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Automatic Radar Waveform Recognition
Jarmo Lundén, Student Member, IEEE, and Visa Koivunen, Senior Member, IEEE

Abstract—In this paper, a system for automatically recognizing
radar waveforms is introduced. This type of techniques are needed
in various spectrum management, surveillance and cognitive radio
or radar applications. The intercepted radar signal is classified
to eight classes based on the pulse compression waveform: linear
frequency modulation (LFM), discrete frequency codes (Costas
codes), binary phase, and Frank, P1, P2, P3, and P4 polyphase
codes. The classification system is a supervised classification
system that is based on features extracted from the intercepted
radar signal. A large set of potential features are presented. New
features based on Wigner and Choi–Williams time-frequency
distributions are proposed. The feature set is pruned by dis-
carding redundant features using an information theoretic feature
selection algorithm. The performance of the classification system
is analyzed using extensive simulations. Simulation results show
that the classification system achieves overall correct classification
rate of 98% at signal-to-noise ratio (SNR) of 6 dB on data similar
to the training data.

Index Terms—Pulse compression, radar, spectrum management,
waveform recognition.

I. INTRODUCTION

AGILE SENSING of the electromagnetic spectrum, signal
environment and recognition of the employed waveforms

are crucial for efficient and effective operation of the future
communication and radar systems such as cognitive radios and
radars. The ever-increasing number of different communication
and radar emitters and waveforms as well as increasing data
rate demands in communication systems require efficient and
agile utilization of the electromagnetic spectrum including unli-
censed spectrum. Automatic radar waveform recognition is very
important task in intercept receivers for electronic warfare (EW)
applications and spectrum management. Applications include,
for example, threat recognition and analysis, construction of ef-
fective jamming responses, and radar emitter identification and
cognitive radar.

Automatic waveform and modulation recognition has
received increased interest during the past few years in commu-
nications and radar communities. In radar context, an atomic
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decomposition (AD) based radar signal interception and wave-
form recognition method employing chirplet dictionary has
been proposed in [1]. The method is especially suitable for
linear frequency modulation (LFM). It can, however, be used
also for other modulations as demonstrated by the numerical
experiments in [1]. In [2] the method is improved by the use
of expectation maximization (EM) algorithm. The improved
algorithm obtains a sparser representation than the original
algorithm. Another similar approach using short-time Fourier
transform (STFT) is presented in [3]. Both methods consider
classification of only few different waveforms.

The objective of the waveform recognition system is to de-
tect and classify the intercepted radar signals based on the pulse
compression waveform. In this paper we develop a supervised
classification approach where features extracted from the inter-
cepted radar pulse are fed into a supervised classifier making
the decision. The intercepted radar pulses are classified to eight
classes: LFM, discrete frequency codes (Costas codes), binary
phase, and Frank, P1, P2, P3, and P4 polyphase codes. Super-
vised classifier determines the decision regions automatically
from the training data during the off-line training phase. This
facilitates the use of large number of features and classes. In
[4], a diagram of a radar waveform classification system was
illustrated that employs a supervised classifier using features
based, for example, on time-frequency distributions and cyclo-
stationary spectral analysis. In this paper, a supervised classi-
fication system using features based on, e.g., second order sta-
tistics, instantaneous signal properties, and time-frequency dis-
tributions is presented. The supervised classification approach
has been previously found successful in automatic modulation
recognition of communication signals, e.g., [5]–[7]. Automatic
modulation recognition of communication signals is closely re-
lated to automatic radar waveform recognition. However, the
characteristics of the waveforms are considerably different be-
tween the communication and radar signals. Consequently, the
employed features and algorithms for their extraction as well as
classifier structures have to be selected and designed differently.

The contributions of this paper are as follows. A supervised
classification system for classifying common pulse com-
pression radar waveforms is systematically developed. Eight
different waveform classes including five polyphase classes are
considered. No such extensive families of waveforms have been
classified in literature previously. A large set of potential fea-
tures are presented. Potential features from the communication
signal modulation recognition literature have been gathered and
are presented. Novel features calculated from the instantaneous
frequency estimated from Wigner distribution with adaptive
data-driven window length are proposed. Novel features based
on Choi–Williams distribution are proposed as well. A nor-
malization procedure enabling effective feature extraction from
Choi–Williams distribution images is proposed. The feature set
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Fig. 1. Block diagram of the waveform recognition system.

is pruned by removing redundant features using an informa-
tion theoretic feature selection algorithm. A parallel classifier
structure based on multilayer perceptron (MLP) networks is
proposed. Two robust classifiers, the early-stop committee and
the Bayesian MLP, are employed. The classifier performances
are tested in scenarios with large random variation in the signal
parameters. The classifiers are shown to achieve very reliable
performance: over 98% correct classification rate at SNR of 6
dB.

The paper is organized as follows. Section II introduces the
recognition system and the signal model. The supervised clas-
sifier is presented in Section III. Section IV explains briefly the
employed feature selection algorithm, and Section V presents
the features. Section VI shows the simulation results. Finally,
Section VII gives the concluding remarks.

II. RECOGNITION SYSTEM OVERVIEW

The objective of the waveform recognition system is to de-
tect and classify the intercepted radar pulses based on the pulse
compression waveform. In this study, the intercepted waveforms
are classified to eight classes: LFM, discrete frequency codes
(Costas codes), binary phase, and Frank, P1, P2, P3, and P4
polyphase codes.

Fig. 1 depicts the operation of the waveform recognition
system. First the signal is detected. After that the carrier fre-
quency is estimated and removed. Here, the carrier frequency is
defined as the center frequency of the signal’s frequency band.

The focus on this work was on the classification part of the
recognition system. Thus, in general the first two stages of
the recognition system (i.e., detection and carrier frequency
removal) are assumed to be accomplished. As a result, the
complex envelope of the intercepted radar signal is obtained. In
addition, the channel is assumed to be additive white Gaussian
noise (AWGN) channel. That is, the intercepted discrete time
signal model is given by

(1)

where and are the complex envelopes of the inter-
cepted and transmitted signals, respectively, and is a com-
plex circular white Gaussian noise process. is constant am-
plitude and is the instantaneous phase of the complex en-
velope. The signal is assumed to be a single pulse consisting of
a single code period from a single radar emitter.

In one of the simulation experiments, instead of assuming the
carrier frequency to be known it is estimated in order to get an
indication how much the carrier frequency estimation affects the
performance.

Many of the employed features are calculated directly from
the complex envelope. However, in order to extract detailed
properties of the polyphase coded waveforms, the subpulse
rate needs to be estimated. The radar signal is then sampled

Fig. 2. Waveform classifier comprising two parallel independent multilayer
perceptron networks.

at the subpulse frequency. The cyclostationarity of the phase
coded waveforms is utilized in the subpulse rate estimation.
A cyclic correlation based symbol rate estimator is employed
[8]. The subpulse rate estimation and sampling complete the
preprocessing stage of the recognition system.

After the preprocessing is completed, the features are calcu-
lated. Finally, the calculated feature vectors are inserted to the
waveform classifier that performs the classification.

III. WAVEFORM CLASSIFIER

Due to a large number of potential features and classes, a su-
pervised classifier is a well-suited approach for obtaining good
classification performance. During the off-line training phase
the supervised classifier determines the decision boundaries
from the training data. The employed classifier model is the
MLP. MLPs with sigmoidal hidden unit activation functions
are universal approximators [9]. Thus, in theory MLPs can
approximate any decision boundary to arbitrary accuracy.

Fig. 2 shows the structure of the supervised waveform clas-
sifier. It consists of two independently operating parallel MLP
networks. The MLP networks have different independently se-
lected input feature vectors (some of the features may be same).
That is, the considered feature set for the network 2 intended
for polyphase signals contains features calculated from the sub-
pulse rate sampled complex envelope as well.

The rationale for the classifier structure is that subpulse rate
sampling is not feasible for the frequency modulated waveforms
(especially for LFM which does not have any subpulses). Hence,
the classifier is divided to two parts in order to guarantee that the
features calculated from the subpulse rate sampled signal do not
affect the training nor classification of the frequency modulated
waveforms.

The classifier structure stems from the hierarchical classifier
structure used in [5] for automatic modulation classification of
communication signals. However, instead of making a hard de-
cision about the class in this work the outputs of the proposed
classifier structure approximate the posterior probabilities of the
output classes given the input feature vectors. In order to ensure
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that the outputs can be interpreted as the posterior probabilities
of the classes (given the input feature vector) the characteris-
tics of the MLPs have to be chosen appropriately. Choosing the
cross-entropy cost function, hyperbolic tangent hidden layer ac-
tivation function and softmax output activation function allow
the outputs to be interpreted as the posterior probabilities of the
classes given the input vector [9], [10].

The property that the outputs approximate the posterior prob-
abilities of the classes offers many benefits. For example, it al-
lows the possibility of using different prior probabilities than the
ones represented by the training data. Hence, it enables adapta-
tion to changing signal environments. Another important benefit
is that the posterior probabilities give a characterization of the
correctness of the decision. Consequently, if none of the pos-
terior probabilities exceeds a certain predefined threshold the
decision can be rejected.

The final classification decision is based on the posterior
probabilities. That is, the class with the highest posterior
probability is chosen. The first three outputs of the network
1 approximate directly the LFM, Costas, and binary phase
class posterior probabilities. The approximations for the pos-
terior probabilities of the polyphase classes are obtained by
multiplying the fourth output of the network 1 (i.e., combined
polyphase output) with the network 2 outputs (see Fig. 2).

The standard feed-forward MLP using conventional training
(i.e., parameter optimization) is prone to overfit to the training
data. Thus, two more complex MLP classifiers that provide
better solutions against overfitting are employed. The classifiers
are the ensemble averaging early-stop committee (ESC) and
the Bayesian MLP. The idea is that both networks in Fig. 2
are either ESCs or Bayesian MLPs. ESC is a simple yet very
robust classifier. The goal in early-stopping is to stop the
training (using part of the training data for validation) before
the network overfits to the training data. Using a committee
of early-stop MLPs provides robustness against initial condi-
tions of the weights. Bayesian MLP is much more complex
than ESC. In Bayesian inference, instead of using one set of
weights (as in conventional training), all the possible parameter
values weighted with their posterior probabilities are used
for prediction. This, in principle, prevents overfitting. For
more information about MLPs, early-stopping, and committee
machines, see e.g., [9]. A good reference for Bayesian neural
networks is [11].

IV. FEATURE SELECTION

In this section, the feature selection algorithm for selecting
the final feature vectors is briefly introduced. The algorithm will
be used to select the final feature vectors from a large set of
different features that will be presented in the next section. The
goal in feature selection is to remove redundant features in order
to reduce complexity of the computation and training.

The employed feature selection algorithm has been proposed
in [12]. It is based on the mutual information between the classes
and the features. The algorithm selects the features one by one
using greedy selection. That is, at each step the feature vector
dimension is increased by one. The new selected feature is the
one that maximizes the mutual information between the classes
and the current feature vector (which includes the previously

selected features as well as the new feature). This procedure is
continued until the change in the estimated mutual information
becomes smaller than a predefined threshold. Mutual informa-
tion between the classes and the feature vector is estimated
by [12]

(2)

where is the th class and is the total number of classes.
denotes the entropy. is the number of training data vec-

tors and is the th training data vector (i.e., feature vector cal-
culated from the th training data pattern). Probability density
estimates are obtained using Parzen windows. Entropy
of the class variable is easily calculated using the training data,
i.e., using where is the number of training
data vectors from class .

The above feature selection method is computationally very
expensive. However, the computational complexity is not a lim-
iting factor in practice since feature selection is an off-line pro-
cedure. Note, however, that for a higher number of original fea-
tures and larger training data sets computational complexity can
become a limiting factor even in off-line procedures.

V. FEATURE EXTRACTION

In this section the considered features and algorithms for their
extraction are presented. The section is organized as follows.
First the features based on second order statistics are described.
Then the features based on power spectral density (PSD) are
presented. After that the features based on instantaneous signal
properties are given. Three new features are proposed, espe-
cially, for discrimination between the P1 and P4 codes. Finally,
new features based on Choi–Williams time-frequency distribu-
tion are introduced.

Table I lists the features and indicates the network they are
considered for. The requirement for subpulse rate sampling is
indicated as well. Table I lists only the features presented in this
section. In addition, a set of other features were considered as
well. These features include higher-order moments (up to 8th
order) and cumulants (up to 6th order) as well as few other fea-
tures, such as PSD symmetry. However, in order to keep the pre-
sentation as concise as possible these features are not presented
here since they were discarded in the beginning of the feature se-
lection process due to the fact that they were not found discrim-
inative enough. This process will be explained more thoroughly
in the simulation section when the feature selection results are
presented.

A. Second Order Statistics

1) Moments and Cumulants of the Complex Envelope:
Moments and cumulants of the complex envelope characterize
the distribution of the complex constellation. In particular, the
second order moments and cumulants are very suitable for
binary phase signal recognition. This is due to the property
that the squared complex envelope of a binary phase signal is
constant.
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TABLE I
LIST OF FEATURES. BULLETS INDICATE SUITABILITY FOR THE

NETWORKS AND SUBPULSE RATE SAMPLING

The th order zero-lag moment of the complex envelope of a
complex random process may be estimated as

(3)

where is the number of data samples and is the number of
conjugated components. The absolute value is taken in order to
make the estimate invariant to constant phase rotation. Scaling
invariance can be achieved by normalizing prior to ap-
plying (3). That is, scaling invariance is achieved by (assuming
zero mean additive noise)

(4)

where is the variance of the additive noise. The normalization
requires an estimate of the variance of the noise. In practice,
such estimate may be easily obtained.

The first and second order moments and as well
as the second order cumulant are used as features. is
calculated similarly as except that the mean is first
subtracted from . Selected moments and cumulants are un-
affected by additive independent complex second order circular
noise. For the network 2 these features are calculated from the
subpulse rate sampled signal denoted by .

2) Cross-Correlation Time Lag: A discriminating feature
among the polyphase codes is obtained by calculating the
cross-correlation between the subpulse rate sampled pulse and
its time-reversed version. Time lag of the maximum cross-cor-
relation is used as a feature, i.e.,
where is the cross-correlation given by

(5)

for all . Here, denotes the subpulse rate
sampled complex envelope. The feature is invariant to constant
phase rotation whereas carrier frequency offset can cause prob-
lems.

B. Power Spectral Density (PSD) Based Features

PSD describes how the signal power is distributed in fre-
quency domain. Two features based on PSD are utilized. The
first feature is the maximum of the PSD of the complex enve-
lope (using periodogram) [13]

(6)

where is magnitude normalized complex envelope given by
(4). This feature is suitable for discriminating the binary phase
and Costas codes from the rest of the codes. Normalization by

provides invariance with respect to the number of data
samples.

The second feature is the maximum of the PSD of the squared
complex envelope, i.e., in (6) is replaced with . The
feature is denoted by . Due to the fact that the squared
complex envelope is constant for binary phase signals, this fea-
ture is very good for recognizing the binary phase signals.

C. Features Derived From Instantaneous Signal Properties

The instantaneous properties of the radar signals are very
distinctive especially between frequency and phase modula-
tions. Firstly, two features based on the direct estimate of the
instantaneous phase (i.e., the phase of the complex envelope)
are given. Secondly, in order to improve the discrimination
between the P1 and P4 codes an instantaneous frequency
estimate with appropriate properties is calculated using Wigner
distribution with adaptive data-driven window length, as well.
Three features based on this instantaneous frequency estimate
are proposed.

Standard deviation of the absolute value of the instantaneous
phase is estimated as [14]

(7)

where is the instantaneous phase sequence estimated di-
rectly from the complex envelope and confined between
and . is the number of non-weak samples, i.e., samples
whose amplitude is larger than some predefined threshold. In
the simulation experiments, the employed threshold was 0.2 of
the maximum amplitude. Note that the sums are taken over the
non-weak samples, as well. The objective is to reduce the sen-
sitivity of the estimate to noise.

Derivative of the instantaneous phase with respect to time is
the instantaneous frequency. It can be approximated using fi-
nite differences, i.e., where
is the unwrapped instantaneous phase. In this work, unwrap-
ping changes absolute phase jumps greater than to their
complement by adding multiples of . Standard deviation of
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the absolute value of the normalized centered instantaneous fre-
quency is estimated as [7]

(8)

where is the normalized centered instantaneous frequency,
i.e., where is
the instantaneous frequency and is the mean of .
The sums are again taken over non-weak samples. The same
threshold value was employed as in (7).

As suggested in [1], the instantaneous frequency was median-
filtered in order to suppress the spikes due to the phase changes
in the phase coded waveforms. In the simulation experiments,
a median-filter with window size 5 was used. This feature is
considered only for the network 1.

1) Wigner Distribution Based Instantaneous Frequency Fea-
tures: The P1 and P4 codes are difficult to distinguish from each
other due to the fact that both codes have the smallest phase in-
crements in the center of the code and the largest in the ends of
the code. In the following three new features based on the instan-
taneous frequency are proposed for this problem. The features
are based on the fundamental difference between the Frank, P1,
and P2 and on the other hand the P3 and P4 codes. The first
group of polyphase codes (i.e., the Frank, P1, and P2 codes) are
derived from a step approximation to LFM whereas the latter
group (i.e., the P3 and P4 codes) are derived by sampling di-
rectly the phase of LFM. This property is evident from the in-
stantaneous frequency plots (see Fig. 3).

In the following, instantaneous frequency is estimated using a
method based on the Wigner distribution with data-driven adap-
tive window length proposed in [15]. The idea in the algorithm
is to calculate the Wigner spectrum using windows of increasing
lengths. The discrete pseudo-Wigner distribution (PWD) is de-
fined as [16]

(9)

where is a positive integer and is a real-valued sym-
metric window of length and . A rectangular
window was used in the simulation experiments.

The maximum at each time instant of each calculated PWD is
used as an estimate of the instantaneous frequency. The idea is to
select independently for each time instant a window length that
provides the best bias-variance tradeoff. This is accomplished
by starting from the shortest window and increasing the window
length step by step until the bias of the instantaneous frequency
estimate becomes too large compared to the variance. For details
of the algorithm, see [15].

The instantaneous frequency of the polyphase coded signals
consists of a sequence of high spikes occurring at the phase
changes. In order to remove the spikes while preserving the
main trend of the instantaneous frequency (i.e., for example,
the main trend of a P1 coded waveform is a step approxima-
tion to LFM), two modifications were made to the instantaneous

Fig. 3. Instantaneous frequency estimates of P1 (a)–(c) and P4 (d)–(f) coded
signals at SNR of 30 dB calculated using a method based on the Wigner distri-
bution with data-driven adaptive window length [15]. (a) and (d) Without min-
imum window length modification and median-filtering. (b) and (e) With min-
imum window length modification but without median-filtering. (c) and (f) With
minimum window length modification and median-filtering. The high spikes in
(b) and (e) are due to the cross-terms of the Wigner distribution.

frequency calculation. The first modification was to define the
minimum window length used to calculate the PWDs as

(10)

where denotes the remainder of , and and
are the sampling and the subpulse frequencies, respectively.

The objective is to guarantee that the minimum window length
is always at least three times the number of samples per

subpulse. The objective is to ensure that the main trend is ex-
tracted. Second and third term in (10) ensure that is odd.
In the simulation experiments, window lengths up to 129 were
used. The window lengths are given by
where . For example, if the window
lengths are .

The second modification is to filter the instantaneous fre-
quency estimates using median-filters of increasing length. Me-
dian-filters have been proposed in [17] for removing high im-
pulse errors from a time-frequency distribution based instan-
taneous frequency estimate. In this work, the objective of me-
dian-filtering is to remove the spikes that occur as a result of
the first modification while simultaneously preserving the steps.
These spikes in the instantaneous frequency estimate are due to
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the cross-terms of the pseudo-Wigner distribution. The problem
with the cross-terms occurs only at the ends of the code for both
P1 and P4 codes since the highest auto-term has the lowest mag-
nitude in those regions. This is due to the fact that the largest
phase increments between consecutive subpulses are at the ends
of the code.

The instantaneous frequency estimate for each window length
is filtered using all of the following length median-filters starting
from the smallest length: . Filtering
with several different length median-filters is required due to the
fact that the spikes may comprise more than one sample. Fig. 3
illustrates the effect of the two modifications. It can be seen that
both modifications are required.

A viable alternative to the above median-filtering approach
could be the algorithm proposed in [18]. The algorithm com-
bines the method based on Wigner distribution maxima with the
minimization of the instantaneous frequency variations between
consecutive points.

After the instantaneous frequency has been estimated the
features can be calculated. Feature calculation will be ex-
plained in the following. As a first step in feature calculation,
the linear trend is removed from the instantaneous frequency.
That is, a line is fitted to the estimated instantaneous frequency
by minimizing the sum of square errors using a least square
(LS) method. But first, due to the fact that the instantaneous
frequency estimate for the P1 and P4 coded signals is more
unreliable toward the beginning and end of the instantaneous
frequency, th of the instantaneous frequency is removed
from both ends (i.e., in total rd). After this, the values of
the resulting instantaneous frequency vector are normalized
between 0 and 1, i.e., .
Finally, the line is fitted to the normalized instantaneous fre-
quency by minimizing the sum of square errors. The estimated
linear trend is subtracted from the normalized instantaneous
frequency estimate. The resulting vector is denoted by .

Three features are calculated from
. The normalized instantaneous

frequency of the P1 codes shows a clear structure due to the
step approximation while for the P4 codes it resembles white
noise.

The first feature is the standard deviation of

(11)

The second feature is based on the autocorrelation of . It is
estimated as

.
The feature calculates the ratio between the sidelobe max-

imum and the maximum

(12)

where is the lag value corresponding to the minimum of
, and is the lag value corresponding to the maximum

of for lag values in the interval (i.e., is the

Fig. 4. Autocorrelations of fff for (a) P1 and (b) P4 coded signals at SNR of 5
dB. The arrows indicate the peaks whose ratio is used as a feature.

lag value giving the maximum in the numerator). Fig. 4 depicts
examples of autocorrelations of for P1 and P4 coded signals
at SNR of 5 dB.

Third feature is based on the statistical runs test. The idea is to
measure whether resembles white noise and thus has a high
number of runs (P4) or has a stepping structure and thus a low
number of runs (P1). The feature is calculated from

as follows. First the mean of is calculated. Then
a sequence of 0’s and 1’s, denoted by is
formed

(13)

where is the mean of . A consecutive sequence of 0’s
or 1’s is called a run. Let denote the number of runs. Further-
more, let and denote the number of observations above
and below the mean, respectively. The mean and variance of
can be derived as

(14)

where is the total number of observations, i.e.,
. When is relatively large the

distribution of is approximately normal, i.e.,
. However, due to the

limited resolution of the Wigner distribution as well as the
median-filtering of the instantaneous frequency, for the
P4 codes does not exactly resemble noise. Hence, the values
of are quite large for the P4 codes as well. This causes
computational difficulties (probability values are too small for
machine precision). Therefore, the value of was normalized
using the following equation .

The final feature is

(15)

where denotes the standard Normal cumulative distribu-
tion function. This normalizes the value of between 0 and
1 (note that is no longer a probability due to the employed
normalization).

D. Choi–Williams Time-Frequency Distribution Features

In this section, features based on Choi–Williams time-fre-
quency distribution are proposed. Choi–Williams distribution
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Fig. 5. Example CWDs for the different waveform classes (Frank, P1, P2, P3,
P4, Binary phase, Costas, LFM). The scaling factor � had a value 0.05. Differ-
ences among the codes are clearly visible.

(CWD) was selected since it uses an exponential kernel whose
behavior can be easily adjusted by changing the value of the
scaling parameter. CWD of a continuous time signal is de-
fined by [19]

(16)

Fig. 6. The CWD normalization procedure starting from the original image
(from left to right): 1) thresholding, 2) time gating and frequency filtering, and
3) aspect ratio normalization.

where is a scaling factor. The CWD uses an ex-
ponential kernel function where
denotes the frequency. The kernel function acts as a low-pass
filter where controls the attenuation. Note, however, that the
kernel function is identically one at the - and -axes and thus
it preserves all the horizontal and vertical cross-terms. This is a
drawback of the CWD that is taken into account when the CWD
is normalized for feature calculation.

Choosing a small will provide good cross-term suppres-
sion. However, at the same time it will also cause consider-
able smearing and loss of resolution of the autoterms. Fortu-
nately, this can actually be a desired effect since image pro-
cessing methods are used to extract the features. Therefore, it is
preferred that the image objects have slightly larger size. Hence,
in the experiments a small value 0.05 is used for . Fig. 5 shows
example images of the CWDs of signals from different classes.

In the following, the CWD is treated as a 2-D image. The
CWD image is normalized in order to minimize the effect of
the signal’s bandwidth and the sampling frequency.

1) Normalization of the CWD Image: The normalization pro-
cedure comprises three stages.

1) Thresholding of the CWD image into a binary image.
2) Time gating and frequency filtering of the binary image,

i.e., removal of areas not containing signal components
from the edges of the binary image.

3) Aspect ratio normalization of the binary image to one.
Fig. 6 depicts the three normalization stages for a Frank coded
waveform.

The goal in the thresholding stage is to create a binary CWD
image that contains only significant signal components. That is,
the thresholded binary CWD image should not contain any iso-
lated noise points since the outcome of the second stage can
easily be affected by such noise. In order to accomplish this
the image is first thresholded into a binary image using a global
threshold . The employed algorithm is the basic global thresh-
olding algorithm ([20, p. 598]).

1) Select an initial estimate for the global threshold .
2) Segment the image using . This produces two pixel

groups and . consists of all pixels with gray
level values and consists of all pixels with gray
level values .

3) Compute the average gray levels and for the pixels
in groups and .

4) Compute the new threshold value .
5) Repeat steps 2 through 4 until the difference in between

successive iterations is smaller than a predefined conver-
gence parameter.
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The initial estimate for can be selected to be the average of
the maximum and minimum gray levels in the CWD image.

The above thresholding algorithm cannot guarantee com-
plete removal of isolated noise. In addition, the form of
the Choi–Williams kernel can cause, especially at low SNR
regime, undesired horizontal and vertical lines to the globally
thresholded image. With morphological opening followed by a
removal of objects that are not large enough (e.g., at minimum
10% of the size of the largest object) the problems can be allevi-
ated. Morphological opening (i.e., erosion followed by dilation)
smoothens the edges of the image objects while removing small
noise samples as well as the undesired horizontal and vertical
lines that usually are very thin. In the simulation experiments
the morphological operations were conducted using a 3 3
square mask. Morphological opening will remove only small or
thin objects. Labeling followed by a removal of small objects
will remove slightly larger objects as well. These objects might
be caused by the aforementioned reasons as well or they might
be due to the sideterms observed in the CWDs of the P1, P2,
and P4 codes (see Fig. 5). The occurrence of these objects will
degrade the discrimination capability of the extracted features.
Hence, they should be removed.

An interesting alternative solution for the first stage of the nor-
malization procedure would be the method of adaptive thresh-
olding of a time-frequency distribution proposed in [21]. Never-
theless, the algorithm proposed above is very well suited for the
problem for its simplicity of operation (basically no parameters
have to be set) and good performance at different SNR regimes.

In the second stage of the normalization procedure, the bi-
nary CWD image is cropped by removing the areas not con-
taining signal components from the edges of the image. In the
third and final stage of the normalization procedure, the aspect
ratio of the image is normalized to one by resizing the image to
a square image. The size of the resized image is where

is the minimum dimension of the image before resizing. The
resizing can be conducted using the nearest neighbor interpola-
tion method.

2) CWD Features: The features introduced in this section
include a number of pseudo-Zernike moments as well as three
other features specifically suitable for pulse compression radar
waveform recognition. The pseudo-Zernike moments have been
used, e.g., for handwritten character recognition in [22]. The fact
that the chosen pseudo-Zernike moments are invariant to trans-
lation, scaling, rotation, and mirroring makes them very suitable
to the problem at hand. The invariance properties reduce the re-
quirement for training signals, i.e., a different training signal is
not required for each special case.

The pseudo-Zernike moments characterize the normalized
binary CWD image as a whole. Calculating the pseudo-Zernike
moments using scaled geometric moments renders them in-
variant to translation and scaling. The geometric moments
of order of a digital image are given by

.
The translation and scale invariant central geometric mo-

ments are defined as [22]

(17)

where and .

The translation and scale invariant radial-geometric moments
are defined as [22]

(18)

where and .
The pseudo-Zernike moments of order with repetition

are given by [23], [22]

(19)

where , and

(20)

(21)

Rotation invariance is achieved by taking the absolute value
of the pseudo-Zernike moments [23]. The dynamic range
can be reduced by taking the logarithm. These two procedures
give the final features .

The following pseudo-Zernike moments of the binary CWD
image were experimentally selected as features:

, and . The pseudo-Zernike moments are used
only in network 2 due to the fact that the CWDs of the Costas
and binary phase codes vary too much depending on the specific
code to enable reliable generalization from the training data.

Number of objects in the normalized binary CWD image
(denoted by ) is a discriminating feature among the radar
waveforms. Provided that the normalization is done success-
fully, the Frank and P3 codes have two image objects, the other
polyphase codes and LFM codes have one object and the Costas
codes have as many objects as there are different frequencies.
For the binary phase codes this feature is not reliable. Although
the normalization procedure should already remove small in-
significant objects, to further increase the robustness of the fea-
ture, objects smaller than 20% of the size of the largest object
are discarded.

Location of the peak energy in time coordinate of the CWD
image is another discriminating feature. The feature is defined
as

(22)

where is the time-gated CWD image, and are
the time and frequency axes, respectively, and is the length of
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the time axis. The feature cannot be calculated from the binary
CWD image. Hence, it does not require the complete normaliza-
tion procedure of the CWD image. Only time gating is required.

The final CWD feature measures the standard deviation of the
width of the signal objects in the binary CWD image. The fea-
ture is suitable particularly for polyphase code discrimination.
The feature is based on the same property as the Wigner dis-
tribution instantaneous frequency features introduced earlier in
the paper. That is, the Frank, P1, and P2 codes are derived from
a step approximation to LFM while P3 and P4 codes are derived
by directly approximating LFM (see Fig. 5). The feature calcu-
lation proceeds as follows.

• For each object
1) Select object and mask the other objects away to

obtain binary image .
2) Calculate the principal components of .
3) Rotate so that the first principal axis corre-

sponding to the largest eigenvalue is parallel to the ver-
tical axis. Nearest neighbor interpolation can be used
in the rotation.

4) Calculate the row sum (i.e., the number of white
pixels in each row)

where is the ro-
tated image.

5) Normalize between 0 and 1, i.e., .
6) Calculate the standard deviation of , i.e.,

where the sums are taken over non-weak samples,
i.e., , and is the number of non-weak
samples.

• The final feature value is the average of the standard devi-
ations, i.e.,

The threshold value can be chosen, for example, as 0.3
(i.e., 30% of the maximum of ). This is to guarantee that
especially the rows that do not contain any signal do not affect
the feature value. Such rows will occur due to the rotation as well
as when there are more than one object. The feature is beneficial
in network 1 as well.

VI. SIMULATION RESULTS AND DISCUSSION

In this section the performance of the proposed classification
system is analyzed using simulated data. Classification perfor-
mance is measured as a function of the SNR in AWGN channel.
The SNR is defined as where
and are the variances of the original signal and the noise, re-
spectively.

In each of the simulations two classifiers are trained. The first
classifier comprises two ensemble averaging ESCs, i.e., one for
each network (see Fig. 2). Both of the ESCs consist of 10 MLPs.
Each MLP has one hidden layer with 30 neurons. In early-stop
training 90% of the training data patterns were used for training
and 10% were reserved for validation (i.e., for determining the
early-stopping point). The partitioning to training and validation
sets was done randomly for each MLP. The MLP training was
conducted using the scaled conjugate gradient algorithm [24].

The second classifier comprises two Bayesian MLPs. Both
MLPs have one hidden layer with 30 neurons. One common

TABLE II
SIMULATION PARAMETERS. U(�; �) DENOTES A UNIFORM DISTRIBUTION

precision hyperparameter was used for the input-to-hidden layer
weights. The prior distribution for the weights was the Gaussian
distribution and for the precision hyperparameters the Gamma
distribution. The parameters of the Gamma distributions were
chosen to correspond to non-informative hyperpriors, i.e., the
shape parameter had always value while the choice of
the mean parameter depended on the distribution. The values

, and
were chosen for the input and hidden layer weights and biases,
respectively. and are the number of input and hidden neu-
rons. The Bayesian learning was performed using the Flexible
Bayesian Modeling (FBM) software.1 The number of samples
in Markov chains was 20000. The trajectory length was 100 and
a window size of 10 was used. Step size adjustment factor was
0.05 and the momentum parameter was 0.9. For explanation of
the parameters, see [11] and the FBM software documentation.
Network predictions were made using every 20th sample from
the last 2000 samples, i.e., 100 equidistant samples.

The input features are normalized using simple linear
rescaling, i.e., where and are the
mean and standard deviation of the th feature estimated from
the training data. Superscript denotes the th data pattern.

Table II lists the simulation parameters. Two different data
specifications are defined. The purpose is to measure the gener-
alization capability of the classification system. That is, to mea-
sure how the classification system performs on data different
from training data.

A. Feature Selection Results

Feature selection was based on a data set consisting of 2000
pulses per class generated using both data specifications. That
is, 1000 pulses from both data specifications with random pa-
rameter values. In order to obtain robustness against SNR vari-
ations, the SNR of each pulse was randomly selected between
0 and 20 dB.

1http://www.cs.toronto.edu/~radford/fbm.software.html
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Fig. 7. Estimated mutual information during the progress of the feature
selection algorithm (a) network 1 (10 features out of 11 were selected,
H(C) = 1:5488) and (b) network 2 (9 features out of 44 were selected,
H(C) = 2:3219).

At this stage a total of 11 and 44 features for the networks
1 and 2 were considered, respectively. The mutual information
between the classes and each individual feature was estimated.
In order to expedite the final feature vector selection, the fea-
tures whose estimated mutual information with the classes was
close to zero (less than 0.05) were discarded at this stage. The
discarded features include, for example, many higher order mo-
ments and cumulants as well as few other features.

After the initial pruning, there were 10 and 20 features re-
maining for the networks 1 and 2, respectively. Fig. 7 plots the
estimated mutual information at each step of the feature selec-
tion algorithm for the networks 1 and 2, respectively. For the
sake of completeness, the figures show the estimated mutual in-
formation for all possible feature vector dimensions. However,
the feature selection was stopped when the difference between
the estimated mutual information of successive iterations was
less than . This is a conservative value. It was chosen in
order not to sacrifice the classification performance since the
Parzen window estimate of the mutual information in (2) is not
very accurate especially in high dimensional cases [26]. Conse-
quently, 10 out of 11 features (i.e., all of the features remaining
after the initial pruning) were selected for the network 1 and 9
out of 44 for the network 2. See Fig. 7 along with Table I for the
list of selected features.

B. Classification Performance

In this section, the classification performance is measured on
data similar to the training data. The goal is to get an idea of the
performance of the classification system when the training data
is comprehensive for the signal environment. That is, the signal
lengths and parameter ranges are the same although the param-
eter values are selected randomly. For this purpose training and
testing data sets were generated. Testing data set consisted of
500 pulses per class from both data specifications (i.e., 1000 in
total) for SNRs of dB. Training data set consisted
of 300 pulses per class from both data specifications (i.e., 600
in total). The goal is to obtain good classification performance
for large range of SNRs. Thus, the pulse SNRs were selected
randomly between 0 and 20 dB.

Fig. 8 plots the classification probabilities as a function of
the SNR. The probabilities are measured on the testing data.
Very reliable performance is obtained with both classifiers. The
overall correct classification rate is over 98% at SNR of 6 dB
for both classifiers. The Bayesian MLP has sligthly better per-
formance than the ESC at low SNR regime.

Fig. 8. Classification performance as a function of the SNR on data similar to
the training data.

Table III shows the confusion table for the Bayesian MLP at
SNR of 6 dB. As the SNR increases the confusion decreases
except between the P1 and P2 codes. Both classifiers classify
roughly 1–2% of the P2 codes incorrectly to the P1 codes even
at high SNRs. The P1 and P2 codes are very similar to each
other. For even length codes both codes have the same phase
increments within each frequency, only the starting phases are
different. Hence, discriminating them is very difficult.

C. Generalization Performance

In order to measure the generalization performance of the
classification system in a more difficult scenario, the classifiers
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TABLE III
CONFUSION MATRIX FOR THE BAYESIAN MLP AT SNR OF 6 dB. THE OVERALL

CORRECT CLASSIFICATION RATE WAS 98.5%

Fig. 9. Overall correct classification rate on testing data set generated using
data specification 2. Legends indicate the classifiers and the data specifications
used to generate the training data.

were trained using a training data set generated using one data
specification while the testing data set was generated using
the other data specification. Hence, in addition to random
parameter values (i.e., carrier frequencies, bandwidths, and
frequency hops) used in the previous simulation, the signal
lengths and/or parameter ranges are different as well (see
Table II).

Fig. 9 plots the overall correct classification rate of the clas-
sifiers trained using the data specification 1 on a testing data set
generated using the data specification 2 (the opposite case is not
tested due to the expected poor performance since in practice the
shorter codes define the discrimination boundaries). For com-
parison, the classification performances of the classifiers from
the previous experiment are plotted as well. That is, classifiers
whose training data set was generated using both data specifi-
cations.

The generalization performance from the data specification
1 to the data specification 2 is very good. Only a slight loss in
performance is observed at low SNR regime. For SNRs of 6 dB
and higher the performances are practically identical. Classifier
comparison shows that the Bayesian MLP has better generaliza-
tion performance than the ESC at low SNR regime.

D. Classification Performance With Carrier Frequency
Estimation

In this simulation experiment instead of assuming the car-
rier frequency known it was estimated. The Lank, Reed, Pollon
frequency estimator was employed. That is, the estimate of the

Fig. 10. Classification performance as a function of the SNR on data similar to
the training data with carrier frequency estimation and removal.

carrier frequency of the pulse is defined as [27]

(23)

where denotes the phase angle. The estimator is computation-
ally very efficient. It gives an estimate of the mean frequency.
Thus, it can also be used for signals that do not have a unique
maximum in their frequency spectrum, such as the Costas codes.

Fig. 10 depicts the classification performance with carrier fre-
quency estimation. The training data consisted of 600 pulses per
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class generated using both data specifications. Comparison with
the results when carrier frequency was assumed to be known
(see Fig. 8) shows a clear performance loss for the P1 and P2
codes. The P1 and P2 codes get confused with each other. The
primary feature discriminating between the P1 and P2 codes is
the cross-correlation time lag feature. This feature is affected
by carrier frequency offset, i.e., a frequency offset can shift the
location of the cross-correlation peak, and thus alter the feature
value. For the other codes, a loss in performance is observed at
low SNR regime (i.e., 6 dB and below depending on class). At
high SNR regime, the performance is not affected by carrier fre-
quency estimation (except for the P1 and P2 codes).

One source of error might also be the fact that the Lank, Reed,
Pollon estimator provides an estimate of the mean frequency.
For the waveforms with non-symmetric PSDs (for example, the
polyphase waveforms), the mean frequency is not the same as
the center frequency of the signal’s frequency band. Especially
the fact that the performance for the P1 and P2 codes is affected
even at very high SNR regime supports this theory. Note, how-
ever, that most of the features are not affected by nor do they re-
quire carrier frequency estimation. Such features are the CWD
features, the PSD features as well as the features based on in-
stantaneous frequency.

By comparing the performances of the classifiers, it can be
seen that the Bayesian MLP clearly outperforms the ESC in this
scenario.

VII. CONCLUSION

In this paper, a classification system for classifying common
pulse compression radar waveforms has been developed. Eight
different waveform classes were considered. No such an exten-
sive classification of waveforms has been presented in literature
previously. The classification system is based on features ex-
tracted from an intercepted radar pulse. The extracted feature
vectors are fed into a supervised classifier that performs the final
classification.

New features for radar waveform recognition have been pro-
posed. In particular, the difficult task of discriminating among
polyphase codes has been addressed in detail. New features
based on Wigner and Choi–Williams time-frequency distribu-
tions have been proposed. The final feature vectors have been
selected using an information theoretic feature selection algo-
rithm.

A parallel classifier structure based on MLP networks has
been proposed. Two classifier structures based on the ESC and
the Bayesian MLP, respectively, have been trained and tested
in the simulations. Simulation results showed that the classi-
fiers perform very reliably achieving overall correct classifica-
tion rate of 98% at SNR of 6 dB. Simulation experiments also
showed that the proposed classification system can in certain
conditions generalize outside the training data.

In order to measure the performance degradation due to car-
rier frequency estimation errors, in one simulation experiment
the carrier frequency was estimated instead of assuming it to be
known. The results showed that the performance can drop if the
carrier frequency estimate is not accurate enough. More work is
required to find an appropriate carrier frequency estimator.

Comparison of the work to the techniques such as AD based
[1] or STFT based [3] radar waveform recognition is difficult
due to the fact that in our system, the number of different classes
is significantly higher and includes polyphase codes as well.
Significant part of our work was aimed at discriminating be-
tween the polyphase codes. This problem was not considered in
[1] or [3].
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