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Abstract

The significance of accurate knowledge of background optical properties and
time-resolved information in reconstructing images of hemodynamic changes
in the neonatal brain from diffuse optical imaging data was studied using
Monte Carlo (MC) simulation. A segmented anatomical magnetic resonance
(MR) image and literature-derived optical properties for each tissue type were
used to create a voxel-based anatomical model. Small absorbing perturbations
were introduced into the anatomical model to simulate localized hemodynamic
responses related to brain activation. Perturbation MC (pMC) was used as the
primary method of image reconstruction. For comparison, reconstructions were
also performed using the finite element method (FEM) to solve the diffusion
approximation (DA) to the radiative transfer equation (RTE). The effect of
optode layout was investigated using three different grids. Of the factors
studied, the density of the optode grid was found to have the greatest effect on
image quality. The use of time-resolved information significantly improved the
spatial accuracy with all optode grids. Adequate knowledge and modeling of
the optical properties of the background was found to significantly improve the
spatial accuracy of the reconstructed images and make the recovery of contrast
of absorption changes more consistent over simplified modeling. Localization
accuracy of small perturbations was found to be 2–3 mm with accurate a priori
knowledge of the background optical properties, when a grid with high optode
density (>1 optode cm−2) was used.
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1. Introduction

In the last two decades, rapid development of methods for non-invasive functional imaging of
the human brain has taken place. Macroscopic currents closely related to neuronal activity
can be estimated from non-invasive measurements made with electroencephalography (EEG)
and magnetoencephalography (MEG, Hämäläinen et al 1993). Due to the increased metabolic
demand in activated areas, local blood flow is normally increased through the neurovascular
coupling to provide adequate supply. Increased blood flow results in increased local
concentration of oxygenated hemoglobin (HbO2) and, in the adult, decreased concentration of
deoxyhemoglobin (HbR). Hemodynamic responses can be imaged using functional magnetic
resonance imaging (fMRI; Rosen et al 1993), positron emission tomography (PET), single-
photon emission computed tomography (SPECT) and near-infrared spectroscopy (NIRS;
Villringer and Chance 1997). The hemodynamic signals are a more indirect measure of
neuronal activity than the primary current distribution estimated from MEG and EEG, but the
spatial resolution can be very good. In addition to neuroscientific studies, measurements of
hemodynamic parameters can also be used to detect and image lesions in the brain.

In order to diagnose developmental problems in infants, one possibility is to study the
infant development using a variety of neuroimaging methods to create a reference database,
and then compare individual patient results with this normative data. Neuroimaging of infants
is very challenging. Changes in the sleep stage and attentive state are frequent. MRI and fMRI
in general require sedation, which can alter neuronal and hemodynamic responses and limits
the types of tasks that can be used. Near-infrared spectroscopy (NIRS) and imaging (NIRSI)
(Villringer and Chance 1997) are safe methods which allow the determination of changes in
the concentration of HbO2 and HbR in the infant brain (Hebden et al 2004, Gibson et al 2006).
The thin structures of the skull and scalp of a neonate enhance the applicability of optical
methods. In preterm infants, it may even be possible to perform optical measurements through
the entire head to obtain three-dimensional tomographic images. The instrumentation needed
for NIRSI is relatively light and quiet, and the measurement can be performed at the bedside.

Image reconstruction from optical measurements is sensitive to the modeling of light
transport in tissue. The radiative transfer equation (RTE; Chandrasekhar, 1960) is a general
model which is thought to accurately model light propagation in tissue. The diffusion
approximation (DA) to the RTE can be used to model light propagation in the brain, skull
and skin tissues (Arridge 1999). The cerebrospinal fluid (CSF) is a clear liquid which
shares its space with blood vessels and the delicate network of thin fibers of the arachnoid
mater. Because of these structures, the CSF space is not completely non-scattering, but it
is reasonable to assume that the scattering coefficient in the CSF space is low. Large low-
scattering regions result in photon propagation which cannot be accurately modeled by the
DA. Several approaches have been proposed for modeling the CSF, including Monte Carlo
(MC) simulation (Firbank et al 1996, Okada et al 1997), a hybrid radiosity diffusion FEM
model which assumes the CSF to be non-scattering (Okada et al 1997, Dehghani et al 2000,
Riley et al 2000, Dehghani and Delpy 2002, Gibson et al 2005), numerical solutions to the
RTE itself (Ren et al 2004), as well as a hybrid RTE–DA method (Tarvainen et al 2005). In
this study, we used a low-scattering coefficient (μs), which we think is a plausible model for
large regions of CSF, although no direct in situ measurements of μs,CSF have been presented
in the literature.

The optical imaging of brain activation in term infants is different from studies with
preterm infant and adult subjects. In term infants and adults, the strong attenuation of the
optical signal limits measurements to relatively short source–detector distances (� 50 mm),
whereas in preterm infants optical measurements through the entire head may be possible.
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Compared to adult subjects, the neonatal cortex is much closer to the surface of the head,
which makes higher resolution and more consistent contrast recovery possible. The effect of
the heterogeneous structure of the head on image quality in activation studies of term infants
has not previously been studied. The fact that the distance from the optodes to the brain is
typically only a few millimeters needs to be considered in the grid design.

In the present study, we investigated the significance of errors in the model of light
propagation and background optical properties in reconstructing three-dimensional images
from the optical imaging of brain activations in term neonates. We were specifically interested
in changes in the concentration of oxygenated haemoglobin, which are exhibited as changes
in optical absorption in the brain. We also studied the effect of the choice of the optode grid
and the availability of time-resolved information on the quality of reconstructed images. Our
results should be helpful for planning future experiments and the selection of modeling and
image reconstruction approaches.

MC simulation (Prahl et al 1989) was used to generate the simulated data in this study
because of the straightforward adaptability to arbitrary tissue geometries and optical properties.
The tissue geometry was taken from an anatomical MR image of a term neonate, which was
segmented into tissue classes. Literature-based optical properties were assigned to the tissue
classes. For image reconstruction using MC, we implemented a perturbation Monte Carlo
(pMC) (Hayakawa et al 2001, Kumar and Vasu 2004) method using mean time and intensity
data types. MC-based methods have not previously been used to image neonates, nor has
mean time been used for image reconstruction with an MRI-based realistic heterogeneous
model of the head.

Our results show that deviations from the correct background properties change the
reconstructed image significantly. This change may be a loss of contrast or an error in the
reconstructed position of the perturbation. It is thus important to take advantage of all available
a priori information on the background optical properties. A comparison of reconstructions
based on (1) MC with precisely correct background properties, (2) MC with the optical
properties of the CSF replaced by the properties of weakly diffuse tissue (μ′

s = 0.3 mm−1), (3)
MC with deviated background properties, (4) MC with homogeneous background properties,
(5) the FEM/DA with the properties of the CSF replaced by the properties of diffuse tissue
and (6) the FEM/DA with homogeneous optical properties is shown.

The use of time-of-flight information in image reconstruction in optical tomography
has been studied both theoretically and experimentally (Arridge 1999). The most important
benefit from the use of temporal data types is the ability to differentiate between scattering
and absorption in the tissue (Arridge and Lionheart 1998). Time-resolved data types such as
the mean time and variance, and time-gated windows of the temporal point spread function
have been used to separate functional changes that occur in layers at different depths in the
tissue (Steinbrink et al 2001, Liebert et al 2004, Selb et al 2006). Experimental data from
time domain (TD) and frequency domain (FD) optical imaging in adults (Toronov et al 2001)
as well as in infants (Chance et al 1998, Heiskala et al 2007) suggest that the mean time (TD)
and phase (FD) can be used to detect brain activation. Our results show that time-resolved
information can also help to improve the spatial accuracy of reconstructions parallel to the
surface of the scalp.

Three different spatial arrangements of optical fibers were compared, the so-called
hexagonal arrangement (Boas and Dale 2005), the ‘double-density’ (DD) grid (Kawaguchi
et al 2007) and a high-density (HD) grid similar to that used by Zeff et al (2007). All grids
were scaled down to account for the smaller head size of the infant. The quality of the
image, including contrast and resolution, was evaluated with and without the mean time data.
The optode density was found to be the most significant factor affecting reconstructed image
quality.
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2. Methods

2.1. The Monte Carlo method

We employed the MC method to simulate photon propagation in the tissue and to obtain
sensitivity maps that provide an estimate of the change in the optical signal in response to a
change in the optical parameters at a specific location. In our implementation, the tissue model
is described with the help of voxels (Boas et al 2002) that can have arbitrary dimensions.

2.1.1. Photon propagation. The rules of photon propagation are described in the literature
(Prahl et al 1989, Wang et al 1995). The pathlength between two scattering events is
drawn from the exponential probability density μs exp(−μsL), and absorption is handled
by multiplication of the weight of a photon packet by exp(−μaL), where μs and μa are the
scattering and absorption coefficients, and L is the pathlength of a photon packet between
scattering events. Situations in which a photon packet passes from one tissue type to another
with different optical properties require special treatment, and are handled as described by
Boas et al (2002).

We used point sources and circular detectors with a radius of 2 mm, which allowed us to
record approximately 2 photon packets out of 1000 launched at a detector located 12.5 mm
from the source. The actual numbers naturally depended on the location in the optode grid
and the optical properties used.

2.1.2. Perturbation Monte Carlo. In the pMC method, paths of photon packets from MC
simulation are used to calculate the derivative of the forward model with respect to optical
parameters (Frechet derivatives). This allows creating three-dimensional sensitivity maps
which can be used to estimate the change in the optical signal in response to a change in the
optical parameters at a given location. In the present study, we only consider perturbations
in absorption. The motivation for this choice was that in the literature of NIRS studies of
brain activations, it is commonly assumed that changes occur mainly in absorption, and that
the concentrations of oxyhemoglobin and deoxyhemoglobin can be estimated from changes
in the absorption coefficient for different wavelengths (Steinbrink et al 2001, Boas et al 2004,
Kacprzak et al 2007). Considering changes in scattering using the pMC method is also
possible (Hayakawa et al 2001, Kumar and Vasu 2004), but this is beyond the scope of this
paper.

The signal intensity W and the mean time of flight of photons 〈t〉 are obtained from the
MC simulation as follows.

The signal intensity seen by a detector is given by

W =
∑

p

wp =
∑

p

exp

(
−

∑
r

μa(r)lr,p

)
, (1)

where wp is the intensity contribution of the photon packet p, and μa(r) and lr,p are the
absorption coefficient and the path length of the photon packet p in the region r of the tissue,
respectively. The sum in the exponential function goes over all regions r.

The average photon flight time is given by (Steinbrink et al 2001)

〈t〉 =
∑

p tpwp∑
p wp

=
∑

p tp exp
(−∑

r μa(r)lr,p
)

∑
p exp

(−∑
r μa(r)lr,p

) , (2)

where the total flight time tp of the photon packet is the sum tp = ∑
ρ tp,ρ of the flight times

tp,ρ in all regions ρ.
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The sensitivity of the signal to a change in μa in a region ρ is obtained by differentiation.
For the intensity, we obtain (Hiraoka et al 1993)

∂W

∂μa(ρ)
=

∑
p

−lρ,p exp

(
−

∑
r

μa(r)lr,p

)
= 〈lρ〉W, (3)

where 〈lρ〉 is the average weighted photon pathlength in the region ρ.
Differentiation of formula (2) yields (Arridge 1995, Steinbrink et al 2001)

∂〈t〉
∂μa(ρ)

= −〈lρ t〉 + 〈lρ〉〈t〉, (4)

where 〈lρ t〉 is the average pathlength of the photon packets in the region ρ, weighted with the
total flight time and the final weight of the photon packets at the detector.

Formulae (3) and (4) are first derivatives and represent the linear response to changes in
absorption in individual regions. Higher-order approximations involving expectation values
of cross terms 〈li lj 〉 between photon pathlengths in different regions have been presented in
the literature (see, for example, Steinbrink et al 2001 or Tsuchiya 2001). We use only the
linear terms, because in our high-resolution application, the number of regions r is of the order
of 50 000, and storing N2 cross terms for each measurement is not feasible.

We use stored sensitivity maps obtained from MC simulation for reconstructing changes
in absorption from changes in the optical signal. This avoids repeatedly calculating the
computationally costly MC forward solution. In using stored maps of sensitivity, we make the
approximation that the sensitivity profile is not significantly altered by the changes induced
in the optical properties. Our results indicate that this linear approximation is sufficiently
accurate for image reconstruction in the case of localized μa changes such as those studied in
this paper. Work by Liebert et al (2004) suggests that linear methods may also be appropriate
for estimating absorption changes over larger volumes in the brain.

The reconstruction is done by minimizing the objective function,

�(��μa) = αA(��μa) + βB(��μa) + γ1R1(��μa) + γ2R2(��μa), (5)

where the vector ��μa represents the change in μa in different voxels of the imaged
volume.

A(��μa) and B(��μa) are given by

A(��μa) =
∑
s,d

(
1

σ 2
log[IEXP](s, d)

(
� log[IpMC(s, d,��μa)] − � log[IEXP(s, d)]

)2

)
(6)

B(��μa) =
∑
s,d

(
1

σ 2
〈t〉EXP

(s, d)
(�〈t〉pMC(s, d,��μa) − �〈t〉EXP(s, d))2

)
, (7)

where the sum goes over all source–detector pairs (s, d). A(��μa) and B(��μa) are calculated
as sums of the square of the difference between the model-predicted (subscript pMC) and
measured (subscript EXP) changes in the intensity and the mean time-of-flight data types,
weighted by the reciprocal of the variance of the measurements. For our simulated case, we
divided the data into bins and calculated the variance between these.

When using both mean time and intensity data, we set α and β so that both αA(��μa) =
βB(��μa) = 1.0. In the intensity-only case, we initialized αA(��μa) to 2.0.
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The functions R1(��μa) and R2(��μa) are regularization functions. R1(��μa) is simply
the norm of the solution vector:

R1(��μa) = ‖��μa‖2
2, (8)

or Tikhonov regularization. The second regularization function is given by

R2 = ‖L��μa‖2
2, (9)

where L is defined by

Lij =
⎧⎨
⎩

nn, if i = j

−1, if j is a neighbor of i,

0 otherwise

where nn is the number of neighbors of voxel i (26-neighborhood was used).
The second regularization term is used to reduce the high-frequency noise present in the

unregularized reconstructions.
The regularization parameters were chosen empirically for each optode grid. The quality

index (see section 2.5) calculated from the reconstructed images and visual appraisal of the
images were used in determining optimal regularization parameters. The γ1 parameter was
chosen large enough to suppress artifacts caused by the photon noise, but not larger, as this
would reduce the contrast of the reconstructions. γ2 was set to limit the high-frequency
noise in the reconstructed image. For a given optode grid, the regularization was held
constant for all the different perturbation positions and background models. The regularization
parameters for the optode grids introduced in section 2.4 were (γ1 = 2.5 mm2, γ2 = 1.0 mm2)

for the hexagonal grid, (γ1 = 2.3 mm2, γ2 = 0.8 mm2) for the double-density grid and
(γ1 = 1.5 mm2, γ2 = 1.5 mm2) for the high-density grid.

The reconstruction is performed by an iterative algorithm which consists in calculating the
gradient of � with respect to �μa and performing a line search to find the �μa that minimizes the
objective function. After updating the functions A,B,R1 and R2, a new gradient is calculated
and a new line search is performed. The iteration is repeated until one of the following
conditions is met: (I) a (local) minimum of the objective function is found, (II) the objective
function becomes smaller than a pre-defined threshold, or (III) a pre-defined maximum number
of cycles has been performed.

2.2. The finite element method

The numerical solution of the DA using the FEM is a widely used method of modeling in
optical tomography. We therefore compared the results from our pMC-based reconstruction
algorithm to those obtained using a FEM-based forward model. For details on using the FEM
to solve the DA, see Arridge (1999) and Schweiger et al (2005).

The FEM-based image reconstruction was done by minimizing an objective function
which was identical to that given in equation (5), described above, except for the regularization.
The first regularization term was as in the MC case, and the regularization parameter was
chosen using the same criteria as in the pMC case. It was set to γ = 0.15 mm2 for the
hexagonal and double-density grids, and to γ = 0.08 mm2 for the high-density grid. The
second regularization term R2 was not used since the FEM reconstructions did not exhibit
high-frequency noise.

Damped Gauss–Newton iteration with quadratic fit line search was used to minimize the
objective function (Bazaraa et al 1993, Björck 1996).

We studied (1) the case of the FEM/DA with heterogeneous optical parameters that were
set to correspond to the voxel-based model as closely as the mesh resolution allowed and (2)
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Table 1. Optical properties of tissue types (Schmidt 1999, Fukui et al 2003).

Tissue type μ′
s (mm−1) g μa (mm−1) n

Scalp 1.9 0.9 0.018 1.3
Skull 1.6 0.9 0.016 1.3
Gray matter 0.5 0.9 0.048 1.3
White matter 1.0 0.9 0.037 1.3
CSF 0.032 0.9 0.0041 1.3

the FEM/DA with homogeneous parameters. The heterogeneous parameters were obtained
by sampling the voxel-based head model. Since the assumptions made in deriving the DA
are not valid in low-scattering regions, we used the weakly diffusive scattering parameter
(μ′

s = 0.3 mm−1) suggested by Custo et al (2006) for the CSF in the FEM calculations.

2.3. The anatomical model

The anatomical model was derived from a T1 MR image of a term neonate. The MR image
was segmented into distinct tissue classes, the optical properties of which were taken from the
literature. We assumed the CSF to be clear, with small but finite μ′

s. While the actual scattering
properties of CSF regions are not well established, this allowed us to investigate the possible
effect of a clear layer for activation imaging. The tissue classes and their optical properties
are shown in table 1. The voxels in the MR image and consequently in the anatomical model
were cubical with a side length of 0.86 mm.

For the FEM calculations, a mesh which matches the shape of the outer boundary of the
voxel model was created. The mesh was optimized for FEM calculations in the region of
the optode grid and contains 25 938 tetrahedral elements with quadratic basis functions and
40 012 nodes.

2.4. Optical fiber arrays

Three different arrangements of optical fibers were studied. These were the hexagonal grid
proposed by Boas et al (2004), the double-density grid as proposed by Kawaguchi et al (2007)
and a high-density grid similar to that used by Zeff et al (2007). All optode grids were scaled
down in size to match the small size of the infant head. The hexagonal grid has the advantage
of providing good topographic coverage of a larger area with a smaller number of source
fibers, while the double-density grid offers, especially in the center of the grid, a large number
of measurements with spatial overlap in the cortex. The DD grid features a dense mapping of
the cortex with the 25 mm source–detector separation, which is often considered to provide
an optimal contrast-to-noise ratio in activation imaging. The high-density grid has the most
spatial overlap, but this has the drawback of requiring a large number of optodes.

The grids are illustrated in figure 1. The numbers of source and detector optodes are:
hexagonal grid: 8 sources, 15 detectors; DD grid: 10 sources, 10 detectors and HD grid:
24 sources, 28 detectors. The DD grid is regular with an approximately 13 mm distance
between neighboring optodes. In the hexagonal grid, the distance between the horizontal rows
is approximately 12 mm, and the optodes on each row are placed at approximately 15 mm
intervals. The HD grid has alternating horizontal rows of sources and detectors. The distance
between the rows is approximately 8 mm, and the distance between the optodes in each row
is 8.5 mm.
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(A) (B) (C) (D)

Figure 1. The layout of optodes in the hexagonal (A), DD (B) and HD (C) optode grids as used in
the paper, and an axial view of the segmented head model (D). Sources are marked with ‘X’, and
detectors are marked with ‘O’.

2.5. Simulations

We used simulated data to study factors that potentially affect the image quality in the
reconstruction of localized perturbations in the absorption coefficient. MC simulations were
run with an absorbing perturbation or perturbations in place and without perturbations, and
the differences in the simulated data were calculated. These difference data were then used in
place of measurement data.

The voxel size in the sensitivity maps used for pMC reconstructions was ∼1.7 mm. The
sensitivity maps had non-zero values in approximately 40 000–50 000 voxels depending on
the optode grid and optical parameters.

The number of photon packets simulated was 800 million for each source for the hexagonal
and DD grids, and 400 million for the HD grid. This choice was motivated by the necessarily
shorter measurement time per source when using the HD grid. The standard errors in the
intensity and time-of-flight measurements, and the corresponding phase shift at a modulation
frequency of 100 MHz were approximately 0.2%, 0.2 ps and 0.007◦ at 12.5 mm source–
detector separation, 0.7%, 1.4 ps and 0.05◦ at 25 mm and 2%, 10 ps and 0.4◦ at 40 mm. At the
shortest source–detector separation of the HD grid the standard error in intensity was 0.1%.

The noise in the simulated data can be compared with the noise from our frequency-
domain instrument (Nissilä et al 2005) in a practical activation imaging scenario. We used
a phantom with optical characteristics of preterm infants and an adult volunteer subject to
obtain the noise figures for using a multidistance grid with ten sources and ten detectors, with
a 12 mm shortest distance between fibers. We assumed that 36 averages of the stimulus were
available, and estimated the standard error of the mean from the data. At a relatively low
source power of 1.5 mW and 40 ms switching time between source positions, the standard
error was estimated to be 0.3–0.4% in amplitude and 0.1–0.2◦ in phase at a source–detector
distance of 12 mm. At a 25 mm separation, the measured noise increased to 0.4–0.7% in
amplitude and remained at 0.1◦–0.2◦ in phase. At a 40 mm separation, the amplitude noise
was 0.5–1.3% and the phase noise 1.5–5◦. We conclude that the amplitude noise in a real
measurement is comparable with the simulated noise, but the measured phase noise was higher
especially at long source–detector distances. This difference can be attributed to instrument
imperfections such as thermal drift, hysteresis (at short distances) and detector dark current
(at long distances) which reduce the performance compared to an idealized system. At long
distances, time-domain instruments such as the UCL system (Schmidt et al 2000) have lower
noise in the mean time or phase (see Nissilä et al (2006) for a comparison). We think that
our simulations have a noise level similar to what may be obtained in a practical measurement
with a near-perfect instrument.
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The average computation time for one source was approximately 25 h on an AMD Opteron
(64 bit 2.0 GHz) processor using the optical parameters given in table 1. The computation time
depended on the position of the simulated light source, varying from half the average time to
almost double. A cluster of up to 25 nodes was used. In order to calculate the reconstructed
images based on measured data, a smaller number of photon packets would be sufficient. Two
hundred million photon packets (6 h computation time) was found to be acceptable to calculate
the sensitivity maps for the image reconstruction. However, reducing the number of simulated
photon packets to 80 million packets resulted in a clear increase of high-frequency noise in
the reconstructed images. The computational time for the linear reconstruction is of the order
of 15 min, depending on the optode grid. The method, while computationally heavy, is fast
enough for the analysis of neuroscientific data.

Reconstructions were performed using (1) both intensity and mean time-of-flight
information from TD data, as well as using (2) intensity data only.

To assess the quality of the reconstructed images, we calculated three different parameters
from the images. These were the error in localization of the center of mass of the reconstructed
perturbation, the peak contrast of the reconstructed perturbations and the image quality
index (QI) explained below. We calculated the �μa-weighted centers of mass for the three-
dimensional 18 connected sets of voxels around the peaks of the reconstructed perturbations
with �μa greater than 0.65 times the peak value, and compared these with the positions
of the target perturbations. The cut-off value 0.65 was chosen because it allowed adjacent
reconstructed perturbations to be treated as separate continuous regions in most cases. The
QI was calculated by dividing the mean contrast in the target area by the standard deviation
of the background. The background was defined as the volume below the optode grid down
to the depth of the deepest part of the perturbations, excluding the target regions enlarged by
increasing their original radius by a factor of 1.5 to allow for the spatial blurring by the diffuse
imaging method.

3. Results

3.1. Effect of grid choice and the mean time data type

The resolution and spatial accuracy of the image reconstruction was studied using small
absorbing perturbations. Three pairs of spherical target perturbations were introduced into the
model with center-to-center distances 9.5 mm (pair D10), 13.8 mm (pair D14) and 17.3 mm
(pair D17). The radius of each perturbation was 4.3 mm, and the absorption contrast compared
to the background was �μa = 0.008 mm−1. We limited the target perturbations to the gray
and white matter of the brain, but no anatomical constraint was used in the reconstructions.
Reconstructions were performed both using the intensity and mean time data types and using
the intensity data type alone. Perfect knowledge of the background optical properties was
assumed.

Transaxial slices through the centers of the target perturbations and tangential maps
(explained below) calculated from the reconstructed images are shown in figure 2, and
numerical data are given in table 2. The transaxial slice images show the depth performance
of the reconstruction, whereas the tangential maps represent 2D maps of μa changes on the
cortex. The peaks of the reconstructed perturbations may not be at the level of the transaxial
slice, therefore the peak contrast shown in the slice may differ from that given in table 2.

For creating the tangential map, the mean value of the 3D data in the direction normal
to the surface was calculated between depths 3.5 mm and 12 mm for each voxel of the
tissue surface. The depth limits were chosen so that the superficial limit corresponded to the
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Figure 2. Reconstructions of two target perturbations at three different relative positions D10,
D14 and D17. ‘T&I’ refers to the use of both mean time and intensity data types; ‘I’ refers to the
use of the intensity data type alone. Above, axial slices of the reconstruction through the center of
the target perturbations are shown, superimposed on the anatomical structure. Below, a tangential
map calculated from the data is shown. The locations of the target perturbations are shown with
dashed circles.

minimum depth at which the cortex begins in the region of the perturbations, and the deep
limit lies near the deeper end of the target perturbations. Due to the averaging, the tangential
maps have lower peak contrast than the axial images. The tangential maps show the spatial
accuracy of the 3D reconstructions in the direction parallel to the scalp.

The best results were obtained with the HD grid. The reconstructions from intensity data
alone had good spatial accuracy, which was further improved when the mean time data were
also used. With the hexagonal grid, the reconstruction of case D14 produced poor image
quality, whereas the DD grid was able to image the two perturbations successfully. In cases
D10 and D17, the hexagonal and DD grids produced roughly comparable image quality. The
use of mean time data in addition to intensity improved the image quality especially with the
less dense grids. In all the cases where the two perturbations could be identified as distinct
features, the use of mean time data improved the localization accuracy.

A noteworthy feature in the reconstructions presented here is the negative changes which
were not included in the simulation. They are likely to be the result of noise in the simulated
data and the rather sparse measurements probing the superficial tissues (skin and skull)
due to the finite probe density. The negative absorption changes appear close to correctly
reconstructed positive absorption changes and close to the edge of the imaging area where fewer
overlapping measurements are available. Negative changes may also be seen in hemoglobin
activation maps for physiological reasons. The region which appears negative in the HbO2

map may have a decreased level of activity. Alternatively, regions surrounding a volume of
increased activity may suffer from the blood stealing effect, and appear as negative, as the
circulatory system is a closed system. These physiological explanations should be considered
along with the technical explanations given above when considering activation maps with
negative regions.
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Table 2. Localization error and contrast for reconstructions in figure 2. T&I = mean time and
intensity data, I = intensity data only. QI = Quality index.

Hexagonal grid

Left perturbation Right perturbation

Loc. err. Peak contr. Loc. err. Peak contr.
(mm) (%) QI (mm) (%) QI

Target pair
(Distance) T&I I T&I I T&I I T&I I T&I I T&I I

D10 (9.5 mm)a 1.8 2.7 46.5 42.1 7.1 8.7 – – – – 7.5 6.1
D14 (13.8 mm) 1.4 4.1 32.4 26.5 4.3 3.4 1.3 3.5 49.0 34.0 5.3 3.4
D17 (17.3 mm) 2.5 3.3 54.2 59.8 5.0 5.2 1.4 3.9 45.3 37.5 4.6 3.5

Double-density grid

Left perturbation Right perturbation

Loc. err. Peak contr. Loc. err. Peak contr.
(mm) (%) QI (mm) (%) QI

Target pair
(Distance) T&I I T&I I T&I I T&I I T&I I T&I I

D10 (9.5 mm)b 2.5 1.7 51.4 71.3 6.3 7.9 – – – – 4.4 4.9
D14 (13.8 mm) 2.4 3.9 47.1 55.0 4.9 4.2 1.6 2.3 45.6 48.2 4.9 5.5
D17 (17.3 mm) 2.5 3.7 58.1 41.6 7.1 6.0 1.4 2.6 52.9 48.7 6.2 7.4

High-density grid

Left perturbation Right perturbation

Loc. err. Peak contr. Loc. err. Peak contr.
(mm) (%) QI (mm) (%) QI

Target pair
(Distance) T&I I T&I I T&I I T&I I T&I I T&I I

D10 (9.5 mm)a 1.8 1.1 55.0 66.5 12.2 9.4 – – – – 10.7 9.9
D14 (13.8 mm) 2.1 2.4 53.4 64.5 10.0 8.3 1.7 1.9 60.2 79.0 10.1 9.3
D17 (17.3 mm) 2.5 2.7 58.9 64.0 10.8 8.0 1.4 2.2 55.8 73.3 9.5 8.6

a In the reconstructions with the hexagonal and HD grids, the perturbations were fused in case D10. For this case, the localization
error and peak contrast are calculated by assuming that the two perturbations are one.
b In the reconstruction with the DD grid, the left perturbation dominated the reconstruction. The localization accuracy and peak
contrast are given for the left perturbation only.

3.2. Effect of modeling

The significance of the accurate modeling of light propagation in the optically heterogeneous
head was studied by performing reconstructions using six different models (A through G),
with different deviations from the reference model which was used to generate the simulated
data. With the hexagonal and DD grids, both mean time and intensity data types were used in
the reconstructions of this section. With the HD grid, intensity data only were used. The HD
grid was adapted from study by Zeff et al (2007), in which continuous-wave instrumentation
was used.

In case A, the pMC reconstruction method and the anatomical reference model were
used. Case B was identical to case A, except for the reduced scattering coefficient of the CSF,
which was altered to the value 0.3 mm−1. In case C, we explored the effect of inaccuracies
in the optical parameters using the pMC model. We sampled the parameters from a normal
distribution of the logarithm of μa and μ′

s, setting the means at the correct parameters. The
standard deviation for the logarithm of μ′

s and μa was log(1.8), except for the μ′
s of the white

matter, the standard deviation of which was log(2.2). The standard deviations correspond
to deviations from −44% to +80% and from −56% to +120%, respectively. Results and
parameter values are given for a representative example.
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Figure 3. Reconstruction results obtained using different light propagation models and background
optical properties with the hexagonal grid. Transaxial slices of the 3D solution are shown on the
left, tangential maps on the right. Cases A through G are described in the text and summarized
in table 3. Short descriptions detailing the computational model (pMC or FEM/DA) and the
background model used are given above the transaxial slices.

Table 3. The reconstruction models studied, with optical parameters (GM = gray matter, WM =
white matter, BG = background).

Case A B C D E F G
Model pMC pMC pMC pMC pMC FEM FEM
BG Ref. params. Diff. CSF Dev. params. Homog. 1 Homog. 2 Ref. params.a Homog. 1

Param. μ′
s μa μ′

s μa μ′
s μa μ′

s μa μ′
s μa μ′

s μa μ′
s μa

Scalp 1.9 0.018 1.9 0.018 3.82 0.011 1.33 0.018 1.6 0.02 1.9 0.018 1.33 0.018
Skull 1.6 0.016 1.6 0.016 0.78 0.031 1.33 0.018 1.6 0.02 1.6 0.016 1.33 0.018
GM 0.5 0.048 0.5 0.048 0.49 0.033 1.33 0.018 1.6 0.02 0.5 0.048 1.33 0.018
WM 1.0 0.037 1.0 0.037 0.88 0.047 1.33 0.018 1.6 0.02 1.0 0.037 1.33 0.018
CSF 0.032 0.004 0.3 0.004 0.012 0.005 1.33 0.018 1.6 0.02 0.3 0.004 1.33 0.018

a Parameters as closely the same as in the reference model as the resolution of the FE mesh allows. The exception is the CSF
which is diffusive.

In cases D and E, the pMC model with homogeneous parameters was used. Two different
cases are shown to demonstrate the dependence of the recovered contrast on the choice of the
parameters.

In cases F and G, the FEM model with heterogeneous and homogeneous background
optical properties were used, respectively. The heterogeneous parameters were the same as in
the reference model, as closely as the accuracy of the FE mesh allowed. The homogeneous
parameters were the same as in case D.

The different models, with the background optical parameters, are tabulated in table 3.
The results for the hexagonal grid are shown in figure 3, for the DD grid in figure 4 and

for the HD grid in figure 5. Corresponding numerical data are given in table 4.
With all three optode grids, the results obtained using the pMC method with heterogeneous

anatomical models (cases A, B and C) produced the best results. The approximate modeling
of the CSF in case B changed the images very little. With the hexagonal grid, the perturbation
on the left appears weaker in the images, but the numerical parameters show no significant
deterioration. In case C, the deviated optical parameters resulted in some deterioration in the
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Figure 4. Reconstruction results obtained with the DD grid. Axial slices on the left, tangential
maps on the right. Cases A through G as in figure 3.
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Figure 5. Reconstruction results obtained with the HD grid. Axial slices on the left, tangential
maps on the right. Cases A through G as in figure 3.

images, but the contrast and localization of the reconstructed perturbations remained similar to
those obtained using the reference optical properties. The result presented is a representative
of a number of tests using similarly deviated parameters.

Using homogeneous models with pMC (cases D and E) resulted in inferior image
quality compared to the heterogeneous models. The reconstruction results obtained with
the hexagonal grid were poor in terms of both contrast and localization of the perturbations.
With the DD and HD grids, the results were better, but the localization was inaccurate in the
depth direction. The very different contrast recovery obtained with the two different sets of
homogeneous parameters demonstrates the sensitivity of the reconstruction to the choice of
background optical parameters. However, the spatial accuracy was very similar with both sets
of homogeneous parameters.
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Table 4. Reconstruction results for a pair of perturbations at a close (14 mm center-to-center)
separation obtained using different models. QI = Quality index. Dashes in place of localization
error and peak contrast indicate the perturbation was not reconstructed.

Hexagonal grid

Left perturbation Right perturbation

Loc. err. Peak contr. Loc. err. Peak contr.
Case (mm) (%) QI (mm) (%) QI

A 1.4 32.4 4.3 1.3 49.0 5.3
B 2.1 35.9 4.2 0.9 44.6 5.4
C 2.0 32.8 4.7 1.3 44.0 5.7
D 3.7 19.3 2.8 5.4 63.0 3.2
E 4.0 11.2 3.0 5.2 34.2 2.7
F 4.2 31.8 2.6 3.5 32.1 2.4
G – – 0.7 6.2 25.0 1.4

Double-density grid

Left perturbation Right perturbation

Loc. err. Peak contr. Loc. err. Peak contr.
Case (mm) (%) QI (mm) (%) QI

A 2.4 47.1 4.9 1.6 45.6 4.9
B 3.2 50.1 4.5 2.4 44.9 5.8
C 2.2 49.7 4.7 1.6 42.0 5.7
D 5.0 45.0 3.1 3.8 34.6 3.6
E 4.9 23.5 3.7 4.6 15.9 3.2
F 5.0 87.0 2.8 2.5 54.7 2.5
G 6.2 59.0 2.4 4.4 41.1 2.7

High density grid

Left perturbation Right perturbation

Loc. err. Peak contr. Loc. err. Peak contr.
Case (mm) (%) QI (mm) (%) QI

A 2.4 64.5 8.3 1.9 79.0 9.3
B 2.9 61.0 7.7 2.0 73.3 8.6
C 2.7 58.6 8.0 2.3 74.0 8.8
D 3.1 53.9 6.9 2.5 65.0 8.1
E 3.5 31.2 7.0 2.8 34.1 8.2
F 3.3 54.7 5.8 2.0 61.9 6.4
G 5.4 43.2 2.8 3.9 47.9 4.2

The reconstruction results obtained using the FEM/DA model (cases F and G) were
very different for the three optode grids. With the hexagonal grid, the reconstruction using
the heterogeneous parameters localized the perturbation on the left incorrectly between the
two perturbations, and the reconstruction using the homogenous parameters failed altogether.
With the DD grid, both perturbations were successfully reconstructed, although the depth
localization was poor especially using homogeneous parameters. With the HD grid, both
perturbations were reconstructed but the depth localization and the shape of the reconstructed
perturbations in the axial image were poor, especially in the case of homogeneous parameters.
The contrast and the QI were higher in the case of the heterogeneous parameters.
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Figure 6. Reconstruction results in a case of a perturbation adjacent to a large region of CSF
are shown. Upper row shows axial slices through the center of the perturbation, lower row
shows tangential maps. The CSF is shown in dark gray. In the correct low-scattering case,
μ′

s,CSF = 0.032 mm−1, and in the diffusive case, μ′
s,CSF = 0.3 mm−1.

Table 5. Reconstruction results for a perturbation adjacent to a region of CSF. QI = Quality index.

DD grid HD grid

Loc. err. Peak contr. Loc. err. Peak contr.
Case (mm) (%) QI (mm) (%) QI

Low-scattering CSF 3.3 81 4.3 3.5 37 3.6
Diffusive CSF 3.4 75 3.2 3.7 33 3.6
Homogeneous 7.4 22 2.6 5.1 27 3.4

3.3. Significance of the CSF model

As a final example, we studied the case of a single perturbation adjacent to a region of CSF
between the cerebral hemispheres. In the reference model, the falx cerebri was given the
optical properties of the skull, leaving a free space of CSF which we assumed to be low
scattering.

The pMC model was used with the DD and HD optode arrangements. As in section 3.2,
with the DD grid, both mean time and intensity data were used, and with the HD grid only
intensity data were used. We reconstructed the perturbation using three different models for
the background optical properties. These were (1) optical properties of the reference model
(case A in table 3), (2) optical properties of the reference model, but with weakly diffusive
CSF (case B in table 3) and (3) homogeneous optical properties (case D in table 3).

The reconstruction results are shown in figure 6. The axial slices are shown in the top
row. The tangential maps shown in the bottom row were calculated from the data between
the depths 6 mm and 14 mm. This corresponds approximately to the position of the target
perturbation, the lower limit being 1 mm more superficial than the superficial limit of the
target.

Using both optode grids, slightly higher contrast and better localization were achieved
when the CSF was modeled correctly, but the difference to the results obtained with the weakly
diffusive approximation was small in both cases. The results using the homogeneous optical
parameters were significantly poorer, especially in the case of the DD grid. The localization
error, peak contrast and QI of the reconstructions are given in table 5.

The dense optode array of the HD grid allowed good localization of the perturbations
parallel to the scalp, but the depth localization was inaccurate. The percentage of contrast
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that was recovered was low. This is probably due to the dominance of the measurements with
short source–detector separations which have high SNR. With the DD grid, the localization of
the reconstructed perturbations was less accurate parallel to the scalp, but a higher percentage
of the contrast was recovered, and the depth localization was more accurate. We performed
the reconstruction with the DD grid also without mean time data and the optical properties of
the reference model. The localization error in this case was 4.2 mm, the peak contrast was
51%, and the QI was 4.2.

The result shows that adequate modeling of the CSF can be important for accurate
reconstruction of localized absorption changes. In the case of regions of CSF that are larger
than a very thin layer but smaller than 1 cm in dimension, the diffusive but low μ′

s as suggested
by Custo et al (2006) is adequate. The CSF regions can play an even more significant part in
light propagation in prematurely born infants with larger CSF spaces.

4. Discussion

In this paper, image reconstruction from diffuse optical imaging of activations in the neonatal
brain was studied using Monte Carlo simulations. Specifically, we used MC to investigate the
effect of the background optical properties, the availability of time-resolved information and
the choice of the optode grid on the quality of reconstructed images. Hemodynamic activations
were represented by local absorption changes in the MC model. In order to see the localization
accuracy of the reconstructions, we used small absorbing perturbations with a contrast that
was slightly higher than what is expected based on adult PET studies. Noise in the simulated
data was comparable in magnitude with noise observed in physiological measurements of
infants.

Our results suggest that adequate knowledge and modeling of the background optical
properties and the use of time-resolved information can significantly improve the spatial
accuracy of reconstructed images and make the recovery of contrast of absorption changes more
consistent over simplified modeling of the background and the use of intensity data only. These
factors can even be critical for the success of the reconstruction when the contrast in the signal
is close to the noise level of the measurement. The contrast of the reconstructed perturbations
was sensitive to the background optical properties used. To improve the quantitative
accuracy of optical imaging, accurate a priori information on the tissue optical properties
is needed. In addition, methods based on nonlinear optimization should be developed to
minimize the difference between the model parameters and the true optical properties of the
subject.

Of the factors studied, the density of the optode grid was found to have the greatest effect
on image quality. If mean time data are available, it can improve spatial accuracy with all the
grids studied. The high-density grid was found to give good spatial accuracy in the tangential
maps even when large modeling errors were introduced. However, depth localization was
found to be very sensitive to accurate modeling.

Localization accuracy was very good (typically, the localization error was less than
2.5 mm) when pMC was used with the correct background properties. Deviations in the
optical properties were introduced into the model in accordance with expected subject-to-
subject variability in the optical properties (based on variability reported in Franceschini
et al (2007)). The spatial accuracy of the reconstructions remained good when the deviated
parameters were used, and the percentage of recovered contrast changed very little (<10%)

with the DD and HD grids. The parameter values were drawn independently from a Gaussian
distribution centered around the reference values of the model, and therefore the results may
change if the errors in the optical parameters of the different tissues are correlated.
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The reconstructions using the FEM/DA were successful in most cases (see figures 3–5),
but better spatial accuracy and resolution was achieved with pMC, even when errors were
introduced into the background optical properties. pMC allows precise anatomical information
to be used and is not limited to tissues with high scattering. In some cases, with the DD and
HD grids, the positions of the perturbations were reconstructed very close to the surface of
the tissue by the FEM/DA method. This illustrates the possible errors that may be introduced
by the use of approximate methods such as the FEM/DA. Since MC was used to generate
the simulated data, the result does not indicate that pMC is superior as a reconstruction
method.

Precise anatomical information of the internal structure of the head is usually not available
for healthy infants. We believe that this problem can to some extent be alleviated by using
a library of segmented anatomical MR images obtained from infants of the same age as the
subject. The boundary shape can be measured, e.g., using photogrammetry (Gibson et al
2003) or other digitization methods such as the Polhemus pen and the library images can then
be deformed to match the shape of the head of the subject.

5. Conclusions

Of the parameters studied, the optode density was found to have the greatest effect on image
quality. For imaging of brain activation in neonates, the optode grid should have a spatial
sensitivity pattern which is as even as possible, and there should be multiple overlapping
measurements covering the region of interest.

The addition of the mean time data type improved the spatial accuracy and consistency of
the reconstructed images. In order to gain full advantage of the use of temporal data types, the
instrumentation should combine a wide dynamic range allowing measurements using a dense
multidistance optode grid with a good signal-to-noise ratio and a short imaging time. These
characteristics have yet to be achieved in a TD or an FD system.

The background optical parameters used in the light propagation model should be
chosen with care to obtain consistent reconstructions. Nonlinear techniques may allow
the reconstruction of the model parameters when some spatial a priori information of the
internal structure is available. Currently, nonlinear Monte Carlo techniques are prohibitatively
expensive in terms of the time of computation required. The FEM/DA with nonlinear
optimization is fast, but further attention should be put into understanding the implications of
the approximations made in the FEM/DA model and optimizing the accuracy of the forward
model when measurements using short (∼10 mm) source–detector separations are included
in the data.

Of particular importance is the modeling of regions of CSF that are greater in extent than
a thin layer. The use of a spatially accurate model and a low diffusion coefficient for the
CSF resulted in good reconstructions, when such regions were present close to the absorptive
perturbation.
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activation of the infant auditory cortex using perturbation Monte Carlo with anatomical a priori information
Proc. SPIE Diffuse Optical Imaging in Tissue (Munich) vol 6629 (Bellingham, WA: SPIE) p 66290T
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