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Abstract — In this paper the classification of pulse
compression radar waveforms using features extracted
from the Choi-Williams time-frequency distribution is
studied. In addition, a feature based on the symme-
try properties of polyphase waveforms is introduced.
The pulse compression waveforms examined are the
Frank, P1, P2, P3, and P4 codes.
tion capability of the features is evaluated using an

The discrimina-

ensemble averaging early-stop committee of 10 mul-
tilayer perceptrons. The classifier achieves over 96
% overall correct classification rate in signal-to-noise

ratio of 3 dB on data similar to the training data.

I. INTRODUCTION

Automatic waveform recognition is an important task in spec-
trum management and surveillance, communication and radar
emitter identification, electronic support applications as well
as in software defined radio (SDR) and intercept receivers. A
key task in waveform recognition is to find a set of features
that distinguish various waveforms from each other. In addi-
tion, computationally efficient algorithms for computing the
features have to be derived.

Recognition of radar waveforms using time-frequency
analysis has received attention during the past few years,
e.g. [1-3]. In this paper a method for recognizing the
polyphase pulse compression waveforms using features
derived from the Choi-Williams time-frequency distribution
(CWD) and symmetry properties of radar signals is proposed.
The polyphase pulse compression waveforms considered are
the Frank, P1, P2, P3, and P4 codes. The actual supervised
classifier is an ensemble averaging early-stop committee of
10 multilayer perceptrons (MLPs). The CWD is treated
as an image and features that possess desirable invariance
properties are computed from those images.

The paper is organized as follows. The signal model is
given in Section II. The polyphase waveforms are introduced
in Section III. The CWD representation is described in Sec-
tion IV. Normalization procedure needed as a pre-processing
step is outlined in Section V. The actual features are intro-
duced in Section VI and simulation results are presented in
Section VII.

1 Liisa Terho is with the Finnish Defence Forces Technical Re-
search Centre.

II. SIGNAL MODEL

The channel is assumed to be additive white Gaussian noise
(AWGN) channel. In addition, it is assumed that the signal
has been transferred to the baseband, i.e. the complex enve-
lope y(¢) of the received signal is given by:

y(t) = 2(t) +w(t), (1)

where z(t) is the complex envelope of the transmitted signal
containing only one code period and w(¥) is a complex circular
additive white Gaussian noise process.

III. POLYPHASE WAVEFORMS

The transmitted complex phase coded signal can be ex-
pressed in the following form:

s(t) = Ae]’(QTrfctﬂm)7 (2)

where A is the amplitude, f. is the carrier frequency, and
¢; is the discrete phase sequence. Each phase has the same
time duration. In the following, five different polyphase pulse
compression codes are presented. The codes presented are the
Frank, P1, P2, P3, and P4 codes.

The Frank code is a step approximation to a linear fre-
quency modulation (LFM) waveform using N frequency steps
and N samples per frequency. Thus, the total number of sam-
ples in a Frank code is N2. The phase of the ith sample of
the jth frequency of a Frank code is given by [4]:

B = 2 (= 1) - 1), 3)

where ¢ = 1,2,...,N, and j = 1,2,..., N. The pulse com-
pression ratio of the Frank code is N2.

The P1 code is also derived from a step approximation to
an LFM waveform using N frequency steps and N samples per
frequency. The phase of the ith sample of the jth frequency
of a P1 code is given by [4]:

by = - IN == DIG-DN+G-Dl, (@)

where i =1,2,...,N,and j =1,2,...,N. The P1 code has a
pulse compression ratio of N2.

The phase of the ith sample of the jth frequency of a P2
code is given by [4]:

$ij= |5 v —wE-D(N+1-2), (5



where ¢ = 1,2,...,N, and 5 = 1,2,..., N, and where N is
even. For odd values of N the autocorrelation sidelobes are
high [4]. The pulse compression ratio of the P2 code is N2.
The P2 code has the property of being palindromic.

The P3 code is derived by sampling an LFM waveform.
The phase of the ith sample of a P3 code is given by [4]:

™ . 2
¢i=—(—1)7, (6)
p
where i = 1,2,..., p where p is the pulse compression ratio.
The P4 code is derived from the same waveform as the P3
code. The phase of the ith sample of a P4 code is given by [4]:

¢i=;('—1) — (i —1), (7)

where i = 1,2,..., p where p is the pulse compression ratio.

IV. CHOI-WILLIAMS DISTRIBUTION

The Choi-Williams distribution of a continuous time signal
z(t) is defined [5]:

W (t,w) =//X/ﬁe>‘p <_%> (8)

T (u + %) x* (p, - %) exp (—jwT) dudr,
where o (o > 0) is a scaling factor.

Fig. 1 shows the Choi-Williams distributions of different
polyphase codes. The differences among the classes are clear
from the figure. For instance, the Frank, P1, and P2 codes
have a distinctive blocky structure due to the fact these codes
are derived from a step approximation to a linear frequency
modulation waveform. The P3 and P4 codes, on the other
hand, are derived by sampling a linear frequency modula-
tion waveform, and thus have a smoother signal component
in the CWD. The shape of the CWD remains relatively sim-
ilar within the code classes. The largest difference being the
number of frequency blocks in the CWDs of the Frank, P1,
and P2 codes. The number depends on the length of the code.
In addition, the sampling frequency and the signal bandwidth
have an effect on the shape of the CWD.

The scaling factor ¢ had a value 0.05 when calculating the
CWDs in Fig. 1. This relatively small value was experimen-
tally found to produce a good separation among the different
classes. It provides effective cross-term suppression but smear-
ing of the auto-terms is considerable. However, since image
processing techniques are applied to the CWD image, it is
preferred that the signal objects are a little bit larger. Hence,
a small value for o, such as 0.05, is reasonable.

The CWD can be treated as a 2-D image. However, in
order to effectively extract features from the CWD image, it
has to be normalized first. The normalization procedure is
explained next.

V. NORMALIZATION OF THE CWD IMAGE

The goal of the normalization is to minimize the influence
of the signal bandwidth and the sampling frequency on the
final CWD image. The normalization procedure consists of
three steps:

1) Thresholding of the CWD image

2) Time gating and frequency filtering of the thresholded
image, i.e. removal of areas not containing signal com-
ponents from the edges of the image
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Fig. 2: Three normalization steps: 1) thresholding, 2) time gating

and frequency filtering, and 3) aspect ratio normalization.

3) Aspect ratio normalization of the final binary image to
1.

Fig. 2 illustrates the three normalization steps for a P3
coded waveform.

The thresholding step is crucial to the overall success of
the whole normalization algorithm. The thresholded image
should contain only the signal objects without any isolated
noise points since the outcome of the second step can be very
sensitive to such noise. The threshold value plays a key role in
the outcome of the first step. The following iterative algorithm
was used to obtain a global threshold T' [6]:

1. Select an initial estimate for T'.

2. Segment the image using T to two groups G1 and G2
where (1 consists of all pixels with gray level values



> T and G2 consists of all pixels with gray level values
<T.

3. Compute the average gray level values ;11 and po for the
pixels in regions G1 and Ga.

4. The new threshold value is given by T = % (11 + p2).
5. Repeat steps 2 through 4 until convergence.

The initial estimate for 7' can be assigned to the average
of the maximum and minimum gray level values of the CWD
image.

Global thresholding alone, however, cannot guarantee com-
plete removal of isolated noise. Thus, before time gating and
frequency filtering the thresholded image should be treated
to remove harmful noise points. The desired result can be
achieved, for example, with a combination of morphological
opening and labeling of the binary objects followed by a re-
moval of objects that are not of sufficient size (e.g. at least 10
% of the size of the largest object). The morphological opening
operator (i.e. erosion followed by dilation) smoothens the im-
age objects and removes the possibly occurring horizontal and
vertical lines (especially in low signal-to-noise ratios) caused
by the form of the Choi-Williams kernel, see equation (8).
The mask used in the morphological operations was a 3 x 3
square mask. If the threshold used in removing small objects
is chosen high enough (e.g. 10 % of the size of the largest ob-
ject), the removal operation should also eliminate the possible
side-terms that can be observed in the CWDs of the P1, P2,
and P4 codes (see Fig. 1). Existence of these sideterms in the
final binary CWDs can be detrimental to the discrimination
capability of the features.

In the second step of the normalization procedure, areas
not containing signal objects are removed from the edges of
the image. And finally, in the third step the aspect ratio of
the binary image is normalized to 1 by resizing the image.
In this paper the nearest neighbor interpolation method was
employed. The size of the resized binary image is M x M
where M is the minimum dimension of the image resulting
from the second step of the normalization procedure.

VI. FEATURES

The features that have been used in this study consist of
a number of pseudo-Zernike moments, three other features
targeting specific properties observed in the CWDs, and a
feature based on the differences in the symmetry properties of
the polyphase codes.

The pseudo-Zernike moments have been used for object
recognition in images (e.g. [7]). The pseudo-Zernike moments
that have been used in this study are invariant to translation,
scaling, rotation, and mirroring. Consequently, they are very
suitable to the problem in question.

The pseudo-Zernike moments are invariant to translation
and scaling since they are calculated using scaled geometric
moments. The geometric moments of order p + q of a digital
image f(z,y) are defined as:

Mpq = Z Z flx, y)aty?. 9)

The translation and scale invariant central geometric mo-
ments are defined as [7]:

Gpg = (p++2)/2 DY) f@y@-n)y -9’ (10)
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The translation and scale invariant radial-geometric mo-
ments are defined as [7]:

1 . . p~
Ryq = WZZf(ﬂfay)(ﬂﬂz‘Fyz)l/%pyq: (12)
00 T y

where 2 =x—TZand y =y — 7.

The pseudo-Zernike moments of order n with repetition m
(lm| < n) can be computed using the translation and scale in-
variant central geometric and radial-geometric moments with
the following equation [7,8]:
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Other methods for obtaining scale invariant pseudo-Zernike
moments have been reviewed in [9].

Rotation invariance is achieved by taking the absolute value
of the pseudo-Zernike moments Z,n, [8]. The dynamic range
can be reduced by taking the logarithm which gives the final
features:

an - loge |an| . (18)

The following pseudo-Zernike moments of the binary CWD
image were selected as features: Zgo, Zgg, Zgo, 231, 232, 233,
and 243.

Number of image objects in the binary image is a distinctive
feature. Provided the normalization has succeeded, the Frank
and P3 codes have two signal objects in the binary CWD
image while the other polyphase codes have only one. To
increase the robustness of the feature, objects smaller than 20
% of the size of the largest object are discarded.

Another distinctive feature is the time location of the peak
power in the CWD. The P1, P2, and P4 codes have the peak
power relatively close to the center of the code while the Frank
and P3 codes have the highest powers in the ends of the code.
This feature cannot be calculated from the binary image, and



thus does not require the full normalization of the CWD im-
age. Merely time gating is required. The feature is calculated
from the CWD image Wew (z,y):

arg ;nax{ch(%y)}a (19)

1
tmax - m
where x is the time axis, y the frequency axis, and N is the
time axis length of Wew (z,y). The division by N — 1 nor-
malizes the value of the feature between 0 and 1.

The final CWD feature is targeting the blocky structure
observed in the CWDs of the Frank, P1, and P2 codes. It
measures the standard deviation of the width of the objects
in the binary image. This feature distinguishes the P3 and
P4 codes from the rest of the polyphase codes. The feature is
calculated as follows.

First the objects of the image are labeled. Then the pro-
cedure explained next is done for each one of the objects in
the binary image separately, i.e. by first masking the rest of
the objects away such that the image contains only the de-
sired object. The procedure is done separately for each image
object because the principal components that will be calcu-
lated would not be the ones desired for some code classes (i.e.
the Frank and P3 codes) if they would be calculated from the
image containing all the objects.

The principal components of the binary CWD image are
calculated. The principal components of a binary image
B(xz,y) are the eigenvectors of the covariance matrix which
can be calculated as:

=z

—1N-1
C=3 Y- By,

x

(20)

where the size of the image is N x N, and

(21)

where T and § define the center of the image, and can be
calculated using (11).

Then the image is rotated so that the principal axes are
parallel to the horizontal and vertical axes of the image. Be-
cause of the discrete pixel locations, rotation requires inter-
polation. The nearest neighbor interpolation method was em-
ployed again.

After rotation, the standard deviation of the width of the
image object can be calculated. This is done by calculating
the row or the column sum of the image depending on which
direction the image is rotated. In the following it is assumed
that the image is rotated such a way that the first principal
axis corresponding to the highest principal component is par-
allel to the vertical axis. That is, the row sum is calculated
as:

z=(z,9)", e=(x9)",

N-1
r(z) = B(z,y), z=0,1,...,N—1, (22)
y=0
where B(x, y) is the rotated binary image.
Then r(z) is normalized between 0 and 1:
#a) = — @) (23)

maxr(z)’

Finally, the standard deviation of the width of the image
object in the binary CWD image is defined as:

ons = | 17 S 72(@) - (%Zﬂx)) L@

T

Tab. 1: Theoretical values of the time lag of the maximum cross-
correlation between pulse and time-reversed pulse. The values have
been tested to hold at least for codes N = 3-100 (Frank, P1, P2),
and p = 3-200 (P3, P4).

Frank P1 P2 P3 P4
N+1 1 0 1 1

where the sums are taken over non-weak samples, i.e. 7(x)
> Tobj, and M is the number of non-weak samples. The weak
samples are discarded since they influence the estimate heav-
ily. Especially the rows (or columns depending on rotation)
that do not contain any signal have large impact on the esti-
mate. The value used for the threshold Ton; was 0.3, i.e. 30 %
of the maximum of #(x). The final feature value is the average
of oop; over the image objects.

Early classification results using the features derived from
the Choi-Williams distribution indicated that the P1 and P2
codes could not be reliably distinguished using only these fea-
tures. Hence, a new feature based on the different symmetry
properties of the P1 and P2 codes was developed. The feature
calculates the cross-correlation between a symbol rate sam-
pled pulse and its time-reversed counterpart. The time lag of
the maximum of the above cross-correlation is a distinctive
feature among the polyphase codes. The feature is calculated
as follows.

Denoting a single symbol rate sampled discrete time com-
plex envelope code period with y(n),n =0,1,..., N—1, cross-
correlation between pulse and time-reversed pulse is given by:

N—-7—1
> yn+1)y"(N—-1-n), 7>0,
Py(T) = an10 (25)
2 yn+ 1)y (N-1-n), 7<0,

for all |7| < N — 1. The final feature is the time lag of the
maximum cross-correlation:
Tmax = arg max |fy (7)]. (26)

The feature is invariant to constant rotation (i.e. each sam-
ple y(n), n=10,1,..., N — 1 is rotated the same amount). In
order to get the same feature value for time-reversed pulses,
the absolute value of Tmax can be used as a feature.

Table 1 lists the theoretical values for different polyphase
classes. The feature requires symbol rate sampling (i.e. sam-
pling at the subpulse frequency). The symbol rate can be
estimated with a cyclic correlation based symbol rate estima-
tor, e.g. [10].

VII. SIMULATION RESULTS

In order to test the discrimination capability of the features,
a supervised classifier was employed. The purpose of the clas-
sifier is to classify the received radar signal based on the pulse
compression waveform of the signal to five different classes:
the Frank, P1, P2, P3, and P4 codes. The classifier was an
ensemble averaging early-stop committee of 10 multilayer per-
ceptrons (i.e. the output of the committee is the average of the
outputs of the committee members) with different partitions
of the data to the training and validation sets for each MLP.
The validation sets consisted of 10 % of the original training



Tab. 2: Simulation parameters.

Parameter | | Parameter value

General parameters

Sampling frequency 12000 Hz

Polyphase waveforms
Carrier frequency fe Uniform(3000,4000) Hz
%fc when N € [3,7]
%fc when N € [8,10]
3-10
4,6, 8,10
N2 where N € [3,10]

Subpulse frequency

Frank, P1 codes N
P2 codes N
P3, P4 codes p

Frank P1

Classification probabilty

12 15 18 21 24 27 30 % 0 3 6 9 12 15 18 21 24 27 20
SNR (dB) SNR (dB)

P2 P3
1

Classification probabily

0 3 6 9 12 15 18 21 24 27 30 0 3 6 ¢ 12 15 18 21 21 27 %
SR (dB) SNR (08)

Pa Overall

Classification probabilty

%0 3 6 9 12 15 18 21 24 27 % o
SNR (d8)

% 0 3 6 9 12 15 18 21 24 27 20
SNR (dB)

Fig. 3: Classification performance as a function of the SNR on data
similar to the training data. The overall correct classification rate
exceeds 96 % already in SNR of 3 dB.

data. Each MLP had one hidden layer with 30 hidden neu-
rons. The number of inputs was the number of features and
the number of outputs was the number of classes. The hidden
and output layer activation functions were the hyperbolic tan-
gent and the softmax activation functions, respectively. The
cross-entropy error function was used. The training algorithm
employed was the scaled conjugate gradient algorithm [11].

A large set of different codes from each class were generated
for both training and testing purposes. In total 1000 signals
from each class for signal-to-noise ratios (SNRs) of -3, 0, ...,
30 dB were generated for testing purposes. Table 2 lists the
values of the parameters used for generating the training and
testing signals.

The classifier performance was measured as a function of
the SNR in AWGN channel given in (1). Fig. 3 depicts the
performance of the classifier on data similar to the training
data. The training data consisted of 600 samples from each
class with different SNRs between 0 and 20 dB.

Tab. 3: Confusion matrix for SNR of 3 dB. The overall correct

classification rate was 96.0 %.

| Frank [ P1 [ P2 | P3 | P4

Frank 97.1 0.1 0.5 1.8 0.5
P1 0 93.4 | 0.2 0.5 5.9
P2 0.1 2.0 | 97.8 0 0.1
P3 0 0 0 100 0
P4 0.5 7.4 0.1 0.2 | 91.8

Fig. 3 indicates that the classifier performs reliably: the
overall correct classification rate is over 96 % and the correct
classification rates of the invidual classes are well over 90 %
in SNR of 3 dB. However, some minor confusion still exists
even at high SNRs. Approximately 1-2 % of the P2 codes
are incorrectly classified to the P1 codes at high SNR regime.
The confusion is caused by the errors made in symbol rate
estimation. In addition, roughly 1 % of the P1 codes are
incorrectly classified to the P4 codes at high SNRs.

Some of the above confusion might be removed by increas-
ing the number of training signals. Inspection of the feature
values indicated that there are clear differences in the values
of the time-frequency distribution features even within the
classes. Hence, the training data has to be as diverse as pos-
sible to achieve the best possible classification performance.

Table 3 reports the classification percentages in SNR of 3
dB. The table indicates that discrimination between the P1
and P4 codes is most difficult.

VIII. CONCLUSION

In this paper the classification of polyphase pulse compres-
sion radar waveforms using the Choi-Williams time-frequency
distribution was studied. The statistics of the CWD were
found to be very suitable for the task. However, the P1
and P2 codes could not be distinguished reliably using only
the Choi-Williams time-frequency distribution (see the CWDs
from Fig. 1). Hence, an additional feature dichotomizing be-
tween the P1 and P2 codes was introduced. The feature is
based on the different symmetry properties of the polyphase
codes.

The discrimination capability of the features was evaluated
using an ensemble averaging early-stop committee of 10 MLPs.
The classifier performed reliably: the overall correct classifi-
cation rate exceeded 96 % in SNR of 3 dB on data similar to
the training data.
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