where ρs is
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the density of the superfluid. Now, it is straightforward to show that the wire has a
resonance frequency

ωr = ωv

(
ρw +ρs +ρnk

ρw

)−1/2

. (4)

In the limit of zero viscosity where the normal component exhibits ideal potential flow,
k approaches unity. The limiting value of the resonance frequency in this ideal fluid
limit, ωi, is easy to determine from the measured data, gives a natural reference point
for comparing resonance frequencies at finite viscosities, and can be used to cancel ρs
from the treatment. Therefore, it is useful to express the resonance frequency in the
form

ωr = ωv

((
ωv

ωi

)2

+
ρn

ρw
(k−1)

)−1/2

, (5)

which allows more accurate calculation of k from a measured frequency than (4), be-
cause in practice ωi deviates slightly from the theoretical value.

The oscillation of the wire is observed by measuring the induced voltage, propor-
tional to the velocity of the wire, whose phase vector is −iωy0 = v0. On the grounds
of (3) this depends on frequency as

v0 =
Fe

Aρnωk′
1+ i ρw+ρs+ρnk

ρnω2k′
(
ω2−ω2

r
)

1+
(

ρw+ρs+ρnk
ρnω2k′ (ω2−ω2

r )
)2 . (6)

Provided that the oscillator has a quality factor Q À 1, it is justified to approximate
ω2−ω2

r ≈ 2ωr (ω−ωr) and ω ≈ωr in the frequency range where the amplitude differs
significantly from zero in comparison with its maximum. By these approximations and
the definition

∆ω2 =
ρnωrk′

ρw +ρs +ρnk
=

ρn

ρw

(
ωr

ωv

)2

ωrk′, (7)

Eq. (6) becomes

v0 =
Fe

Aρnωrk′
1+2i ω−ωr

∆ω2

1+
(

2 ω−ωr
∆ω2

)2 , (8)

which represents a Lorentzian peak centered at ωr and having a “full width at half
maximum” equal to ∆ω2. To summarize, the formulae for calculating the Stokes’ pa-
rameters from the measured resonance characteristics are

k = 1+
ρw

ρn
ω2

v
(
ω−2

r −ω−2
i

)
(9)

k′ =
∆ω2ρw

ωrρn

(
ωv

ωr

)2

. (10)

The solution provided by Stokes for calculating k and k′ reads

k + ik′ = 1− 4
qa

H(1)
1 (qa)

H(1)
0 (qa)

, (11)

where H(1)
n are Hankel functions of the first kind and a is the radius of the wire. The

symbol q is shorthand for (1+ i)/δ , where δ is the viscous penetration depth

δ =

√
2η
ρω

, (12)
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a function of the two relevant properties of the fluid, density ρ and viscosity η . Thus, k
and k′ are functions of a single real variable δ/a, which means that the Stokes’ solution
determines a unique curve on the (k,k′)-plane, parameterized by properties of the fluid
and the oscillating cylinder. Although well known to be inadequate in pure or diluted
3He, it is an illustrative reference curve.

To take the effect of slip into account, Højgaard Jensen et al.[3] present an improved
formula equivalent to

k + ik′ = 1+
4

qa
γ(qa)

1−βqaγ(qa)
, (13)

where the function γ is defined

γ(z) =−H(1)
1 (z)

H(1)
0 (z)

(14)

and β is a function of the ratio of slip length ζ and wire radius a. The physical meaning
of the slip length is that the tangential fluid velocity extrapolates linearly to zero at that
distance inside the solid surface, and it is of the order of the mean free path l of fluid
particles. Højgaard Jensen et al. estimate ζ = 0.579l and propose β = ζ/(ζ +a), later
shown to be valid only for ζ ¿ a because of the curvature of the surface of the wire
[6]. Guénault et al. [7] achieve best fit to their data by using the viscous mean free path
as l to define

β =
0.579l

a

√
1+10α2l/a

1+10l/a
(15)

and assigning α = 2.3. This is an empirical formula based on ideas of Carless, Hall,
and Hook, who suggest that β is linear in l/a at the limit of both small and large l, but
the proportionality factor increases in the intermediate region from the ζ/l of Højgaard
Jensen et al. by a factor that lies between 2 and 3 [8].

A more recent analytical work of Bowley and Owers-Bradley (B&O-B) [5], and
experimental results by Perisanu and Vermeulen [9], present a more sophisticated de-
scription of the problem. They calculate the slip effect directly in the correct cylindrical
geometry (instead of applying a result for a planar surface) and take into account an
enhancement of the slip length by specular scattering of quasiparticles from the wire
surface. The degree of specularity of scattering is characterized by a parameter s, rang-
ing from purely diffuse at s = 0 to purely specular at s = 1. The validity of the theory
is limited to short mean free paths (the authors give a condition l < a/10), mostly
specular scattering (s not much less than 1), and frequencies and wire radii so small in
comparison with the Fermi velocity of quasiparticles that aω/vF ¿ 1.

In both theories attempting to correct the Stokes’ solution for the effect of slip, the
resulting effective Stokes’ parameter can be expressed as a function of two ratios, δ/a
and l/a. These two are connected in a simple manner, because the viscosity of a normal
Fermi liquid with Fermi momentum pF obeys η = npF l/5 which, together with Eq.
(12), implies

l
a

=
5aρnω
2npF

(
δ
a

)2

. (16)

The coefficient can also be expressed as 5aω/(2vF), and it differs from the parameter
Φ = 4iρωa/(3n3 pF) of B&O-B just by a constant factor of − 15

8 i, and is in principle
known.
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2.2 Ballistic regime
Whereas the slip corrections extend the range of applicability of the hydrodynamical
solution towards lower temperatures, there is currently no analytical description of the
damping force in the truly ballistic temperature regime or in the transition regime where
the mean free path is comparable to the wire diameter. It is, however, possible to treat
analytically the limit l → ∞, or T → 0. Then, the damping force results from elastic
collisions of quasiparticles with the wire and depends on the nature of the scattering,
the extreme cases being specular scattering if the wire surface is perfectly smooth, and
diffuse scattering from a rough surface. According to Virtanen and Thuneberg [10], the
damping forces per unit length of the wire in the cases of specular and diffuse scattering
are

Fspec =−3π
4

an3 pF u and (17)

Fdiff =−43π
48

an3 pF u, (18)

the former also found by B&O-B [5]. Above, pF is the Fermi momentum of the 3He
quasiparticles and n3 the number density of 3He atoms. These results apply to a wire in
an unbounded volume of helium; in reality, the experimental volume is finite and scat-
tering from its walls has to be taken into account. Therefore, Virtanen and Thuneberg
have more recently considered a wire in the middle of a cylindrical container and found
an increase in the damping force in comparison with the unbounded case [11].

According to the equations above, the force exerted by the 3He quasiparticles in the
ballistic limit is in phase with the velocity of the wire, in other words, it is a pure damp-
ing force not contributing to the inertia of the wire. Thus, one would expect that the
ballistic limit of the resonance frequency is determined by the density of the superfluid
4He component, corresponding to k = 0 in the hydrodynamic approach. However, both
our experimental results and numerical calculations of Virtanen and Thuneberg [12]
show that in the ballistic limit, the resonance frequency actually reaches an even higher
value, indicating that not only the 3He component but also a fraction of the 4He decou-
ples from the wire as a result of interactions between the two components. Theoretical
work on this effect is still in process.

2.3 Superfluid 3He
Pure 3He below its superfluidity transition temperature (Tc) is a mixture of a superfluid
and normal liquid, with the important difference from the dilute helium mixture that
the proportions of the components depend on temperature so that at Tc there is only
normal liquid and at T = 0 all 3He is superfluid. At temperatures only slightly below
Tc the damping of a vibrating wire in 3He has a complicated temperature dependence
discussed, for example, in Ref. [8]. However, in the zero-temperature limit, two ap-
proximations are valid that lead to a simple functional form [13]. First, like in the case
of mixtures discussed above, the mean free path of quasiparticles (excitations of the
normal component) exceeds the dimensions of typical experimental devices, bringing
the system to the ballistic regime. Then, the damping force obeys

F =−An3 pF au
√

Y0Y2, (19)

where Y0 and Y2 are Yosida functions determining the normal fluid density, and A a
constant of the order 2. As the second simplifying approximation, below about 0.4 Tc
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Figure 1: Vibrating wire in the sample cavity inside a block of copper nuclear coolant.

the square root of the two Yosida functions is proportional to exp(−∆/kBT ), where ∆
is the superfluid energy gap. Since all other factors are independent of temperature, the
resonance width follows a law of the same form:

∆ω2 ∝ e−
∆

kBT . (20)

In our experiment on cooling mixtures by adiabatic melting of 4He in superfluid 3He,
a vibrating wire was used for thermometry of 3He well below 1 mK, so this limiting
behavior could be expected.

3 Experiments

3.1 Demagnetization cooling
The conventional method to cool helium (or any other condensed matter) sample below
a few mK, the minimum temperature practically achievable by a dilution refrigerator,
is adiabatic demagnetization of copper nuclei. In a decent nuclear demagnetization
cryostat, nuclear temperatures of tens of µK can routinely be reached, but the minimum
temperature of any other system, even of the conduction electrons of the nuclear stage
itself, is kept at a somewhat higher level because the thermal coupling to the cold nuclei
weakens towards low temperatures. For helium liquids the weakening is especially
rapid due to the thermal Kapitza resistance at the boundary between solid and liquid;
there is said to be a “Kapitza barrier” at about 100 µK, preventing further cooling.

In our nuclear demagnetization cooling experiment on helium mixtures, we pushed
the capability of this cooling method to the limit in an experimental setup with small
sample volumes inside Cu blocks in a nested Lancaster-type cell. One of the three
sample volumes is shown in Fig. 1; it contains a semicircular vibrating wire made of
∅ 125 µm Ta wire and is surrounded from all sides by sintered Ag powder on the
surfaces of blocks of Cu. The magnetic field B is produced by the demagnetization
magnet that embeds the whole experimental cell.

We used an advanced SQUID circuit for exciting and detecting the vibrating wire
oscillation [14]. The sensitivity was so high that the oscillation amplitude could be kept
at tens of nanometers. The experimental output, the frequency and width of the wire
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resonance, were determined by first correcting a measured spectrum for frequency-
dependent gain and phase and then fitting the theoretical resonance curve to the data.
As only one SQUID was available for this purpose at the start of the experiment, we
chose one of the three vibrating wires and used that throughout the experiment; another
SQUID was added before measurements at elevated pressures so that during the latter
half of the experiment, we also got data from another wire.

To avoid unnecessary heat loads, no other measuring devices besides the vibrating
wires were installed in the cell. Therefore, direct measurement of the temperature
of the cell was possible only down to about 3 mK by thermometers connected to the
mixing chamber of the dilution refrigerator. By a thermal model of the cell, based
on its physical structure, thermal resistances measured in the millikelvin regime, and
qualitative features of the behavior at the lowest temperatures, we have estimated that
the minimum temperatures of our mixture samples were between 70 and 90 µK [15].
At this temperature range, the mean free path of 3He quasiparticles in the mixture is
already over 2 cm, twice the largest dimension of the sample cavity. Thus, the ballistic
regime was reached in the experiment, with respect to not just the size of the wire but
also to the size of the liquid volume.

We experimented with six different mixtures, gradually increasing the 3He concen-
tration. The first four mixtures were studied at the saturated vapor pressure (SVP);
their concentrations were 1.8%, 3.6%, 5.6%, and 6.6%, the saturation concentration at
the low-pressure limit. In the experiments on the last two mixtures, 7.0% and 9.5%,
pressure was raised to 1.02 MPa, reaching the maximum concentration in the zero-
temperature limit. The concentration values are based on bookkeeping of the amounts
of pure isotopes in the room-temperature gas mixture.

Figure 2 shows the resonance widths in the four SVP measurements as a function
of temperature in the range where the thermometers of the dilution refrigerator could
be used. The Lancaster slip formalism has been applied to produce the corresponding
theoretical curves. In the calculation we used wire density 16.7 g/cm3, 4He molar
volumes reported by Tanaka et al. [16], α’s in the molar volume of the mixture by
Watson et al. [17], and effective masses of 3He according to Krotscheck et al. [18].
The viscosity of the 3He component was modeled by a function of the form

η = c2T−2 + c1T−1 + c0, (21)

with the coefficients used as fitting parameters and listed in Table 1. The T−2 term,
dominant at the lowest temperatures, is characteristic of a degenerate Fermi system,
and the two others are needed to describe the behavior at higher temperatures. Mainly
c2 is of interest—it is the quantity ηT 2 usually referred to in works on the viscosity of
dilute or pure normal 3He in the mK regime. The values now obtained will shortly be
compared with earlier results.

Figures 3 and 4 present the data from the two vibrating wires employed, plotting
resonance width versus the resonance frequency to avoid the difficulty of thermometry

Table 1: Coefficients for calculating mixture viscosity at SVP
x3(%) c2 (mPas·mK2) c1 (mPas·mK) c0 (mPas)
1.8 4.2 0 0.008
3.6 13 0.2 0.007
5.6 22 0.45 0.0025
6.6 28 0.5 0.0035
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Figure 2: Resonance width of wire 1 as a function of temperature with four concentra-
tions at SVP together with corresponding calculated curves.

of the sample at sub-millikelvin temperatures. Some of these data have already been
published in Refs. [19] and [20]. The horizontal dashed lines indicate the theoretical
resonance widths in the ballistic limit (T = 0) for each concentration: the values for
specular scattering are shown by long dashes, and the values for diffuse scattering,
somewhat higher than the corresponding specular values, by short dashes.

The low-temperature ends of the data from wire 1 at SVP systematically lie between
the specular and diffusive limits. However, the experiments at 1.02 MPa produced
resonance widths remaining clearly below the specular value. This may indicate that
the ballistic limit was not quite as complete in the pressurized cell. A plausible reason
for this is that under pressure, the filling line of the cell was full of liquid and formed
a significant conductor of heat between the cell and warmer parts of the setup, limiting
the lowest attained temperatures.

Figures 5, 6, and 7 present the vibrating wire data converted to effective Stokes
parameters by Eqs. (9) and (10), and theoretical curves given by the Stokes solution,
the Lancaster formula, and the theory of B&O-B with four values of specularity s:
1, 0.8, 0.6, and 0.4. No fitting has been done as all parameters of the curves are from
literature. Note that as B&O-B neglect diffusive scattering in their treatment, the curves
corresponding to the lowest values of s are merely suggestive.

The lower parts of the plots represent the hydrodynamic regime where the data
can be compared with the theoretical curves. In the data from wire 1, there is a clear
trend with increasing concentration: the observed behavior changes from a striking
agreement with the Lancaster curve towards the B&O-B curves for mainly specular
scattering. In accord with a remark by Perisanu and Vermeulen on König’s work with a
similar Ta wire [21], the data from saturated mixture at SVP suggests s≈ 0.5, although
that value is already beyond the validity range of B&O-B theory.

Let us also consider the ballistic regime, or the upper ends of the arcs of data points.
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Figure 3: Data from wire 1 in six helium mixtures. Black symbols present measure-
ments at SVP and gray symbols at 1.02 MPa. Dashed lines mark the theoretical T = 0
limits of the resonance width, long dashes for specular and short dashes for diffuse
scattering.
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Figure 4: Data from wire 2 in three helium mixtures. Black symbols present measure-
ments at SVP and gray symbols at 1.02 MPa. Dashed lines mark the theoretical T = 0
limits of the resonance width for specular scattering.
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Figure 5: Effective Stokes parameters measured at SVP below saturation concentration,
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two concentrations. Calculated curves like in Fig. 5. The gray lines are guides to the
eye.
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There, the major finding is that in each case, k reaches negative values, meaning that the
hydrodynamic mass of the vibrating wire is reduced more than by the effective mass of
the 3He component. This is the unexpected but numerically reproducible observation
already mentioned in Sec. 2.2. Another feature that the present theories do not repro-
duce is the gentle bend near the k = 1 point, emphasized on the top and bottom plots
of Fig. 6 by straight gray lines drawn through a virtually linear part of the data. One
explanation for this bend could be that it results from the mean free path of quasipar-
ticles reaching the size of the sample cavity. Testing this hypothesis is challenging as
it would require an experiment in a notably larger sample cavity with the same cooling
capability.

3.2 Adiabatic melting
Adiabatic melting of 4He in 3He is a method of cooling liquid helium mixture by an
internal process, thus avoiding the difficulty of efficiently coupling the sample to an
external coolant at ultralow temperatures. Our experiment was the first realization of
the method below 1 mK in superfluid 3He; details of the experimental setup and cooling
results are presented in Ref. [22].

The principle of the cooling method is the following. The helium isotopes are
first separated by pressurizing a liquid helium mixture to the pressure at which a solid
phase appears; at sufficiently low temperature, below some 50 mK, a crystal of essen-
tially pure 4He is formed, and all 3He remains in the liquid phase. Ideally, the sample
eventually consists of two isotopically pure phases: solid 4He and liquid 3He. The
second step is to precool the separated sample by a nuclear demagnetization stage to a
temperature where the liquid 3He phase is deep in the superfluid state; about 0.5 mK
is low enough and still relatively easy to reach despite the inevitable thermal resistance
between the nuclear stage and the helium sample. After precooling, pressure is lowered
so that 4He starts to melt and a liquid mixture of the isotopes appears again. Because
of the extremely small entropy content of both the pure phases in comparison with
mixture at the same temperature, the mixture being formed is significantly colder than
the initial temperature as long as the process is adiabatic. To cope with this, our exper-
imental cell was made very rigid, and (instead of a bellows or other variable volume
common in other experiments on high-pressure helium) the pressure was controlled by
inserting and extracting superfluid 4He through a superleak line. Because the sample
is intended to cool below the temperature of the cell wall, the thermal contact between
them has to be optimized so that it is sufficient for the precooling but not so strong that
the cooling power of the melting process is wasted in cooling down the cell wall and
the nuclear stage.

The three helium phases present during the adiabatic melting form a univariant
system, where, for example, temperature determines uniquely the pressure and the
concentration of the liquid mixture. In the zero-temperature limit, the equilibrium
pressure of the three-phase system is 2.564 MPa and the 3He concentration of the
mixture about 8.1%.

3.2.1 Vibrating wires

For monitoring the state of the helium sample, two vibrating wires were installed in-
side the cell. They were placed horizontally one above the other, so that in a typical
configuration, both liquid phases could be probed: the pure 3He phase by the upper one
and the mixture phase by the lower one—see Fig. 8. Since the experimental cell was
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Figure 8: The double vibrating wire insert in the adiabatic melting experiment: a
schematic perspective view and position in the cell.

not in an external magnetic field, the field necessary for the operation of the vibrating
wires was produced locally by compact elongated coils, supported by the same post
that held the vibrating wires in position. The supporting structure was made of CuNi
tube and stood vertically on the bottom flange of the experimental cell.

As temperature decreases well below 1 mK in the adiabatic melting experiment,
damping experienced by the wire in the dilute mixture approaches the ballistic upper
limit, whereas in the superfluid pure 3He, damping decreases rapidly according to Eq.
(20). In both cases damping is due to ballistic quasiparticles, giving rise to a resonance
width inversely proportional to the radius a and to the density ρw of the wire. In order
to keep the resonance widths of the two vibrating wires within a measurable range,
wire materials had to be chosen so that aρw was low for the upper wire and high for
the lower wire. Therefore, the upper wire was made from the NbTi core of a single-
filament superconducting wire with diameter 50 µm, and the lower wire from tantalum
wire with diameter 125 µm. The density of the NbTi filament is not known precisely,
but it is about 6 g/cm3, clearly below the density of tantalum, 16.7 g/cm3.

The density of the upper wire can be estimated using Eq. (4) in the form

(
fv

fr

)2

−1 =
ρs

ρw
, (22)

with resonance frequency in vacuum, fr = fv = 1071.5 Hz, and values for super-
fluid 4He at SVP ( fr = 1057.55 Hz, ρs = 0.145 g/cm3) and at melting pressure
( fr = 1055.27 Hz, ρs = 0.173 g/cm3). Linear fitting to these data implies wire den-
sity ρw = 5.5 g/cm3.

3.2.2 Results

Figures 9 and 10 show the measured resonance widths of the lower and upper vibrating
wires in the helium mixture of the three-phase system, respectively, and curves based
on the Lancaster slip correction. For the effective mass of 3He in the mixture we used
a value 3 times the atomic mass; this is a quantity that has not been measured above
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Figure 9: Resonance width of the lower (Ta) wire in saturated mixture at melting pres-
sure, measured values and a calculated curve.

2 MPa, but the pressure dependence is regular enough for fair extrapolation. Also for
the molar volume of the mixture, customarily expressed as vm = v40(1 + αx) with v40
the molar volume of pure 4He, α the BBP parameter after Bardeen, Baym, and Pines
[23], and x the share of 3He atoms in the mixture, we have to rely on extrapolated
values v40 = 23.2 cm3/mol and α = 0.165. As the density of the lower wire, made of
pure tantalum, is known beforehand, the data measured by it can be used to find an
expression for the viscosity of the 3He component in the saturated mixture. A good
agreement between experiment and theory is achieved by letting the viscosity depend
on temperature as

η =

(
2.6×10−8

(
T
K

)−2

+5×10−6

)
Pa · s. (23)

Then, by treating the less well known density of the upper wire as a fitting parameter,
a value as low as 4 g/cm3 has to be applied to produce the curve shown in Fig. 10.

The amount of 3He in the cell was such that the pure 3He phase, always floating on
top, could only reach the upper wire. The measured resonance widths in pure 3He are
presented in Figs. 11 and 12, above and below the superfluid transition, respectively.
In addition to experimental data, Figure 11 also shows two curves calculated by the
Lancaster slip correction, corresponding to wire densities 4 g/cm3, the value suggested
by the mixture measurements, and 6 g/cm3, which gives a good fit to this data and
is also closer to the value estimated from the resonance frequencies in vacuum and
superfluid 4He. The viscosity of normal 3He was calculated by

η =
(

1
6.65(T/mK)2 +12.8

+10−5
)

Pa · s, (24)

where the first term is based on an interpolation of data in Table I of Carless et al. [4],
and the second, constant term was applied to reproduce the flattening of the dependence
at high temperatures.
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Figure 10: Resonance width of the upper (NbTi) wire in saturated mixture at melting
pressure, measured values and a calculated curve.
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Figure 11: Resonance width of the upper vibrating wire in normal pure 3He, and cal-
culated curves assuming wire densities 4 g/cm3 (dashed line) and 6 g/cm3 (solid line)
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Figure 12: Resonance width of the upper vibrating wire in 3He below
the superfluid transition, and graphs of 550 exp(−1.5mK/T ) Hz (dashed) and
3300 exp(−3.2mK/T ) Hz (solid line). The temperature is that of the cell body mea-
sured by a Pt-NMR thermometer.

In Fig. 12, the width axis is logarithmic and the temperature axis is reciprocal, so
that graphs of functions of the form given in Eq. (20) are straight lines. As expected,
below 1 mK the data follows such a line down to about 0.5 mK, where the measured
temperature of the cell wall probably starts to differ significantly from the liquid tem-
perature. As the vacuum width of the upper wire was below 0.2 Hz, the observed
linear low-temperature dependence can be assumed to be valid at least down to about
0.4 mK, and was used to indicate the temperatures reached by the adiabatic melting
method and reported in Ref. [22]. The slope of the fitted line suggests ∆/kB = 3.2 mK,
whereas according to theory, the energy gap in superfluid 3He is larger than the BCS
value 1.76 Tc ≈ 4.3 mK; Todoshchenko et al. have observed behavior corresponding
to ∆/kB = 1.99 Tc in their vibrating wire measurements at the melting pressure of 3He
[24].

Finally, Fig. 13 shows a plot of the low-temperature viscosity of dilute helium
mixtures in terms of the quantity ηT 2, combining data of König and Pobell [2] and
our vibrating wire results from the two experiments discussed so far. All low pressure
data are well described by an empirical formula ηT 2 = x1.45 ·1.48 ·10−6 Pa s mK2. Our
result at melting pressure is consistent with the viscosity decreasing as a function of
pressure, a matter of which König and Pobell could not draw a firm conclusion.

3.3 Quartz fork in helium
The third experiment covered in this report was built around some critical components
of the previous adiabatic melting experiment for testing purposes. The setup was suit-
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Figure 13: Values of ηT 2 of helium mixtures at different concentrations and pressures
and an empirical power-law fit to the zero-pressure data. Our data at SVP (¥) and
melting pressure of saturated mixture (¨). Data of König and Pobell [2] at SVP (¤),
0.035 MPa (◦), 0.97 MPa (×), and 1.94 MPa (¦).

able for various kinds of measurements on dilute helium mixtures and pure helium
isotopes. A description of the setup and results on the solubility of 3He in the dilute
mixture over the complete range of pressures have been published in Ref. [25], and the
melting pressure of helium mixture in the mK regime as a means of determining the
osmotic pressure of the mixture will be treated in a forthcoming publication. Here we
will present results on the behavior of an oscillating quartz tuning fork immersed in the
helium sample. Figure 14 depicts the fork employed in our experiment. The cylindrical
container, originally vacuum sealed, was left in place, but two holes (only one visible
in the picture) were filed into it to allow helium in.

Quartz forks have already been successfully employed in low-temperature helium
research, in a similar manner as vibrating wires and other mechanical oscillators, by a
few other groups [26, 27]. This new tool has some apparent advantages in comparison
with the vibrating wire: its operation is based on piezoelectricity instead of Lorentz
force and magnetic induction, so that, firstly, magnetic field neither is needed nor af-
fects the measurement, and secondly, the measured signal is more intense relative to
excitation. Moreover, as quartz has a regular crystal structure, the physical properties
of the fork do not vary below 1 K and are unaffected by changes of pressure within
the range where liquid helium exists, and internal damping and thereby the vacuum
resonance width are extremely low. A quartz tuning fork can be described as a linearly
damped harmonic oscillator in a similar way presented for vibrating wires in Section
2.1, with the difference that as the output voltage is proportional to displacement in-
stead of velocity, the (nearly) Lorentzian peak is observed in the quadrature component
of the signal with respect to excitation.

The resonance frequency of a standard tuning fork, designed to respond at 215 Hz≈

21



mm

0

5

metal casing

electric contacts

quartz fork

Figure 14: Quartz tuning fork employed in our helium mixture experiment, external
and internal view.

32.8 kHz in vacuum at room temperature, is more than ten times higher than that of a
typical vibrating wire. Therefore, the viscous penetration depth, defined by Eq. (12), is
smaller than in the case of the wires by a factor of order four. On the other hand, the
tines of available tuning forks are a couple of times thicker than wires usually used as
oscillators. These two factors together imply that for a tuning fork immersed in a vis-
cous fluid, the ratio of the size of the oscillator to the viscous penetration depth (denoted
by a/δ in the theory of vibrating wires) is notably larger than for a vibrating wire. As
a consequence, the ratio of the resonance width to the resonance frequency is smaller,
in other words, the Q-value is higher. This is an advantage in highly viscous fluids,
such as normal pure and diluted 3He at mK temperatures, where the resonance width
would otherwise become inconveniently high—consider, for example, the upper vibrat-
ing wire in our adiabatic melting experiment, whose resonance peak in pure 3He close
to Tc had a width comparable to the resonance frequency, was far from Lorentzian, and
proved very difficult to extract from the frequency-dependent background resulting in
poor measurement accuracy.

In addition to frequency and size, wires and forks also differ in terms of density.
Quartz, of which tuning forks are made, has a density of 2.65 g/cm3, notably smaller
than densities of the metallic vibrating wires. Consequently, the relative change of the
resonance frequency as a function of the density of the surrounding fluid is larger for
tuning forks than for vibrating wires. On the other hand, even the highest densities of
liquid helium phases are more than an order of magnitude smaller than that of quartz,
so that the resonance frequency of a fork in helium varies within a convenient range of
a few kilohertz below the vacuum value.

3.3.1 Single-frequency measurement

Like a vibrating wire, an immersed quartz tuning fork gives information on the sur-
rounding fluid through the frequency and width of its mechanical resonance. In most
of our fork measurements, we determined these variables by measuring the fork signal
at a single frequency close to the resonance. This single-frequency method is much
faster than recording entire spectra; we typically acquired a new data point in every
two or three seconds, a sampling rate more than sufficient for most purposes.

Before the single-frequency method could be used, we had to record a calibration
spectrum of the fork signal at stable conditions in order to determine the background
offset and phase shift originating from the detection circuit, and the amplitude and
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width of the resonance peak. The offset and phase were then used to extract the actual
fork response from the measured signal for the single-frequency measurement. Ac-
cording to the solution of the equation of motion (1), the phase-corrected AC response,
measured at frequency f , consists of two components

u1( f ) =
C
w

(
1+

(
f 2− f 2

0
w f

)2)−1

(25)

u2( f ) =
C
w

f 2− f 2
0

w f

(
1+

(
f 2− f 2

0
w f

)2)−1

, (26)

where w and f0 are the width and frequency of the resonance. C is essentially a constant
provided that f and f0 are limited to a narrow range of frequencies, which was ensured
by measuring the calibration spectrum at or close to the conditions where the single-
frequency method was to be applied. As u1 ( f0) = C/w, the constant C is simply the
product of the width and amplitude of the peak, known from the spectrum measurement
and proportional to the area of the peak. It is straightforward to solve w and f0 from
the equations above; a practical form of the solution that we used in our measurement
is to first calculate w from just the signal and the constant C by

w =
Cu1

u 2
1 +u 2

2
, (27)

and then f0 by

f0 =

√
f
(

f −w
u2

u1

)
. (28)

For maximal accuracy, the fork response should be measured as close to the resonance
(the maximum of u1 and zero of u2) as possible, at least within the width of the reso-
nance. To ensure this, we controlled the measurement by a computer program that set
a new frequency after each measurement, either at the previous resonance frequency
or at a value predicted by linear extrapolation from the two previous values. The latter
mode is preferable when the resonance peak is narrow and changes frequency more
or less regularly. On the other hand, if the resonance frequency varies in an unpre-
dictable way, extrapolation is unfavorable as it may erroneously select the next mea-
surement frequency so far away from the resonance that the program looses track of
it altogether—this happened occasionally in our experiments, sometimes because an
acoustic resonance of the surrounding liquid passed the fork resonance and the mea-
surement algorithm started to follow that.

3.3.2 Results in mixtures

The experiment with the tuning fork was a long continuous cooling, started by filling
the cell by pure 4He, and proceeded by gradually replacing it by small doses of 3He.
Isotopes were exchanged by adding 3He through a customary filling capillary while
removing 4He via a superleak line, with the cell usually at the saturated vapor pressure
(SVP) and at 10 mK. The chosen temperature was easily maintained by our dilution
refrigerator despite the heat load of the incoming warm 3He, but also low enough so that
the saturation concentration of the dilute helium mixture does not differ significantly
from its zero-temperature value. Figure 15 shows how the width of the fork resonance
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Figure 15: Resonance width of tuning fork at SVP and 10 mK as a function of the 3He
content of the cell up to the saturation limit. The linear fit represents a power law with
exponent 1.164.

at the said conditions increased with the 3He content of the cell. The data covers the
whole concentration range up to the saturation limit of about 6.6 %, and follows a
power law ∆ f2 ∝ N 1.164

3 , presented by the straight line in the graph. The visible local
deviations from the regular power-law behavior are most probably due to resonances
of second sound in the mixture. A power law with an exponent somewhat above one
is what one expects on the grounds of the theory for viscous damping on cylinders.
Namely, by Eq. (7), the resonance width is, to the first order, proportional to ρnk′,
where k′ is, in turn, well approximated by 2δ/a at small δ , and thus proportional to√

η/ρn. On the basis of vibrating wire measurements, η ∝ x 1.45
3 , and because ρn, N3,

and x3 are approximately proportional to each other in dilute mixtures, this reasoning
results in ∆ f2 ∝ N 1.225

3 .
Before reaching the saturation solubility of 3He in the sample, we focused on mea-

surements of the melting pressure of the mixtures, reported elsewhere, instead of sys-
tematically examining the dependence of the fork response on concentration, tempera-
ture, and pressure. Some fork data was, however, gathered at the chosen 10 mK refer-
ence temperature while changing the pressure between SVP and the melting pressure.
Observed resonance widths in different mixtures are plotted as a function of pressure
in Fig. 16 together with data for the saturated mixture. Because we controlled the pres-
sure of the sample by adjusting the amount of 4He in a constant volume, a given data
set is not for a fixed concentration x3 but for a fixed number density of 3He.

The experiment entered a new phase when the 3He content of the cell reached a
value sufficient to saturate the mixture at low temperatures and pressures. We studied
the pressure and temperature dependence of the saturation solubility, and also contin-
ued the melting pressure measurements. Figure 17 illustrates the domain in which the
fork response varied, with arrows that indicate how changes in pressure, temperature,
and concentration influenced the fork.

In principle, the resonance width data could be used to determine the saturation
concentration at different pressures, but because of its strong temperature dependence,
an independent means of accurate thermometry of the mixture would then be necessary.
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Figure 16: Resonance width of tuning fork in helium mixtures at 10 mK as a function
of pressure. Each set of data is for a constant amount of 3He in the cell: 11.1 mmol (N),
14.3 mmol (¥), 17.5 mmol (•), 21.1 mmol (¨), 29.7 mmol (H), and saturated mixture
(◦). The lines are guides to the eye.
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Figure 17: Variation of the tuning fork response with changes in the three variables
defining the state of helium mixture. Experimental points for 3He concentration range
from zero to saturation at SVP and 10 mK (circles), temperature range from about 7 to
70 mK in saturated mixture at SVP (black), temperature range from about 1 to 35 mK
in saturated mixture at melting pressure (gray). A line with slope −4 drawn through
the melting pressure data illustrates the extrapolation of the resonance frequency to the
zero-viscosity limit f̃ .
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Figure 18: Resonance width of tuning fork in saturated mixture at pressures shown
on the graph, and a calculated curve for a vibrating wire with radius a = 0.15 mm at
2.56 MPa.

To reduce the effect of temperature variations, we based our solubility measurements
on the quantity f̃ = f0 +∆ f2/4, a projection to the frequency axis in the direction of the
temperature dependence around 10 mK. When calculated from results taken at about
that temperature, f̃ has very little temperature dependence while indicating clearly
changes in concentration and pressure, the latter of which is readily measurable by an
external pressure gauge.

Figure 18 presents the temperature dependence of the resonance width of the fork in
saturated mixtures at four pressures. The data for the melting pressure, extending down
to below 1 mK, were acquired during the only demagnetization cooling with this setup.
Otherwise we rarely cooled the sample much below 10 mK. The theoretical curve in
the graph has been calculated by the vibrating wire theory for a wire with a radius of
0.15 mm in saturated mixture at its melting pressure. In agreement with fork results of
Clubb et al. [26], the temperature dependence in the hydrodynamic regime appears to
have a lower slope than the approximately T−1 predicted by theory and demonstrated
by vibrating wires. The pattern of sharp peaks that dominate the resonance width above
about 50 mK is attributed to resonances of second sound in the mixture, a phenomenon
discussed in the following section.

3.3.3 Second sound resonances

Already after adding the first doses of 3He into the cell, we observed a feature in the
fork response that we had not anticipated on the grounds of earlier work on tuning
forks or other oscillators in helium mixture: there appeared sharp peaks in the reso-

26



0 0.5 1.0 1.5 2.0

0

10

20

30

40

 
v
e
lo

c
it

y
 o

f 
se

c
o
n
d
 s

o
u
n
d
 (

m
/s

)

T (K)

Figure 19: Velocity of second sound in helium liquids: pure 4He at SVP, combined
results of various authors (dotted line) [32, 33, 34]; mixtures with 3He concentrations
0.32 % (¥) and 4.3 % (¤) at SVP after King and Fairbank [35]; 0.153 % (4) and 6.278
% (N) at SVP, and 5.762 % at 10 atm (♦) and 5.409 % at 20 atm (¨) after Brubaker et
al. [36]; our approximative results for 8 % at SVP above 1.1 K (•) and for saturated
mixture at its melting pressure (◦), based on the assumed dependence for 8 % below
1.05 K (gray line).

nance width as a function of temperature, accompanied with variation in the resonance
frequency such that in the width–frequency plane, the data formed loops (see Fig. 23).
It was obvious that in the system there are a great number of vibrational modes with
resonance frequencies rather strongly dependent on the state, particularly temperature,
of the mixture. Then, the loop-like behavior in the fork data is observed when the res-
onance frequency of one of these modes passes the resonance frequency of the fork. It
is evident that these vibrational modes originate from the so-called second sound.

Second sound is the notion given to concentration waves propagating in a mix-
ture of a superfluid and a normal fluid, predicted and observed already in early 1940’s
in 4He as “temperature waves” [28, 29, 30] and little later in dilute helium mixtures,
where the oscillation amplitudes of densities of 3He and 4He and temperature are gov-
erned by a system of equations given by Brucker et al. [31]. Those equations have two
solutions, one with the isotopes oscillating in phase—first sound or pressure waves—
and the other with opposing oscillation—second sound. At the surface of the fork, the
isotopes arguably have the same oscillation amplitude. Because this boundary condi-
tion is not necessarily satisfied by pure first sound, the fork is coupled to both first and
second sound modes in the mixture. Figure 19 presents a selection of published data on
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Figure 20: The series of peaks in the resonance width of the tuning fork in saturated
mixture at three pressures. Curves have been shifted to improve clarity.

second sound velocity as a function of temperature in 4He and dilute helium mixtures.
The plotted data is fully consistent with several features exhibited by our observations.
First of all, the magnitude of the velocity of second sound in the conditions of our ex-
periments is such that at frequencies around 32 kHz, the wavelength is of the order of
a millimeter, which happens to be the typical length scale of the cross section of the
fork and its container. Standing waves of second sound are, therefore, likely to occur
inside the fork container. Second, the velocity depends nearly linearly on temperature
below 0.5 K covering the same range of values for each concentration and pressure
in our experiment, explaining various trends of displacement of the same sequence of
resonances in several measurements. See, for example, Fig. 20, which presents the
sequence of peaks from 30 to 200 mK in tuning fork data at three pressures. The data
were extracted from measurements of the temperature dependence of the resonance
width by subtracting a suitable monotonous function of temperature that approximates
the contribution of viscous damping at each pressure; at 0.1 MPa, for example, the
subtracted function was defined as ∆ f2(T ) = (700/(T +5)+0.02T ) Hz with T in mil-
likelvins. Curves for 0.1 MPa and 1.1 MPa have also been shifted upwards to improve
clarity. The 3He content of the sample in each case was close to the low-temperature
saturation value. The same pattern is visible in all three graphs, shifting towards higher
temperatures because of the similar shift of second sound velocities. Furthermore, the
features that start from below 100 mK at 0.1 MPa become narrower at higher temper-
atures and pressures because the slope of the temperature dependence of the second
sound velocity is more shallow in the lower end of the presented temperature range.

The existence of a maximum in the velocity of second sound in helium mixtures,
occurring at about 1 K depending on concentration, gives a convincing evidence to the
hypothesis that second sound is the cause of the observed resonances. With about 8%
of 3He in the mixture sample, we made a slow temperature sweep from the millikelvin
regime up to 2 K, and obtained a clear picture that, indeed, is symmetrical about ap-
proximately 1.05 K. Figure 21 shows a plot of the data from 0.75 to 1.35 K, with three
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Figure 21: Resonance width of the fork during temperature sweeps around 1 K. The
concentration of the mixture was about 8 %, slightly less when measuring the data
presented by the solid black curve than for the gray and dashed curves.

curves for slightly different concentrations.
We did not attempt to identify the second sound modes around the tuning fork in

any detail—it would require the numerical solution of a wave equation in the compli-
cated three-dimensional geometry of the fork and its container. Besides, the geometry
probably varies from fork to fork sufficiently to give each individual fork a unique res-
onance pattern. Knowing the spectrum of resonant wavelengths would, of course, be
useful because then each observed peak could be associated with a certain value of
second sound velocity. However, even without this knowledge we can produce some
approximative data on the temperature dependence of the second sound velocity, pre-
sented by circular symbols in Fig. 19, for saturated mixture at the melting pressure
between 0.2 and 0.5 K and for the 8% mixture above 1.05 K. To produce those data,
we used the fork data measured in our nominally 8% mixture below 1.05 K as a ref-
erence together with an empirical function that estimates the second sound velocity
in that case, plotted in Fig. 19 in gray. On the basis of published results and the ob-
served maximum temperature, there is not much freedom in sketching the shape of the
temperature dependence in this range. With the empirical function giving the second
sound velocity at each peak and other distinguishable feature in the reference data, the
same features identified in other measurements can be assumed to mark the same ve-
locity. The two data sets determined by this method are in good agreement with the
temperature, pressure, and concentration dependence of earlier results.

Although the second-sound resonances make a disturbing irregularity in the oth-
erwise smooth response of the tuning fork to the viscosity and density of helium
mixture, they also offer an interesting prospect for producing a remarkably accurate
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reference thermometer. We estimate that the temperature at which a certain second
sound resonance occurs can be determined with an accuracy of 10 µK or better in
the temperature regime of hundreds of millikelvins where the temperature dependence
of second sound velocity is steep. Because of the dependence on pressure and con-
centration, reproducibility of the resonance temperatures would require constructing a
completely closed system or, alternatively, an arrangement with three helium phases,
dilute and 3He-rich liquid mixtures and saturated vapor, with the fork immersed in
the first-mentioned phase. The latter approach is, obviously, only feasible below the
phase-separation temperature of liquid helium mixture, 0.89 K.

3.3.4 Supersaturation and nucleation of pure 3He phase

It is possible to bring a helium mixture to a metastable supersaturated state by chang-
ing the pressure or temperature of a homogeneous mixture, initially somewhat below
saturation, so that the solubility of 3He falls below the concentration of the sample.
Studies of the decay of the supersaturated state by Satoh et al. [37] and Tanaka et al.
[38] suggest that at millikelvin temperatures, it exhibits quantum nucleation, where a
virtual nucleus of the pure 3He phase has to tunnel through a potential barrier. Even
though the decay of supersaturation must be a stochastic event, the dependence of the
decay rate on the excess concentration is such that it is reasonable to speak of a critical
supersaturation ∆xcr, a typical excess concentration at which the decay occurs. The he-
lium mixture is as close to an ideal system as it can be for studying such a phenomenon
in the bulk, because the coating of all surfaces with 4He reduces boundary effects that
often play a major role in different nucleation processes in other systems, and there are
no impurities whatsoever to act as nucleation centers.

While studying the temperature dependence of the saturation concentration [25],
we performed two kinds of operations where supersaturation was produced and, ac-
tually, exploited for giving useful reference data: pressure sweeps at constant tem-
perature and temperature sweeps at constant pressure. Pressure sweeps were made
in the range between SVP and 0.5 MPa, where the saturation concentration increases
quickly as a function of pressure, and their purpose was to find the pressure at which
a known amount of 3He at a chosen temperature just dissolves. Temperature sweeps,
on the other hand, were performed at higher pressures, and enabled us to directly de-
termine the temperature dependence of solubility. Both kinds of sweep experiments
were started with a phase-separated sample with the amount of pure 3He very small in
comparison with the mixture phase. Pressure or temperature was first ramped up to in-
duce complete dissolution, and then reduced again. As the solubility decreased below
the point of complete dissolution, the mixture entered the supersaturated state, and the
developing difference between saturation concentration and the concentration in the
homogeneous sample could be detected by comparing tuning fork data recorded in the
two cases. Eventually, the pure 3He phase reappeared in the cell, which was detected
by the fork as a rapid relaxation of the mixture phase into the saturation concentration.
As examples of both kinds of operations, Fig. 22 shows fork data in a pressure sweep
experiment at 10 mK below 0.1 MPa, and Fig. 23 in a temperature sweep experiment
at 2.4 MPa. Although the loops (caused by second sound resonances, see above) com-
plicate the picture in the temperature sweep somewhat, the data indicate clearly the
course of the process.

In both kinds of sweep experiments, the change of the fork response indicating
the relaxation from supersaturation to the saturated mixture can be converted into the
amount of excess concentration at the moment of the nucleation of the pure 3He phase.
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Figure 22: Fork data recorded during a pressure sweep experiment at 10 mK. Arrows
indicate the direction of time.
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Figure 23: Fork data and some temperature readings recorded during a temperature
sweep experiment at 2.4 MPa: warming (•) and cooling (◦). Arrows indicate the
direction of time.
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Figure 24: Critical supersaturation of helium mixture. Excess concentrations reached
by our temperature sweeps at constant pressure (◦ and temperature at phase separation
in millikelvins), pressure sweeps at 10 mK (¥), and pressure sweeps at temperatures
between 5–12 mK (N), 22–43 mK (M), and 50–80 mK (O). Critical supersaturation
according to Tanaka et al.[38] at 10 mK (solid line) and at 50 mK (dashed line).

The data accumulated over our measurements are presented in Fig. 24 together with
∆xcr curves adopted from Tanaka et al. who made measurements up to 0.8 MPa only.
Our data are rather fragmentary because the statistics of the nucleation process was
not the main subject of our work, but still allow comparison with Tanaka’s results.
They appear to agree well, both in overall magnitude and, at least qualitatively, in the
pressure and temperature dependencies. Moreover, our data do not significantly depend
on whether supersaturation was reached by varying temperature or pressure, which can
be considered as further evidence that the critical supersaturation indeed is a property
intrinsic to the bulk mixture. Below 0.1 MPa, the excess concentrations reached by
us are only about half of the general level, which is probably related to the fact that
below the atmospheric pressure, the liquid–vapor interfaces in the filling lines lying
somewhere between the cell and the 4 K bath made it difficult to change the pressure
smoothly.

3.3.5 Results in pure 3He

We studied the fork response in pure normal 3He liquid at five pressures: 0.1, 0.5, 1.0,
1.7, and 2.56 MPa, the highest value set by the melting pressure of the saturated mixture
also present in the cell. Figure 25 shows the measured resonance widths as a function
of temperature, and calculated curves for the lowest and highest pressures, based on
the vibrating wire theory. Viscosity and density of 3He were taken from literature and
an equivalent wire radius of 0.15 mm was applied. Agreement with the 0.1 MPa data is
good, whereas at the melting pressure, theory predicts a notably higher damping than
that observed. The slope of the temperature dependence is very well reproduced by
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Figure 25: Resonance width of the quartz fork in normal pure 3He at five pressures:
0.1 MPa (•), 0.5 MPa (◦), 1.0 MPa (N), 1.7 MPa (M), and 2.56 MPa (¨). Calculated
curves for a cylindrical wire with radius of 0.15 mm in 3He at 0.1 MPa (solid line) and
at 2.56 MPa (dashed line).

theory at both pressures, suggesting that whatever the cause of the slope discrepancy is
in the case of mixtures, it is not present in pure 3He.

The fork data in pure 3He at the applied pressures are shown in Fig. 26 on the
resonance width–frequency plane. At each pressure, the data points trace a smooth
arc, free of loops and bends visible in mixture data. This supports the picture that the
resonances in mixtures originate from second sound, as in normal pure 3He there is no
such mode.

4 Conclusions
In our experiment on refrigerating helium mixtures by demagnetization of copper, vi-
brating wire response was measured across more than four orders of magnitude in
temperature, from the conventional hydrodynamic regime of the diluted 3He to the far
developed ballistic limit. On the basis of measurements in the hydrodynamic regime,
we obtained data on the viscosity of dilute mixtures as a function of concentration
that supplement and agree with previous studies. Results beyond the regime of hy-
drodynamic description suggest that the scattering of 3He quasiparticles from the wire
is partially specular, more so at higher concentrations than lower. To obtain a more
qualitative understanding of the degree of specularity, a theory is needed that takes into
account both specular and diffuse scattering. In addition to specularity whose effect
was notable over a wide range of temperatures, in the ballistic regime effects from the
finiteness of the experimental volume were also observed, in confirmation to theoretical
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frequency–width plane. For the corresponding temperatures, see the previous figure.
Data shown in gray (0.1 MPa, lowest temperature) were obtained by measuring full
resonance spectra, and black points by the single-frequency method.

work on the subject.
In contrast to vibrating wires, there is no analytically justified expression of damp-

ing experienced by a tuning fork as a function of properties of the surrounding liquid.
The existing theory for cylindrical wires can be adjusted to reproduce fork data in pure
normal 3He by applying a fitted equivalent value of the wire radius, whereas in dilute
helium mixtures, the observed temperature dependence is less steep than the wire the-
ory predicts regardless of the equivalent radius. Because this deviation is specific to
forks in mixtures, the reason may be related to a phenomenon that strikingly mani-
fested itself in fork experiments in mixtures, viz. second sound. On the basis of the
observed resonances, it is evident that the fork emits second sound, and this emission
necessarily adds to the damping.

Due to the lack of an analytical description of viscous damping in their geometry,
forks cannot serve as primary viscometers, but once calibrated, they are very useful
sensors of the state of helium liquids. Good signal quality enables fast and accurate
single-point measurement, and owing to their lower density, larger size, and higher fre-
quency in comparison with typical vibrating wires, the resonance quality factor remains
higher and sensitivity to changes in liquid density is better.
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