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Abstract — In this paper the problem of estimating a common

modulation from a group of intercepted radar pulses is addressed.

A robust M-estimation technique is proposed. The M-estimation ap-

proach provides tolerance against preprocessing errors as well as to

other model failures. The performance of the M-estimation technique

is compared to a maximum likelihood estimation method through sim-

ulation experiments.
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I. INTRODUCTION

Automatic waveform recognition has important applications

in wireless communications, spectrum management and sur-

veillance as well as in defense applications. Among the most

challenging tasks is specific emitter identification (SEI). In-

trapulse information based clustering of collected radar pulses

and identification of radar emitters has received increasing in-

terest during the past few years. Time-frequency representa-

tion based approach for radar emitter identification has been

proposed in [1]. In [2, 3] extracted intrapulse features are used

for recognizing a specific emitter. Clustering of collected radar

pulses using intrapulse information and information theoretic

criteria has been studied in [4, 5].

Howard [6] has considered maximum likelihood (ML) esti-

mation of a common modulation from a group of radar pulses

followed by hypothesis testing for identifying a specific emit-

ter. A critical stage in the estimation process is the alignment

of the pulses both in time and frequency. In this paper, we

propose a robust M-estimation technique for estimating a com-

mon modulation from a group of pulses. The M-estimation ap-

proach is able to downweight pulses that are misaligned in time

or frequency. Such pulses would appear as outliers and conse-

quently cause large estimation errors. It is well known that op-

timal ML methods are particularly sensitive to even small de-

partures from nominal assumptions. In addition, preprocessing

algorithms for aligning the pulses in time and frequency do-

main are proposed. In particular, a sequential cross-correlation

based method for time alignment of pulses is developed.

The paper is organized as follows. Section II presents the

problem and the employed signal model. Section III considers

the preprocessing stage. The ML estimator is presented in Sec-

tion IV, and Section V introduces the proposed M-estimators.

Simulation results are presented in Section VI. Finally, con-

cluding remarks are given in Section VII.

II. SIGNAL MODEL

In this paper we address the problem of estimating a com-

mon modulation from a group of intercepted radar pulses. It

is a crucial step in specific emitter identification. Fig. 1 illus-

trates the estimation process. First the intercepted radar pulses

are preprocessed in order to align them in time and frequency

domains. Then the common modulation profile is estimated

from the aligned pulses. The symbols in Fig. 1 are defined in

the following presentation of the signal model.

Modulation
estimationPreprocessing µ̂yk

zk

ωk, τk

Fig. 1. Block diagram of the estimation process.

The employed discrete time signal model is presented next.

Sampling rate is assumed to be high enough to record the mod-

ulations of the pulses faithfully. Furthermore, it is considered

that the collection of the pulses consists of a number of fixed

length vectors of NS complex samples (i.e. one vector for each

pulse) with a buffer of samples recorded before and after the

pulse.

The complex pulse vectors yk, k = 1, . . . , NP , are as-

sumed to take the form [6]

yk = AkT (τk)Ω(ωk)µ + εk, k = 1, . . . , NP , (1)

where Ak are the complex amplitudes of the pulses and µ is a

fixed unit vector representing the basic pulse modulation. The

εk are independent circular complex Gaussian distributed ran-

dom vectors satisfying E(ε) = 0 and E(εεH) = σ2I . Here,

E(·) denotes the expectation operator, (·)H denotes the con-

jugate transpose, and σ2 is the noise variance assumed to be

known. I is an NS × NS identity matrix, where NS is the

number of samples in the pulse vectors. The parameters τk

and ωk are the circular time and frequency shifts required to

align the kth pulse with µ.

The time and frequency shift operators T (τ) and Ω(ω) may
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be written as follows [6]

Ω(ω)kn = exp(−jnω)δkn, (2)

T (τ) = F
−1

Ω(2πτ)F , (3)

where δkn is the Kronecker delta (i.e. δkn = 1, if k = n, oth-

erwise 0), j is the imaginary unit, and F denotes the discrete

Fourier transform matrix

Fkn = exp(−j2πkn/NS)/
√

NS . (4)

The simplified model, obtained by first aligning the data in

time and frequency, is given by [6]

zk = Akµ + ε
′

k, k = 1, . . . , NP , (5)

where

zk = Ω(ωk)H
T (τk)Hyk, k = 1, . . . , NP . (6)

The noise distribution remains the same after transformation

since matrices T (τ) and Ω(ω) are unitary. Thus, the joint

probability density for the random vectors zk is

f({z}|{A},µ) = (πσ2)−NSNP

× exp

(

− 1

σ2

NP
∑

k=1

(zk − Akµ)H(zk − Akµ)

)

.
(7)

The employed signal model has been previously used in [6].

III. PREPROCESSING

The goal of preprocessing is to estimate the time and fre-

quency shift parameters τk and ωk needed for aligning the

pulses with the basic profile µ. Furthermore, the estimates of

τk and ωk are assumed to be exact. Consequently, the simpli-

fied model in (5) may be employed after preprocessing.

In this section we propose novel preprocessing algorithms.

The time alignment is improved by using a cross-correlation

based algorithm. This can be combined with adaptive thresh-

olding of the leading edge of the pulse [7]. For carrier fre-

quency estimation we employ the Lank, Reed, Pollon frequency

estimator [8]. It is computationally very efficient and provides

an estimate of the mean frequency.

Due to the fact that the time alignment algorithm is based

on cross-correlation of the pulses, the frequency alignment has

to be performed prior to the time alignment.

A. Frequency Alignment

The pulses may have different carrier frequencies due to fre-

quency agile radars as well as possibly different Doppler shifts.

Consequently, carrier frequency estimation and alignment has

to be performed separately for each pulse.

An estimate of the carrier frequency of the pulse yk may be

obtained by [8, 9]

ω̂yk
= ∠

NS
∑

n=2

yk(n)y∗

k(n − 1), (8)

where ∠ denotes the phase angle, and ∗ denotes the complex

conjugate. This estimator does not have as good performance

as the ML frequency estimator [10] for single frequency esti-

mation, see e.g. [11]. However, unlike the ML estimator the

estimator in (8) provides the estimate of the mean frequency.

Thus, it provides an unambiguous estimate also for signals that

do not have unique maximum in their frequency spectrum. For

instance, frequency shift keying (FSK) modulated signals can

have such a frequency spectrum.

After carrier frequencies have been estimated, the pulses are

transferred to the baseband

zk(n) = Ω(ω̂yk
)Hyk, k = 1, . . . , NP . (9)

B. Time Alignment

In order to align the pulses in time domain, the pulses zk,
k = 1, . . . , NP , are first rank ordered into a descending order

based on signal-to-noise ratio (SNR). That is, the ordering is

such that the pulse z1 has the largest SNR while the pulse zNP

has the smallest SNR. Then the pulses are aligned in time using

the following procedure:

For k = 2, . . . , NP ,

1. Calculate cj(τ) = |zH
j zk(τ)|, τ = 0, . . . , NS − 1,

for all j = 1, . . . , k − 1. Here zk(τ) denotes τ
samples circularly shifted version of zk.

2. Time shift of the kth pulse is given by

τ̂k = arg maxτ

∑k−1
j=1 cj(τ).

3. Shift the kth pulse circularly by τ̂k samples, i.e.

zk = zk(τ̂k).

In order to reduce the computational complexity of the time

alignment, adaptive thresholding of the leading edge of the

pulse [7] may be used to provide an initial estimate. Then the

cross-correlations of the pulses can be calculated only for the

small time shifts (i.e. a few samples left or right) from the

initial coarse estimate obtained by adaptive thresholding.

IV. MAXIMUM LIKELIHOOD (ML) ESTIMATOR

The proposed M-estimation method is a generalization of

ML estimator. Hence, conventional ML estimator is presented

first. The likelihood function (7) is maximized with respect to

Ak by choosing [6]

Âk = µHzk, k = 1, . . . , NP , (10)
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where the simplified model has been used. A reduced likeli-

hood function is obtained by substituting the Âk to the likeli-

hood function. Optimization of the reduced likelihood function

may be performed iteratively by using the power method [6]

µ̂j+1 =

∑NP

k=1(z
H
k µ̂j)zk

∣

∣

∣

∣

∣

∣

∑NP

k=1(z
H
k µ̂j)zk

∣

∣

∣

∣

∣

∣

. (11)

Initial estimate to ML estimate of µ, can be chosen as µ̂0 =
zmax/||zmax|| where zmax is the pulse having largest SNR [6].

The simulation results in [6] indicate that the first iteration es-

timate µ̂1 has equal statistical performance as the full ML es-

timator.

V. ROBUST ESTIMATION ALGORITHM

The time and frequency alignment process is critical to the

estimation performance. A failure in preprocessing can result

in misaligned pulses, and consequently outliers. In addition,

pulses suffering from multipath and interference from other

emitters as well as incorrectly clustered pulses coming from

different emitters can be considered as outliers. The ML es-

timator is known to be highly sensitive to outliers. In fact, in

case Gaussian noise model is used their influence on parame-

ter estimates is unbounded. Hence, robust estimators that have

close to optimal performance at nominal conditions and work

reliably at the presence of outliers are of interest. Robust M-

estimators reduce the influence of the outliers by minimizing

an objective function defined as

J =
∑

i

ρ(ri/si), (12)

where ri is the residual error of the ith observation, i.e. the

difference between the ith observation and its estimated value,

and si is its corresponding scale. The ρ function is a symmetric

real-valued function that reduces the influence of the outliers.

The Huber ρ function used in this work is given by [12]

ρ(r) =

{

r2/2, for |r| < k

k|r| − k2/2, for |r| ≥ k,
(13)

where k is a tuning constant. The derivative of ρ(r) is the ψ
function. The Huber ψ function that makes the influence of

outliers bounded is given by

ψ(r) =

{

r, for |r| < k

k sign(r), for |r| ≥ k.
(14)

The M-estimate may be found, for example, by using an

iterative reweighted least-squares (IRLS) procedure. For the

radar pulse modulation the procedure is given as follows

1. Initialize the weights wkn = 1, k = 1, . . . , NP , n =
1, . . . , NS , and set i = 0.

−5k −4k −3k −2k −k 0 k 2k 3k 4k 5k
0

0.2

0.4

0.6

0.8

1

Fig. 2. Huber weight function.

2. Initialize µ(0) = zmax/||zmax|| where zmax is the pulse

having the largest SNR.

3. Solve the following weighted least-squares problem

min

NP
∑

k=1

NS
∑

n=1

wkn|zk(n) − Akµ(n)|2, (15)

in order to get µ(i+1) and A
(i+1)
k , k = 1, . . . , NP .

4. Recalculate the weights

wkn = w

(

|zk(n) − A
(i+1)
k µ(i+1)(n)|
σ

)

.

5. If the change in the error is small, stop. That is, stop if

L(i)

L(i+1)
< 1 + β,

where L(i) =
∑NP

k=1

∑NS

n=1 |zk(n) − A
(i)
k µ(i)(n)|2 and

β is a small number, such as 0.001. Otherwise increment

i and go back to 3.

The weight function w(r) is defined as ψ(r)/r. Thus, the Hu-

ber weight function used in this work is given by

w(r) =

{

1, for |r| < k

k/|r|, for |r| ≥ k.
(16)

Fig. 2 depicts the Huber weight function. Value k = 1.345
was employed in the simulations. Note that the residual errors

are normalized wrt. scale si = σ, i.e. the standard deviation of

the noise which is assumed to be known. If σ is not known a

simple and robust estimate of the scale si is the median of the

absolute deviations from the median (MAD) [13].

In step 3 of the above IRLS procedure, a weighted least-

squares problem needs to be solved. In the following, iterative

methods for solving the problem for two different weighting

approaches are presented. In the first approach, each pulse has

a distinct weight but all the samples from the same pulse have
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equal weight. This enables downweighting of the pulses that

cause large errors, for instance, due to misalignment. However,

at same time it means that even a single outlying sample within

a pulse can cause the algorithm unnecessarily downweight the

whole pulse. In the second approach each sample has a sepa-

rate weight. That is, it enables different weights for different

parts of individual pulses. This should be more suitable, for

example, when the noise has impulsive components. However,

it is computationally more expensive than the first weighting

approach.

A. M-estimator Using Equal Weights within Pulses

Under Gaussian noise assumption, ML estimation corre-

sponds to minimizing the sum of squared errors, see [6]. Start-

ing from the weighted least-squares problem

L =

NP
∑

k=1

wk(zk − Akµ)H(zk − Akµ), (17)

where wk, k = 1, . . . , NP , are scalar weights for the pulses.

We may rewrite (17) as follows

L =

NP
∑

k=1

wk(zH
k zk−|µHzk|2)+

NP
∑

k=1

wk|Ak−µHzk|2, (18)

and minimize it with respect to Ak by choosing

Âk = µHzk, k = 1, . . . , NP . (19)

By substituting Âk from (19) for Ak in (18), a reduced cost

function is obtained

L′ =

NP
∑

k=1

wk(zH
k zk − |µHzk|2). (20)

Minimizing (20) with respect to µ is equivalent to the follow-

ing maximization task

arg max
µ

NP
∑

k=1

wk|µHzk|2 = arg max
µ

µH(

NP
∑

k=1

wkzkzH
k )µ

= arg max
µ

µHZwµ.

(21)

This quadratic expression is maximized if µ is equal to the

eigenvector of Zw corresponding to the largest eigenvalue [14,

p. 176]. The power method is employed to find the eigenvec-

tor, i.e.

µ̂j+1 = Zwµ̂j =

NP
∑

k=1

wk(zH
k µ̂j)zk, (22)

µ̂j+1 = µ̂j+1/||µ̂j+1||. (23)

Note that the update of the weights wk in the IRLS proce-

dure is in this case given by

wk = w

(

||zk − Âkµ̂||
σ
√

NS

)

.

B. M-estimator Using Different Weights within Pulses

Using separate weight for each sample, the weighted least-

squares problem can be written as

L =

NP
∑

k=1

(zk − Akµ)HWk(zk − Akµ), (24)

where the Wk are diagonal matrices containing the weights for

the samples. In order to minimize (24), it is differentiated with

respect to A∗

k and µ∗ and the derivatives are set to zero

∂L

∂A∗

k

= −µHWkzk + AkµHWkµ = 0, k = 1, . . . , NP ,

(25)

∂L

∂µ∗
=

NP
∑

k=1

(−A∗

kWkzk + |Ak|2Wkµ) = 0. (26)

Solving (25) and (26), gives

Âk =
1

µHWkµ
µHWkzk, k = 1, . . . , NP , (27)

µ̂ =

(

NP
∑

k=1

|Ak|2Wk

)−1
NP
∑

k=1

A∗

kWkzk. (28)

Note that the matrix inverse in (28) is easy to compute since

the matrices Wk are diagonal.

In order to find an estimate of µ, the following steps are

repeated until convergence

(Âk)j+1 =
1

µ̂H
j Wkµ̂j

µ̂H
j Wkzk, k = 1, . . . , NP , (29)

µ̂j+1 =

(

NP
∑

k=1

|(Âk)j+1|2Wk

)−1
NP
∑

k=1

(Â∗

k)j+1Wkzk,

(30)

µ̂j+1 = µ̂j+1/||µ̂j+1||. (31)

Choosing the initial estimate in IRLS is important. If conven-

tional least-squares (ML in Gaussian noise) is used, the opti-

mization may get stuck in a local minimum when using sepa-

rate weights for each sample. Hence, it is beneficial to recal-

culate the weights in the IRLS algorithm at step i = 0 before

solving the least-squares problem in step 3.

VI. SIMULATION RESULTS

In this section the performance of the ML and M-estimators

is compared using two test pulses. Fig. 3 plots the complex test

signals. The first test signal is a linear frequency modulated

(LFM) pulse and the second is a Costas 4 coded pulse, i.e. a

FSK pulse with 4 different frequencies.

In the first simulation, the performance of the ML and M-

estimators is studied as a function of the SNR. Figs. 4 and 5
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Fig. 3. Real and imaginary parts of the test signals.
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Fig. 4. (1 − |µH
true

µ̂|2) vs. SNR for the ML and M-estimators for 30 LFM

pulses. The M-estimators have better performance at low SNR regime due to

misalignment of the pulses.

show (1 − |µH
trueµ̂|2) versus SNR for 30 LFM and Costas

pulses, respectively. The curves are averages over 500 Monte

Carlo experiments. Note that also the ML estimator uses the

preprocessing algorithms proposed in this paper in all simula-

tions. The ML estimator performance with perfectly aligned

pulses is plotted as well. This curve provides a lower bound

for the performance of other estimators.

It can be seen that the M-estimators have better performance

than the ML estimator at low SNR regime. This is due to the

fact that the M-estimators downweight the pulses that are mis-

aligned after preprocessing. Consequently, their influence on

the final estimate is reduced.

In the second experiment, the performance of the estimators

was studied as a function of the number of pulses used to cal-

culate the estimate. This experiment was conducted using the

LFM pulse for two different SNR regimes. Fig. 6 depicts the

estimation performances when the pulse SNRs are between 3
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Fig. 5. (1 − |µH
true

µ̂|2) vs. SNR for the ML and M-estimators for 30 Costas

4 pulses. The M-estimators have better performance at low and moderate SNR

regime due to misalignment of the pulses.
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Fig. 6. (1 − |µH
true

µ̂|2) vs. number of pulses for the ML and M-estimators

for LFM pulses with SNRs between 3 and 5 dB. The M-estimators have better

performance at low SNR regime due to misalignment of the pulses.

and 5 dB. The curves are averages over 1000 Monte Carlo ex-

periments. Again, the M-estimators have better performance

than the ML estimator due to downweighting of the misaligned

pulses. The estimation performance might not yet allow iden-

tification of the specific emitter. However, it should improve

the probability of correctly classifying the emitter type. Fig. 7

illustrates the performance at a higher SNR regime between 18

and 30 dB where specific emitter identification should be pos-

sible. It can be seen that the ML and M-estimators have almost

comparable performance. The ML-estimator is slightly better

than, especially, the M-estimator using sample weights. The

gap between estimator performance curves and the curve ob-

tained with perfect alignment indicates that there is probably a

small frequency offset in the final estimate.

Gaussian noise assumption may not always hold in practi-

cal applications. In the final experiment, the noise distribution

is a mixture of two complex Gaussian distributions with dif-

ferent variances, i.e. the noise distribution is 0.95NC(0, σ2) +
0.05NC(0, 25σ2). The purpose of the second term is to model
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µ̂|2) vs. number of pulses for the ML and M-estimators

for LFM pulses with SNRs between 18 and 30 dB. The estimators have almost

comparable performance. The M-estimator with sample weights has slightly

worse performance.
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Fig. 8. (1 − |µH
true

µ̂|2) vs. SNR for the ML and M-estimators for 30

LFM pulses in non-Gaussian noise with a density of 0.95NC(0, σ2) +
0.05NC(0, 25σ2). SNR is measured compared to noise power σ2. The M-

estimators outperform the ML estimator in non-Gaussian noise.

the outliers caused by interference. Fig. 8 depicts the perfor-

mance of the estimators for 30 LFM pulses in non-Gaussian

noise as a function of the SNR. The SNR is measured com-

pared to σ2. The figure shows that the M-estimators have

clearly better performance in non-Gaussian noise situation than

the ML estimator.

VII. CONCLUSION

In this paper a robust M-estimator of a common modula-

tion from a group of radar pulses was proposed. In addition, a

new time alignment algorithm based on cross-correlation was

proposed for aligning the intercepted pulses in time domain.

The simulation experiments showed that the M-estimators

provide better tolerance against preprocessing errors than the

ML estimator. This facilitates specific emitter identification at

lower SNR regime and improves the probability of classifying

the emitter type correctly at given SNR. In addition, the M-

estimators perform well also in non-standard noise conditions

such as non-Gaussian noise. However, to further improve the

estimation performance more work is needed for better align-

ment of the pulses in both time and frequency.
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