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Modeling anisotropic light propagation in a
realistic model of the human head

Juha Heiskala, Ilkka Nissilä, Tuomas Neuvonen,
Seppo Järvenpää, and Erkki Somersalo

A Monte Carlo model capable of describing photon migration in arbitrary three-dimensional geometry
with spatially varying optical properties and tissue anisotropy is presented. We use the model to explore
the effects of anisotropy for optical measurements of the human head. An anisotropic diffusion equation
that corresponds to our Monte Carlo model is derived, and a comparison between the Monte Carlo model
and the diffusion equation solution with finite elements is given. © 2005 Optical Society of America

OCIS codes: 170.5280, 170.6960, 290.1990.

1. Introduction

Diffuse optical tomography is a relatively new non-
invasive medical imaging modality that makes use of
visible or near-infrared (NIR) light in the wavelength
range between 700 and 900 nm. The goal in optical
tomography is to determine the absorption and scat-
tering properties inside the tissue by use of measure-
ments of the detected light on the boundary of the
tissue. Strong scattering makes propagation of infra-
red light in most human tissues highly diffusive,
which makes the task of reconstructing the internal
optical properties a complicated one. To obtain a good
reconstruction, the light propagation inside tissue
should be modeled as faithfully as possible.

Reconstruction of the internal optical properties

requires the use of iterative, nonlinear optimization
techniques. In general, the solution of the forward
problem needs to be calculated many times. Hence
the model used has to be reasonably efficient as well
as accurate. Finite-element (FE) and finite-difference
formulations of the diffusion approximation (DA) to
the radiative transfer equation (RTE) are commonly
used as the forward model. However, the DA is
known to be inaccurate in the presence of low-
scattering regions such as the cerebrospinal fluid (csf)
in the human head. In such cases, higher-order ap-
proximations to the RTE or Monte Carlo methods
may be used. The Monte Carlo method is relatively
easy to implement and it is commonly used as a ref-
erence in the validation of other numerical methods.

Many human tissues have properties that depend
on direction as well as location. One example is the
white matter of brain, where the orientation of axon
bundles gives rise to directionally dependent diffu-
sion properties for water molecules. Anisotropy of
tissue has been shown by measurements to affect
light propagation in the cases of chicken breast tis-
sue,1 human skin,2 and dentin,3 giving a good reason
for believing that tissue anisotropy may have a sig-
nificant effect on the signal in optical tomography.

In this paper we present a Monte Carlo model that
solves the photon migration problem in an arbitrary
voxel-based geometry and an arbitrary form of tissue
anisotropy. We derive the anisotropic diffusion equa-
tion from the anisotropic RTE implemented by our
Monte Carlo model, and a comparison between the
anisotropic diffusion equation and the Monte Carlo
method is given in a cylindrical geometry. We use our
model to study the effects of anisotropy on light prop-
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agation in the adult human head and in the head of
an infant.

2. Methods

A. Monte Carlo

The Monte Carlo method provides a conceptually
simple and flexible, yet rigorous, way of describing
radiation transfer within tissue.

In our implementation the tissue is divided into
volume elements (voxels), each of which may have
different optical properties.4 The optical properties of
the model include absorption, anisotropic scattering,
and the index of refraction. The rules of photon prop-
agation were previously described in the literature.5,6

We describe how the effect of anisotropic tissue struc-
ture may be included in the model.

To study light propagation in the human head,
magnetic resonance imaging (MRI) is used to gener-
ate a geometrically accurate model of the head. Then
T1-weighted anatomical MRI voxel data are seg-
mented into different tissue types, which are as-
signed optical properties according to literature
values. Diffusion tensor imaging7 (DTI) is used to
obtain information about tissue anisotropy, and these
data are used as the basis for modeling anisotropic
light propagation in the head.

1. Photon Propagation
The forward solution in the Monte Carlo method is
obtained by tracing paths of individual photons as
they are scattered and absorbed within the tissue.
The propagation is performed as follows.

The light source considered is a point source with a
predefined spread in direction. The initial position is
the same for each photon. The angle from the source
axis is drawn from a uniform distribution from 0 to a
predefined maximum angle, and the azimuthal angle
is drawn from a uniform distribution from 0 to 2�.
The weight of the photon is initialized as w � 1.

The path length L of the photon until the first
scattering event is drawn from an exponential distri-
bution. The absorption is handled by a reduction in
the weight of the voxel by exp���aL� at each scatter-
ing event, where �a is the absorption coefficient. The
new direction of the photon after a scattering event is
calculated by use of the probability distribution of the
Henyey–Greenstein phase function6 and scattering
anisotropy factor g of the tissue in which the scatter-
ing occurs.

The propagation of the photon is continued as de-
scribed above until the photon either escapes from
the tissue or the weight w of the photon falls under a
predefined threshold. In the latter case a technique
called roulette is applied.5 In this technique the pho-
ton is given one chance in m to continue propagation
with weight mw; otherwise, the photon is extin-
guished.

As the anatomic model is voxel based, passing from
one photon to the next one requires special treat-
ment. At each scattering event, or after a predefined
distance, which is usually set to be equal to the voxel

grid spacing, a check is made of whether the photon
has passed from one tissue type to another. If the
tissue type has changed, the step is divided into por-
tions in the old and new voxel and part of path length
in the new voxel is renormalized by �s

old��s
new. The

absorption in each voxel is calculated according to �a

and the length of path traveled in that voxel. If re-
fractive index n is different in the old and new tissue
types, the probability of internal reflection is calcu-
lated according to Fresnel’s equation. A random num-
ber is drawn to determine whether the photon is
reflected back or whether a refraction occurs. The
direction of the photon is then changed in accordance
with reflection of refraction, based on Fresnel’s for-
mulas.

2. Tissue Anisotropy
Our anisotropic model is based on the assumption
that the directionality of white matter within the
brain affects photon propagation. The possible mech-
anisms that could contribute are the direction-
dependent scattering coefficient and direction-
dependent probability distribution of the scattering
phase function.

The anisotropic scattering phase function was
studied by Heino et al.,8 who studied the DA of the
RTE and replaced the anisotropy factor g in the stan-
dard isotropic form of the equation used in optical
tomography by a tensor describing preferential direc-
tions of scattering.

We adopt the approach with a direction-dependent
scattering coefficient. This avoids problems of com-
bining a direction-dependent anisotropy factor with
the high isotropic anisotropy factor in biological tis-
sues.

We model the anisotropic scattering probability by
replacing the scattering coefficient �s by �s,isoŝTMsŝ.
Here ŝ is the unit vector of the direction in which the
photon is traveling, and �s,iso and Ms are the isotropic
scattering coefficient and a 3 � 3 tensor describing
the direction dependence of scattering, respectively.

The tensor Ms is symmetric and positive definite so
that the anisotropic �s is positive and the same for
photons traveling in exactly opposite directions. This
is physically sensible, since although there is good
reason to expect scattering to be different along or
perpendicular to anisotropic structures, there is no
reason to expect that scattering along such structures
be different in opposite directions. A negative �s

would obviously be unphysical. Furthermore, Ms is
normalized such that the average value of ŝTMsŝ on
the unit sphere is one. This way the average value of
�s integrated over all directions is the isotropic value
�s,iso.

We obviously could have included �s,iso in the ten-
sor, but keeping the scalar value �s,iso and tensor Ms
separate has the advantage that the user of our
Monte Carlo code can change the distribution of tis-
sue types and the isotropic �s,iso related to the tissue
types without changing the anisotropy map and vice
versa.

Because the Monte Carlo code allows the user to
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provide the anisotropy data in different dimensions
and with different orientations, a transformation ma-
trix describing the rotations and translations neces-
sary to transform between the coordinate systems
must be given as well as the voxel dimensions of both
data sets. The Monte Carlo code calculates the in-
verse rotation from the anisotropy data to anatomical
data and rotates the Ms tensor so that it is aligned
with the coordinate axes used in the anatomical data.

B. Diffusion Approximation

The use of finite-element method (FEM) and the DA
of the RTE has become the standard way of modeling
light propagation in tissue when a solution of the
inverse problem of diffuse optical tomography is
needed.9,10 To implement a DA solution to the aniso-
tropic photon propagation problem we have defined,
we have to find the correct form for the anisotropic
diffusion equation.

The DA is usually derived from the RTE by trun-
cating the spherical harmonic expansions to order
one (P1 approximation).11–14 This means in particular
that some of the information about the possible
anisotropies included in the RTE is lost, and the DA
and the RTEs are not directly comparable. In partic-
ular, there are several possible anisotropy models of
the tissue that lead formally to the same diffusion
equation. In this paper we consider one such model
that leads to an anisotropic diffusion equation, but
one that is different from that considered in the afore-
mentioned articles. The present RTE model is well
adapted to Monte Carlo calculations, and the model
can be built based on DTI data. The anisotropic RTE
model is based on the following assumptions:

1. The scattering phase is rotation invariant, i.e.,
��r, s, ŝ�� � h�r, s·ŝ�� for some function h.

2. The scattering coefficient depends on the prop-
agation angle as �s�r, ŝ� � ŝTMsŝ, where Ms��3 is the
inverse of the diffusion tensor scaled by the trace.

These assumptions lead naturally to an anisotropic
diffusion equation; furthermore, the FEM solutions
seem to be in accordance with the corresponding
Monte Carlo simulations, as we shall see in Subsec-
tion 3.A.

The starting point is the RTE

�1
c

�

�t � ŝ · 	 � �a(r) � �s(ŝ, r)�
(r, ŝ, t)

� �s�
�2

�(r, ŝ, ŝ�)
(r, ŝ, t)ŝ� � q(r). (1)

We start with the first-order approximation of � with
respect to the direction


(r, ŝ, t) �
1

4�
[�(r, t) � 3J(r, t) · ŝ)],

where

�(r, t) ��
�2


(r, ŝ, t)dŝ, J(r, t)�
�2

ŝ
(r, ŝ, t)dŝ.

This approximation is substituted into Eq. (1). By
denoting g�r� as the anisotropy factor of the scatter-
ing phase function

g(r) ��
�1

1

h(r, t)tdt,

we find, by a change of variables, that

�
�2

�(r, ŝ, ŝ�)ŝ�dŝ� � g(r)ŝ.

Furthermore, using the fact that

�
�2

�(r, ŝ, ŝ�)dŝ� � 1,

we obtain, after substituting and rearranging the
terms, the approximate equation

�1
c

�

�t � ŝ · 	 	(� � 3ŝ · J) � ��a� � 3

� 
�a � (1 � g)�s�ŝ · J � q(r). (2)

To obtain the DA, we integrate Eq. (2) with respect to
ŝ over �2. Evidently, the odd-order terms cancel by
symmetry, and the even-order terms remain. Observ-
ing that

�
�2

ŝŝTdŝ �
4�

3 ,

we get the equation

1
c

��

�t � 	 · J � ��a� � q0, (3)

where

q0(r) ��
�2

q(r, ŝ)dŝ.

On the other hand, multiplying Eq. (1) by ŝ and in-
tegrating over �2, we obtain by similar reasoning the
equation

1
c

�J
�t �

1
3 	 � � �[�a � (1 � g)B]J � q1, (4)

10 April 2005 � Vol. 44, No. 11 � APPLIED OPTICS 2051



where

q1(r) ��
�2

ŝq(r, ŝ)dŝ,

and the matrix B � B�r� is given as

B(r) �
3

4��
�2

ŝ�s(r, ŝ)ŝTdŝ

�
3�s,iso

4� �
�2

ŝŝTMs(r)ŝŝTdŝ.

To integrate this expression, we choose the
ŝ-coordinate system such that the axii coincide with
the eigenvectors of the matrix Ms that are orthonor-
mal. This leads to the expression

3�s,iso

4� �
�2

ŝŝTMs(r)ŝŝTdŝ �
3�s,iso

4� �
�2
�sx

sy

sz
�(sx

2�1 � sy
2�2

� sz
2�3)[sx sy sz]dŝ,

where the � are the eigenvalues of Ms.
We do the above integration in spherical coordi-

nates. The components of the unit vector ŝ are writ-
ten

sx � sin 
 cos 
, sy � sin 
 sin 
, sz � cos 
,

and the integration yields

3�s,iso

4� �

�0

2� �

�0

�

ŝ(
, 
)(1 � g)ŝT(
, 
)Msŝ(
, 
)

� ŝT(
, 
)sin(
)d
d


�
�s,iso

5 (1 � g)

��3�1 � �2 � �3 0 0
0 3�2 � �1 � �3 0
0 0 3�3 � �1 � �2

�.

(5)

Thus we obtain an anisotropic diffusion equation in
which the isotropic scattering coefficient �s is re-
placed by a tensor

T�s
�

�s,iso

5

��3�1 � �2 � �3 0 0
0 3�2 � �1 � �3 0
0 0 3�3 � �1 � �2

�.

(6)

Instead of the diffusion coefficient D in the isotropic
case, we now get a diffusion tensor

D � (1�3)
�aI � (1 � g)T�s��1, (7)

where I is the unit matrix and T�s
is the tensor de-

scribing the directionally dependent scattering coef-
ficient as given in Eq. (6).

We show the calculation for the case in which the
anisotropy axes are parallel to the Cartesian coordi-
nate axes, but the diffusion tensor for anisotropy with
different anisotropy axes is obtained easily by rotat-
ing the tensor D� � RDRT, where R is the rotation
matrix.

The diffusion equation derived above can be solved
by use of FEM. This requires altering the standard
implementation to accommodate a diffusion tensor
instead of a diffusion coefficient.

C. Anatomic Tissue Model

We study the effect of anisotropy on light propagation
in the human head. The anatomic model used in-
cludes a map of the spatial distribution of different
tissue types within the head and a map of the spatial
distribution of anisotropy. We want to study the ef-
fect of tissue anisotropy caused by white matter
tracts within the brain, and therefore anisotropic ef-
fects are restricted to white matter in the model.

1. Anatomic Magnetic Resonance Data
Anatomic data were obtained with the Siemens Mag-
netom Sonata 1.5T scanner. A high-resolution three-
dimensional T1-weighted scan was performed that
produced a three-dimensional data set with cubic
1�mm3 voxels and dimensions 256 mm � 256 mm
� 180 mm.

The T1-weighted image was segmented into seven
tissue types, including the scalp, skull, white and
gray brain matter, and csf. In addition, regions
within the csf containing an especially large amount
of trabecular membranes, as well as the superior sag-
ittal sinus (a large vein that runs close to skull be-
tween the left and the right lobes of the brain), were
treated as separate tissue types. The segmentation
was performed semiautomatically, using software
provided by Neuromag.15 Figure 1 illustrates the seg-
mentation result.

The optical properties of the tissue types were
taken partly from the literature, and the scalp and
the skull scattering and absorption coefficients were
determined by performing a fit between the Monte
Carlo simulation results and the measurements
taken by the 16-channel frequency-domain optical
measurement device developed at the Laboratory of
Biomedical Engineering of the Helsinki University of
Technology.16 The optical properties for the tissue
types are given in Table 1.17–19

2. Diffusion Tensor Magnetic Resonance Data
We used diffusion tensor magnetic resonance (MR)
data to obtain information on the anisotropic struc-
ture of the brain. DTI measures the diffusion of water
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molecules and its directional dependence, and it is
capable of identifying large white matter tracts
within the brain. Our assumption in constructing the
model was that NIR light propagation is affected by
these white matter tracts as well and that the direc-
tion dependence of the diffusion of photons is roughly
similar to the direction dependence of the diffusion of
water molecules.

This assumption seems reasonable considering
that light propagation along and perpendicular to
muscle fibers in chicken breast tissue have been mea-
sured1 to differ. White matter tracts, like muscles,
contain tubular structures that allow easy diffusion
of water and solvents in the direction of the tubes and
weaker diffusion in the perpendicular direction.

DTI was performed with the same device that was
used for the anatomic scan. Diffusion-weighted data
were acquired with an echo-planar imaging se-
quence, using 36 4.0�mm�thick axial slices with 128
� 128 voxels with x and y dimensions of 1.75 mm
� 1.75 mm. The diffusion-weighting gradients were
applied in 12 noncollinear directions, and the diffu-
sion tensors DMR were estimated for each voxel by use
of a least-squares approach.20

A convenient measure of the direction dependence
of water diffusion that can be calculated from DTI
data is the fractional anisotropy index.21 It is a mea-
sure that is zero when diffusion is isotropic and close
to one when one diffusion direction is dominant. Fig-
ure 2 shows a map of fractional anisotropy index

calculated from our DTI data. White matter tracts
can be seen in the image, demonstrating their impor-
tance as a source of tissue anisotropy.

Using the diffusion tensor DMR obtained from the
DTI scan, we may express the diffusion coefficient for
water molecules for any direction as

v̂TDMRv̂, (8)

where v̂ is a unit vector in the desired direction. This
expression is of the same form as the relation
�s,isoŝTMsŝ that we use to calculate the direction-
dependent scattering coefficient in a particular direc-
tion. The difference is that in the case of water
diffusion, a large diffusion coefficient in a particular
direction implies that water molecules tend to move
preferentially along that direction, whereas in our
case, a large scattering coefficient in a particular di-
rection tends to deflect photons from that direction
and results in weaker diffusion.

In most tissues, including white matter, scattering
dominates over absorption of photons, and in such
cases the diffusion equation represents a fairly good
approximation of photon propagation. In the stan-
dard diffusion equation, when �s �� �a, the diffusion
coefficient is approximately inversely proportional to
the scattering coefficient. We use this approximate
inverse proportionality to calculate the scattering co-
efficient tensor Ms from the diffusion tensor DMR for
water as

Ms �
ET��1E

(1�3)trace(��1)
, (9)

where E is a 3 � 3 matrix holding the eigenvectors of
DMR as its columns and � is a diagonal matrix with
the corresponding eigenvalues as its diagonal ele-
ments. The normalization by �1�3�trace���1� is cho-
sen so that the average value of ŝTMsŝ integrated over
the unit sphere is 1, giving an average scattering
coefficient �s,iso.

Since the field of view and orientation of slices in
the T1 and DT images were different, and the possi-

Fig. 1. Sagittal slice of the segmented MRI data. In the slice are
shown the segmented scalp, skull, and brain. Nonsegmented tis-
sues are put together with scalp, and they do not contribute much
to the signal in typical imaging setups. Also shown in the slice are
two sinuses (empty spaces inside the bone of the skull).

Table 1. Optical Properties of Tissue Types

Tissue Type �s�mm�1�a g �a�mm�1� n

Scalp 10 0.9 0.018 1.3
Skull 13 0.9 0.016 1.3
Gray matter 44 0.95 0.036 1.3
White matter 91 0.9 0.014 1.3
Cerebrospinal fluid 0.001 0.9 0.002 1.3
Trab. membranesb 16 0.95 0.016 1.3
Sup. sag. sinusc 20 0.95 0.3 1.3

aNote that �s instead of �s� � �1 � g��s is given.
bTrab. membranes, trabecular membranes.
cSup. sag. sinus, superior sagittal sinus.

Fig. 2. Transaxial slice of a three-dimensional fractional anisot-
ropy index map calculated from our DTI data. To make the image
clearer, we show only fractional anisotropy values above 0.3.
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bility that the subject moved between the measure-
ments had to be taken into account, coregistering the
images to each other was necessary. We used a linear
registration tool called FLIRT22 (FMRIB’s Linear Im-
age Registration Tool) to do this. We calculated an
affine transformation from anatomic to DT coordi-
nates and the rotation part of the inverse transfor-
mation. The latter was used for rotating the diffusion
tensors to align them to the coordinate axis of the
anatomic data.

The registration maps corresponding voxels in both
data sets onto each other with good accuracy in most
of the brain. However, because of echo-planar imag-
ing distortion23 in the frontal region of the brain,
voxels in this region are not necessarily correctly
mapped.

3. Results

A. Monte Carlo and Diffusion Equation Solutions

In Subsection 2.B we showed how the anisotropy
model we defined in the RTE can be implemented in
DA.

We used our three-dimensional FEM code to solve
the diffusion equation in a simple cylindrical geome-
try. The same calculations were also performed with
our anisotropic Monte Carlo code. In the calculation,
1 source and 31 detectors were placed in a plane along
the circumference of a cylinder at equal distances
from one another. The radius of the cylinder was
20 mm and the height 60 mm. The source was mod-
ulated at a 100�Mhz frequency. The optical properties
of the cylinder were �s � 1.0 mm�1, g � 0, �a

� 0.01 mm�1, n � 1.4. Solutions were calculated for
an isotropic case and for an anisotropic case with
uniform anisotropy in the direction perpendicular to
the direction of the source and to the axis of the
cylinder. The situation is illustrated in Fig. 3.

The T�s
tensor used in the Monte Carlo calculation

was chosen to be T�s
� diag�1.4615, 0.0769, 1.4615�.

Using Eq. (7), we get D � diag�0.2797, 0.9332,
0.2797� for the diffusion tensor in the FEM calcula-
tion.

In Figs. 4 and 5, the phase shift and logarithm of
the photon flux amplitude are shown for the isotropic
and anisotropic cases. In the Monte Carlo simulation,

1.6 � 108 photon paths were traced, and in the FEM
calculation, a mesh with approximately 1.5 � 105

quadratic volume elements was used. Both the num-
ber of photons traced and the refinement of the mesh
were tested to be sufficient for convergence of the
numerical results.

The results of this comparison show that there are
differences between the RTE (Monte Carlo) and dif-
fusion equation solutions, but qualitatively the re-
sults of the two methods agree. In both the FEM and
the Monte Carlo calculation, the addition of anisot-
ropy produces very similar results.

B. Effects of Anisotropy in a Realistic Head Model

We used our Monte Carlo model to carry out a sim-
ulation of the effects of tissue anisotropy in a realistic
situation involving a single source position and sev-
eral detectors on the same side of the head.

Fig. 3. Schematic drawing of the setup for the calculation of the
effect of anisotropy in a cylinder.

Fig. 4. Phase shift in the case of a cylindrical geometry. On the y
axis, the phase shift in degrees is shown, and the x coordinate is the
angle in degrees between the source and the detector along the
cylinder circumference. The isotropic case calculate with FEM and
Monte Carlo are given by the solid and dotted curves, respectively.
The anisotropic case calculated with FEM and Monte Carlo are
given by the dashed and dashed–dotted curves, respectively.

Fig. 5. Logarithm of amplitude in the case of a cylindrical geom-
etry. On the y axis is shown the logarithm of amplitude (arbitrary
units), and the x coordinate is the angle in degrees between the
source and the detector along the cylinder circumference. The iso-
tropic case calculate with FEM and Monte Carlo are shown by the
solid and dotted curves, respectively. The anisotropic case calcu-
lated with FEM and Monte Carlo are given by the dashed and
dashed–dotted curves, respectively.
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We calculated the signal recorded at the detectors
in the case of a frequency-domain measurement with
modulation frequency f � 100 MHz when tissue an-
isotropy is taken into account, and when it is not
taken into account.

Our anatomic model is based on MR imaging of an
adult subject. However, we also wanted to study the
effect of anisotropy in optical imaging of an infant.
We were motivated by the fact that owing to the
smaller size of the head of an infant, deeper tissues
can be imaged. Therefore the anisotropy present in
the white matter can be expected to have more of an
effect when imaging the head of an infant.

Since DT images of an infant were not available to
us, we approximated the head of a newborn infant by
scaling our adult tissue model by a factor of 0.5. Al-
though this is obviously inaccurate, it allows us to
obtain an approximation of the effect that anisotropy
may have in the case of an infant.

In both adult and infant cases, the light source was
simulated by injecting photons into the tissue model
at the left side of the head, slightly up and toward the
nose from the highest point of the earlobe. Exiting
photons were counted at 30 detector locations on the
surface of the tissue model. These were divided into 3
groups of 10, with each group lying on an approxi-
mate semicircle with the center of the circle at the
light source. In each group the detectors were num-
bered 1 to 10 from the rear toward the front of the
head. The radii of the semicircles were different in
the two cases we studied, and they are given sepa-
rately for each case. The arrangement of the detector
locations is illustrated in Fig. 6. The detector loca-
tions in the simulations were chosen such that a sim-
ilar detector array might be used in actual imaging of
the auditory brain cortex.

Estimates for the statistical inaccuracy of the
Monte Carlo simulation for the amplitude and the
phase shift were obtained by dividing the Monte
Carlo photon runs into subsamples. The standard
deviation between the subsamples provided an esti-

mate for the error in the amplitude and phase shift
obtained from the simulation. The statistical signifi-
cance of the anisotropic effect was tested using the
paired t-test.

1. Adult Head
In the case of the adult head, the three groups of
detectors were at distances of approximately 25, 35,
and 50 mm. The source was placed 10 mm above and
20 mm toward the nose from the highest point of the
earlobe.

The simulated phase shift and logarithm of ampli-
tude in the detectors are shown in Figs. 7 and 8,
respectively. In both figures, isotropic and anisotropic
cases are presented by different curves. Especially in
the case of logarithm of amplitude, however, the dif-
ference between the curves is so small that they ap-

Fig. 6. View of the array of source and detector fibers used in our
head imaging simulation. The source is shown as a black “x” and
the detectors as black circles. The detectors are divided into 3
groups of 10 detectors at a fixed distance from the source. In each
group, detectors are mapped from the back toward the front of the
head, or counterclockwise in the figure.

Fig. 7. Phase shift in the simulated measurement of an adult
head. The y axis shows the magnitude of the phase shift in degrees,
and the x axis shows the detector number. Solid and dashed curves
represent the results of the isotropic and anisotropic cases, respec-
tively. In each semicircular group of detectors, the detectors are
numbered counterclockwise from 1 to 10. The phase shift increases
with increasing distance from the source.

Fig. 8. Logarithm of amplitude in the simulated measurement of
an adult head. The y axis shows the logarithm of amplitude (arbi-
trary units), and the x axis shows the detector number. The iso-
tropic and anisotropic cases are given by the solid and dashed
curves, respectively. In each semicircular group of detectors, the
detectors are numbered counterclockwise from 1 to 10. The ampli-
tude decreases with increasing distance from the source.
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pear as one curve. Error estimates for each case are
given by the error bars on the curves.

For the adult case, we see no statistically signifi-
cant anisotropy effect for amplitude or phase shift in
any of the detectors. The largest difference in ampli-
tude between the isotropic and the anisotropic cases
is of the order of 1.5%, and the largest difference in
phase shift is approximately 0.6 deg. These differ-
ences are within the statistical error of the simula-
tion.

2. Infant Head
For the infant head, the source–detector distances for
the three groups were approximately 30, 40, and
50 mm. The exact distance varied because of the
shape of the head. The source was placed 5 mm above
and 10 mm toward the nose from the highest point of
the earlobe.

The simulated phase shift and logarithm of ampli-
tude in the detectors for the infant head are shown in
Figs. 9 and 10. The isotropic and anisotropic cases are
presented by different curves. The error estimates for
each case are given by the error bars on the curves.

For amplitude, clear and statistically significant
differences in the results of the isotropic and aniso-
tropic simulations are seen in detectors 7 and 9 of the
outermost detector group and in detector 9 of the
middle detector group �p�values � 0.025�. The great-
est difference in the amplitude is found in detector 9
of the outermost group, where it corresponds to a 12%
difference between the isotropic and the anisotropic
cases. For detector 9 of the middle detector group, we
see a 10% signal change between the isotropic and
the anisotropic cases.

For the phase shift, we see a statistically signifi-
cant anisotropy effect in the same detectors as for the
amplitude �p�values � 0.03�. However, the effect is
quite small (of the order of 0.5 deg).

We note that in the case of the infant head, our

model already predicts a measurable change in the
amplitude at a distance of 40 mm between the source
and the detector. In reality, even a shorter distance
may be sufficient because the scalp and skull of an
actual infant are thinner than in our scaled-down
model of an adult head. Also, the optical properties
used for the brain tissue in this study were those of an
adult. The differences between these and the optical
properties of the brain tissue of an infant may cause
further differences in the significance of anisotropy in
the imaging of adults versus infants.

4. Discussion

In this paper we have presented a model for tissue
anisotropy in optical imaging. We have described a
Monte Carlo model that is capable of performing sim-
ulations based on this anisotropy model in arbitrary
geometry and in arbitrarily shaped anisotropy, and
we have derived the form of the DA of the RTE by
using the anisotropy model we have chosen.

The simulations we have performed in a realisti-
cally shaped head model suggest that in the case of
the adult human head, the effect of tissue anisotropy
on the measured optical signal is very small. In the
case of an infant head, our simulated data shows a
significant phase and amplitude effect that is due to
anisotropy in the reflection geometry. In optical to-
mography of premature infants, transmission mea-
surements are used, and in such a case we expect to
see a much more pronounced effect owing to aniso-
tropic light propagation in the white matter. This is
the topic of further study.
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and Letters, The Finnish Foundation for the Ad-
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ing facilities of the Finnish IT center for science

Fig. 9. Phase shift of the signal in the simulated measurement of
an infant head. The y axis shows the phase shift in degrees, and the
x axis shows the detector number. Solid and dashed curves repre-
sent the results of the isotropic and anisotropic cases, respectively.
In each semicircular group of detectors, the detectors are num-
bered counterclockwise from 1 to 10. The phase shift increases with
increasing distance from the source.

Fig. 10. Logarithm of amplitude in the simulated measurement
of an infant head. The y axis shows the logarithm of amplitude
(arbitrary units), and the x axis shows the detector number. Solid
and dotted curves represent the results of the isotropic and aniso-
tropic cases, respectively. In each semicircular group of detectors,
the detectors are numbered counterclockwise from 1 to 10. The
amplitude decreases with increasing distance from the source.
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