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The superconducting proximity effect is known to modify transport properties of hybrid normal-
superconducting structures. In addition to changing electrical and thermal transport separately, it alters the
thermoelectric effects. Changes to one off-diagonal element L12 of the thermoelectric matrix L have previously
been studied via the thermopower, but the remaining coefficient L21, which is responsible for the Peltier effect,
has received less attention. We discuss symmetry relations between L21 and L12 in addition to the Onsager
reciprocity, and calculate Peltier coefficients for a specific structure. Similar to the thermopower, for finite
phase differences of the superconducting order parameter, the proximity effect creates a Peltier effect signifi-
cantly larger than the one present in purely normal-metal structures. This results from the fact that a nonequi-
librium supercurrent carries energy.
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In large metallic structures, linear-response transport can
be described using the thermoelectric matrix L that relates
charge and energy currents to temperature and potential
biases.1 The off-diagonal coefficients describe coupling be-
tween heat and charge currents and indicate the magnitude of
the thermopower and the Peltier effect. In many cases, these
coefficients are coupled by Onsager’s reciprocal relation
L���B�=L���−B� under the reversal of the magnetic field
B.1,2

In hybrid normal-superconducting systems �see Fig. 1�,
the Cooper pair amplitude penetrates to the normal-metal
parts. This makes the linear-response coefficients L different
from their normal-state values and allows supercurrents IS,eq
to flow through the normal metal even at equilibrium. The
charge and energy �entropy� currents Ic

i and IE
i entering dif-

ferent terminals can, in linear response, be written as

�Ic
i − IS,eq

i

IE
i � = �

j�terminals
�L11

ij L12
ij

L21
ij L22

ij �� �Vj

�Tj/T̄
� , �1�

in terms of the biases �Vj =Vj − V̄, �Tj =Tj − T̄, and the modi-
fied response coefficients L. The proximity-induced changes

in the conductance L11
ij ,3,4 thermal conductance L22

ij / T̄ �for

L12
ij =L21

ij =0�,4–7 and thermopower −L12
ij / �T̄L11

ij � �Refs. 4 and
8–17� have recently been investigated both experimentally
and theoretically. The behavior of the remaining off-diagonal
coefficient L21

ij has previously been discussed in Ref. 4 using
scattering theory, but the simulations were restricted to small
structures—making the contribution from electron-hole
asymmetry very large.

In this paper, we note that within reasonable approxima-
tions, in diffusive superconducting heterostructures Eq. �1�
can be generalized to the nonlinear regime by defining an

energy-dependent thermoelectric matrix L̃��
ij �E�. We show

that this quantity satisfies an Onsager reciprocal relation

L̃��
ij �E ,B�= L̃��

ji �E ,−B� under the reversal of the magnetic
field B and the phase arg � of the superconducting order
parameter, whenever i and j refer to normal terminals. We
also show how the proximity effect modifies L21, giving rise

to a large Peltier effect,1 and discuss how it could be experi-
mentally detected.

Qualitatively, one can understand the origin of proximity-
induced thermoelectric effects by noting that charge current
consists of a quasiparticle component and a supercurrent
component. That the latter is strongly temperature dependent
in proximity structures then leads to a finite L12
coefficient,9,11 via a mechanism analogous to charge imbal-
ance generation in superconductors.18,19 Assuming the On-
sager symmetry, one would also expect that L21 is finite. The
actual form of the coupling can be seen by inspecting the
quasiclassical transport equations �Eqs. �4� below� or by
studying their near-equilibrium approximation in a diffusive
normal metal under the influence of a weak proximity effect
�see, for example, Ref. 12�:

� · Jc = 0, � · JE = 0, �2a�

Jc = − �̃ � �V + T̃ � �T +
�JS,eq

�T
�T + JS,eq, �2b�

FIG. 1. Example of a four-probe structure considered in the text:
five normal-metal wires connected to each other and to four termi-
nals, of which two are superconducting �S� and two normal �N�. We
take the lengths l, cross-sectional areas A, and conductivities � of
the wires to be l / l0= �1.5,1 ,1.2,1 ,0.8� and A� /A0�0

= �0.8,1 ,0.8,1 ,1�. Here, l0, A0, and �0 are some characteristic val-
ues controlling the energy scale ET=�D / �l3+ l4+ l5�2 of the proxim-
ity effect. The system is chosen so as to bring out effects that
depend on the magnitude of geometrical asymmetry. In the numer-
ics, all wires are assumed to be quasi-one-dimensional, l	�A.
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JE = − �̃th � �T − T̄T̃ � �V + T̄
�JS,eq

�T
�V . �2c�

Here, �V and �T are deviations of the �effective� local po-

tential and temperature from equilibrium, and T̄ is the ambi-
ent temperature. The first terms in charge and energy current
densities Jc and JE can be considered the quasiparticle cur-
rent and the rest the �nonequilibrium� supercurrent; �̃ and �̃th
are the proximity-modified charge and thermal conductivi-

ties, JS,eq is the equilibrium supercurrent density, and T̃ is a
small factor associated with nonequilibrium supercurrent. Al-
though Eqs. �2� are not of the usual form of normal-state
transport equations,1 one can see that a variation �T gener-
ates a change in the charge current, and that a nonequilib-
rium ��V�0� supercurrent carries energy current. The cor-
responding response coefficients in Eqs. �2b� and �2c� are not
independent, which is a signature of the Onsager symmetry.
Comparing the magnitude of the coefficients, it turns out that
at low temperatures a large part of the thermoelectric cou-
pling indeed arises from the temperature dependence of JS,eq.
At high temperatures, where it vanishes exponentially, other
sources become more important.10,12,13

However, the validity of Eqs. �2� is somewhat restricted,
since these equations are correct only in the linear response
and to the first order in the proximity corrections, addition-
ally assuming that the energy gap 	�	 of the nearby super-

conductors satisfies kBT̄
 	�	. For quantitative calculations
of the multiterminal transport coefficients, and to evaluate
the proximity-corrected coefficients in Eq. �2�, we start from
the full nonequilibrium formalism.

The superconducting proximity effect can be described
using the quasiclassical BCS-Gor’kov theory.20,21 Here, we
concentrate on diffusive normal-metal structures that are
connected to superconducting and normal terminals, and ne-
glect any inelastic scattering. The model then reduces to the
Usadel equations,21,22 whose first part, the spectral equations,
can in this case be written as

D�2� = − 2i�E + i0+�sinh � +
vS

2

2D
sinh�2�� , �3a�

� · �− vS sinh2 �� = 0, vS 
 D��� − 2eA/�� . �3b�

They describe the penetration of the superconducting pair
amplitude F=ei� sinh � into the normal metal. We denote the
diffusion constant of the metal here by D, and the magnetic
vector potential by A. At clean contacts to bulk supercon-
ductors, the pairing angle is �=arctanh�	�	 /E� and the phase
�=arg �, where � is the superconducting order parameter.
Transport properties are, in turn, determined by kinetic
Boltzmann-like equations,

D � · ̂Tf = RfT + D�� · jS�fL, D � · ̂Lf = 0, �4a�

̂Tf 
 DT � fT + T � fL + jSfL, �4b�

̂Lf 
 DL � fL − T � fT + jSfT, �4c�

which describe the behavior of the antisymmetric and sym-
metric parts fL�E�
 f��S−E�− f��S+E� and fT�E�
1
− f��S−E�− f��S+E� of the electron distribution function.
They are defined with respect to the potential of the super-
conductors, chosen below as �S=0. The spectral supercur-
rent jS, the diffusion coefficients DL, DT, and T, and the
condensate sink term R are functionals of � and �, having
the symmetries DL/T���=DL/T�−��, T���=−T�−��, jS���=
−jS�−��, and R���=R�−��.12,21 In normal metals, � · jS=R
=0. Observable current densities are finally related to the

spectral currents ̂L/Tf through

Jc = −
�

2	e	�−�

�

dÊTf , JE =
�

2e2�
−�

�

dEÊLf , �5�

and the heat current density is JQ=JE−VJc at the terminals.
Below, we also assume that all contacts to terminals are
clean and of negligible resistance: in this case, all quantities
are continuous at the interfaces, except at superconductors
since for E� 	�	 the boundary condition for the kinetic L

mode is changed to n̂ · ̂Lf =0, where n̂ is the normal to the
interface.

It is important to note that the last two terms in Eqs. �4�
mix the L and T modes and cause thermoelectric effects: near
equilibrium, they lead to the coupling terms in Eqs. �2�.
Away from linear response, a nonequilibrium modification of
the distribution function f due to the mixing23 has also been
experimentally observed in Ref. 24.

The aim in the following is to calculate the thermoelectric
coefficients L��

ij starting from Eqs. �4�. However, as with the
charge conductance, it is useful to first define corresponding

energy-dependent thermoelectric coefficients L̃��
ij �E�. Since

the kinetic equations are linear, it is possible to write the
currents entering different terminals as

Ic
i = �

−�

�

dE�
�j

L̃T�
ij �E�f�

j �E� , �6a�

IE
i = �

−�

�

dEE�
�j

L̃L�
ij �E�f�

j �E� , �6b�

where �� �T ,L, j runs over all terminals, and f�
j is the

�-mode distribution function in terminal j. This spectral ther-

moelectric matrix L̃��
ij �E� is the quasiclassical counterpart of

the P matrix in Ref. 4. More explicitly, L̃��
ij �E� can be de-

fined as the �-mode current seen in terminal i that a unit
excitation of mode � in terminal j generates at energy E:

L̃��
ij �E� 
 �

Si

dSn̂ · ̂�� j,�. �7�

Here, Si is the surface of terminal i and n̂ the corresponding
normal vector. The two-component function � j� is assumed
to satisfy the kinetic equations �4� with the electron distribu-
tion functions f�

i in terminals replaced by ����ij. The linear-

response coefficients L are directly related to L̃�E� via Eq.
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�6�, for example, L11= 1
2kBT �dEL̃TT�E�sech2� E

2kBT � and L21

= −1
2kBT �dEEL̃LT�E�sech2� E

2kBT �.
The spectral thermoelectric matrix depends only on � and

�, but not on the distribution functions at the terminals.
Knowing the energy dependence of this matrix, one can di-
rectly evaluate currents also away from linear response, if
changes in the order parameter � and any inelastic scattering

can be neglected. The matrix L̃��
ij �E� is also possible to

evaluate numerically once � and � have been solved, and it
offers a feasible way of finding the response of the circuit to
different types of excitations in the terminals.

An Onsager reciprocal relation for L̃��
ij �E� follows from

the fact that the differential operator L̂ in Eqs. �4�, L̂f =0, has
the property

L̂�B�† = �− �� · �DT T
− T DL

�†

�− �� + �− �� · � 0 jS

jS 0
�†

− �R − D�� · jS�
0 0

� = L̂�− B� , �8�

due to the symmetries of the coefficients under reversal of
the phases �, arg �, and the magnetic field B. Below, when-
ever we discuss the reversal of B, a reversal of the phases is
also implied. Straightforward integration by parts now shows
that for any volume � and two-component functions � and
�, we can write

�
�

dV��†L̂� − �†L̂†�� = �
��

dSn̂ · J , �9�

where �� is the boundary of �. For the differential operator

here, the flux J=�†̂�B��−�†̂�−B��− jS�†�1�, �1 being
the first spin matrix. Now, we choose � to be the whole
conductor, with � and � such that �=� j,� satisfies the con-

ditions in the calculation for L̃��
ij �E ,B� and �=�i,� the con-

ditions for L̃��
ji �E ,−B�. When both i and j refer to normal

terminals, we then find

0 = �
��

dSn̂ · J = �
Si

dSn̂ · ̂��B�� − �
Sj

dSn̂ · ̂��− B��

�10�

using the boundary conditions imposed on � and � and the
fact that jS=0 at normal terminals. Comparison of Eqs. �10�
and �7� reveals a reciprocal relation,

L̃��
ij �E,B� = L̃��

ji �E,− B� . �11�

This implies that phase differences in the order parameter
will be similar sources for quasiclassical Peltier and Thomp-
son effects as they are for the thermopower discussed in
Refs. 9–13. Similar relations exist also in the scattering
theory.4

The form of Eqs. �6� also implies that L̃�E ,B� has the
symmetries

�
j

L̃TL
ij �E� = 0 for normal terminal i , �12a�

�
j

L̃LL
ij �E� = 0, �12b�

L̃��
ij �E,− B� = �− 1�1−���L̃��

ij �E,B� , �12c�

since the charge current to any normal terminal and the en-
tropy current to any terminal must vanish at equilibrium for
all temperatures. Equation �12c� follows essentially from the
electron-hole symmetry assumed in the quasiclassical theory,

leading to ̂Lf � ̂Lf , ̂Tf �−̂Tf under the transformations
B�−B, fT�−fT.12 This makes the diagonal coefficients
symmetric in B and the off-diagonal ones antisymmetric.
However, there are some experimental results8,14 where the
latter symmetry does not hold. Such observations cannot be
explained with the quasiclassical theory applied here.

Consider now the application of the formulation above in
the structure in Fig. 1. We solve the spectral equations �3� in
this structure numerically and calculate the spectral thermo-
electric matrix from the solutions. The behavior of the two
coefficients important for thermoelectric effects, spectral su-
percurrent jS and the coefficient T, is discussed for structures
of this type, for example, in Refs. 12 and 25. Resulting ele-
ments of L��

ij �E� are plotted as a function of E in Fig. 2—the
energy scale is given by the Thouless energy ET=�D / �l3

+ l4+ l5�2. The diagonal elements L̃TT�E� and L̃LL�E� are spec-
tral charge and energy conductances.3,5 At E� 	�	, energy
current can also enter the superconductor, which is visible as

a rapid change in the L̃LL coefficient. The off-diagonal coef-
ficients qualitatively follow the energy dependence of the
spectral supercurrent jS, which gives the most visible contri-

FIG. 2. �Color online� Elements L��
ij for i , j=1,2 and � ,�

=L ,T for the asymmetric interferometer in Fig. 1, in units of 1 /R2.
The order parameters in the superconducting terminals have
arg �3−arg �4=0.54� and 	�3	= 	�4	=40ET. The thick blue solid
line is L11, the dash-dotted red line L22, the black dotted line

L12, and the magenta dashed line L21. Note the symmetry L̃��
ij �E�

= �−1�1−���L̃��
ji �E�. Approximations found by solving Eqs. �4� to

first order in jS and T are shown as thin solid lines—in general, they
are indistinguishable from the exact numerical results.
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bution. Moreover, the elements of the matrix clearly exhibit
symmetries �11� and �12�.

The finite coefficient L̃LT
ij �E� leads to a Peltier effect: as-

sume that the terminals are at a constant temperature Ti= T̄
and biased at potentials chosen so that a current Ic flows
between terminals 1 and 2, Ic

1=−Ic
2= Ic. Then, the Peltier

linear-response coefficient for this system is

�NN 

dIQ

1

dIc
1 =

dIE
1

dIc
1 =

L21
11W1 − L21

12W2

L11
11W1 − L11

12W2
, �13�

where Wj 
�L11
1j +L11

2j�−1. We can also define the Peltier coef-
ficient �NS
 1

2dIE
1 /dIc

1 corresponding to the current configu-
ration Ic

1= Ic
2= Ic /2.

The magnitude and temperature dependence of � are
shown in Fig. 3. For a typical Thouless energy of ET
=200 mKkB of an Andreev interferometer, the Peltier coeffi-
cients would be 	�NN	�100 nV and 	�NS	�1 �V at T
�200 mK. For comparison, Peltier coefficients for purely
normal-metal junctions at these temperatures are of the order
�=T�SB−SA��0.2 K�10 nV/K=2 nV. The interferometer
induces a significantly larger �.

The above Peltier effect is related to the thermopower
discussed in Refs. 9 and 11. We indeed find the Kelvin rela-
tions �NN=TSNN and �NS=TSNS, which follow from the On-
sager symmetry. Similar to Ref. 12, within the assumptions
where Eqs. �2� apply, one can also find simple approxima-
tions up to first order in jS:

�NN �
�R3 − R4�R5

2

2�R1 + R2 + R5��R3 + R4 + R5�
kBT

e

dIS,eq

dT
,

�14a�

�NS �
4R3R4R5 + R5

2�R3 + R4�
4�R1 + R2 + R5��R3 + R4 + R5�

kBT

e

dIS,eq

dT
.

�14b�

Here, IS,eq
 A�
2 �−�

� dE jS tanh E
2kBT is the equilibrium super-

current. The above also shows the dependence on the asym-
metry for �NN and the proportionality to the supercurrent—
for this contribution to the effect.

Finite Peltier coefficients allow for cooling one of the

terminals by driving electric current. Assume that the termi-
nal is small enough such that the power flowing into the
phonons is small compared to the heat current carried by
electrons.7,26 The temperature change is then limited by the
Joule heat generated in the wires: the heat current is IQ

1 =
−Gth�T1−2�NSIc

1+e�Ic
1�2 /G, G and Gth being electrical and

heat conductances. The maximum cooling effect then is, in a
rough estimate assuming that the Wiedemann-Franz law ap-
plies, �T1=−�3/�2��e2�NS

2 /kBT� /kB�−0.3 mK for ET

=200 mKkB. Numerical calculation in the structure of Fig. 1
yields cooling �T�−0.4 mK, as shown in Fig. 4.

One point to note is that the B-symmetric oscillation of
the thermal conductance5,6 also contributes to the tempera-
ture change, although this is significant only at temperatures
small compared to ET /kB. In the absence of the Peltier effect,
�T would hence be symmetric in B and always positive. The
proximity-Peltier effect allows negative temperature changes
and also breaks the symmetry, which makes the antisymmet-
ric part T1�B�−T1�−B� the experimentally interesting signal.
In the structure in Fig. 1, the oscillation amplitude can be of
the order of 1 mK for ET=200 mKkB �see Fig. 4�b��. Tem-
perature changes of this order can be experimentally resolved
in mesoscopic structures26 so that the detection of the effect
simply via observing �T should be experimentally viable. In
addition to the off-diagonal thermoelectric coefficients L12
and L21, it would also be interesting to study the Onsager

reciprocity for L̃TT
ij �E� via differential conductances in multi-

terminal structures.
In summary, we have studied charge and energy transport

and its symmetry relations in normal-superconducting hybrid
structures. We show that a large Peltier effect controlled by
the phase difference over a Josephson junction can arise,
partly due to coflowing quasiparticle and supercurrents. This
complements previous studies of a related effect in the ther-
mopower.

This research was supported by the Finnish Cultural
Foundation and the Academy of Finland. We thank M. Me-
schke and I. A. Sosnin for useful discussions.

FIG. 3. �Color online� Peltier coefficients �NN and �NS for the
same parameters as in Fig. 2. Approximations �14a� and �14b� are
shown as thin lines—deviation from the exact result is due to ne-
glecting T.

FIG. 4. �Color online� �a� Temperature of terminal 1 in Fig. 1 for
�=arg �3−arg �4= ±0.54� �dashed and solid lines� and current
configurations corresponding to �NN and �NS �red and blue lines�
as a function of Ic. �b� T1 for eR1Ic /ET=0.15 as a function of �. The
results are calculated assuming other terminals are at the tempera-
ture T=2ET /kB. Deviation of T1 from T originates from Joule heat-
ing and the oscillation of the proximity-Peltier effect.
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