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ABSTRACT

In this paper a system for recognizing pulse compression radar
waveforms is introduced. The waveforms considered in this study
are the linear frequency modulation (LFM), Costas codes, binary
phase codes, and the Frank, P1, P2, P3, and P4 codes. A fea-
ture vector based on instantaneous signal properties, second- and
higher-order statistics, and time-frequency distributions is com-
puted from the received signals. Cyclic correlations are used in
symbol rate estimation. Information theoretic measure is used to
remove redundant components from the feature vector. The dis-
crimination capability of the features is evaluated using an en-
semble averaging early-stop committee of multilayer perceptrons.
Bayesian MLP classifier is considered as well. In simulation the
classifier attains over 97 % overall correct classification rate in
signal-to-noise ratio (SNR) of 6 dB.

1. INTRODUCTION

Automatic waveform recognition is an important task in spectrum
management and surveillance, communication and radar emitter
identification, electronic support applications as well as in soft-
ware defined radio (SDR) and intercept receivers. A key task in
waveform recognition is to find a set of features that distinguish
various waveforms from each other. Typically a supervised clas-
sifier is trained in order to recognize different waveforms emitted
by a transmitter. In order to make the computational complex-
ity lower, the dimensionality of the potential feature vector has
to be reduced by removing the redundancy among the features.
The problem of waveform classification has been earlier consid-
ered mostly in the context of modulation recognition in communi-
cation systems [1–6].

In this paper a method for recognizing the pulse compression
waveforms used in radar systems is introduced. The employed
features are based on instantaneous signal properties, second- and
higher-order statistics, and time-frequency distributions. The pulse
compression waveforms considered are the linear frequency mod-
ulation, Costas discrete frequency codes, binary phase codes, and
the Frank, P1, P2, P3, and P4 codes. Cyclic correlations are used
to estimate symbol rate. A hierarchical classifier structure is em-
ployed. The actual supervised classifier is ensemble averaging
early-stop committee of multilayer perceptrons. Bayesian MLP
structure is considered as well.

The paper is organized as follows. An overview of the classi-
fication system is presented in Section 2. The actual classifier is
described in Section 3. The features employed in the recognition
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process are briefly described in Section 4. Simulation examples
are provided in Section 5. The classifier performance is studied
as a function of the signal-to-noise ratio. Highly reliable classifier
performance is obtained already at low SNR regime.

2. CLASSIFICATION SYSTEM OVERVIEW

Fig. 1 shows the block diagram of the classification system. The
goal of the classification system is to classify the received radar
signal based on the pulse compression waveform to eight classes:
linear frequency modulation, Costas discrete frequency codes, bi-
nary phase codes, and Frank, P1, P2, P3, and P4 polyphase codes.

Detection
extraction

Code period Carrier
removal

Feature
extraction Classifier

Symbol rate
estimation

Symbol rate
sampling

Fig. 1. Block diagram of the classification system.

The first five blocks of the classification system comprise the
preprocessing stage. First the radar signal is detected. Then the
signal is segmented to code periods, so that the features can be
calculated from a signal that consists of only one code period. The
carrier frequency is estimated and removed, i.e. the signal is trans-
ferred to the baseband. The carrier frequency is defined as the cen-
ter frequency of the signal’s frequency band. These three stages
are assumed to be performed. As a result the complex envelope of
the received radar signal is obtained.

In order to extract specific information about the phase se-
quences of the polyphase codes, the symbol rate is estimated and
the signal is sampled at the symbol rate. A cyclic correlation based
symbol rate estimator is employed [7]. These two stages complete
the preprocessing stage of the classification system. However, the
symbol rate sampling of the frequency modulated waveforms is
not feasible. Hence, the complex envelope is used as such for fea-
ture extraction as well.

After the preprocessing stage, the features are extracted. Fi-
nally, the extracted features are fed to a supervised classifier that
performs the classification.

3. WAVEFORM CLASSIFIER

The classifier structure consists of two independently operating
parallel multilayer perceptron (MLP) networks. Fig. 2 illustrates
the structure of the waveform classifier.

The classifier structure stems from the hierarchical classifier
structure used in [1] for modulation classification of communica-
tion signals. However, the outputs of the classifiers used in this
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Fig. 2. Waveform classifier structure comprised of two parallel
multilayer perceptron networks.

work approximate the posterior probabilities of the classes while
in [1] the individual classifiers make a hard decision about the
class. Consequently, the combination of the outputs of the clas-
sifiers is different as well. The interpretation and combination of
the outputs of the networks in Fig. 2 are explained next.

The first three outputs of the network 1 approximate the pos-
terior probabilities of the LFM, Costas, and binary phase classes
given the input feature vector of the network 1. The fourth out-
put of the network 1 approximates the combined probability of
the polyphase classes given the input feature vector of the network
1. The outputs of the network 2 approximate the probabilities of
the polyphase classes given the input feature vector of the network
2 and the assumption that the signal is from one of the polyphase
classes. Finally, the posterior probabilities of the polyphase classes
given the data pattern are approximated by multiplying the outputs
of the network 2 with the output for the polyphase classes from
the network 1 (see Fig. 2). The class with the highest posterior
probability (i.e. output value) is chosen. The characteristics of the
MLPs that ensure that the outputs of the MLPs can be interpreted
as the posterior probabilities of the classes are given next.

3.1. Multilayer perceptron

The likelihood function of the data D = {(xn, tn)}N
n=1 for clas-

sification problems for a network with one output yk for each class
k = 1, . . . , c can be written as [8]

p(D|w) =

N
Y

n=1

c
Y

k=1

(yn
k )tn

k , (1)

where xn is the nth input pattern, tn is the corresponding target
vector using 1-of-c coding, w denotes the network parameters, and
N is the number of data patterns.

The negative logarithm of the likelihood function (1) is the
cross-entropy cost function. The cross-entropy cost function is a
suitable choice for classification problems [8].

The corresponding output activation function for the cross-

entropy cost function is the softmax activation function [8, 9]:

yk(x) =
exp(ak(x))

Pc
j=1

exp(aj(x))
, (2)

where ak(x) is the induced local field of the output neuron k for an
input x. The induced local field vector a(x) of an MLP with one
hidden layer with hyperbolic tangent activation function is given
by

a(x) = w
T
2 tanh(wT

1 x + b1) + b2, (3)

where x is the input vector, and w1, b1, w2, and b2 are the hidden
layer weights and biases, and the output layer weights and biases,
respectively.

The above choices ensure that the outputs can be interpreted
as the posterior probabilities of the classes given the input feature
vector [8, 10].

Two different classifiers used in the experiments, the early-
stop committee and the Bayesian MLP, that are based on the MLP
model given above are presented next.

3.2. Early-stop committee

In early-stopping the training data is divided to two sets: the actual
training data set and the validation set. The validation set is used to
stop the training before the network overfits to the training data, i.e.
when the validation error starts to increase the training is stopped.

Early-stopping can be very sensitive to initial values of the
weights. However, by using a committee of early-stop MLPs with
different partitions of the data to the training and validation sets for
each MLP, the sensitivity to the initial values can be reduced [11].
This makes the early-stop committee (ESC) a robust benchmark
method for more complex models.

The output of an early-stop committee using ensemble aver-
aging is given by

y(x) =
1

L

L
X

j=1

yj (x), (4)

where yj(x) is the output vector of the committee member j for
an input vector x, and L is the number of committee members.

The scaled conjugate gradient algorithm [12] was used for
training the early-stop MLPs.

3.3. Bayesian MLP

The Bayesian inference for neural networks is based on the poste-
rior distribution of the network weights w and the hyperparameters
α:

p(w, α|D) =
p(D|w)p(w|α)p(α)

p(D)
(5)

where p(D|w) is the likelihood given in (1), p(w|α) is the prior
distribution of the weights given the hyperparameters, p(α) is the
prior distribution of the hyperparameters, and p(D) is a normal-
ization factor.

The predictive distribution of the outputs y to a new data vec-
tor x given the training data D is used for classification [13]:

p(y|x, D) =

Z

p(y|x, w)p(w, α|D)dwdα. (6)

In general, analytic integration of (6) is not possible. One way of
approximating the integrals is to use Markov chain Monte Carlo
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(MCMC) methods. The idea in MCMC methods is to create Markov
chains that produce samples from the posterior distribution of the
parameters. In this work, the framework developed by Neal [14],
in which the weights are sampled using the hybrid Monte Carlo
(HMC) algorithm and the hyperparameters using Gibbs sampling,
was used.

The prior for the weights is the Gaussian distribution:

wj ∼ N(0, α−1

wj
I), j = 1, 2, (7)

bj ∼ N(0, α−1

bj
I), j = 1, 2, (8)

where α’s are the precision (inverse of the variance) hyperparame-
ters. The conjugate prior for the hyperparameters is the Gamma
distribution [13]:

αj ∼ Gamma(µj , νj) ∝ α
νj/2−1

j exp(−
νj

2µj
αj), (9)

where µj is the mean and νj is the shape parameter.
The same value ν0 = 0.5 was used for the shape parameter in

all hyperparameter distributions. The choice of µ depended on the
distribution: µb1 = µb2 = 400, µw1

= 400N
2/ν0

i , and µw2
=

400N
2/ν0

h where Ni and Nh are the number of input and hidden
neurons, respectively. The choices correspond to non-informative
hyperpriors.

4. FEATURES

A large number of features suitable for recognizing the pulse com-
pression waveforms were explored. These include features based
on instantaneous signal properties, second- and higher-order sta-
tistics, and time-frequency distributions. The features listed with
references are as follows:

• Standard deviation of the instantaneous phase [2] and fre-
quency [3]. The instantaneous frequency was median-fil-
tered as suggested in [6] to suppress the spikes caused by
the phase changes in the phase coded signals.

• The bandwidth feature from [15] using symbol rate sam-
pled signal. Thus, rendering the feature to a measure of the
autocorrelation sidelobes.

• The difference of the beginning and ending phases of the
pulse.

• Power spectral density (PSD) based features: symmetry [4],
the maximum of the PSD [4], and the maximum of the PSD
of the squared signal.

• Zero-lag moments of the complex envelope. Moments up to
eighth-order without any complex conjugated components
were used.

• Zero-lag cumulants of the complex envelope. Second- to
sixth-order cumulants were used. See [5] for discussion of
using cumulants of the complex envelope for classification
of digital modulations.

• Diagonal slice of a third-order cumulant of the complex en-
velope. The lags used were –2, –1, 1, 2.

• Time-lag of the maximum cross-correlation between pulse
and time-reversed pulse [16].

• Features calculated from the Choi-Williams time-frequency
distribution [16] (fixed threshold was used in the normaliza-
tion algorithm). These features include in total 7 second-,
third-, and fourth-order pseudo-Zernike moments as well
as 3 other features targeting specific properties observed in
the Choi-Williams distributions (CWDs) of the pulse com-
pression waveforms. The three features are: the number of
image components in the binary CWD, the time location of
the peak power in the CWD, and the standard deviation of
the width of the objects in the binary CWD.

The features defined for the network 1 were: the standard devi-
ation of the instantaneous phase and frequency, the PSD features,
the first- and second-order zero-lag moments and the second-order
zero-lag cumulant of the complex envelope, and the features cal-
culated from the Choi-Williams time-frequency distribution.

For the network 2 the features defined were: all the features
defined for the network 1 except the standard deviation of the in-
stantaneous frequency, and the rest of the features which all were
calculated from symbol rate sampled signal (i.e. only the new fea-
tures compared to ones defined for the network 1 were calculated
from symbol rate sampled signal).

Total of 18 and 42 features for the networks 1 and 2 were de-
fined, respectively. From these feature sets the final smaller di-
mensional feature vectors of the networks were selected using a
feature selection algorithm introduced in [17]. The algorithm is
based on the mutual information between the output classes and
the features. The mutual information between the feature vector
X and the classes C is estimated as [17]:

Î(X ; C) = H(C) − Ĥ(C|X)

=

c
X

k=1

p(ck) log p(ck)

−
1

N

N
X

j=1

c
X

k=1

p̂(ck|xj) log p̂(ck|xj), (10)

where H(·) denotes the entropy, ck is the kth class and c is the
number of classes. N is the number of training data samples and
xj is the jth sample of the training data. Class probabilities are
calculated from the training data, i.e. p(ck) = Nk/N where Nk

is the number training samples from class ck. Probability density
estimates p̂(ck|xj) are obtained using the Bayes rule and Parzen
windows [17].

The feature selection algorithm uses greedy selection: starting
from an empty feature vector, the feature vector size is increased
one by one by selecting the new feature that maximizes the esti-
mated mutual information between the classes and the current fea-
ture vector (i.e. the previous features plus the new feature). The
algorithm can be stopped when the change in the estimated mutual
information is small.

For the feature selection a data set consisting of 300 samples
per class was generated using the data specifications given in Ta-
ble 1. Additive white Gaussian noise (AWGN) was added to the
signals with a different signal-to-noise ratio randomly selected be-
tween 0 and 20 dB for each signal. The signal-to-noise ratio is
defined in this work as

SNR = 10 log
10

σ2

y

σ2
n

, (11)

where σ2

y is the variance of the original signal, and σ2

n is the vari-
ance of the noise.
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Using the mutual information based feature selection algo-
rithm, the sizes of the feature vectors were reduced to 8 and 12 fea-
tures, respectively for the networks 1 and 2. Fig. 3 depicts progress
of the mutual information feature selection algorithm for select-
ing features for the network 1. The estimated mutual information
starts to saturate after 6 features. However, the algorithm was not
stopped until the change was less than 10−4. Consequently, the
selected feature vector consisted of 8 features. Fig. 4 shows the
progress of the feature selection for the selected 12 features for the
network 2 using the aforementioned stopping criterion.
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Fig. 3. The progress of the mutual information feature selection
algorithm for the network 1. The number of selected features was
8.
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Fig. 4. The progress of the mutual information feature selection
algorithm for the network 2 for the selected 12 features. Due to the
approximations in the estimation of the probability distributions,
the mutual information does not increase monotonically.

The final selected features for the network 1 were: standard
deviation of the instantaneous phase, one second-order pseudo-
Zernike moment, time location of the peak power in the CWD,
standard deviation of the width of the objects in the binary CWD,
number of image components in the binary CWD, and the three
PSD features.

For the network 2 the selected features were: time-lag of the
maximum cross-correlation between pulse and time-reversed pulse,
time location of the peak power in the CWD, number of image
components in the binary CWD, the three PSD features, standard

Table 1. Simulation parameters.
Parameter Parameter value
General parameters

Sampling frequency 12000 Hz
Polyphase codes

Carrier frequency fc Uniform(3000,4000) Hz
Subpulse frequency 1

4
fc when N ∈ [3, 7]

1

2
fc when N ∈ [8, 10]

Frank, P1 codes N [18] 3–10
P2 codes N [18] 4, 6, 8, 10
P3, P4 codes ρ [18] N2 where N ∈ [3, 10]

Binary phase codes
Carrier frequency fc Uniform(3000,4000) Hz
Subpulse frequency 1

4
fc or 1

2
fc

Barker, Quadratic residue of different lengths
sequences, Maximal length
sequences, Gold codes

Costas codes
Number of subpulses N 2, 4, 6
Lowest frequency f0 500 Hz
Frequency hop ∆f Uniform(500,1000) Hz
Subpulse length τ1 Uniform(5,10) ms

Linear frequency modulation
Carrier frequency fc 3000 Hz
Bandwidth ∆f Uniform(500,3000) Hz
Modulation period τ Uniform(20,40) ms

deviation of the width of the objects in the binary CWD, one second-
order pseudo-Zernike moment, autocorrelation sidelobe measure,
standard deviation of the instantaneous phase, third-order cumu-
lant with lag –1, and one third-order pseudo-Zernike moment.

5. SIMULATION RESULTS

In order to test the classification performance of the proposed clas-
sification system and compare different classifier models, two clas-
sifier structures were trained and their performance was evaluated
as function of the signal-to-noise ratio in additive white Gaussian
noise channel using simulated data. One of the classifier structures
was based on the early-stop committee model, and the other one
was based on the Bayesian MLP model. That is, both of the indi-
vidual classifiers in the structure (see Fig. 2) had the same model,
i.e. either the early-stop committee or the Bayesian MLP. Each
one of the individual classifiers had one hidden layer with 30 hid-
den neurons.

The early-stop committees consisted of 10 MLPs. In early-
stop training, 10 % of the data was reserved for validation (dif-
ferent randomly selected set for each MLP). The remaining data
patterns were used for training of the MLPs.

The Bayesian learning of the MLPs was carried out with the
Flexible Bayesian Modeling (FBM) software1. The number of it-
erations was 60000. The trajectory length was 100 and a window
size of 10 was used. Step size adjustment factor was 0.04 and the
momentum parameter had a value 0.9. For more information about
the parameters, see [14] and the FBM software documentation.
The network predictions were made using 100 evenly separated
samples from the last 2000 iterations.

Table 1 lists the parameters used for generating both the train-
ing and testing data sets. The training data set consisted of 600

1http://www.cs.toronto.edu/∼radford/fbm.software.html
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Fig. 5. Classification performance as a function of the SNR on data similar to the training data. The classification system has reliable
performance: overall correct classification rate of 97 % is achieved at SNR of 6 dB with both classifier models.
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Fig. 6. The overall performances of the two classifier structures at
low SNRs.

samples per class for different SNRs between 0 and 20 dB. This
ensures that the classifier is able to operate in both noisy and noise-
less environments. For testing purposes 1000 samples per class
were generated for SNRs of –3, 0, 3, . . . , 30 dB. The data was nor-
malized using simple linear rescaling, i.e. the mean was first sub-
tracted and the result was divided by the standard deviation. Es-
timates for the mean and standard deviation were calculated from
the training data.

Fig. 5 depicts the classification performance of the two clas-
sifier structures as a function of the signal-to-noise ratio. In the

figure the classification probabilities of the individual classes as
well as the overall correct classification probability are plotted as a
function of the signal-to-noise ratio. The overall correct classifica-
tion rate of both classifier structures reaches 97 % at SNR of 6 dB.
Both classifier structures have comparable performance at SNR of
6 dB and higher. The differences between the performances are
perceived at SNRs below 6 dB. To highlight the differences, the
overall performances at low SNRs are plotted in Fig. 6.

Fig. 5 shows that the binary phase and the Costas codes are
reliably classified already at very low SNRs: the correct classifica-
tion rate for the binary phase and the Costas codes is well over 90
% already at –3 dB. The most difficult codes to classify correctly
appear to be the P1 and P4 codes. Table 2 reports the classification
rates of the Bayesian MLP structure at SNR of 6 dB. It can be seen
that the P1 and P4 codes are the most difficult to be discriminated
from each other. This is also highlighted by the fact that even at
high signal-to-noise ratios roughly 1 % of the P1 codes are incor-
rectly classified to the P4 codes. Although the P1 codes are derived
from a step approximation to a linear frequency modulation while
the P4 codes are derived directly from linear frequency modula-
tion, the P1 and P4 codes are very similar. This is due to the fact
that both codes have the largest phase increments in the ends of the
code and the smallest in the center of the code. Further work on
the features is required to improve the discrimination between the
P1 and P4 codes.
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Table 2. Confusion matrix for the Bayesian MLP at SNR of 6 dB. The overall correct classification rate was 97.2 %.
Frank P1 P2 P3 P4 Binary Costas LFM

Frank 99.9 0.1 0 0 0 0 0 0
P1 0 91.1 0.1 0 8.6 0 0 0.2
P2 0 0.6 98.6 0 0 0 0 0.8
P3 0 0 0 99.6 0 0 0 0.4
P4 0 8.0 0 0.1 88.5 0 0 3.4

Binary 0 0 0 0 0 100 0 0
Costas 0 0 0 0 0 0 100 0
LFM 0 0 0 0 0 0 0 100

6. CONCLUSION

In this paper the recognition of pulse compression radar wave-
forms was studied. A classification system was introduced and
two supervised classifier models were tested: the early-stop com-
mittee and the Bayesian MLP. Both classifiers performed reliably
on data similar to the training data: the overall correct classifica-
tion rate reached 97 % at SNR of 6 dB for both classifiers. The
Bayesian MLP slightly outperformed the early-stop committee at
SNRs lower than 6 dB.

It was found that the classification performance for the P1 and
P4 codes is worse than for the other codes because the statistical
properties of the P1 and P4 codes are very similar. Future work
is underway to find features that discriminate the P1 and P4 codes
more effectively.
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Eds., pp. 227–236. Springer-Verlag, 1990.

[10] J. B. Hampshire II and B. A. Pearlmutter, “Equivalence
proofs for multi-layer perceptron classifiers and the Bayesian
discriminant function,” in Proc. 1990 Connectionist Models
Summer School, D. Touretzky, J. Elman, T. Sejnowski, and
G. Hinton, Eds. 1990, pp. 159–172, Morgan Kaufmann, San
Mateo, CA.

[11] J. Lampinen and A. Vehtari, “Bayesian approach for neural
networks — review and case studies,” Neural Networks, vol.
14, no. 3, pp. 257–274, April 2001.

[12] M. F. Møller, “A scaled conjugate gradient algorithm for
fast supervised learning,” Neural Networks, vol. 6, no. 4, pp.
525–533, 1993.

[13] D. Husmeier, W. D. Penny, and S. J. Roberts, “An empirical
evaluation of Bayesian sampling with hybrid Monte Carlo
for training neural network classifiers,” Neural Networks,
vol. 12, no. 4–5, pp. 677–705, June 1999.

[14] R. M. Neal, Bayesian learning for neural networks, vol. 118
of Lecture Notes in Statistics, Springer-Verlag, 1996.

[15] S. J. Roome, “Classification of radar signals in modulation
domain,” Electronics Lett., vol. 28, no. 8, pp. 704–705, April
1992.

[16] J. Lundén, L. Terho, and V. Koivunen, “Classifying pulse
compression radar waveforms using time-frequency distrib-
utions,” in Proc. 39th Annual Conf. Information Sciences
and Systems (CISS 2005), March 2005.

[17] N. Kwak and C.-H. Choi, “Input feature selection by mutual
information based on Parzen window,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 24, no. 12, pp. 1667–1671, De-
cember 2002.

[18] B. L. Lewis, F. F. Kretschmer, Jr., and W. W. Shelton, Aspects
of radar signal processing, Artech House, Inc., 1986.

276




