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ABSTRACT Attaching a superconductor in good contact with
a normal metal gives rise to a proximity effect where the
superconducting correlations leak into the normal metal. An
additional contact close to the first one makes it possible to
carry a supercurrent through the metal. Forcing this supercur-
rent flow along with an additional quasiparticle current from one
or many normal-metal reservoirs leads many interesting effects.
The supercurrent can be used to tune the local energy distri-
bution function of the electrons. This mechanism also leads to
finite thermoelectric effects even in the presence of electron–
hole symmetry. Here we review these effects and discuss to
which extent the existing observations of thermoelectric effects
in metallic samples can be explained through the use of the dirty
limit quasiclassical theory.

PACS 74.25.Fy; 73.23.-b; 74.45.+c; 74.40.+k

1 Introduction

Applying a bias voltage or a temperature gradient
across a conductor gives rise to charge and energy currents.
The linear response between the biases and currents is de-
scribed via the thermoelectric matrix, whose diagonal parts
are the charge and thermal conductances, and the off-diagonal
parts are often referred to as the thermoelectric coefficients.
In typical metals, the latter arise due to the asymmetry be-
tween positive- and negative-energy excitations with respect
to the Fermi energy, i.e., electrons and holes. Such asymme-
try in metals is very small, making the typical thermoelectric
effects at subkelvin temperatures hard to measure accurately.

Placing a superconductor in good contact with a normal-
metal conductor gives rise to finite pair correlations also
inside the latter, even when the pair potential inside it
vanishes. This superconducting proximity effect has an
energy-dependent penetration depth; at typical measurement
temperatures on the order of 100 mK it extends up to the
micrometer range. The proximity effect modifies the thermo-
electric response of the normal conductor. Most importantly,
it leads to thermoelectric effects, which are orders of mag-
nitude larger than in the absence of superconductivity. The
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proximity-induced modifications are discussed in this pa-
per by employing the quasiclassical theory in the diffusive
limit [1–3]. In this theory, we assume that all the relevant
length scales of the problem exceed especially the Fermi
wavelength (quasiclassical approximation) and the mean free
path (diffusive limit). Examples of such relevant length scales
are the structure size and the superconducting coherence
length. A further property of the quasiclassical theory, espe-
cially important for thermoelectric effects, is that it assumes
electron–hole symmetry. Because of this, in the normal state
it predicts vanishing thermoelectric coefficients.

The proximity modification of the thermoelectric matrix
is conveniently described in Andreev interferometers (see
Fig. 1), where there are two superconducting contacts to the
normal metal. In this structure, the phase difference between
the two contacts affects the proximity modifications, and its
presence is an important requirement for finite thermoelectric
effects, at least within the quasiclassical theory. This type of
dependence of the electric conductance on the phase has for
example been suggested for use in quantum measurements of
flux qubits [4].

This paper is organized as follows. In Sect. 2, we briefly
introduce the thermoelectric effects and their relations in nor-
mal metals, and then detail the quasiclassical equations for the

FIGURE 1 (a) Three-probe structure consisting of two superconducting
terminals and one normal-metal terminal. The phase difference ϕ between the
superconducting terminals drives supercurrent IS, and the voltage bias V in
the normal terminal drives the quasiparticle current Iqp. (b) Andreev inter-
ferometer, consisting of a superconducting loop and two normal-metal termi-
nals, connected by five normal-metal wires. The magnetic flux Φ threading
the loop controls the superconducting phase difference ϕ ≡ 2πΦ/Φ0. We
take the relative lengths of the wires to be Lj/LSNS = 2

3 , 1
3 , 1

3 , 1
3 , 1

3 and as-
sume the wires to have the same cross-sectional area A and conductivity σ . In
the numerics, we assume the wires to be quasi-one-dimensional,

√
A � L.

The absolute size of the system controls the characteristic Thouless energy
scale ET = hD/L2

SNS, with LSNS = L3 + L4 + L5
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diffusive limit. We also discuss briefly effects not addressed
in the present paper. Section 3 introduces the properties of
the spectral supercurrent and two aspects of nonequilibrium
supercurrent. First, we briefly mention the nonequilibrium
control of the supercurrent and then concentrate more on how
the energy distribution function of electrons is controlled with
the supercurrent. The latter is a precursor to the thermoelec-
tric effects. These are described in Sect. 4, which first intro-
duces special symmetries of the thermoelectric matrix, and
then details the behavior of its components as a function of the
phase difference and temperature. In Sect. 5, we mention the
relevant effects when considering the dependence on the mag-
netic flux, and finally in Sect. 6 we conclude and point out the
open questions related to understanding the measurements of
the thermoelectric effects.

2 Thermoelectric transport in proximity structures

In this paper, we show that the superconduct-
ing proximity effect is able to generate large thermoelec-
tric effects, which can be described without employing the
electron–hole asymmetry. An important factor in the theory is
the presence of a supercurrent, which then needs to be taken
into account in the description of the currents. Moreover, to
describe transport between normal metals in the presence
of supercurrent, we need to have multiple terminals con-
nected to the structure. As the biases mostly deal with the
quasiparticle current, we define the thermoelectric matrix in
a multi-terminal structure according to

(
I i
c − I i

S,eq

I i
E

)
=

∑
j∈terminals

(
Lij

11 Lij
12

Lij
21 Lij

22

)(
∆Vj

∆Tj/T̄

)
, (1)

where I i
c and I i

S,eq are the total charge current and the equi-
librium supercurrent flowing to terminal i, and I i

E is the en-
ergy current (supercurrent as such carries no energy current).
Moreover, ∆Vj is the bias voltage and ∆Tj is the temperature
difference from some average temperature T̄ , both present in
terminal j .

2.1 Transport in normal-metal structures

Thermoelectricity in normal-metal wires can be
practically described especially in the diffusive limit (struc-
ture size L, elastic mean free path �el and Fermi wavelength λF

satisfying the relation L � �el � λF). In this limit, the charge
and heat currents flowing in the wire are given by

Ic = −eA

∞∫
−∞

d E D̃(E)ν(E)∂x f(x; E) (2a)

IQ = −A

∞∫
−∞

d E(E −µ)D̃(E)ν(E)∂x f(x; E) . (2b)

Here D̃(E) is the diffusion constant, ν(E) is the density of
states, A is the cross-sectional area of the wire and x is the
coordinate parallel to the wire. The heat current can be sim-
ply related to the energy current via IQ = IE −µIc. For linear

response, IQ = IE, the second term is responsible for Joule
heating, and we can expand the electron energy distribution
function ∂x f = (∂T f)∂x T + (∂µ f)∂xµ, with f ≈ f0, the Fermi
function. Furthermore, assuming some characteristic length L
and taking ∂xT = ∆T/L and ∂xµ = e∆V/L allows us to relate
the results to (1).

The energy-dependent changes in the density of states
or the diffusion constant typically take place at large energy
scales on the order of the Fermi energy EF. We can thus ex-
pand them as D̃(E) ≈ D + cD(E − EF)/EF and ν(E) ≈ νF +
cN(E − EF)/EF. In first order [of expansion] in cD and cN , we
find [5]

L11 = G = e2νF DA/L , Drude conductance (3a)

L22 = L0GT 2 , Wiedemann–Franz law (3b)

L12 = eL0G ′T 2 , Mott law (3c)

L21 = L12 , Onsager–Kelvin relation. (3d)

Here L0 = π2k2
B/(3e2) ≈ 2.45 ×10−8 W Ω K−2 is the Lorenz

number, and the electron–hole asymmetry is described by the
factor G ′ = e2(cDνF + DcN )A/(L EF). These relations show
that the thermoelectric effects in normal metals are on the
order of kBT/EF.

The Onsager–Kelvin relation between the two thermo-
electric coefficients is an example of a more general rela-
tion [6–8] between different linear-response coefficients. Ac-
cording to this relation, the elements of the thermoelectric
matrix in (1) should satisfy

Lij
αβ(B) = L ji

βα(−B) (4)

under the reversal of the magnetic field B. Here α, β ∈ {1, 2}.
This relation results essentially only from the assumption of
time-reversal symmetry. In Sect. 4.2, we show how this equa-
tion can be derived for the energy-dependent response coeffi-
cients within the quasiclassical theory.

The presence of superconductivity modifies the above
laws in many different ways [9]. For example, the Andreev re-
flection [10] breaks the Wiedemann–Franz law, and the Mott
law is broken into asymmetric structures [11]. The effects re-
lated to the superconducting density of states or to charge
imbalance make modifications to the thermoelectric effects
at the interfaces [12, 13] and for the nonlinear response [14].
The main modification to linear response due to the proximity
effect is the appearance of thermoelectric effects even with-
out electron–hole asymmetry [15–20]. At low temperatures
where superconductivity can be observed, the latter effect
is much stronger than that expected from the electron–hole
asymmetry. Therefore, we concentrate on an electron–hole
symmetric theory in the remainder of this paper. We employ
the quasiclassical theory that provides a fair description of
inhomogeneous superconductivity both in equilibrium and
nonequilibrium systems. Moreover, for simplicity and also
dictated by many of the experiments, we concentrate on the
diffusive limit.

2.2 Usadel equations for proximity structures

Heterostructures composed of diffusive normal-
metal or superconducting wires in and out of equilibrium
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can be described through the use of Usadel equations [1]
for the Keldysh Green’s functions Ǧ. These equations are
reviewed in many references – we cite here only a few of
those [2, 18] applying similar parametrization as here. Written
in the Nambu–Keldysh space, the Usadel equation is a nonlin-
ear differential equation for a 4 ×4 matrix

D[∇, Ǧ[∇, Ǧ]] = [−iE + ∆̌+ Σ̌, Ǧ] . (5)

Here D is the diffusion constant, E is the energy calcu-
lated from the Fermi energy, ∆̌ denotes the superconducting
order parameter and Σ̌ the self-energy for inelastic scattering
(mainly the part of electron–electron interaction not described
by ∆̌ and electron–phonon scattering), for spin-flip or spin–
orbit scattering. In the presence of a magnetic field, ∇ ≡ ∇ −
ieAτ̂3 is the gauge-invariant derivative including the vector
potential A. In addition to (5), Ǧ satisfies the normalization
Ǧ2 = 1̌, where 1̌ is the identity matrix.

In the diffusive limit, we implicitly assume that all the
length scales of the problem, including the superconducting
coherence length and the mean free paths for other types of
scattering than elastic, are much longer than the elastic mean
free path. An example of such other types of scattering is the
spin-flip scattering, described in the Born approximation by
the self-energy [21]

Σsf = 1

2τsf
τ̌3Ǧτ̌3 , (6)

where τsf is the spin-flip scattering time. This term is included
in the following analytic expressions, but omitted from the
numerics.

In Keldysh space, Green’s function has the form

Ǧ =
(

Ĝ R ĜK

0 Ĝ A

)
,

where Ĝ R/A/K denote the retarded/advanced/Keldysh func-
tions. The latter are 2×2 matrices in the Nambu particle–hole
space.1 Products of this type of matrices yield similar ma-
trices, without mixing the Keldysh parts into the diagonal.
Therefore, the Usadel equation (5) also has a similar ma-
trix structure. Employing the normalization and the symmetry
Ĝ A = −τ̂3Ĝ Rτ̂3, we may parametrize

Ĝ R = cosh(θ)τ̂3 + sinh(θ)(cos(χ)i τ̂2 + sin(χ)i τ̂1)

and

ĜK = Ĝ R( fL + fTτ̂3)− ( fL + fTτ̂3)Ĝ A .

Here θ and χ are complex scalar parameters, roughly describ-
ing the magnitude and phase of the pair amplitude, respec-
tively. In the Keldysh part, the additional parameters fL and fT
are the longitudinal and transverse parts of the electron distri-
bution function. It can be shown [21] that this parametrization

1 Throughout the text, we employ the notation where Keldysh matrices
Ǎ are checked and Nambu matrices Â wear a hat. The Pauli matrices in
Nambu space are denoted by τ̂i and in Keldysh space by σ̌i , i = 1, 2, 3.

spans all the possible solutions of the Keldysh–Usadel equa-
tions in nonmagnetic systems.

Usadel equations for θ and χ are

D∇2θ = −2i(E + iΓin) sinh θ +
(

1

τsf
+ v2

S

2D

)

× sinh(2θ)+2i|∆| cos(φ−χ) cosh(θ) ,

(7a)

∇ (−vS sinh2 θ
) = −2i|∆| sin(φ−χ) sinh(θ) ,

vS ≡ D(∇χ −2eA/h) . (7b)

Here we assume that the superconducting order parameter is
of the form ∆ = |∆|eiφ. Note that in a proximity structure, the
superfluid velocity vS is position-dependent. We include the
effect of weak inelastic scattering through a constant imagi-
nary part Γin of the energy [22]. In the numerics, this is set to
a small but finite positive value in order to preserve the ana-
lytic structure of the Green’s functions.

The kinetic equations for the distribution functions read

D∇Γ̂T f = (∇ jS) fL +2|∆|R fT ,

Γ̂T f ≡ DT ∇ fT +T∇ fL + jS fL , (8a)

D∇Γ̂L f = 0 ,

Γ̂L f ≡ DL∇ fL −T∇ fT + jS fT , (8b)

where the kinetic coefficients are

DL = 1

2
(1 +| cosh θ|2 −| sinh θ|2 cosh(2Im[χ])) , (9a)

DT = 1

2
(1 +| cosh θ|2 +| sinh θ|2 cosh(2Im[χ])) , (9b)

T = 1

2
| sinh θ|2 sinh(2Im[χ]) , (9c)

jS = Im
[
− sinh2(θ)

vS

D

]
, (9d)

R = Im [− cos(φ−χ) sinh(θ)] . (9e)

Inside a superconductor where the pair interaction parameter
λ 
= 0, the superconducting pair potential is obtained via

∆ = λ

4

∫
d E

[
(eiχ sinh θ + eiχ∗

sinh θ∗) fL

− (eiχ sinh θ − eiχ∗
sinh θ∗) fT

]
. (10)

Solving (7), (8) and (10) we obtain the observables, for ex-
ample the charge and energy current densities given by

Jc = − σ

2e

∞∫
−∞

dEΓ̂T f , JE = σ

2e2

∞∫
−∞

dEEΓ̂L f . (11)

In most of the text below, we assume that the superconductors
are bulky reservoirs, such that the self-consistency equation
(10) can be ignored. We rather concentrate on the phenomena
taking place in normal-metal wires close to the superconduc-
tors. In those wires, we assume λ = 0, and thereby also ∆ = 0.
This simplifies the resulting equations.
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2.3 Interfaces and terminals

The Usadel equation holds within the wires where
changes in the parameters take place slowly compared to the
mean free path. At interfaces, it has to be supplemented by
boundary conditions. Initially, these were derived for a gen-
eral quasiclassical Green’s function by Zaitsev [23]. For the
diffusive case, the general boundary conditions were solved
by Nazarov [24]. They read as

ǏL = ǏR = 2e2

πh

∑
n

τn
[
ǦL, ǦR

]
4 − τn(

{
ǦL, ǦR

}−2)
,

Ǐi ≡ σi Ai Ǧi∇Ǧi n̂ , (12)

where σ and A are the normal-state conductivity and the cross
section of the wires next to the interface, subscript L/R denote
left/right from the interface, and n̂ is the unit vector perpen-
dicular to the interface, pointing to the right. The interface
is characterized by the set {τn} of transmission eigenvalues.
Note that the resulting expression for Ǐ is linear in the electron
distribution functions f , due to the Keldysh block structure
of the Green’s functions. In what follows, we assume that the
normal-state conductance GI = 2e2 ∑

n τn/h for each inter-
face is large, such that their effect can be neglected. However,
the arguments on the general symmetries of the thermoelectric
coefficients are independent of this assumption.

In addition to having the correct boundary conditions for
interfaces, one needs also to describe the behavior of the
Green’s function Ǧ inside different types of terminals. A typ-
ical assumption is that the Green’s functions obtain their bulk
values very close to the interface between a wire and a termi-
nal. Essentially this means that the specific resistance (both
charge and thermal) of the terminals should be much smaller
than that of the mesoscopic region under study. Experimen-
tally this is realized by especially making the cross section
of the normal-metal terminals much larger than that of the
wires.

Inside superconductors for energies E < |∆| all quantities
except fL relax to their bulk values within distances com-
parable to the coherence length ξ0 = √

hD/(2∆). Moreover,
for the L-mode, the Andreev reflection boundary condition
Γ̂L f = 0 applies at these energies. These details of NS in-
terfaces one can usually describe by increasing the effective
length [25] of the normal-metal wires in contact with su-
perconductors by an amount comparable to ξ0. However, at
energies E > |∆|, nonequilibrium in fT and fL may persist
to greater distances. This charge and energy imbalance is
limited by inelastic relaxation processes, and for the charge
mode in the diffusive limit, by the decoherence induced by
a flowing supercurrent or spin-flip scattering (see for ex-
ample [22, 26]).

For temperatures or voltages on the order or larger than
∆, we hence have to pay some attention to a proper treat-
ment of superconductors, especially superconducting loops
(for an example, see Fig. 1) with length LL, cross section AL

and normal-state conductivity σL. Assume such a loop is con-
nected to a normal-metal wire with length Lw, cross section
Aw and normal-state conductivity σw. When compared to the
superconductor, the latter is described by an effective length
L ′

w = LwσL AL/(σw Aw) to account for the differences in the

specific resistance. Furthermore, assume an energy relaxation
length LE inside the superconductor. We then have three prac-
tically important limits: (a) LE � LL, L ′

w, (b) L ′
w � LL � LE

and (c) L ′
w � LE � LL. In the first case, the relaxation in the

superconductors is fast, and we may assume that fL(E > |∆|)
and fT(E > |∆|) acquire their bulk values immediately at the
superconducting interface. In case (b), the normal-state resis-
tance of the loop is much higher than that of the normal-metal
wires, so that the proper boundary condition is the vanishing
of quasiparticle current to the superconductors. For case (c),
we again get a vanishing of the quasiparticle charge current,
but the energy current will depend on the details of inelastic
relaxation in the superconductor.

We see no way to formulate exact mathematical boundary
conditions for the limits (b) and (c) above – they in principle
require the solution of the Usadel equation inside the super-
conductor. One attempt to approximate case (b) in a way con-
sistent with the Onsager symmetry is described in Sect. 4.2.1.
It captures most of the essential physics of this problem, i.e.,
taking into account the finite charge and thermal resistance of
the loop at high temperatures.

2.4 Unaddressed effects

There are two more practically important self-
energies that were not included in the above description:
those related to electron–electron and electron–phonon inter-
actions, Σ̌e–e and Σ̌e–ph. These two have a few distinct char-
acteristics compared to the included scattering mechanisms
(mainly elastic and spin-flip scattering):

– They are inelastic scattering mechanisms, i.e., they lead
to the nonconservation of spectral currents. This is why
these should be taken into account similarly as the self-
consistency relation (10). However, electron–electron
scattering conserves the total energy and charge current,
whereas electron–phonon scattering conserves only the
charge current.

– These scattering mechanisms provide both dephasing and
energy relaxation, i.e., both their retarded/advanced and
Keldysh parts are finite.

– Similarly to the self-consistency relation, these scattering
mechanisms make the equations for the retarded/advanced
functions depend on the distribution functions fL and fT.

The self-energies for these scattering mechanisms in the pres-
ence of superconductivity are detailed in [21].

Furthermore, as we concentrate only on the diffusive
limit, we neglect effects related to different types of elastic
scattering.

3 Supercurrent spectrum and nonequilibrium
electron energy distribution function

The presence of the supercurrent-induced terms
jS and T in (8) leads to the finite thermoelectric effects de-
scribed in Sect. 4. But before engaging in their discussion,
let us look at the spectral supercurrent jS and how its form
can be employed together with a nonequilibrium distribu-
tion function to tune the supercurrent flowing in a Josephson
junction, or alternatively, to modify the energy distribution
function.
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3.1 Spectral supercurrent

If a phase-coherent normal-metal wire is sand-
wiched between two superconductors, Andreev reflection at
each NS interface results into a formation of Andreev bound
states [27, 28]. In the case of a clean normal metal, these
bound-state energies depend on the phase difference ϕ be-
tween the superconducting contacts, the traversal time d/vF

through the normal-metal region of length d, and the trans-
parency τ of the NS interface. For a junction much longer than
the superconducting coherence length, the bound-state ener-
gies are [29]

ε±
n = ±hvF

d

(
arcsin

√
τ2 cos2

(ϕ

2

)
+ (1 − τ2) sin2(α)+nπ

)
.

(13)

Here α = kFd + δ is the dynamical phase gathered within
traversal through the junction, δ depending on the phase shift
at the interface. The characteristic property of these bound
states is that they carry an amount of supercurrent propor-
tional to the phase derivative of the bound-state energy. There-
fore, we can define a “spectral supercurrent” via

jS ∼
∑

m

∂ε±
m

∂ϕ
δ(E − εm) .

In the clean limit jS would hence contain a sequence of delta
peaks. In the diffusive limit on which we concentrate in this
paper, the Andreev state spectrum becomes continuous as dis-
order gives rise to a distribution of transparencies and times of
flights. In this case, jS can be calculated by solving (7) with
proper boundary conditions. Its behavior in different limits is
detailed in [30, 31]. An example of jS(E) specific to the geo-
metries considered in this paper is presented in Fig. 2.

If no dc voltage between the superconductors is applied,
the supercurrent between them is obtained from (11)

IS = σA

2e

∞∫
−∞

dE fL(E) jS(E). (14)

Attaching normal-metal terminals to the wire allows one to
tune the energy distribution function fL(E), and thereby the
supercurrent [30, 32–34]. Such nonequilibrium supercurrent

FIGURE 2 Spectrum of the supercurrent in wires 3, 4, 5 in the structure of
Fig. 1b, for phase difference ϕ = 1.6, and superconducting gap |∆| = 20ET

was experimentally demonstrated around the turn of the cen-
tury by many groups [35–40]. One of the most interesting fea-
tures of these experiments is the possibility to take the junc-
tion into the π-state, where the ground state of the junction
corresponds to a phase difference of π between the contacts,
and the supercurrent for a given phase difference is reversed
compared to the usual 0-state [35, 41]. This π-state occurs
when the distribution function fL weighs the negative part
of the supercurrent spectrum more than the positive part (see
Fig. 2).

3.2 Driving a nonequilibrium energy distribution
with supercurrent

Let us consider the solution to the kinetic equa-
tions (8) in a three-probe system depicted in Fig. 1a. The two
superconducting terminals are assumed to be at zero poten-
tial, whereas the normal-metal terminal is at potential V . For
simplicity, let us assume the system is left-right symmetric.
In this case, the following symmetries apply inside the ho-
rizontal wire

jS(ϕ) = − jS(−ϕ)

T(ϕ, x) = −T(−ϕ, x) = −T(ϕ,−x)

DT (ϕ, x) = DT (−ϕ, x) = DT (ϕ,−x)

DL(ϕ, x) = DL(−ϕ, x) = DL(ϕ,−x) .

In the vertical wire, we hence have jS = T = 0, and the ki-
netic equations for fT and fL are decoupled. Let us now try
to solve for fL(x) = f 0

L + δ fL(x) in the horizontal wire. Here
f 0
L = [tanh((E + eV)/(2kBT))− tanh((E − eV)/(2kBT))]/2 is

the longitudinal distribution in the normal terminal. Using the
fact that for |E| < |∆|, Γ̂L f = 0 throughout the normal-metal
system, we can find an exact solution for these energies

δ fL(x) =
x∫

0

dx ′ T(x ′)
DL(x ′)

(∂x fT)x=x′ − jS

x∫
0

dx ′ fT(x ′)
DL(x ′)

. (15)

This solution can now be substituted into (8a). The latter
yields a second order linear differential equation for fT, in-
dependent of fL. From the full numerical solution we can
find that the proximity corrections to fT are relatively small
compared to those in δ fL. Therefore, let us neglect those
corrections and solve (8a) in the incoherent limit DT = 1,
T = jS = 0. In this case we get fT(x) =

(
1 − 2|x|

LSNS

)
f c
T,

where f c
T = �A f 0

T is the transverse function at the crossing
point x = 0. Here f 0

T = [tanh((E + eV)/(2kBT))+ tanh((E −
eV)/(2kBT))]/2 is the boundary condition for fT in the normal
reservoir, �A = (σV AV LSNS)/(σV AV LSNS +4σSNS ASNSLV ),
and ASNS/V are the cross sections and σSNS/V the normal-state
conductivities of the horizontal and vertical wires, respec-
tively. Substituting this solution into (15) finally yields

δ fL(x) = − f 0
T�A

×
⎡
⎣ 2

LSNS

x∫
0

dx ′ T(x ′)
DL(x ′)

+ jS

x∫
0

dx ′ 1 − 2x
LSNS

DL(x ′)

⎤
⎦ .

(16)
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FIGURE 3 Electron distribution function f(x, E) = 1
2 [1 − fT(x, E) −

fL(x, E)] between the two superconducting terminals in Fig. 1a. The bias
voltage is chosen V = 30ET/e, temperature is T = 1ET/kB, and |∆| � ET
and ϕ = π/2 are assumed. The low-energy (E ∼ ET) perturbation in f arises
from the L/T mixing in the proximity effect, and the 2V -step from the
Andreev reflection (see text for more details)

We thus find that the supercurrent controls the antisymmetric
part of the distribution function: for a vanishing phase gra-
dient across the wire, δ fL = 0. For kBT � eV , f 0

T defines
a window of energy E ∈ [−eV, eV ] in which the correction is
finite (there, f 0

T ≈ 1, whereas f 0
T ≈ 0 for |E| > |eV |). Close to

the crossing point x = 0, DL ≈ 1, and the energy dependence
of δ fL(x) reflect directly those of T(x) and jS. Close to the NS
interface x → ± 1

2 , DL tends to zero, and both of the terms in
(16) diverge. However, their sum stays finite and the remain-
ing part is roughly proportional to the spectral supercurrent jS .
The full distribution function f(E, x) in the horizontal wire is
plotted in Fig. 3 for one example value of the phase difference.
The supercurrent-induced changes in the nonequilibrium dis-
tribution function were recently measured [42], and the results
were in fair agreement with the theory outlined above.

The longitudinal distribution function (the energy mode)
fL describes the response of the electron system to changes
in the temperature [26]. In this way, the above changes in
fL can be understood as supercurrent-driven modifications in
the local temperature [43]: due to the antisymmetry of δ fL(x)

about the crossing point x = 0, one of the horizontal arms
heats up, and another one cools down. Such a setup thus re-
sembles a Peltier-like system. However, in this case one has
to deal with an effective temperature Teff (for its definition,
see [43, 44]), and it turns out that for this symmetric system
the increase in Teff due to the Joule heating is always larger
than the changes due to the supercurrent. Both of these issues
are settled below when considering the properties of an arbi-
trarily shaped four-terminal interferometer.

4 Multi-terminal thermoelectric coefficients

In this section, we apply the theory formulated in
Sect. 2 to calculate the multi-terminal transport coefficients
defined in (1). The main emphasis is on the appearance of ther-
moelectric effects, which originate from the same mixing of
the L- and T -modes that in Fig. 3 modifies the shape of the
electron distribution function. Below, we calculate all ther-
moelectric transport coefficients in the same example setup
shown in Fig. 1b, a typical Andreev interferometer. The in-

terference effects due to superconductivity are tuned by the
magnetic flux Φ threading the superconducting loop, which
adjusts the superconducting phase difference ϕ, and is ob-
served by measuring various transport properties of the wire
between the two normal terminals. We assume here the struc-
ture to be left–right asymmetric, as to not miss certain effects
that vanish in completely symmetric structures.

4.1 Spectral thermoelectric matrix

Based on the above discussion, one could examine
transport in proximity structures simply by solving the Usadel
equations numerically and evaluating the current-bias relation
for all necessary values of temperatures and voltages at the
reservoirs. However, for the proximity effect, it is possible to
separate the biases from the full nonlinear response of the cir-
cuit by making only mild assumptions.

First, one can note that the only part of the above equa-
tions that is nonlinear in the electron distribution functions
f is the self-consistency equation (10). Neglecting it is often
a good approximation if the terminals are large compared to
the rest of the system. Disregarding (10), the linearity in f di-
rectly allows one to write the charge and thermal current I i

c
and I i

E entering a given reservoir i as a linear combination of
the distribution functions f j

α (E) in all reservoirs [20]

I i
c =

∞∫
−∞

d E
∑
β j

L̃ ij
Tβ(E) f j

β (E) , (17a)

I i
E =

∞∫
−∞

dEE
∑
β j

L̃ ij
Lβ(E) f j

β (E) . (17b)

Similar decomposition has been used in the literature mostly
for describing charge transport [45, 46]. Below, we call the
set of functions L̃ij

αβ(E) the spectral thermoelectric matrix,
because the thermoelectric linear-response coefficients are re-
lated to it in a natural way

Lij
11 = 1

2kBT

∫
dEL̃ij

TT(E) sech2
(

E

2kBT

)
, (18a)

Lij
21 = −1

2kBT

∫
dEEL̃ij

LT(E) sech2
(

E

2kBT

)
, (18b)

Lij
12 = −1

2kBT

∫
dEEL̃ij

TL(E) sech2
(

E

2kBT

)
, (18c)

Lij
22 = 1

2kBT

∫
dEE2 L̃ij

LL(E) sech2
(

E

2kBT

)
. (18d)

In principle, the functions L̃ij
αβ(E) are a generalization of the

plain linear-response coefficients.
The matrix element L̃ij

αβ(E) can be defined explicitly as
the α-mode current flowing in terminal i in response to a β-
mode unit excitation in terminal j , at energy E

L̃ij
αβ(E) ≡

∫
Si

dSn̂ · Γ̂αψ
j,β(E) , (19)

where Si is the surface of the ith terminal and n̂ the cor-
responding normal vector. The two-component characteristic
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potential ψ j,β = (ψ
j,β

T , ψ
j,β

L ) is assumed to satisfy the kinetic
equations together with their boundary conditions, with the
distribution function f i

α in each terminal replaced by δαβδij .
Examples of the energy dependence of the L̃ij

αβ(E) func-
tions for the four-terminal setup in Fig. 1b are shown in Figs. 4
and 5. The two characteristic energy scales for these coeffi-
cients are, similarly as for the spectral supercurrent, the Thou-
less energy ET = hD/L2

SNS and the superconducting energy
gap ∆. Note that since our theory is limited to static situations,
only L-mode (temperature) bias can be applied to the super-
conductors if they are at internal equilibrium, for many phe-
nomena, the coefficients in Fig. 4 are more relevant than those

FIGURE 4 Elements of the spectral thermoelectric matrix L̃ ij
αβ(E) associ-

ated with the normal terminals, i, j = 1, 2, in the structure of Fig. 1b. Phase
difference is assumed to be ϕ = 1.6 and the superconducting gap |∆| = 20ET

FIGURE 5 Elements of the spectral thermoelectric matrix L̃ ij
αβ(E) associ-

ated with excitations in the superconductor, i = 1, 2, j = 3, 4. Assumptions
are as in Fig. 4

in Fig. 5. However, a nonequilibrium T -mode bias could be
generated within the static model by inducing charge imbal-
ance in the superconductors, for example by injecting current
from additional normal-metal junctions.

Semi-analytical expressions for the coefficients L̃ij
αβ(E)

can be found by solving (8) up to the first order in jS and T. In
systems that can be considered as a circuit of quasi-1D wires,
this leads to a circuit theory for the distribution functions. Be-
tween two nodes with distribution functions f 1 = ( f 1

T , f 1
L )

and f 2 = ( f 2
T , f 2

L ), one finds an expression for the spectral
currents

Γ̂ f � (M̂−1 − ti τ̂2 + γ jS
2

i τ̂2)( f 2 − f 1)

+ jS
2

τ̂1( f 2 + f 1)+O( j2
S +T 2) , (20a)

where τ̂1 and τ̂2 are Nambu spin matrices, and

M̂ ≡ diag(MT, ML) , Mα ≡
L∫

0

dxDα(x)−1 , (20b)

t ≡
L∫

0

dxT(x)
DL (x)−1DT (x)−1

ML MT
, (20c)

γ ≡
L∫

0

dx

L∫
0

dx ′ sgn(x − x ′)
DL(x)−1DT (x ′)−1

ML MT
. (20d)

If node 1 (or node 2) is at a clean interface to a bulk su-
perconductor at E < |∆|, one can use the asymptotic behav-
ior DL(x) = const.× x2 +O(x3), T(x) = jSx +O(x2) to find
M−1

L = 0, t = 0, γ = ±1. Using conservation of the spectral
current Γ̂ f at the nodes and suitable boundary conditions, one
can in this way find an approximation to L̃ij

αβ(E) for any given
circuit. The quality of this approximation is usually quite good
– in Fig. 4 such approximations are shown with black lines,
which almost coincide with the numerical results. However,
the spectral equations need still to be solved to determine the
proximity-modified diffusion constants DDα, T and the spec-
tral supercurrent jS.

4.2 Symmetry relations

As discussed in Sect. 2.1, the normal-state thermo-
electric transport coefficients are usually coupled together by
Onsager’s reciprocal relation Lij

αβ(B) = L ji
βα(−B) under the

reversal of the magnetic field. The question now is: Do the
thermoelectric coefficients induced by the proximity effect
follow this same relation, and what else can we say about
their symmetries. In the framework of scattering theory, it
turns out that the Onsager reciprocity applies also in hybrid
normal-superconducting systems [9, 47]. Moreover, within
the Usadel theory, it has been shown that the off-diagonal
coefficients L12, L21 are always odd functions of the mag-
netic field B, whereas the diagonal coefficients L11, L12 are
even [15, 18, 20]. Below, we review the symmetries present in
the Usadel framework.

That a form of Onsager’s reciprocal relation applies for
the Usadel model can be seen from the structure of the kinetic
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equations (8) and symmetries of the coefficients (9) under the
reversal of the magnetic fields B (i.e., change of sign in the
vector potential A and the superconducting phases φ, χ). The
crucial observation is that the differential operator Ô in the ki-
netic equations (8), Ô f = 0, is related to its operator adjoint
by [20]

Ô(B)† = (−∇) ·
(
DT −T
T DL

)
(−∇)+ (−∇) · jSτ̂1

−
(

2 |∆| R −∇ jS
0 0

)

= Ô(−B) . (21)

Here we exploited the symmetries Dα(−B) = Dα(B),
T(−B) = −T(B), R(−B) = R(B), and jS(−B) = − jS(B) of
the kinetic coefficients (9). From the above relation, it follows
that for any two-component functions φ, �
∫
Ω

dV[�†Ôφ−φ†Ô†�] =
∫
∂Ω

dSn̂ · J , (22)

where the flux J = �†Γ̂ (B)φ−φ†Γ̂ (−B)�− jS�†τ̂1φ is what
remains from the integration by parts on the left-hand side.
Especially, this flux is conserved when φ satisfies the ki-
netic equations for +B, and � for −B. Now making use of
the functions applied in (19) and substituting φ = ψ j,β(+B),
� = ψi,α(−B), the conservation of J in the volume Ω of the
structure implies

0 =
∫
Ω

dV[�†Ôφ−φ†Ô†�] =
∫
∂Ω

dSn̂J

=
∫
Si

dSn̂ · Γ̂α(B)φ−
∫
Sj

dSn̂ · Γ̂β(−B)� , (23)

when both i and j refer to normal terminals. In this case the
last term in J , being proportional to jS, vanishes on the termi-
nal surfaces Si and Sj . Other terms vanish due to the boundary
conditions assumed for the ψ functions. Comparing this result
to (19), one finds for i, j referring to the normal terminals

L̃ij
αβ(E, B) = L̃ ji

βα(E,−B) , (24)

which is a form of Onsager’s reciprocal relation.
A second class of symmetries arises from the way the coef-

ficients L̃ij
αβ(E) were defined in (17). Namely, we must require

that
∑

j

L̃ ij
LL(E) = 0 , (25a)

∑
j

L̃ ij
TL(E) = 0 for normal terminal i , (25b)

so that no net energy current flows to any terminal at equilib-
rium for any temperature, and that the same applies for the
charge current entering the normal terminals.

The third symmetry relation is important for the thermo-
electric effects, and is specific to the quasiclassical theory.

Namely, if Green’s function Ǧ1 is a solution to the Usadel
equation for vector potential A and self-energy X̌1[Ǧ1]
[∇ − ieAτ̂3, Ǧ1[∇ − ieAτ̂3, Ǧ1]

] = [
X̌1[Ǧ1], Ǧ1

]
, (26)

then, the electron–hole transformed Green’s function Ǧ2 ≡
−τ̂1Ǧ1τ̂1 is a solution to the same equation for −A and self-
energy

X̌2[Ǧ2] = −τ̂1 X̌1
[− τ̂1Ǧ2τ̂1

]
τ̂1 . (27)

For X̌1[Ǧ] = −iEτ̂3 + ∆̂[Ǧ]+ 1
2τsf

τ̂3Ǧτ̂3 used above, we note

that X̌2(B) = X̌1(−B), where the two functionals coincide.
Hence, the transformed Green’s function describes the same
physical situation, but with an inverted magnetic field. Since
electric potentials and charge currents also change sign under
this transformation, one finds that [18, 20]

L̃ij
αβ(E,−B) = (−1)1−δαβ L̃ij

αβ(E, B) . (28)

This symmetry makes the off-diagonal thermoelectric coeffi-
cients odd functions of the applied magnetic field, which is not
in agreement with all experiments. We discuss this discrep-
ancy in more detail in Sect. 6 and in the Appendix.

4.2.1 Charge imbalance in superconducting loops. Below,
one of the aims is to model qualitative features of charge im-
balance in superconducting loops (see Sect. 2.3 and Fig. 1)
without solving the Usadel equations inside superconductors.
For this, we need some effective boundary conditions to en-
force at the NS interfaces instead of the usual terminal as-
sumption (case (a) in Sect. 2.3). Consider a superconducting
loop with a large normal-state resistance but long inelastic
relaxation length (case (b) in Sect. 2.3). Deep in the supercon-
ductor, we then assume that the charge current is carried only
as supercurrent with the (BCS) spectral density jS ∝ δ(E −
|∆|). Due to the large resistance, we can also assume Γ̂Lφ = 0
and Γ̂Tφ = 0 for E 
= |∆|, for any solution φ of the kinetic
equations. Near the interface, supercurrent conversion occurs
and the δ-peak in Γ̂Tφ broadens, which needs to be handled
correctly to preserve Onsager reciprocity. Equation (22) de-
fines a flux J that is conserved in the superconductor. By our
assumptions, J = 0 deep in the superconductor, for E 
= |∆|.
The exact solution f of kinetic equations (8) thus satisfies
J = ψTΓ̂T(B) f − fTΓ̂T(−B)ψ − jS(ψT fL + fTψL) = 0 and
Γ̂L f = 0 at the NS interfaces of the loop, for any ψ that satis-
fies Ô(−B)ψ = 0, regardless of boundary conditions.

The only linear boundary condition consistent with the
above is Γ̂T f = GT(|B|) fT + jS fL, where GT describes con-
ductances related to the supercurrent conversion. For sim-
plicity, we then assume GT = ∞ at E < |∆| and GT = 0 at
E > |∆|, which results to

ΓL f = 0 , fT = 0 , E < |∆| , (29a)

ΓL f = 0 , ΓT f = jS fL , E > |∆| . (29b)

This acknowledges the fact that for E < |∆| the kinetic equa-
tions imply a vanishing fT beyond the current conversion
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region, and that in a BCS superconductor fT does not relax
at E > |∆| if there is no inelastic scattering [22]. Employing
(29) is analogous to requiring that the “nonequilibrium” parts
of the spectral currents vanish; the remaining part jS fL is what
at equilibrium gives rise to the supercurrent.

Note that (29) is not exact: we at least neglect the re-
sistance in the supercurrent conversion region discussed for
example in [22, 48]. Note also that when treating a supercon-
ducting loop as two boundary conditions, charge conservation
must be ensured by adjusting all potentials relative to that of
the superconductor. Nonetheless, we expect that (29) captures
some of the relevant physics in the problem. Below, we use
it to illustrate how charge imbalance could change observable
quantities.

4.3 Conductance

How the proximity effect changes the conductance
has been studied in detail, both experimentally [47, 49–54]
and theoretically [45, 55–57]. For a review, see for ex-
ample [58].

The modification to conductance can conveniently be de-
scribed with the Usadel equations. Once L̃ij

αβ(E) is known –
usually the zeroth order in jS and T is accurate enough – cal-
culating various conductances can be done. One can directly
evaluate the corresponding conductance matrix Lij

11 and ther-
moelectric coefficients Lij

12 from (18) and write

d I i
c =

∑
j

Lij
11 dVj +

∑
j

Lij
12 dTj/T

+
∑

j

∂I i
c

∂ϕj

∣∣∣∣
{V }=0,{ϕ}

dϕj . (30)

The second sum is finite if the heating of the terminals is
significant, but should still give only a small contribution
as the thermoelectric coupling is small, as can be seen in
Fig. 4. The last term arises if conductances are evaluated in
structures where the phases ϕj in the superconducting termi-
nals may vary. However, for i referring to a normal termi-
nal, I i

c({V } = 0, {ϕ}) = 0 independent of the phases {ϕ}. This
implies that the last term vanishes for conductances around
{V } = 0, the potential of the superconductors, but it may be
finite when calculating differential conductances. Again, we
note also that when modeling superconducting loops using
only boundary conditions at the NS interfaces, current conser-
vation needs to be ensured by adjusting all potentials relative
to that of the superconducting condensate.

Typical behavior of conductance in an Andreev interfer-
ometer is illustrated in Fig. 6. The proximity effect adds an
enhancement that oscillates with the superconducting phase
difference ϕ and has a re-entrant dependence on the tempera-
ture T . The figure also shows how charge transport via quasi-
particles (E > |∆|) in the superconducting loop may change
the conductance at high temperatures. The two curves corres-
pond to the terminal (a) and long-loop (b) limits discussed in
Sects. 2.3 and 4.2.1. For the former, the loop contributes to
electric conduction at energies E > |∆|, for the latter it does
not.

FIGURE 6 Linear-response electrical resistance R between terminals 1 and
2 of the structure in Fig. 1b, as a function of the phase difference ϕ and the
temperature T . The resistances are normalized to the normal-state resistance
RN = R1 + R2 + R5. The curves correspond to different models of the super-
conducting loop discussed in Sects. 2.3 and Sect. 4.2.1, (a) solid and (b)
dashed. The current flows via the superconducting loop as supercurrent, re-
ducing the resistance from the normal-state value also at T = 0. Temperature
dependence of the energy gap ∆ is neglected, and we assume ∆ = 20ET

FIGURE 7 As in Fig. 6, but the thermal resistance Rth is shown.
It is normalized to the normal-state Wiedemann–Franz value Rth,N =
3e2 RN /(π2kBT). The two curves correspond to same models for the super-
conducting loop as in Fig. 6, (a) terminal (solid) and (b) long loop (dashed).
In the former, at kBT ∼ ∆, part of the thermal current flows through the loop
as quasiparticle excitations, reducing the thermal resistance. Note that the
scale for Rth is the same in both figures

4.4 Thermal conductance

As for the electrical conductance, the proxim-
ity of superconductors modifies also the thermal conduc-
tance [59–62]. This was studied on the basis of the quasiclas-
sical Usadel theory in [60, 61].

For a given setup, calculation of the thermal conductance
from L̃ij

αβ(E) proceeds as for the electrical conductance. Typ-
ical predicted features are ϕ-periodic suppression of thermal
conductance at low temperature kBT � ET due to modified
density of states and thermal diffusion coefficient DDL , and
inhibition of subgap thermal transport into the superconduc-
tors due to Andreev reflection. These are illustrated in Fig. 7
for the example setup, together with two models for the above-
gap quasiparticle transport in the superconducting loop.

4.5 Thermopower

Thermopower S is proportional to the upper right
coefficient L12 of the thermoelectric matrix. The supercon-
ducting proximity effect on S has recently been studied ex-
perimentally, (see [63–69]). Theoretically, predictions for
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the thermopower in hybrid normal–superconductor structures
have been calculated starting from the scattering theory in [9,
11], and via the Usadel theory discussed here [15–19]. We
discuss the comparison between theory and the experiment in
Sect. 6, and consider here only the theoretical model.

For a two-probe structure, the thermopower is usually de-
fined as the induced voltage divided by the temperature dif-
ference when no charge current flows, S ≡ dV

dT

∣∣
Ic=0, but the

additional terminals in the four-probe structure in Fig. 1b al-
low for defining two distinct thermopower-type quantities

SNS ≡ d(V1 + V2)

2d(T1 − T2)

∣∣∣∣
Ic,1=Ic,2=0

,

SNN ≡ d(V1 − V2)

d(T1 − T2)

∣∣∣∣
Ic,1=Ic,2=0

. (31a)

Both of these can be calculated from L̃ij
αβ(E)

SNS = T−1 1

4

(
1 1

) (
L[12]

11

)−1
L[12]

12

(
1

−1

)
, (32a)

SNN = T−1 1

2

(
1 −1

) (
L[12]

11

)−1
L[12]

12

(
1

−1

)
, (32b)

L[12]
αβ ≡

(
L11

αβ L12
αβ

L21
αβ L22

αβ

)
. (32c)

Typical results are shown in Figs. 8 and 9. The oscillations in
ϕ are always antisymmetric due to the symmetry relation (28),
and the temperature dependence shows the re-entrant behav-
ior on the energy scale of ET characteristic of the supercon-
ducting proximity effect. One can also note that the magnitude
of the effect is significantly larger than what is expected from
the normal-state thermoelectric effects at subkelvin tempera-
tures, which typically are on the order of S ≈ 10−4...10−3 ×
kB/e.

Making use of expression (20) and neglecting the energy-
dependence of DT and DL one can also derive approxima-
tions such as [17]

SNN ≈ (R3 − R4)R2
5

2(R1 + R2 + R5)RSNS

d IS,eq

dT

+ RSNS(b1 +b2)+ (R3 + R4)b5

(R1 + R2 + R5)RSNS
, (33a)

SNS ≈ 4R3 R4 R5 + R2
5(R3 + R4)

4(R1 + R2 + R5)RSNS

d IS,eq

dT

+ RSNS(b1 −b2)+ (R3 − R4)b5

2(R1 + R2 + R5)RSNS
, (33b)

where RSNS = R3 + R4 + R5, |∆| � ET, and

bj ≡
∞∫

0

dEE

2ekBT 2
sech2

(
E

2kBT

)
Rj

L j

L j∫
0

dxT(x) (34)

are averages of the coefficient T in different wires. The ap-
proximation (33) is compared to the numerical solution in
Figs. 8 and 9. It turns out that a large part of the thermopower
is related to the equilibrium supercurrent IS,eq [15, 17]. Note

FIGURE 8 Linear-response thermopower in the structure of Fig. 1b, as
a function of the phase-difference ϕ and the temperature T . Solid line: no
charge imbalance in superconducting loop (case (a) in Sect. 2.3). Dashed
line: no inelastic relaxation in the long superconducting loop (case (b) in
Sect. 2.3). Dotted line: approximation (33), neglecting contributions from T.
If the terms proportional to T are taken into account, the result coincides with
the solid line. Other assumptions are as in Fig. 6

FIGURE 9 As in Fig. 8, but showing the NN thermopower SNN . The dot-
ted line includes the terms proportional to T in (33); the other terms in (33)
vanish

also that the contribution from IS to SNN is strongly de-
pendent on the asymmetry in the structure and vanishes for
a left-right symmetric setup, as does the contribution from
T [17, 18]. However, the contribution from energies E > |∆|,
which are neglected here, behaves differently in this respect
(see [16, 18, 19]).

4.6 Peltier effect

The second off-diagonal thermoelectric coefficient
L21 has not yet been measured in the presence of the proxim-
ity effect, although related experiments far from equilibrium
have been made [42]. Theoretical predictions for modifica-
tions due to the proximity effect have been calculated from the
scattering theory [9] and from the Usadel theory [20].

A finite L21 coefficient induces a Peltier effect, energy cur-
rent driven by charge current. The Peltier coefficient Π is in
general defined as the ratio of the heat current IQ = IE −µIc

to the charge current at constant temperature, Π ≡ d IQ
d Ic

. In
our example four-probe structure in Fig. 1b, two Peltier coef-
ficients can be defined

ΠNS ≡ d I1
E

d Ic

∣∣∣∣
I1
c =I2

c =Ic/2
,

ΠNN ≡ d I1
E

d Ic

∣∣∣∣
I1
c =−I2

c =Ic

, (35)
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corresponding to two different current configurations. These
are directly related to the linear-response L-coefficients by

ΠNS = 1

4

(
1 −1

)
L[12]

21 (L[12]
11 )−1

(
1
1

)
, (36a)

ΠNN = 1

2

(
1 −1

)
L[12]

21 (L[12]
11 )−1

(
1

−1

)
, (36b)

in a similar way as in (32). However, note that ΠNS can be
defined only when there is a grounded extra contact in the
superconducting loop (see Fig. 1b) through which the injected
current Ic can flow.

As discussed above, the matrix element L21 is usually
coupled to the element L12 via Onsager’s reciprocal relation.
This leads to Kelvin relations between the Peltier coefficients
and the thermopower

ΠNS = TSNS , ΠNN = TSNN , (37)

which are easily seen by transposing equations of (36) and
comparing to (32). These relations are not broken by the
superconducting proximity effect, which implies that the
proximity-induced Peltier coefficient inherits the magnitude,
phase oscillations and the temperature dependence of the ther-
mopower. The numerically calculated linear-response Peltier
coefficient in the example structure is illustrated in Fig. 10.

The Peltier coefficient is sufficiently large so that it could
be detected simply by observing how the effect changes the
temperature of one of the terminals in Fig. 1b. For a typ-
ical Thouless energy ET/kB = 200 mK, the coefficient in
Fig. 10 achieves a magnitude of Π ∼ 1.5 µV at temperature
T = 400 mK. A simple heat balance estimate, assuming that
terminal 1 is thermally isolated apart from the electronic heat
conduction through wire 1

I1
Q = −Gth∆T +2ΠNS Ic + eI2

c /G = 0 , (38)

then yields a maximum cooling ∆T ≈ −(3/π2)
(
e2Π2

NS/k2
BT

)
∼ 0.2 mK. However, the oscillation amplitude is proportional
to Ic and can be larger than this maximum cooling effect;
variation on the order of millikelvin at least should be pos-
sible [20]. Temperature changes of this order have already
been successfully resolved in mesoscopic structures [70], so

FIGURE 10 As in Fig. 8, but showing the Peltier coefficient ΠNS . The dot-
ted line is obtained from the approximation (33) including the T-terms. The
Kelvin relation Π = TS can be seen by comparing to Fig. 8

that in a suitably optimized setup, it might also be possible to
detect this proximity-Peltier effect.

5 Dependence on external flux

A magnetic field applied to a normal-metal–
superconductor heterostructure causes persistent currents to
flow in the structure and induces some dephasing. The cur-
rents also screen the applied magnetic field, which can usually
be taken into account by assigning self-inductances to all
loops in the structure. Both effects can be included in the
present theory, and we discuss the latter briefly below.

If considering the Andreev interferometer in Fig. 1b,
screening is mostly taken into account in the Ic(ϕ) relation of
the weak link. The inductance L of the loop only modifies the
ϕ(Φx) relation between the induced phase difference ϕ and the
external magnetic field Φx to [26, 69]

ϕ−2π
Φx

Φ0
= L Ic(ϕ) . (39)

One should note that although a modified ϕ(Φx) relation
should change the shape of the oscillation of various quanti-
ties as functions of Φx , e.g., thermopower in Fig. 8, the sym-
metry properties in Sect. 4.2 remain unchanged. However, if
there is hysteresis and multiple flux states are possible for the
same values of control parameters, the situation is slightly
more complicated: for a given solution of (39) with external
flux Φx , there exists a solution with −Φx for which (24) and
(28) apply.

There is a further effect of the magnetic field neglected in
this work: the Zeeman effect, which leads effectively to an ex-
change field inside the wires (for an example of such an effect,
see [71]). However, unless special care is taken, this effect
plays typically a much smaller role than the dephasing effect
of the field.

6 Discussion

In this article, we have systematically discussed the
predictions of the quasiclassical diffusive limit theory on the
thermoelectric response of normal-metal samples under the
influence of the proximity effect. The latter yields corrections
to the fairly general relations in (3d). These corrections de-
pend in general on energy (i.e., on temperature or voltage) and
on the phase difference between superconducting contacts. At
least in most typical cases, one of the general relations, the
Onsager relation (and thereby also the Kelvin relation) holds
also in the presence of the proximity effect. Furthermore,
the approximations made in the quasiclassical theory imply
that the diagonal coefficients of the thermoelectric matrix are
generally symmetric and the off-diagonal ones antisymmetric
with respect to an external magnetic flux.

Our results for the proximity correction of the con-
ductance agree with the previous quasiclassical treatments
[45, 55–57]. However, as far as we know, the charge imbal-
ance effect has not been previously addressed. The thermal
conductance calculated here is in line with the results in [66],
but in contrast to it, we do not make any approximations to the
kinetic equations.

The quasiclassical prediction on the thermopower has
been detailed in different situations in [15–19]. Our theory is
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in line with these predictions. The mechanism for the finite
thermopower is analogous to the generation of charge imbal-
ance in bulk superconductors in the presence of coexisting
supercurrent and temperature gradient [13, 72–74].

To our knowledge, the only quasiclassical treatment of the
Peltier effect and the resulting temperature modification prior
to this paper is in our previous work [20]. Beyond the qua-
siclassical approximation, these effects have been discussed
using the scattering theory and numerical simulations of the
Bogoliubov–de Gennes equation on a tight-binding lattice [9,
11]. In that work, the symmetry of the flux dependence for the
off-diagonal coefficients was mostly dependent on the geom-
etry and disorder of the considered system, and not fixed as in
our work. However, the small size of the simulated structures
makes a quantitative comparison, for example to the present
work, difficult: in [9] even the normal-state thermoelectric
effects were large, and it is difficult to distinguish those contri-
butions from the proximity effect that remain large in experi-
mentally relevant structures from those that rely on significant
electron–hole asymmetry.

On the experimental side, a qualitative agreement with
most of the features presented here has been found. The resis-
tance correction in an Andreev interferometer has been found
to oscillate with a magnetic flux through the loop [47, 49–
54], with the scale given by the flux quantum. Moreover,
the re-entrance effect illustrated in Fig. 6 has been measured
in different samples [47, 52, 54]. However, to our knowledge
there is no successful quantitative fit between the quasiclassi-
cal predictions and the experimentally measured temperature
dependence of the resistance (see an example of such a com-
parison in [54]). The reason for this may be the neglect of the
generally temperature-dependent inelastic scattering effects
(see Sect. 2.4) in the theory.

The thermopower in the presence of the proximity effect
has been measured by two groups, one at Northwestern Uni-
versity, USA [63–66], and another at Royal Holloway Uni-
versity of London [67–69, 75]. Again, most of the qualitative
features agree with the quasiclassical theory. The measured
thermopower oscillates with the flux and is at least two orders
of magnitude larger than the normal-state thermopower, and
in line with the predictions from the quasiclassical theory.
The first attempt for a quantitative fit [69] of the temperature-
dependent thermopower between the theory and the experi-
ments was unsuccessful. We believe that the major reasons for
this were the overly complicated geometry of the measure-
ments for this purpose and the neglect of the inelastic scatter-
ing effects.

The major qualitative disagreement between the theory
and the measurement is in the symmetry of the thermopower
oscillations with the flux: in most measurements, the oscilla-
tions were antisymmetric and in line with the theory [63–69],
in some measurements they were symmetric [65, 66]. The
authors of [66] suggested that this symmetry depends on the
geometry of the sample: in samples where the supercurrent
flows along with the temperature gradient, the oscillations
are antisymmetric whereas in other types of samples they are
symmetric. Such a conclusion cannot be made based on the
quasiclassical theory.

We also note that in bulk superconductors, the magnitude
of the thermoelectric effects has been long under debate [76]

– there the experiments have shown larger thermoelectric ef-
fects than those predicted by the theory.

The only published measurement on the thermal resis-
tance Rth of an Andreev interferometer known to us [62]
showed an oscillating Rth, but the correction from the proxim-
ity effect was larger than that predicted by the theory. We are
not aware of any measurements of the Peltier effect.

Quasiclassical theory, based on the combination of the
BCS model and the quasiclassical approximation, has been
successful in providing a quantitative explanation to a broad
range of superconducting phenomena. Here we have pointed
out one qualitative aspect (flux symmetry of the thermoelec-
tric effects) which is yet to be explained. Clearly, the full
understanding of the nonequilibrium electron transport phe-
nomena in superconducting proximity samples will still re-
quire both further experimental and theoretical work.

Appendix: Possible reasons for the symmetric
thermopower oscillations

In the diffusive limit, the antisymmetric flux dependence of
the proximity-induced thermopower results from the special
symmetry of the self-energies: all the typically relevant self-
energies satisfy (27) in the presence of a magnetic field B
with X̌2(B) = X̌1(−B). Outside the diffusive limit, one has to
employ the Eilenberger equation [77] describing the Keldysh
Green’s function ǧ( p̂, r, E, B). Here p̂ is the direction of the
electron momentum and r is the center-of-mass coordinate. In
this case, the property of the self-energies x̌[ǧ] leading to the
antisymmetric thermopower oscillations is

x̌[ǧ( p̂, r, E, B)] = −τ̂1 x̌[−τ̂1ǧ(− p̂, r, E,−B)τ̂1]τ̂1 . (A.1)

This symmetry is satisfied for the most relevant self-energies,
including those for the elastic or spin-flip scattering in the
Born approximation, and that related to the superconduct-
ing order parameter. We note that in [78], it was shown
that a dilute concentration of impurities away from the Born
limit leads to large thermoelectric effects in unconventional
superconductors.

Beyond the quasiclassical approximation, other possible
reasons for the symmetric thermopower oscillations may be
largely enhanced electron–hole asymmetry effects (however,
these were shown in [79, 80] to be small for a fairly generic
setup) or quantum interference contributions [81]. Further
studies on these effects are therefore required.

ACKNOWLEDGEMENTS This research was supported by the
Finnish Cultural Foundation and the Academy of Finland. We thank N. Birge,
M. Crosser, M. Meschke and I.A. Sosnin for useful discussions.

REFERENCES

1 K.D. Usadel, Phys. Rev. Lett. 25, 507 (1970)
2 W. Belzig, F.K. Wilhelm, C. Bruder, G. Schön, A.D. Zaikin, Superlat-

tices Microstruct. 25, 1251 (1999)
3 V. Chandrasekhar, in The Physics of Superconductors, vol. II, ed. by

K.H. Bennemann, J.B. Ketterson (Springer, Berlin, Heidelberg, New
York, 2004)

4 V.T. Petrashov, K.G. Chua, K.M. Marshall, R.S. Shaikhaidarov,
J.T. Nicholls, Phys. Rev. Lett. 95, 147 001 (2005)

5 M. Cutler, N.F. Mott, Phys. Rev. 181, 1336 (1969)



VIRTANEN et al. Thermoelectric effects in superconducting proximity structures 637

6 L. Onsager, Phys. Rev. 37, 405 (1931)
7 H.B.G. Casimir, Rev. Mod. Phys. 17, 343 (1945)
8 H.B. Callen, Phys. Rev. 73, 1349 (1948)
9 N.R. Claughton, C.J. Lambert, Phys. Rev. B 53, 6605 (1996)

10 A.F. Andreev, Sov. Phys. J. Exp. Theor. Phys. 19, 1228 (1964)
11 T.T. Heikkilä, M.P. Stenberg, M.M. Salomaa, C.J. Lambert, Physica B

284–288, 1862 (2000)
12 Y.M. Galperin, V.L. Gurevich, V.I. Kozub, A.L. Shelankov, Phys. Rev. B

65, 64 531 (2002)
13 A. Schmid, G. Schön, Phys. Rev. Lett. 43, 793 (1979)
14 F. Giazotto, T.T. Heikkilä, A. Luukanen, A. Savin, J. Pekola, Rev. Mod.

Phys. 78, 217 (2006)
15 R. Seviour, A.F. Volkov, Phys. Rev. B 62, 6116 (2000)
16 V.R. Kogan, V.V. Pavlovskii, A.F. Volkov, Europhys. Lett. 59, 875 (2002)
17 P. Virtanen, T.T. Heikkilä, Phys. Rev. Lett. 92, 177 004 (2004)
18 P. Virtanen, T.T. Heikkilä, J. Low Temp. Phys. 136, 401 (2004)
19 A.F. Volkov, V.V. Pavlovskii, Phys. Rev. B 72, 14 529 (2005)
20 P. Virtanen, T.T. Heikkilä, Phys. Rev. B 75, 104 517 (2007)
21 N.B. Kopnin, Theory of Nonequilibrium Superconductivity, in Inter-

national Series of Monographs on Physics (Oxford University Press,
Oxford, 2001), no. 110

22 A. Schmid, G. Schön, J. Low Temp. Phys. 20, 207 (1975)
23 A.V. Zaitsev, Sov. Phys. J. Exp. Theor. Phys. 59, 1015 (1984)
24 Y.V. Nazarov, Superlattices Microstruct. 25, 1221 (1999)
25 K.K. Likharev, Rev. Mod. Phys. 51, 101 (1979)
26 M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New

York, 1996), 2nd edn.
27 A.F. Andreev, Sov. Phys. J. Exp. Theor. Phys. 22, 455 (1966)
28 I.O. Kulik, Sov. Phys. J. Exp. Theor. Phys. 30, 944 (1970)
29 N.B. Kopnin, A.S. Mel’nikov, V.M. Vinokur, Phys. Rev. Lett. 96,

146 802 (2006)
30 F.K. Wilhelm, G. Schön, A.D. Zaikin, Phys. Rev. Lett. 81, 1682 (1998)
31 T.T. Heikkilä, J. Särkkä, F.K. Wilhelm, Phys. Rev. B 66, 184 513 (2002)
32 B.J. van Wees, K.-M.H. Lenssen, C.J.P.M. Harmans, Phys. Rev. B 44,

470 (1991)
33 S.-K. Yip, Phys. Rev. B 58, 5803 (1998)
34 A.F. Volkov, Phys. Rev. Lett. 74, 4730 (1995)
35 J.J.A. Baselmans, A.F. Morpurgo, B.J. van Wees, T.M. Klapwijk, Nature

397, 43 (1999)
36 J.J.A. Baselmans, B.J. van Wees, T.M. Klapwijk, Phys. Rev. B 63,

094 504 (2001)
37 J. Huang, F. Pierre, T.T. Heikkilä, F.K. Wilhelm, N.O. Birge, Phys. Rev.

B 66, 020 507 (2002)
38 T. Schäpers, J. Malindretos, K. Neurohr, S. Lachenmann, A. van der

Hart, G. Crecelius, H. Hartdegen, H. Lüth, A.A. Golubov, Appl. Phys.
Lett. 73, 2348 (1998)

39 J. Kutchinsky, R. Taboryski, C.B. Sorensen, J. Bindslev Hansen,
P.E. Lindelof, Phys. Rev. Lett. 83, 4856 (1999)

40 R. Shaikhaidarov, A.F. Volkov, H. Takayanagi, V.T. Petrashov, P. Dels-
ing, Phys. Rev. B 62, R14 649 (2000)

41 J.J.A. Baselmans, T.T. Heikkilä, B.J. van Wees, T.M. Klapwijk, Phys.
Rev. Lett. 89, 207 002 (2002)

42 M.S. Crosser, P. Virtanen, T.T. Heikkilä, N.O. Birge, Phys. Rev. Lett. 96,
167 004 (2006)

43 T.T. Heikkilä, T. Vänskä, F.K. Wilhelm, Phys. Rev. B 67, 100 502(R)
(2003)

44 T.T. Heikkilä, Superconducting Proximity Effect in Mesoscopic Metals,
Ph.D. thesis, Helsinki University of Technology (2002)

45 A.F. Volkov, A.V. Zaitsev, Phys. Rev. B 53, 9267 (1996)
46 H. Courtois, P. Charlat, P. Gandit, D. Mailly, B. Pannetier, J. Low Temp.

Phys. 116, 187 (1999)
47 S.G. den Hartog, C.M.A. Kapteyn, B.J. van Wees, T.M. Klapwijk,

G. Borghs, Phys. Rev. Lett. 77, 4954 (1996)
48 G.R. Boogaard, A.H. Verbruggen, W. Belzig, T.M. Klapwijk, Phys. Rev.

B 69, 220 503 (2004)
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