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ment in the theory and practice of science, given over the years. I also thank Mikko
Paalanen for the opportunity to pursue research at the Low Temperature Labora-
tory, one of the leading scientific facilities in Finland. Martti Puska is thanked for
acting as a supervisor of this thesis on the behalf of the Department of Applied
Physics.

My thanks to Norman Birge, Mike Crosser, Göran Johansson, Matthias Meschke,
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ĜR/A/K 2× 2 nonequilibrium Green function, in Nambu space

~ Planck constant divided by 2π

I Charge current

Ic Critical current
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1 Introduction

Superconductivity is one of the striking discoveries of the last century: a macroscopic
state of matter that has unambiguous exotic properties which can be fully explained
only with quantum mechanics. Research in superconductivity has consequently
blossomed and sprouted many offshoots, both in the applied and pure sciences.

One of the active research fields today where superconductivity has found a natural
place is that of mesoscopic or nanophysics; physics concerned with structures larger
than atoms (l & 1 Å) but typically smaller than the macroscopic length scales
the human eye can easily see (l . 50µm). These structures are large enough to be
tailored to a given purpose, but small enough so that many microscopic and quantum
effects are expressed in them. Understanding of the properties of superconductivity
in this regime has both fueled theoretical interest and technological hopes, such
as those of understanding limits of quantum coherence and building a workable
quantum computer in solid state [1–3], and it has also contributed novel devices,
such as sensitive radiation detectors that are today very relevant for astronomy [4–6].

An important facet of superconductivity can be found in contacts between supercon-
ductors and non-superconducting materials: superconducting properties tend to leak
short distances across such interfaces. Although this proximity effect was discovered
and studied early [7], significant new aspects of it were revealed when an improved
control and understanding of the mesoscopic structures useful for its study were
achieved in the 1980-90s [8, 9]. Recently, studies also extended to novel nanomate-
rials, such as carbon nanotubes and graphene. [10–12] New data renewed interest
in theoretical studies of the proximity effect: for example its effect on transport
and other nonequilibrium properties of materials has been recently studied, as have
its behavior in more involved mesoscopic structures and prospective technological
applications. This thesis is a part of this ongoing work: a major section of the text
is devoted to describing the role the proximity effect has in thermoelectric transport
phenomena, which are one of the less understood aspects of the proximity effect.
We also discuss modelling transport in proximity circuits and certain signatures of
the proximity effect in devices driven more strongly out of thermal equilibrium.

A second topic of mesoscopic physics relevant for this thesis is the study of electri-
cal noise. As in the macroscopic world, noise can be a nuisance also in mesoscopic
systems, where it for example tends to destroy the delicate quantum coherence.
However, nonequilibrium noise from mesoscopic conductors carries a fingerprint of
the transport processes giving rise to it. [13] This has motivated a large body of
theoretical work studying the electrical fluctuations and especially their statistics in
detail. However, measuring the predicted effects has turned out to be challenging.
The latter part of this thesis details one of the mesoscopic devices suggested for ac-
cessing statistics of the fluctuations. It is also interesting to note that when quantum
coherence is taken into account, the problem of understanding the noise becomes
intimately related to the problem of quantum measurement [14]. Mesoscopic detec-
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tors that are themselves quantum coherent could shed experimental light on this
subtle issue.

Organization of this Thesis

The first part of this thesis concerns the superconducting proximity effect. Section 2
introduces it and gives general background information. Section 2.1 is a bird’s-eye
view on the nonequilibrium Green function technique that can be used to study it.
Sections 2.2 and 2.3 give some background and a few new results on the proximity
effect in and out of equilibrium.

Several main results of this thesis concerning thermoelectric effects in proximity
structures are discussed in Section 2.4. Results on other proximity-related effects
further away from equilibrium are discussed in Section 2.5.

The second part of this thesis, Section 3, discusses the noise in mesoscopic struc-
tures. This part contains a brief introduction to the mesoscopic noise and counting
statistics, and some results on the semiclassical noise theory is explained in 3.1. The
last part, Section 3.2, details a suggested measurement scheme for the spectrum of
a part of the counting statistics.

The thesis concludes with a summary of what was done and a discussion of some
open problems and future prospects in Section 4. This is followed by appendixes
that supplement technical detail for the main text.
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2 Superconducting proximity effect

When a non-superconducting (“normal”) material is in contact to a superconductor,
it can exhibit signs of superconductivity in its properties: the superconductivity
appears to leak slightly. This is called the superconducting proximity effect. [7] In
this section, some history and a physical picture concerning this phenomenon is
explained. Section 2.1 gives an overview on the theory with which it can be studied
quantitatively, and sections starting from 2.2 concentrate on the main topics of this
thesis.

Study of the proximity effect dates back to the 1950-1960s [7, 15, 16], when it was
examined in thin metal layers, manufactured on substrate or on another metal. A
characteristic example of these structures can be found in [17], a 11. . . 200 nm silver
(normal, “N”) film below 50 nm of lead (superconductor, “S”). The other dimensions
of the films were macroscopic. Exploration of the proximity effect concentrated on
variants of this type of structures and for example point contacts, both in equilib-
rium and out of equilibrium. To name a few examples, effects of bias voltage [18],
microwave irradiation [19], and magnetic field [20] were studied in S-N-S stacks be-
fore 1980s. Later, the field experienced a boost in the beginning of 1990s when more
complicated mesoscopic hybrid structures could be manufactured, and the proximity
effect could be studied in more detail. [8, 9] The subsequent work in the mesoscopic
proximity effect has not been restricted only to metal structures: its fingerprints
have been observed in 2D electron gases in semiconductors [21], and unconventional
effects have been predicted and seen in ferromagnets [22] and in novel nanomaterials
such as carbon nanotubes [10, 11] and graphene [12].

To understand where the proximity effect comes from, some facts on supercon-
ductivity need to be mentioned. Superconductivity is characterized by two major
microscopic features: existence of a condensate of Cooper pairs and a gap |∆| in
the density of states. [23] These have significant consequences on for example their
transport properties: the Cooper pair condensate can carry charge current without
resistance and generation of heat. However, Cooper pairs do not carry heat cur-
rent, and since no excitations (see Fig. 2.1) can occur at energies below |∆|, at low
temperatures T � |∆| the conduction of heat is inhibited. The two microscopic
features are also responsible for the proximity effect.

The mechanism occurring at N-S interfaces that gives rise to the proximity effect
is the Andreev reflection. [23, 24] (See Fig. 2.2.) An electron excitation cannot
directly penetrate a superconductor at energies below the superconducting gap,
since there are no single-particle states available. However, it can form a Cooper
pair with another electron, and the pair can propagate inside the superconductor.
The second electron leaves behind a hole-like excitation, which is correlated with the
original electron. Momentum and energy E is conserved in the pairing: electron has
momentum p ' pf + pfE/Ef and hole momentum p′ ' pf − pfE/Ef . This implies
that the Cooper pair has a total momentum |P | � pf , much smaller than the
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Figure 2.1: Density of states in a superconductor. There is an energy gap of size
2|∆| centered at the Fermi energy Ef , in which there are no single-particle states
available. In all known materials |∆| � Ef , so that at energies away from Ef , the
DOS approaches the normal-state value Nf .

Fermi momentum pf of the electron. Moreover, since holes have an opposite group
velocity v = ∇pE(p) as compared to electrons, the hole travels almost exactly to
the opposite direction, away from the interface. This coherent exchange of electrons
to holes (and vice versa) at superconducting interfaces causes superconductivity-like
correlations to appear in the vicinity of superconductors.

In the language of quantum mechanics, the coherence implied by the Andreev re-
flection can be quantified by the correlation function [7, 25]

F †(R, t2; R, t1) ∼
〈
ψ†(R)U(t2, t1)ψ

†(R)U(t1, t2)
〉
, (2.1)

which is large near and inside superconductors, and zero deep inside non-super-
conducting materials. In the above expression, the rightmost ψ† creates the electron
excitation at point R, the time evolution U(t2, t1) moves time forward by t2 − t1,
and the leftmost ψ† probes for a hole excitation at the starting point at the later
time t2. An overview how this type of correlation functions can be calculated from
basic principles is given in subsequent sections.

How far from the superconductor does the proximity effect reach? A rough dimen-
sional analysis can be made: [9] consider again the Andreev reflection in Fig. 2.2.
The difference ∆p = 2Epf/Ef between electron and hole momenta implies that the
two will lose phase coherence at distances l for which ∆φ = l∆p/~ & π. In clean
metals, at distance d from the interface, typical l is l = d, and for dirty metals where
the electron is scattered from many impurities, this is instead given by the diffusion
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Figure 2.2: Andreev reflection at a superconductor–normal-metal interface. Elec-
tron e− starting at point R at time t1 hits the interface at time t′. It can enter the
superconductor only by pairing with another electron and forming a Cooper pair.
The pairing creates a hole excitation h+, which propagates in the opposite direction,
and finally back to R. This coherent process creates electron-hole correlations near
the interface.

length l ∼ vd2/2D, where D is the diffusion constant. This means that the prox-
imity effect has a certain characteristic coherence length scale: ξ ∼ ~v/E in clean
metals and ξ ∼

√
~D/E when the impurity concentration is large. At equilibrium,

relevant excitation energies E are given by the temperature T . For typical metal
parameters, the corresponding length is then ξT ∼ 0.1 . . . 1µm at the temperatures
below 1 K where for example aluminum is still superconducting. Hence, the prox-
imity effect manifests on length scales that are well inside the domain of mesoscopic
physics.

Andreev reflection also offers a way for Cooper pairs to pass through non-super-
conducting metals: [26, 27] the hole reflected back from one interface can enter a
second superconducting interface, be reflected back as an electron, and this process
can repeat. Electrons bound in this way between two interfaces coherently transfer
charge 2e per cycle, without dissipation: supercurrent can flow through such an S-N-
S link. By similar reasoning as in the above argument, the characteristic energy scale
for these Andreev bound states is given by the transport energy ET = ~v/d or ET =
~D/d2. However, it is limited from above by the magnitude of the superconducting
energy gap ∆, giving the energy range in which Andreev reflection is possible.

The physical picture of Andreev reflection explains several features of the proximity
effect. In the following section, an overview on the theory of inhomogeneous su-
perconductivity that explains it rigorously is given. Below it, in Section 2.2.2 this
theory is applied for finding a convenient expression for supercurrents in mesoscopic
structures (cf. VII). Analysis of the effect of magnetic field in VIII is discussed in
2.2.3, and the tools used for describing thermoelectricity in V and VI are discussed
in Section 2.3.2. Results concerning the thermoelectric proximity-Seebeck effect in
I, II, and IV are reported in Section 2.4. Properties of its time-reversed counter-
part, the proximity-Peltier effect discussed in V is then explained in Section 2.4.2.
The last section 2.5 concentrates on two out-of-equilibrium effects: analysis of the
distribution function modification in III, and discussion of stability of phase config-
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urations under nonequilibrium in VII.

2.1 Quasiclassical theory: Boltzmann equations for supercon-
ductivity

The quasiclassical theory is a Green’s function technique with certain simplifications
that are valid for metals. Superconductivity fits naturally in this framework; the
correlation function (2.1) is a part of the total the Green function. When dealing
with nonequilibrium problems, the final quasiclassical equations split naturally into
two parts: one describing the superconducting correlations (eg. the F function), and
one describing the kinetics of excitations. The final kinetic equation often resembles
an extension of the Boltzmann equation. [28, 29] Consequently, quasiclassics can be
seen as the appropriate extension of the semiclassical method to superconductors.

This section contains no new results, and similar discussions can be found in text-
books [30–33] and reviews [29, 34]. The main motivation for this brief review is to
start from first principles and proceed in a linear fashion up to the point where the
publications I, II, III, IV, VI, and VIII begin, to indicate where the subsequent
parts of this thesis and the published articles fit in a wider theoretical context. Be-
low, we introduce the basis of the quasiclassical theory of inhomogeneous nonequilib-
rium superconductivity, the corresponding notation, the parameterizations used in
practical calculations, and finally theoretical additions needed in mesoscopic struc-
tures.

2.1.1 Nonequilibrium Green’s functions

Describing many-body quantum systems runs immediately into two problems: First,
the full quantum-mechanical description of aN -particle system is given by its density
matrix, ρ(R1, . . . ,RN ; R′

1, . . . ,R
′
N). However, for large N (eg. number of electrons

in a block of metal), it is in general impossible to handle this quantity because of the
large number of dimensions. Second, while it is possible to write down the expression
for ρ that describes a system in equilibrium, there is no single well-defined ρ that
describes a system that is out of equilibrium. Indeed, a system of particles can be
driven out of equilibrium in many different ways, and the challenge is in describing
the time evolution of such systems in a tractable fashion.

The above problems in many-body physics call for coarse-graining: describing the
system using a simpler quantity, which obeys laws that can be derived from those
governing ρ. The nonequilibrium Green function methods are one systematic way
to do this. They usually follow a formulation similar to that of Keldysh. [29, 35]

The nonequilibrium theory in electron systems is usually formulated in terms of
correlation functions: the Green functions G(1, 1′) = −iTr{Tc[Scψ(1)ψ†(1′)]ρ} with
1 = (r1, σ1, τ1) specifying the location, spin and contour-time arguments of the
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Figure 2.3: Keldysh contour, consisting of forward (c1) and backward (c2)
branches, on which the Green function G(τ1, τ2) is defined. The event at τ1 oc-
curs after τ2 on the contour, but at an earlier time. Contour ordering Tc[ψ(τ1)ψ(τ2)]
places the operator with the last τ first, contributing a factor of −1 for each trans-
position.

electron creation and annihilation operators. Meaning of Tc, Sc, and the contour is
explained below. The main point is that the two-point function G depends only on
two coordinates and can describe the state of the system in a coarse-grained fashion:
many physical observables, such as particle or current densities, can be written in
terms of Green functions, and so many problems are essentially solved after the
Green function is found. However, the Keldysh technique is not restricted to the
above one-point Green functions; other quantities describing correlations in more
detail can be defined and handled (see eg. [36]).

The main idea leading to equations of motion in the Keldysh approach is very
natural: The expectation value of a quantum operator evolving under Hamilto-
nian H(t) = H0 + VS(t) can in the interaction picture be written as 〈A(t)〉 =
Tr{T̄ [exp(−i

∫ t0
t

dt′ V (t′))]A(t)T [exp(−i
∫ t

t0
dt′ V (t′))]ρ(t0)}, using (anti)time order-

ing operators (̄ )T . 1 This can be compactly rewritten using a contour ordering (see
Fig. 2.3): 〈A(t)〉 =

〈
Tc[exp(−i

∫
c
dτ ′ V (τ ′))A(τ)]

〉
= 〈Tc[ScA(τ)]〉. Note that the

end-point tc of the contour can be chosen arbitrarily provided t < tc; 〈A(t)〉 does
not depend on V (t′) for t′ > t. That there is only one time-ordering operator is use-
ful for applying methods from the standard toolbox of diagrammatic perturbation
theory. [29]

Assuming that ρ(t0) is the equilibrium state ofH0, 〈. . .〉 = Tr{e−βH0(. . .)}/Tr{e−βH0},
the standard perturbation expansion applies,

〈
Tc[Scψ(1′)ψ†(1′′)]

〉
=

∞∑
k=0

(−i)k

k!

∫
c

d1 . . . dk
〈
Tc[V (1) . . . V (k)ψ(1′)ψ†(1′′)]

〉
. (2.2)

Now, provided H0 is quadratic in ψ, one can apply the Wick theorem to decompose
the time-ordered products

〈
Tc[ψ

(†) . . . ψ(†)]
〉

0
into expressions involving only G. The

terms obtained from the (formal) perturbation expansion can be reordered and

1Most of this thesis is written in dimensionless units, ~ = kB = e = 1. Units are restored to
emphasize important final results only.
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collected into a self-energy Σ in a Dyson equation

[G−1
0 (1, 3)− Σ(2, 3)]G(3, 2) = δ(1− 2) , (2.3)

where G−1
0 (1, 3) = δ(1 − 3)[i∂t3 − H0(3)] and H0(3) is the operator on (r3, σ3, τ3)

representing the Hamiltonian H0; for example for free electrons H0(3) = − ~2

2m
(∇r3−

iA)2 where A is the vector potential and m the electron mass. As usual, integration
and summation over repeated indices is implied in the notation above. The self-
energy Σ can be written as a functional of G, and it effectively plays the role of
a mean field where the electrons move in. In the context of solid state, it can
represent interactions such as scattering of electrons from phonons, impurities, or
other electrons. [32]

Alternatively to the perturbation expansion, one can also derive the Dyson equation
by finding the equation of motion [33, 37] for the contour time dependence of the
Green function G. The equation will in general contain multi-point Green functions,
eg. G(12; 34), which do not reduce to two-point functions. In this framework, the
self-energies can be understood as approximations for the expressions containing
these terms, often motivated by the perturbation expansion (2.2).

The above framework, Green functions and their Dyson equations on the Keldysh
contour, has proved successful in studies of nonequilibrium superconductivity. How
superconductivity can be taken into account is explained in the next section.

2.1.2 Superconductivity

The physical cause for conventional superconductivity is an attractive interaction
between electrons, mediated by phonons. There are several ways to model this:
simple point-like electron-electron interaction V = g

∫
d3r ψ†(r)ψ†(r)ψ(r)ψ(r) with

g < 0 [25, 38–40], local interaction mediated by bosons V = g
∫

d3r ψ†(r)ψ(r)ϕ(r)
plus some model for the boson field [30], or other alternatives. An important point
is that the ground state of this type of models is the superconducting state (at zero
temperature), even for arbitrarily weakly attractive interaction. [38–40] The exact
form of a weak interaction turns out to be unimportant for understanding many of
the phenomena associated with superconductivity.

Superconducting state is characterized by finite electron-hole correlations, as noted

by Bardeen, Cooper and Schrieffer: [38–40] correlators such as 〈ψ↓ψ↑〉 and
〈
ψ†↑ψ

†
↓

〉
are finite, unlike in the normal state. This property of the superconducting ground
state must be taken into account when approximating the multi-point function
G(12; 34), or in the perturbation expansion (2.2). For this purpose, one can define
anomalous Green’s functions, [25, 41] F (1, 1′) = −i 〈Tc[Scψ(1)ψ(1′)]〉 and F †(1, 1′) =
−i
〈
Tc[Scψ

†(1)ψ†(1′)]
〉
. Including them and approximating the interaction term (eg.

via the perturbation expansion) leads to a set of Dyson equations — the Gor’kov
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equations [25]

[G−1
0 − Σ]G− ΣFF

† = δ , [G−1
0 − Σ]F − ΣF Ḡ = 0 , (2.4)

−[G−1∗
0 − Σ̄]F † + ΣF †G = 0 , [G−1∗

0 − Σ̄]Ḡ+ ΣF †F = δ , (2.5)

which determine G, F , F †, and Ḡ(12) = G(21), once the self-energies Σ are given.
Here, δ(1, 2) = δ(r1 − r2)δ(τ1 − τ2)δσ1,σ2 . The above equations describe not only
superconductivity, but also the superconducting proximity effect: the interaction
g can depend on the position r, being zero inside normal metals and finite inside
superconductors.

The self-energy terms in the Gor’kov equation depend on the model of the inter-
action. What is done in the conventional weak-coupling approximation is that the
parts of Σ and Σ̄ related to the interaction (g) are usually absorbed into G0, and
subsequently neglected: they mostly adjust some parameters such as the chemical
potential of the normal-state electron system and bring no qualitative new behav-
ior. Also, inserting eg. the point interaction, one can relate the self-energies ΣF and
ΣF † back to F and F †. For example, the equations of motion give in the simplest
approximation [25, 30]

ΣF (1, 2) = gF (1, 2)δ(τ1 − τ2)δ(r1 − r2) , (2.6)

ΣF †(1, 2) = gF †(1, 2)δ(τ1 − τ2)δ(r1 − r2) . (2.7)

For a more detailed phonon model, similar results are found in the weak-coupling
limit, see for example [29, 30].

Using the “off-diagonal” part of the self-energy, one can define the superconducting
pair potential ∆, sometimes also known as the order parameter,

∆σ1,σ2(r1, τ1) ≡ |g|F (r1, σ1, τ1; r1, σ2, τ1) , (2.8)

which is finite inside a superconductor, but vanishes in the normal state. Its presence
also causes an energy gap of size |∆| to open in the density of states as indicated in
Fig. 2.1.

The above concepts, the“anomalous”functions F and F † and the order parameter ∆,
are fundamental in descriptions of superconductivity. However, for eg. numerical
calculations it is necessary to step back from the abstract Keldysh contour and
specify the structure of G and F in more detail. This is discussed next.

2.1.3 Matrix structure

Keeping track of the anomalous functions is made easier by replacing the Green

function with a 2× 2 matrix, Ĝ(1, 2) = −iτ̂3
〈
Tc[ψ̂(1)ψ̂(2)†]

〉
, ie.,

[Ĝ(1, 2)]k1,k2 = −i(τ̂3)k1,k1

〈
Tc[Scψ

k1(1)ψk2(2)†]
〉

(2.9)
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using the Nambu spinor ψ̂: ψ1(1) = ψσ1(r1, τ1), ψ
2(1) = ψ†σ̄1

(r1, τ1). [41] One can
express 〈ψψ〉,

〈
ψψ†

〉
,
〈
ψ†ψ

〉
, and

〈
ψ†ψ†

〉
in terms of elements of Ĝ. The notational

simplification requires defining a similar 2× 2 matrix structure for V and for Σ, but
it preserves the structure of the theory. For example, the Gor’kov equation reads

[Ĝ−1
0 − Σ̂]Ĝ = 1̂δ , (2.10)

where a product between the functions also involves a matrix product in the Nambu
space.

Another layer of matrix structure is useful if one wants to map the Green’s functions
G(τ, τ ′) defined on the contour to functions of time, G(t, t′). For each t, t′ there are
four possible ways to place the corresponding τ and τ ′ on the contour. By choosing
the mapping carefully, one can guarantee an isomorphism between contour-ordered
functions and 2× 2 matrix functions (̌ ),

A(1, 2) 7→ Ǎ(r1, σ1, t1, r2, σ2, t2) , B(1, 2) 7→ B̌(r1, σ1, t1, r2, σ2, t2) , (2.11)

A(1, 3)B(3, 2) 7→
∑
σ3

∫
dr3 dt3 Ǎ(r1, σ1, t1, r3, σ3, t3)B̌(r3, σ3, t3, r2, σ2, t2) ,

and again retain the structure of the theory. There are multiple equivalent ways
for choosing this mapping. [42] One convenient choice often used in problems of
nonequilibrium superconductivity is [29]

Ǧ =

(
ĜR ĜK

0 ĜA

)
, (2.12)

[ĜR(1, 2)]k1,k2 = Ĝc1,c1 − Ĝc1,c2 = −i(τ̂3)k1,k1θ(t1 − t2)
〈
{ψk1(1), ψk1†(2)}

〉
, (2.13)

[ĜA(1, 2)]k1,k2 = Ĝc1,c1 − Ĝc2,c1 = +i(τ̂3)k1,k1θ(t2 − t1)
〈
{ψk1(1), ψk2†(2)}

〉
, (2.14)

[ĜK(1, 2)]k1,k2 = Ĝc2,c1 + Ĝc1,c2 = −i(τ̂3)k1,k1

〈
[ψk1(1), ψk2†(2)]

〉
, (2.15)

where the Gc1,c2 notation indicates a contour function, with τ1 and τ2 fixed on either
the upper (c1) or lower (c2) branches of the Keldysh contour. The above represen-
tation is what is used below. It turns out that the Retarded (R) and Advanced (A)
Green functions mainly describe the available electron states, whereas the Keldysh
(K) function has to do with their population.

For example, equation (2.6) can be written in the above form as

ΣR
F (t1, t2) = gFc1,c1(t1, t2)δ(t1 − t2)δ(r1 − r2) =

g

2
FK(t1, t2)δ(t1 − t2)δ(r1 − r2) ,

ΣA
F (t1, t2) = gFc1,c1(t1, t2)δ(t1 − t2)δ(r1 − r2) = ΣR

F (t1, t2) ,

ΣK
F (t1, t2) = 0 , (2.16)

since Fc1,c1(t, t) = Fc1,c2(t, t) = Fc2,c1(t, t). The corresponding self-consistency rela-
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tion for ∆ then reads

∆(r, t) =
|g|
2
FK(r, t; r, t) =

|g|
2

∫ Ec

−Ec

dE

2π
FK(r, r, E, t) (2.17)

in terms of the Fourier transform of FK ∼ 1/E in the time difference. Note the BCS
cutoff energy Ec inserted by hand here: it is necessary to regularize a logarithmic
divergence in the point interaction approximation. The physical origin of the cutoff
is that real interactions caused by phonons cannot operate at very short time scales
where there are no corresponding modes in the atom lattice. Consequently, the
cutoff Ec is of the order of the Debye frequency ωD, as a calculation with a better
interaction model shows. [30]

The above formulation contains still the spin indices in 1 = (σ1, r1, t1). The work in
this thesis concentrates on conventional spin-singlet superconductors, in which the
spin structure of the elements of Ǧ is fixed: F, F † ∝ − iσ2 and G, Ḡ ∝ 1. For this
case, one can consider the quantities as scalars in the spin space, and spin appears
only as a prefactor of 2 in observables. Note that the Nambu spinors (2.9) were
defined with this simplification in mind.

Combining the above levels of matrix structure allows the theory of nonequilibrium
superconductivity to be formulated in terms of 4× 4 matrices,

Ǧ =


GR FR GK FK

−F †R ḠR F †K ḠK

0 0 GA FA

0 0 −F †A ḠA

 , (2.18)

in the Keldysh (̌ ) ⊗ Nambu (̂ ) spaces. However, the equation of motion (2.10)
contains some non-essential information and can be simplified, as discussed next.

2.1.4 Quasiclassical approximation

The quasiclassical theory is the geometrical optics of quantum transport. Its ap-
proximations aim to simplify the |r1−r2| dependence of the electron Green function,
by averaging out the oscillations occurring on the scale of the Fermi wavelength λf

of conduction electrons. [24, 43] In the Fourier-transformed Wigner representation,
this is equivalent to describing the behavior of a sharp peak on the Fermi surface
k−1 = λf in momentum space. [44–46] Similarly to geometrical optics, quasiclassical
theory does not describe phenomena that occur on length scales smaller than the
wavelength. Nevertheless, since λf is for many metals of the order of atomic length
scales, quasiclassical methods are a powerful tool for describing many phenomena,
conventional inhomogeneous superconductivity among them.

The usual way [44–46] of deriving the necessary approximations is to first transform
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to a Wigner representation, where

Ǧ(R,p) =

∫
dr e−ip·rǦ(R +

r

2
,R− r

2
) , (2.19)

(Ǎ⊗ B̌)(r1, r2) 7→ e
i
2
(∇p1 ·∇R2

−∇p2 ·∇R1
)Ǎ(R1,p1)B̌(R2,p2)

∣∣
R1=R2=R,p1=p2=p

,

(2.20)

with ⊗ denoting spatial and time convolution (see Appendix B), then expand the
exponent of differential operators in the left-right subtracted Dyson equation, [G−1

0 −
Σ, G]⊗ = 0 to first order in gradients, and finally integrate over ξ = p2/(2m)
neglecting the |p|-dependence of the self-energy. This is permissible due to the peak
of G and smoothness of Σ at the Fermi surface. Subsequently,2

Ǧ 7→ ǧ(R, p̂, t, t′) =
i

π

∫
dξ Ǧ(R, p̂p(ξ), t, t′) , (2.21)

and calculations can after that be made using quasiclassical Green’s functions ǧ
only. This approximation however neglects some physics, which is discussed in more
detail Section 2.4.

The quasiclassical Dyson equation is the Eilenberger equation, [45] which also applies
in nonequilibrium, [48, 49]

vf · ∇̂ ◦ ǧ + [−iετ̂3 + φ+ σ̌ + ∆̌, ǧ]◦ = 0 . (2.22)

Above, ◦ denotes time convolution, and ∇̂ ◦ B = ∇RB − i[Aτ̂3, B]◦ is the gauge-
invariant gradient involving the vector potential A(t, t′) = δ(t−t′)A(t). In addition,
φ(t, t′) = φ(t)δ(t− t′) is the scalar potential, σ̌ the self-energy at the Fermi surface,
and ε(t, t′) = iδ(t− t′)∂t′ . The velocity vf (p̂) is perpendicular to the Fermi surface,
and |vf | = kf/m. The superconducting pair potential ∆̌ = τ̂↑∆ − τ̂↓∆

∗ is off-
diagonal in the Nambu space and diagonal in Keldysh, as indicated in Eq. (2.16).
The above already strongly resembles a transport equation, and in fact Boltzmann-
like transport equations can be derived from it.

However, because of the left-right subtraction, (2.22) does not fully determine the
Green’s function: since the equation is homogeneous, L{ǧ} = 0, and the coefficient
operator is linear and distributive, L{ǎ ◦ b̌} = L{ǎ} ◦ b̌+ ǎ ◦ L{b̌}, for a solution ǧ,
any ǧ ◦ ǧ ◦ . . . ◦ ǧ is also a solution. The missing information can be represented by
a normalization condition ǧ ◦ ǧ = 1̌δ. [32, 43, 45, 46] It is useful to note that the
Eilenberger equation does not contain spatial convolutions, and the equation can be
solved by integrating along trajectories in the velocity directions vf (see eg. [50]).

The direction-of-momentum dependence in the Eilenberger equation can be ne-

2The integral actually needs to be cut off at some large ξc or otherwise regularized [45] to
render it convergent. Moreover, usually one also assumes that the Green function and the self-
energies are already renormalized, ie., strong interactions are absorbed in quantities such as the
quasiparticle mass and electron-phonon coupling constants. In this sense, the quasiclassical theory
can be understood as an extension of Landau’s Fermi liquid theory, see e.g. [47].
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glected in some cases. One important case is the dirty limit; it is valid for metals
with a large enough concentration of impurities that scatter electrons and randomize
their trajectories. This transforms the Eilenberger equation to a diffusion equation
for the momentum-averaged (ie. s-wave) Green function G = 〈g〉p̂, 3

D∇̂ ◦
(
Ǧ ◦ ∇̂ ◦ Ǧ

)
=
[
−iε τ̂3 + 1̌φ+ σ̌in + ∆̌, Ǧ

]
◦ . (2.23)

First derivation of an equation resembling this was given by Usadel. [51] Here,
D = 1

3
vf l

2 is the 3D diffusion constant corresponding to the elastic scattering length
l, and σ̌in a momentum-averaged self-energy from which impurity scattering has
been subtracted. This equation is solved below for several static nonequilibrium
situations. Note that for these problems, the scalar potential φ disappears from
the above equation, and self-consistency of the electric field can be consequently
neglected.

After the Green functions are known, one can obtain the observable charge and
current densities directly from them [30, 47]

ρ(R, t)− ρ0 = −2Nfe
2φ(R, t)− eNf

π

2
Tr ǦK(R, t, t) , (2.24a)

j(R, t) =
πσN

e
Tr[(Ǧ ◦ ∇̂ ◦ Ǧ)K(t, t)τ̂3] , (2.24b)

where σN is the normal-state conductance, ρ0 the normal-state charge density, and
Nf the density of states per unit volume at the Fermi surface. Note that the ex-
pression for the change ρ − ρ0 in the charge density splits in the quasiclassical
approximation into two parts: the first ∝ φ is a normal-state high-energy contri-
bution, and the latter the low-energy contribution µn ∝ ǦK that is affected by
superconductivity. [30]

In addition to the above, one has the self-consistency equation for the gap parameter
∆, which in terms of the quasiclassical function reads [30]

∆(R, t) =
π

2
λfK(R, t, t) , (2.25)

where the superconducting coupling constant is λ = |g|Nf . One should note that
the pair potential ∆ is related to the potential µs(R, t) = (2e/~)∂t arg ∆(R, t) of
the Cooper pairs. In nonequilibrium situations, this can differ from the electric
potential eφ.

When one combines the Eilenberger (or Usadel) equation with the Maxwell equa-
tions and self-consistency condition, the set of equations is closed. Moreover, it is
tractable in many practical situations.

3The left-hand side of the equation is often written as [∂, Ǧ ◦ ∂ ◦ Ǧ]◦ with long gradient ∂ =
∇ − iAτ̂3. This is equivalent to the above form, since ∇̂ ◦ (Ǧ ◦ ∇̂ ◦ Ǧ) = [∂, Ǧ ◦ [∂, Ǧ]◦]◦ =
[∂, Ǧ ◦ ∂ ◦ Ǧ]◦ − [∂, Ǧ ◦ Ǧ ◦ ∂]◦ = [∂, Ǧ ◦ ∂ ◦ Ǧ]◦ − [∂, ∂]◦ = [∂, Ǧ ◦ ∂ ◦ Ǧ]◦.
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2.1.5 Parameterization

Solving the above equations for the Green’s function becomes easier if one can
eliminate the normalization condition ǧ ◦ ǧ = 1̌δ. One convenient way to do this for
the Retarded block is the Riccati parameterization [52–54]

ĝR =

(
N 0

0 Ñ

)
◦
(

1− γ ◦ γ̃ 2γ
2γ̃ −1 + γ̃ ◦ γ

)
,

N = (1 + γ ◦ γ̃)−1 ,

Ñ = (1 + γ̃ ◦ γ)−1 ,
(2.26)

where the inverses (. . .)−1 are defined in the sense C−1 ◦ C = δ. The advanced
function is, by definition, related to the retarded via ĝA = −τ̂3(ĝR)†τ̂3, where the
hermitian conjugate exchanges the Green function arguments, 1 ↔ 2, and trans-
poses and complex conjugates the matrix structure. The Keldysh function can be
parameterized similarly by

ĝK =

(
N 0

0 Ñ

)
◦
(
x− γ ◦ x̃ ◦ γ† −x ◦ γ̃† − γ ◦ x̃
x̃ ◦ γ† + γ̃ ◦ x x̃− γ̃ ◦ x ◦ γ̃†

)
◦
(
N † 0

0 Ñ †

)
, (2.27)

or, using a distribution function h [55, 56]

ĝK = ĝR ◦
(
h 0

0 h̃

)
−
(
h 0

0 h̃

)
◦ ĝA . (2.28)

The above parameterizations are valid also for time-dependent problems where the
products and inverses are noncommutative.

For time-independent problems, the distribution functions h and h̃ can be related
to the more commonly used electron distribution function by

h(E) = 1− 2f(µS + E) , h̃(E) = 2f(µS − E)− 1 . (2.29)

In the normal state, the distribution function f coincides with the semiclassical
distribution function of the Boltzmann theory, [28] which is proportional to the
particle density in a given energy interval, N ∝ f(E)δE. Moreover, the Eilenberger
equation (2.22) is in this approximation equivalent to the semiclassical Boltzmann
equation. [29]

For time-independent problems, the θ-parameterization is also often used:

ĝR =

(
cosh θ eiχ sinh θ

−e−iχ sinh θ − cosh θ

)
. (2.30)

It is slightly easier to handle analytically than (2.26). However, the Riccati parame-
terization is in practice more useful for numerical work due to several reasons: first,
|γ| ≤ 1 whereas θ is unbounded. Second, it turns out that χ can undergo rapid
spatial changes where θ is small, and even discontinuous ones where θ = 0. Third,
hyperbolic functions have 2πi periodicity which can lead to spurious solutions. These
issues can be seen for example in I and II, where they limit the numerically acces-
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Figure 2.4: Left: A scanning electron microscope image of the mesoscopic metal
structure studied in IV. Superconductor (aluminum) appears dark gray, the normal
metal (silver) light gray; both are deposited on a wafer of silicon that can be seen as
the dark background. Right: Schematic description of matrix currents Ǐ in a part
of the structure.

sible range of phase differences to ϕ . 0.8π. The Riccati parameterization does not
exhibit such problems, and was used in the later publications.

2.1.6 Restricted geometries

When proximity effect is studied in mesoscopic circuits, such as that shown in
Fig. 2.4, two facts need to be accounted for. First, the equations need bound-
ary conditions since the structure is not of infinite size. Second, the quasiclassical
equations need to be considered only within the metallic parts of the structure that
may be thin, which may allow for simplifications.

Boundaries between different materials or vacuum interfaces cannot be handled
with the quasiclassical equations, since the rapid changes in structure can there
occur on length scales small compared to λf . The quasiclassical equations need to
be supplemented with boundary conditions that give a coarse-grained description
of the interface in terms of the quasiclassical functions. Such boundary conditions
have been developed by various authors, both for the Eilenberger equation [54, 57]
and for the Usadel equation. [58, 59] A general boundary condition for the Usadel
equation corresponding to an interface can be written as [59]

Ǐa = −Ǐb =
∑

n

2Tn[Ǧa, Ǧb]

4− Tn({Ǧa, Ǧb} − 2)
, (2.31)

where the subscripts refer to the right part of Fig. 2.4. The scalars Tn ∈ [0, 1]
are transmission eigenvalues of transmission channels n describing the properties of
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the interface, and Ǐ are matrix currents. [59, 60] In those parts of the structure
where the Usadel equation applies, the matrix current density is ǰ = Ǧ∇̂Ǧ, which
connects Eq. (2.31) to the Usadel equation. The above boundary conditions written
in terms of the parameterizations introduced in the previous chapter can be found
for example in Refs. [6, 34, 54, 61].

If the considered geometry consists of cylinders of metal (“wires”) whose cross-
sections A are small compared to their length, one can average the equations across
the cross-section. A similar approximation can be made in the presence of transla-
tion invariance (e.g. in the wide S-N-S thin film stacks). Typically, this quasi-1D
approximation is equivalent with dropping transverse gradients from the equations.
At connections where two or more such wires meet (“nodes”), one then needs an
additional condition, which turns out to be the conservation of matrix currents
[59, 60]

Ǧ is continuous ,
∑

k

Ǐk = 0 , Ǐk = Akσk(Ǧ∂xǦ)k , (2.32)

where k indexes the wires connecting to the node, and the gradients point toward
the node, see Fig. 2.4. The above equations are Kirchoff-type conditions for the
matrix current Ǐ. [59, 60]

When one is interested in only the properties of the proximity effect, the nearby su-
perconductors can often be approximated to remain unperturbed by the contacted
normal metal parts, ie., “rigid”. [62] This can be justified in the limit where the size
of the NS contact is vanishingly small, as compared to the superconducting coher-
ence length, ξ0 =

√
~D/2|∆| in dirty metals, and the approximation can produce

qualitatively correct results even away from this limit. However, at large energies
E > |∆|, excitations in the superconductor may relax slowly in nonequilibrium
situations, and this may need to be taken into account. [62]

This completes the overview on the basic theoretical concepts in the background of
I, II, III, IV, VI, and VIII. The following sections take a closer look on topics
discussed in these articles.

2.2 Equilibrium

In this Section, some aspects of the thermal equilibrium state are discussed, as
relevant for the published articles. First, the quasiclassical equations at equilibrium
are discussed and general features of supercurrents in superconductor–normal metal
structures are remarked on. Second, the approximation scheme derived for and
used in VII for calculating supercurrents in multiterminal structures is explained.
Finally, effects caused by magnetic field in the interferometers studied in I, II, III,
IV, and its effect on the supercurrent measured in VIII are addressed.

At thermal equilibrium, the quasiclassical equations are radically simplified. The
first simplification permissible at equilibrium is that all ◦ products reduce to ordinary
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matrix or scalar products, since at equilibrium no quantity depends on time T in
the (E, T ) representation (see Appendix B). Second, a detailed-balance relation (see
eg. [29, 37]) implies that ǦK = (ǦR − ǦA)(1− 2f0), signifying that the population
of electrons is given by the equilibrium Fermi function f0(E) = [1 + e(E−µ)/T ]−1

depending on the chemical potential µ and the temperature T . What remains to be
solved is only the retarded Green function, which is in the diffusive limit determined
from the equations [53, 54]

D(∇− 2iA)2γ − 2γ̃[(∇− 2iA)γ]2

1 + γγ̃
= −2iEγ + i∆∗γ2 + i∆ , (2.33a)

D(∇+ 2iA)2γ̃ − 2γ[(∇+ 2iA)γ̃]2

1 + γγ̃
= −2iEγ̃ + i∆γ̃2 + i∆∗ , (2.33b)

in the Riccati parameterization, or in the θ-parameterization,

D∇2θ = −2iE sinh θ +
v2

S

2D
sinh(2θ) + 2i|∆| cos(φ− χ) cosh(θ) , (2.34a)

∇ · (−vS sinh2 θ) = −2i|∆| sin(φ− χ) sinh(θ) , vS ≡ D(∇χ− 2eA) , (2.34b)

where ∆ = |∆|eiφ. In both of the above it is assumed that the inelastic self-energy
Σ can be neglected. It can be seen in both equations that in the absence of pairing
(g = 0, ∆ = 0), the proximity effect has a length scale lE =

√
D/2|E| of decay,

which was also the conclusion obtained from the physical arguments in Section 2.

Due to the equilibrium form of ǦK , the inverse Fourier transforms required for
obtaining the observables (2.24) also eventually lead to energy integrals of the form∫ ∞

−∞
dE g(E) tanh

(
E

2T

)
= 2iπT

∑
ωn=2πT (n+1/2)>0

gM(iωn) (2.35)

where tanh = 1− 2f0 is related to the Fermi function, and function g is analytic on
the upper half-plane. As indicated above, the result can be expressed in terms of
residues of tanh, and an appropriately analytically continued function gM , evaluated
at the Matsubara frequencies ωn [63]. This also directly shows why ξT =

√
D/(2πT )

is the decay scale of proximity effect at equilibrium: physical quantities depend on
the Green functions only at energies E = iωn, and the smallest of these frequencies
is ω0 = πT .

2.2.1 Supercurrent

One of the important consequences of the proximity effect is that it allows current
to flow from one superconductor through a short (L/ξT not too large) normal metal
junction to a second superconductor, without dissipation. This is the DC Josephson
effect in proximity structures. The supercurrent IS is not driven by a potential
difference (which cannot exist at equilibrium), but a difference ϕ = φ2 − φ1 in the
phases of the superconducting order parameters ∆1, ∆2 at the two sides of the
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Figure 2.5: Current-weighed density of Andreev bound states (ie. spectral super-
current) in an S-N-S junction, for a fixed phase difference ϕ = π/2 and energy gap
|∆| = 30ET .

junction. In general, the current-phase relation IS(ϕ) can be complicated, but for
many types of junctions it resembles the Josephson result IS(ϕ) = sin(ϕ)Ic. [62, 64]

The supercurrent in S-N-S structures is carried by Andreev bound states. [26, 27]
Within the Usadel equation framework, they can be characterized with the quantity
(see [61, 65])

jS =
1

4
Im[ĜR∇ĜRτ̂3 − ĜA∇ĜAτ̂3] = Im[−vS sinh2(θ)/D] , (2.36)

which is essentially their density per energy interval, weighed by the current each in-
terval contributes. [34, 66] This quantity is called the“spectral supercurrent density”
below, as the total supercurrent is

IS =
−AσN

2e

∫ ∞

−∞
dE jS(E) tanh

(
E

2T

)
, (2.37)

ie., a weighed average of jS. A method for approximating js is also discussed in
the next section and in Appendix A.2. As seen in Fig. 2.5, jS has structure on the
energy scale of the Thouless energy ET corresponding to the distance L between the
superconductors and the diffusion constant D:

ET =
13.2µeV

153 mK× kB
× (D/200 cm2/s)

(L/1µm)2 , (2.38)

which is also a characteristic energy scale for many quantities in such structures.
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Table 2.1: Factors forming IP. Here, R is the resistance for a tunnel contact (R
is assumed large), θ0 = artanh(|∆|/E), γ0 = tanh(θ0/2), and N = 1/(1− γ2

0). For a
diffusive wire, L is the length, Aσ the area-conductance product, and k =

√
−2iE,

(p, q) p q a(E) b(E)
tunnel junction terminal node R−1Nγ0 R−1(2N − 1)
tunnel junction node node R−1 R−1

diffusive wire terminal node 4Aσke−kL tanh( θ0

4
) Aσk

diffusive wire node node Aσk csch(kL) Aσk coth(kL)

Table 2.2: Factors forming IP, at high temperature. It is assumed that ∆ � T
and

√
2πT � L, and that every current path goes through at least a single diffusive

wire segment: then IP ≈ 4(2πT )3/2
∏

(p,q)∈P a
′
p,q/

∏
r∈P

∑
(r,s)∈P b

′
r,s.

(p, q) p q a′ b′

tunnel junction terminal node (2R
√

2πT )−1 0

tunnel junction node node (R
√

2πT )−1 (R
√

2πT )−1

diffusive wire terminal node 4Aσ tan(π/8)e−L
√

2πT Aσ

diffusive wire node node 2Aσe−L
√

2πT Aσ

2.2.2 Multiterminal supercurrent

Often, one is interested in supercurrents flowing in multiterminal circuits: they are
experimentally accessible and can be used to characterize parts of the circuit. In
interpreting the experiments in III, IV, VII, VIII it was also important to know
what the quasiclassical theory predicts for these structures.

In practice, it is often possible to solve Usadel equations (2.33) numerically for a
given structure. However, this is not always necessary, since it is possible to devise
various approximations that give accurate analytical results in closed form. Finding
these results is of course not a new problem, as S-N-S proximity structures have
been studied for tens of years. However, the best-known results typically consider
only quasi-1D structures or are restricted to small junctions L < ξ, [62, 67] or are
computed separately for each special case. A generally applicable approximation
that I derived for article VII is discussed below, and the details can be found
in Appendix A.1. It is expected to be asymptotically exact in the limit of high
temperatures, T � ET . The result is based on linearizing the Usadel equation in
the structure: this is a commonly used approximation procedure in the literature,
but to my knowledge the result below has not been discussed earlier.

First, one divides the proximity structure to nodes, terminals and connectors, in
the spirit of circuit theory. [60] Connectors can here be quasi-1D diffusive wires
or tunnel junctions, and a node is a small portion of metal in the circuit, to which
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Figure 2.6: Schematic representations of proximity circuits. Nodes are marked
with black dots, diffusive wires with black lines between nodes, and tunnel junctions
with boxes. (a) Example with two current paths P1 = [(i, 1), (1, 2), (2, j)] and
P2 = [(i, 1), (1, 3), (3, 2), (2, j)] marked. (b) Factor coming from the first step in
P1. (c) T-shaped circuit, with two superconducting terminals. Structures of this
type were studied also in III and VIII. (d) Loop, with threading magnetic flux Φ,
studied also in [68–71]. (e) SINIS structure, consisting of two tunnel barriers and a
diffusive wire.

several connectors are joined. Some examples are shown in Fig. 2.6. The main result
is that the supercurrent between two terminals (see Fig. 2.6a) can then be expressed
as

Iij =
∑
P

IP sin(φi − φj − 2

∫
P

dl ·A) , (2.39)

IP = 2 Re

∫ ∞

−∞
dE tanh

(
E

2T

) ∏
(p,q)∈P apq(E)∏

r∈P

∑
(r,s)∈P brs(E)

(2.40)

where the sum over P runs over all paths that connect j to i and do not visit other
terminals. The notation (p, q) ∈ P refers to a connector between nodes p and q
belonging to the path, and r ∈ P a node in the path. IP is the critical current
along the path, written in terms of the factors a(E) and b(E) listed in Table 2.1,
and the second factor is the sine of the gauge-invariant phase difference between the
two terminals, as measured along the path.

Expression (2.40) is illustrated in Figs. 2.6ab, where two current paths are marked.
These are not the only possibilities — there is an infinite number of paths winding
around the loop arbitrarily many times — however the leading order contribution
comes only from P1 and P2. The contribution IP1 is

IP1 = 2 Re

∫ ∞

−∞
dE tanh

(
E

2T

)
ai1a12a2j

(bi1 + b13 + b12)(b12 + b23 + b2j)
, (2.41)
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the first factor of which is illustrated in Fig. 2.6b. Note that the result is affected by
the branching of the circuit, which was also observed in the numerical computations
of Ref. [66]. In general, the current IP is not equivalent to the current in a structure
formed by joining the connectors on the path in series.

One can also find the high-temperature limit for supercurrents by evaluating the
integral (2.40) using only the smallest Matsubara frequency. The corresponding
factors a′ = a(iπT )/

√
2πT and b′ = b(iπT )/

√
2πT are listed in Table 2.2. Using

them, we can estimate the high-temperature supercurrents flowing in structures in
Figs. 2.6cde at a glance:

c) I ≈ sin(ϕ)× 4(2πT )3/2 tan(π/8)2e−L
√

2πT × 16A1A2/(A1 + A2 + A3) , (2.42)

d) I ≈ [sinϕ+ sin(ϕ+ 2πΦ/Φ0)]× 4(2πT )3/2 tan(π/8)2e−L
√

2πT × 32A/9 , (2.43)

e) I ≈ sin(ϕ)× 2(R2
BAσ)−1

√
2πTe−L

√
2πT . (2.44)

Note that here and in the tables, we set D = 1, so that all energies and temperatures
are in units of the Thouless energy ET = ~D/L2 corresponding to a unit length.
Because of the decaying factor e−L

√
2πT , only the shortest paths are taken into

account here. The comparison to numerically computed results in Fig. 2.7 shows
that the approximation is reasonably accurate. Moreover, result (2.44) coincides
with that presented eg. in Ref. [72].

The above result for the supercurrent, and the accompanying results for the spectral
supercurrent jS (see Appendix A.2) were useful for the calculations in VII. More-
over, the fact that they allow obtaining reasonably accurate results in a very simple
way may be useful in designing experiments.

2.2.3 Magnetic field

A magnetic field applied to superconducting (or proximity) structures has two ef-
fects: first, analogously to Eq. (2.39), electrons accumulate magnetic phase as they
travel. That the phase depends on the path traversed leads to interference, which
manifests in several different ways, some of which are discussed below. [15, 23, 62, 73]
A secondary effect is a Zeeman splitting δE = gµBB of energy levels of electrons
with different spins in magnetic field B, which was predicted in Refs. [74, 75] to
result in a change of sign in the current-phase relation, a π-state.

Accumulation of the magnetic phase can be used to create phase biased structures, in
which the phase difference between two superconducting terminals is kept fixed (as
opposed to the current I being kept fixed). One example of this is the SQUID-type
loop in Fig. 2.8, where the phase difference ϕ between points A and B can be tuned
with the magnetic flux Φ. This type of structures (“Andreev interferometers”) have
been used extensively in experiments studying properties of the proximity effect, for
example in [76–78].

Presence of a magnetic field also disrupts superconducting coherence, as electrons
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Figure 2.7: Currents obtained from Eq. (2.39), compared to numerical solutions
of the Usadel equation. RN is the normal-state resistance of the whole structure,
and ET = ~D/L2 the Thouless energy corresponding to the distance between the
superconductors. (a) Numerics (solid) and Eq. (2.42) (dotted), for A1 = 2, A2 = 1,
A3 = 1/2 and L1 = L2 = 1/2, L3 = 5, in relative units. (b) Numerics (solid)
and Eq. (2.43) (dotted), with ϕ = π/2, 2πΦ/Φ0 = π/4. (c) Numerics (solid) and
Eq. (2.44) (dotted), with ϕ = π/2 and RB/R = 5.

or holes arriving at the same point obtain path-dependent phases. In the diffusive
limit, this can be modeled using the Usadel equation (2.33). There, the magnetic
field enters through the vector potential A. If one considers the equation in a thin
metal cylinder, which the experimental thin films approximatively are, a simpler
equation can be obtained by averaging over the cross-sectional area, θ 7→ 〈θ〉⊥,
χ 7→ 〈χ〉⊥. [15, 70, 79, 80] This reduces the A-dependent terms to a single “spin-
flip” dephasing rate γsf ∝ A2 in a 1D equation that is simpler to solve:

∂2
xθ = −2iE sinh θ +

1

2

〈
(∇χ− 2A)2

〉
⊥ sinh 2θ (2.45)

= −2iE sinh θ +
1

2
[(∂xχ)2 + γsf ] sinh 2θ (2.46)

In the averaging, one must account for the terms ∇⊥χ generated from the variation
of the phase of the Green function across the cross-section, which may be of the same
order of magnitude as the transverse part A⊥, depending on the gauge chosen. For
certain orientations of the field this is straightforward (see eg. [79]), but in general
the more careful treatment presented in VIII is necessary. There is a special gauge in
which the variation is minimal: the London gauge, [15] in which∇⊥ ·A = n̂·A⊥ = 0,
where n̂ is the outward normal of the cylinder. In this gauge, γsf = 〈A2

London〉⊥, and
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Figure 2.8: Phase-biasing a proximity structure with a superconducting loop. The
flux Φ fixes a phase difference ϕ = 2πΦ/Φ0, where Φ0 = h/2e is the flux quantum.

x y

z

B

Figure 2.9: Supercurrent flow in a proximity cylinder, induced by a nearly parallel
magnetic field. Computed by a variational method, in the way explained in VIII.

the transverse part of the supercurrent density js is for thin wires proportional to
A, similarly as in the London theory [23]. Example of such a supercurrent flow
pattern in a proximity structure is shown in Fig. 2.9.

The Zeeman splitting was under study in one of the experiments reported in VIII,
the aim being to observe the π-state, ie., a change in sign of the current-phase re-
lation I(φ) as a function of the applied field B. However, only decay of the critical
current was observed with increasing applied field, similarly as in the thin-film ex-
periments in Ref. [20]. I made an analysis in VIII based on the Usadel equation
that shows the decay is well explained by the destructive interference caused by the
magnetic field, and the experimental results can be understood quantitatively based
on Eq. (2.46).

A result which may at first sight be surprising, and was apparently neglected in
Refs. [74, 75], is that for a wire of dimensions L × w × t, t ∼ w, L � w, t, the
suppression of the supercurrent caused by a magnetic field incident on the area
t × w is proportional to γsf/ET ∼ (Φ′/Φ0)

2, with the magnetic flux Φ′ ∼ BLt
corresponding to an area L × t. The physical reason for this is that in a transport
experiment, the electrons carrying the supercurrent have to traverse the length L.
If their motion is diffusive, it can be estimated [81] that the standard deviation in
the flux enclosed by their trajectories is proportional to L× t. Hence, the result is
larger by a factor of L/t� 1 than the magnetic flux entering the structure.
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Figure 2.10: Phase diagram for the π-state in a 50 nm× t×L wire, based on the
approximate Eq. (2.47). Lengths L = 1.5 . . . 4µm are shown.

Consequently, the cross-over to a π-state would only be expected in metal films con-
siderably thinner than those achieved in VIII, requiring thickness t . gµBL/eD ∼
0.001 . . . 0.003L. One way to find this condition is from a similar approximate solu-
tion for the supercurrent as in [65, 74, 82] and in the previous section, but taking
both the Zeeman splitting and dephasing caused by the field into account,

Ic ≈ 64π
kBT

eRN

Re abea , ε ≡ πkBT + ih , h =
1

2
gµBB , (2.47)

a ≡

√
2ε

ET

+ 2

(
B

B0

)2

, b ≡ tan2

(
1

4
arctan

|∆|
ε

)
, B0 ≡

√
6(w2 + t2)

w2t2
~
eL

.

From this result, one can estimate the critical thickness t, above which Ic > 0 for
all B. A phase diagram is shown in Fig. 2.10. The π state might however be
observable in graphene or in a 2DEG, although in these structures one should take
the electronic structure and the ballistic nature of the conduction into account.

Of the above three effects caused by the magnetic field, mostly the phase biasing
is needed below. It is an important tool in experimental studies of the proximity
effect, as it allows studying dependence of quantities on the local phase of the pairing
amplitude F .

2.3 Stationary nonequilibrium

The proximity effect changes several of the nonequilibrium properties of metals, af-
fecting for example conductance and other linear-response coefficients. The fact that
it also allows for supercurrent to flow inside normal metals without dissipation leads
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to nonlocal effects: current flowing in a given point depends not only on the electric
field in the vicinity of the point, but also on the configuration of superconducting
phase differences in the whole structure.

In stationary nonequilibrium problems, the time convolutions ◦ to reduce to ordi-
nary (matrix) products similarly as in equilibrium. The difference to equilibrium
problems is that the Keldysh component ǦK of the Green function is nontrivial,
as the electron distribution function no longer necessarily remains a Fermi func-
tion. The changes in it, however, couple back to the Retarded function ǦR only via
self-consistency relations.

One implication of stationarity is that the order parameter of superconductors must
be constant in time, implying that the chemical potential of Cooper pairs is zero,
µS = (2e/~)∂t arg ∆(t) = 0. This is another factor contributing to nonlocal effects:
when superconducting terminals float, a counter-flowing supercurrent not only can
but must cancel the normal current, for the situation to remain stationary. This
leads to a specific type of nonlocal nonequilibrium effects, explored for example in
[83], VII, and VIII.

Below, we first discuss the kinetic equations for the electron distribution function,
which follow from the equation for ĜK . Then, we define the thermoelectric linear-
response coefficients, and concentrate on the thermoelectric effects in proximity
structures, giving an overview on the results in I, II, IV, V, and VI. Finally, we
discuss the two effects in III and VII that appear when a proximity structure is
driven far from equilibrium into nonlinear response.

2.3.1 Kinetic equations and observables

In stationary nonequilibrium problems, the Keldysh part of the Usadel equation
reduces to Boltzmann-like kinetic equations for the electron distribution function f
(2.29). In problems concerning superconductivity, it is convenient to first express
the distribution function in terms of its “longitudinal” and“transverse”parts [55, 56]

fL(E) = f(µS − E)− f(µS + E) , fT (E) = 1− f(µS − E)− f(µS + E) , (2.48)

ĥ = fL1̂ + fT τ̂3 , (2.49)

which also allow considering only positive energies. In terms of these functions, the
kinetic equations read (cf. [34, 84], VI)

D∇ · jL = 0, jL ≡ DL∇fL − T∇fT + jSfT , (2.50a)

D∇ · jT = (∇ · jS)fL + 2|∆|RfT , jT ≡ DT∇fT + T∇fL + jSfL , (2.50b)

in the absence of inelastic relaxation. In normal metals, where ∇·jS = 0 and ∆ = 0,
they are in this approximation conservation equations for the two spectral currents
jL and jT . If inelastic relaxation is present, collision integrals IL = Tr[σ̌in, Ǧ]K and
IT = Tr τ̂3[σ̌in, Ǧ]K appear on the RHS of the kinetic equations (2.50).
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The coefficients in the kinetic equations consist of the modified (dimensionless)
diffusion coefficients DL and DT , the cross-coupling coefficient T, the spectral su-
percurrent jS, and a charge recombination coefficient R. These can be expressed in
terms of the retarded Green function:

DL = |N |2(|γ|2 − 1)(|γ̃|2 − 1) =
1

2
(1 + | cosh θ|2 − | sinh θ|2 cosh(2 Im[χ])), (2.51a)

DT = |N |2(|γ|2 + 1)(|γ̃|2 + 1) =
1

2
(1 + | cosh θ|2 + | sinh θ|2 cosh(2 Im[χ])), (2.51b)

T = |N |2(|γ̃|2 − |γ|2) =
1

2
| sinh θ|2 sinh(2 Im[χ])), (2.51c)

jS = Re 2N2[γ(∇+ 2iA)γ̃ − γ̃(∇− 2iA)γ] = Im[− sinh2(θ)(∇χ− 2iA)],
(2.51d)

R = 2|N |2 Re[(1 + |γ̃|2)e−iφγ − (1 + |γ|2)eiφγ̃] = Im [− cos(φ− χ) sinh(θ)] ,
(2.51e)

where N = (1 + γγ̃)−1, the superconducting order parameter is ∆ = |∆|eiφ, and A
is the vector potential. Curiously, T has usually been neglected, [34] except in the
recent literature. It has an important role in thermoelectric effects, as noted in I.

The spectral currents are related to the charge and energy current densities by

jc = −σN

2e

∫ ∞

−∞
dE jT , jE =

σN

2e2

∫ ∞

−∞
dE E jL , (2.52)

both proportional to the normal-state conductance σN . Charge current jc is always
a conserved quantity, and in the absence of inelastic relaxation also jE is conserved. 4

The observable heat current density (see eg. [6, 85])

jQ = jE − µjc/(−e) (2.53)

is a separate quantity from the energy current density. Indeed, the energy current
jE is not a gauge invariant quantity and so cannot be an observable: shifting the
zero point of energy changes the value of jE. The expression (2.53) comes essentially
from thermodynamics: change in entropy in some small volume close to equilibrium
is

T dS = dU −µ dN ≡ dQ , (2.54)

in terms of the change in the entropy S, internal energy U , and number of parti-
cles N . This heat current is well-defined only near equilibrium, where the chemical
potential µ of the quasiparticles is unambiguous. Consequently, in mesoscopic struc-
tures whose internal state can be far from equilibrium, one usually studies only heat
currents entering or leaving the terminals. These always stay, by assumption, at
equilibrium.

4Conservation of jE is imminent from Eq. (2.50), and the conservation of jc follows from the
self-consistency equation (2.25) for ∆.
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Figure 2.11: Schematic multiterminal circuit where the proximity effect is studied
in linear-response; center of the circuit is some unspecified mesoscopic proximity
structure. Tunable and measurable parameters are the parameters at the terminals,
in addition the magnetic flux Φ.

The above equations form the basis of the discussion in the rest of this thesis. We
examine especially the thermoelectric effects implied by the above equations, and
several far-from equilibrium effects.

2.3.2 Linear response

Consider now the schematic experimental setup in Fig. 2.11: it consists of sev-
eral terminals connected together by a proximity circuit. What can be tuned and
measured are the quantities at the terminals. These consist of the potentials Vj,
temperatures Tj, superconducting phases φj, and the charge and energy currents Ij

c

and Ij
E entering the terminals.

The linear-response relation between the nonequilibrium quantities can be written
in the form of an Onsager scheme,(

I i
c − I i

S,eq

I i
E

)
=

∑
j∈terminals

(
Lij

11 Lij
12

Lij
21 Lij

22

)(
∆Vj

∆Tj/T̄

)
, (2.55)

in terms of the thermoelectric matrix Lij
αβ. Note that the supercurrent is an equilib-

rium quantity and not proportional to the biases, and that in linear response, the
energy current and heat current are equal if the equilibrium chemical potential is
chosen as µ = 0. The elements of L characterize the transport in the circuit, and
are modified by the superconducting proximity effect. Since the proximity effect is
sensitive to the superconducting phase differences, observing the modulation in the
L coefficients can confirm its presence.

Modulation in the conductance L11 was the first coefficient measured experimen-
tally in mesoscopic multiterminal circuits. [21, 70, 76–78, 86, 87] It also received
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significant theoretical interest, [68, 88–90] and is discussed in detail in review articles
such as Ref. [8]. Similarly, effect of the proximity of superconductors on the thermal
conductance has also been studied in detail. [91–94]

Of the thermoelectric coefficients, L12 has been measured in the presence of the
proximity effect, see [95–101] and IV, and several theoretical studies have been
published: [102–105] and I, II, VI. The remaining coefficient L21 was discussed in
Refs. [106] and V. An overview on thermoelectricity associated with the proximity
effect is given in the following sections.

2.3.3 Spectral thermoelectric matrix

As discussed in V and VI, one can note that when inelastic scattering can be
neglected in non-superconducting materials (∆ = 0, σin = 0), the kinetic equations
(2.50) are linear in the distribution function, and do not mix different energies E.5

For this situation, Eq. (2.55) applies separately at each energy, and one can write
down a similar relation between the distribution functions f i

β at the terminals and
the spectral currents:

ji
T (E) =

∑
βj

L̃ij
Tβ(E)f j

β(E) , (2.56a)

ji
L(E) =

∑
βj

L̃ij
Lβ(E)f j

β(E) . (2.56b)

Here, β ∈ T, L, and the numbers i and j index the terminals. Related spectral
conductances have been used for studying conductance L11 eg. in [70, 90, 107] prior
to V. The linear-response coefficients L can be computed directly from the energy
dependent L̃(E):

Lij
11 =

1

2kBT

∫
dE L̃ij

TT (E) sech2

(
E

2kBT

)
, (2.57a)

Lij
21 =

−1

2kBT

∫
dE E L̃ij

LT (E) sech2

(
E

2kBT

)
, (2.57b)

Lij
12 =

−1

2kBT

∫
dE E L̃ij

TL(E) sech2

(
E

2kBT

)
, (2.57c)

Lij
22 =

1

2kBT

∫
dE E2 L̃ij

LL(E) sech2

(
E

2kBT

)
. (2.57d)

Note that above the supercurrent is absorbed in the definition of L̃.

The matrix describing the structure of V is shown in Fig. 2.12. One can see sev-
eral effects in it: low energy suppression of thermal conductivity [93] ie. L̃LL are

5If the superconducting terminals are massive, one can often assume that ∆ depends only
weakly on what occurs in the proximity region. [62] If this is not the case, then the interactions
in the superconducting terminals can couple back to the proximity region via ∆.
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Figure 2.12: Example of a spectral thermoelectric matrix elements (2.56) between
the normal terminals of Fig. 2.13. The energy gap of the superconductors is |∆| =
40ET , and the phase difference between the superconducting terminals is ϕ = π/2.
Colored/gray lines are computed numerically for the structure of V, and thin solid
lines indicate the semi-analytic approximations derived in II.

reduced for E = 0, and the opening of heat transport to superconductors at above-
gap energies |E| > |∆|. The thermoelectric elements L̃TL resemble the spectral
supercurrent in Fig. 2.5 — although there is no low-energy minigap in the structure
of Fig. 2.13 because of the connected normal-metal terminals. The correspondence
is discussed in more detail in Section 2.4.1 below. There are clear symmetries be-
tween the off-diagonal thermoelectric coefficients L̃TL and L̃LT . These are explained
in Section 2.4.2.

Representation (2.56) turned out to be useful for practical numerical computations,
needed for example in V and VII. The response coefficients L̃(E) depend only
on the transport coefficients (2.51) which are equilibrium quantities, and not on
the nonequilibrium biases. Consequently, they contain all information required to
describe the behavior of the circuit not only in linear response, but also far from
equilibrium.
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2.3.4 Numerical computations

To find the results in the publications reported in this thesis concerning the proxim-
ity effect, I have developed a numerical solver 6 that is able to handle an arbitrary
network of normal and superconducting quasi-1D wires in contact to normal and
superconducting terminals. The basic approach is to use a relaxation method [108–
111], ie., discretizing the Usadel equations (2.33), (2.50), and (2.32) on a domain
forming a quasi-1D circuit and solving the resulting algebraic equation system with
Newton’s method. Using this code, one can for example compute the spectral coef-
ficients (2.51), the matrix L̃ (2.56), the nonequilibrium distribution f , and heat and
charge currents that flow in response to applied temperature or potential biases.

2.4 Thermoelectricity

In the normal state of metals, there are several causes for thermoelectric effects. One
of the most important and well-understood ones is the electron–hole asymmetry, an
asymmetry of density of states (or mean free path, etc.) around the Fermi surface
(ξ ∼ p2/2m = ξf ). A Sommerfeld expansion shows that the e-h asymmetry results
to the normal-state thermoelectric coefficient, [28, 112]

jc = LN
12∇T/T , LN

12 = −π
2k2

BT
2

3e

dσ(ξ)

dξ

∣∣∣∣
ξ=Ef

, (2.58)

where σ(ξ) is an energy-dependent conductivity. This is the classical“Mott law”pre-
diction for the thermoelectric coefficients. Aside from bulk metals, similar asymme-
try effects manifest in quantum point contacts and other structures where, roughly
speaking, the conductance or transmission probability is energy dependent [113].
The normal-state thermoelectric coefficient is typically rather small for clean met-
als, LN

12/TL11 . 10 nV/K, at the cryogenic temperatures below 1K.

The study of thermoelectric effects in superconductors has a long history. It starts
with the observation that they do not exist; [114, 115] indeed, superconductors can
be used as absolute reference materials in measurements of the thermoelectric co-
efficients L12 precisely because their L12 ≈ 0 [28]. The explanation (see [115, 116])
for the absence of thermoelectric effects in bulk superconductors is that any ther-
moelectric currents induced by temperature gradients are cancelled by supercurrent
jc,thermoemf + jc,sc = 0. This cancellation is not necessarily complete, for example
near the edges of superconductors or in multiply connected structures, which leaves
room for various secondary thermoelectric effects. [115]

A review on thermoelectrics of superconductors can be found in [116]. Some of the
effects arise from incomplete cancellation of the underlying normal state thermo-
electric effect (2.58) [117, 118], some from electrostatic effects, [116, 119] and others

6Full source code, usage instructions and examples are available via internet in the address
http://ltl.tkk.fi/~theory/usadel1/.

http://ltl.tkk.fi/~theory/usadel1/
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Figure 2.13: Andreev interferometers. a) General schematic for structures studied
in I. b) Model for the “parallelogram” of [97]. c) The “house” geometry of [97].

are related to charge imbalance in superconductors. [120–123] It should be noted
that some of the experiments related to the first type are still controversial, and
cannot be claimed to be very well understood. [119, 124, 125]

More recently, several experiments probing for thermoelectric effects in supercon-
ducting proximity structures were made, [95–101] and IV, which motivated several
subsequent theoretical studies [102–105, 126–128], including I, II, V. The studied
structures in these works were essentially Andreev interferometers, schematically
illustrated in Fig. (2.13), and fairly similar to the structures used for studying the
proximity modification of conductance. In these structures, one can tune the super-
conducting phase differences and flow of the supercurrent, in addition to maintaining
temperature gradients and measuring voltage differences. This is sufficient for prob-
ing the thermoelectric coefficient L12 and how the proximity effect changes it.

The main observations in the experiments [95–101] and IV are that

(i) the thermoelectric effect is consistently larger than in the normal state, L12 &
10 . . . 100LN

12,

(ii) the measured potentials oscillate Φ0-periodically in the flux Φ, with either
odd sinφ [Fig. (2.13)b] or even cosφ symmetry [Fig. (2.13)c], depending on
the geometry, [95–99]

(iii) in some of the experiments, a sample- and temperature-dependent “offset”
potential difference was observed between the normal and superconducting
parts, [100] and

(iv) the coefficient L12 has complicated, non-monotonous temperature depen-
dence. [97, 100]

The characteristics (ii) and (iv) are similar to the modulation the proximity effect
causes for conductance, except that conductance is always a symmetric function of
the flux.
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Moreover, it is important to note that in the interferometer in Fig. 2.13, one can
define two thermoelectric Seebeck coefficients,

SNS ≡
d(V1 + V2)

2 d(T1 − T2)

∣∣∣∣
I1
c =I2

c =0

, SNN ≡
d(V1 − V2)

d(T1 − T2)

∣∣∣∣
I1
c =I2

c =0

, (2.59)

which give the proportionality of the potentials V1 and V2 induced in the floating
normal terminals N1 and N2, when there is a temperature difference T1−T2 between
them. The potential of the superconductors is chosen as zero, since this is a station-
ary effect. Of the above experiments, [95–99, 101] probed SNN , and [100, 101] and
IV probed SNS. Symmetric oscillations have been observed only in SNN .

Some of the above effects can be qualitatively explained based on the quasiclassical
theory in [102–104], I, and II, although these works leave certain basic questions
unanswered. Recently, another step towards the solution was proposed in [105].
These works are discussed below.

2.4.1 Quasiclassical thermoelectricity

The superconducting proximity effect couples charge and temperature together and
can give rise to thermoelectric effects (see I, [102]). This can be seen with a simple
argument. The equilibrium supercurrent IS(T ) depends on the temperature T , and
when temperature is position dependent, also the supercurrent must vary. However,
since electric charge must be conserved, this variation is compensated by normal
dissipative current. Hence, the thermoelectric coefficient L12 relating the quasipar-
ticle charge current Ic to temperature difference ∆T must be nonzero, and it must,
at least in some limits, be related to the supercurrent.

It is important to note that this mechanism of thermoelectric coupling is rather
different compared to what gives rise to thermoelectricity in the normal state,
Eq. (2.58). In fact, the normal-state thermoelectricity is completely neglected in the
quasiclassical approximation (2.21) where all information on ξ dependence is lost.
However, this also means that the magnitude of any of the effects is not related to
that of LN

12. Rather, these proximity thermoelectric effects are closer to a charge
imbalance generation mechanism in superconductors described in Refs. [120–123].

It was found in I that the dominating part of the proximity thermoelectric effect at
low temperatures can in the structure depicted in Fig. 2.13 be directly related to
the supercurrent. This result can be found by solving the kinetic equations (2.50)
approximatively, which gives the result

SNS ≡
d(V1 + V2)

2 d(T1 − T2)

∣∣∣∣
Ic,1=Ic,2=0

≈ 4R3R4R5 +R2
5(R3 +R4)

4(R1 +R2 +R5)RSNS

dIS(T )

dT
, (2.60a)

SNN ≡
d(V1 − V2)

d(T1 − T2)

∣∣∣∣
Ic,1=Ic,2=0

≈ (R3 −R4)R
2
5

2(R1 +R2 +R5)RSNS

dIS(T )

dT
, (2.60b)
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Figure 2.14: Left: Computed thermopower oscillations of maximum thermopower
with magnetic flux, in the structure of Fig. 2.13a, using same parameters as in VI.
Right: Computed temperature dependence, compared with approximations includ-
ing only IS (2.60a), and IS and T (cf. VI).

where Rj are the resistances of the wires in Fig. 2.13, and RSNS = R3 + R4 + R5.
The above approximation takes only the supercurrent into account. Details are pre-
sented in I and II, and we also compared these results to numerical solutions of
the kinetic equations. Several conclusions follow: this effect is large, S ∼ 1 µV/K
and the magnitude is comparable to what is observed in the experiments, as noted
also in [102] for SNS. The temperature dependence of S follows that of the deriva-
tive of the supercurrent–temperature relation, qualitatively matching experimen-
tal observations. The results in I show that the expected SNS and SNN are also
sensitive to the symmetry of the structure, especially so for the N -N potential
difference. Moreover, as shown in I, part of this asymmetry can come from the
temperature-dependence of the resistances of arms 1 and 2, caused by the proximity
effect. Finally, the flux dependence follows that of the supercurrent. The flux and
temperature dependence of SNN and SNS and the magnitude of the supercurrent
contribution are illustrated in Fig. 2.14.

The supercurrent IS(T ) decays exponentially when the temperature increases. At
higher temperatures, T � ET , long-range nonequilibrium features of the effect start
to appear, and the main contributions come from two different sources not related
to the supercurrent: (i) the cross-coupling coefficient T in the kinetic equations (see
I, II), and (ii) for T & |∆|/2, above-gap contributions start to play a role (see II
and [103, 104]). The latter contribution, however, may be sensitive to the charge
imbalance inside the superconducting contacts (see eg. VI).

Additionally, one finds (see II) that in the structure in Fig. 2.13c where supercurrent
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and temperature gradient do not coexist anywhere, jS · ∇T = 0, the T coefficient
leaking to arms 1 and 2 can still give rise to a finite thermoelectric voltage. However,
due to the symmetry properties of this coefficient, this occurs only if R3 6= R4, as
was also later noted in [105]. It is possible that the antisymmetric oscillations in the
asymmetric“house”-type structure in [100] originate from this. Competition between
the effects mentioned above can also result to sign changes in S as a function of the
temperature, as discussed in II, or this can originate from the above-gap part (cf.
[103], II). A sign change was also observed in the experiment of Ref. [100].

The main failure of the above theory in describing the experiments is the flux sym-
metry of the oscillations. This follows from the electron–hole symmetry of the
theory, as noted in II: electron ξ > ξf and hole ξ < ξf excitations are in all respects
identical, except for their charge and group velocity. Hence, all equations retain
their forms under the transformation V 7→ − V , Φ 7→ −Φ, Ic 7→ − Ic. This im-
plies that the thermopower predicted by the theory always has the flux symmetry
S(−Φ) = −S(Φ), irrespective of geometry. This is an exact relation, valid within
the quasiclassical theory, but it is not in agreement with the experiments of Ref. [97].

This leads to a dilemma: the normal-state contribution to thermoelectricity is ex-
pected to be small in the experimental situation, [97, 100] the same applies for the
contribution modified by superconductivity [117] or the proximity effect [126, 127],
and as discussed above, the charge imbalance contribution cannot explain all of
the experimental data. Other causes for thermoelectric effects and their interplay
with the proximity effect are not well understood. How can one then explain the
large symmetric oscillations in the thermoelectric coefficient and the large offset
potentials?

Recently, a suggestion was put forward in Ref. [105] to explain the symmetric ther-
mopower oscillations. The gist of this article is that the flux-symmetric factor DT in
arms 1 and 2, when combined with a temperature gradient, can amplify a small po-
tential difference µ between N and S to a large potential difference between N1 and
N2. The enhancement factor is certainly a promising finding. However, one issue
with the model in [105] is that the small potential µ is inserted by hand, breaking
charge conservation. Constructing models where the potential µ appears naturally
could therefore be useful.

It is quite possible that most of the complete explanation for the proximity thermo-
electric effects [95–98, 100, 101], which were first observed over ten years ago, is in
place today. However, as we found out in IV where the oscillation symmetry was
not a problem, making quantitative comparisons to the above theory is challenging
as there can be many factors bringing uncertainties: sample characterization, effects
neglected in the theory such as inelastic scattering, to name a few. In fact, satisfac-
tory agreement has not been found so far, and more work is certainly still needed.
But even if this question can be closed, new ones are opened: for example, what is
the exact source of the electron-hole asymmetry required for symmetric oscillations?
Solving these issues may require turning back to other aspects of the thermoelectric
effects in superconductors.
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2.4.2 Peltier effect

The two thermoelectric coefficients L12 and L21 are not independent, but coupled
together by an Onsager relation [85, 129, 130]

L12 = L21|TR , (2.61)

which relates the two off-diagonal transport coefficients. Onsager relations follow
quite generally already from thermodynamics for many different systems; the one
associated with thermoelectric coefficients is usually known as the Kelvin relation.
Above, the notation TR indicates that the coefficient on the right-hand side should
be computed for a time-reversed system, whose microscopic equations of motion
propagate time to the negative direction.

How the time reversal operation affects a superconducting proximity structure can
be seen from basic considerations. The simplest underlying Hamiltonian for studying
the proximity effect was

H =

∫
d3r

[
ψ†α(r)

(∇− iA)2

2m
ψα(r) +

g

2
ψ†α(r)ψ†β(r)ψβ(r)ψα(r)

]
. (2.62)

Time-reversed, it reads

H|TR = THT−1 =

∫
d3r

[
ψ†α(r)

(∇+ iA)2

2m
ψα(r) +

g

2
ψ†α(r)ψ†β(r)ψβ(r)ψα(r)

]
.

(2.63)

Time-reversal also complex conjugates the order parameter, and hence, in this model
time reversal amounts to changing the sign of the magnetic field and the supercon-
ducting phases, B 7→ −B, φ 7→ −φ. One would then expect the Kelvin relation
(2.61) to apply in this sense for proximity structures.

Nevertheless, it is still useful to study the coefficient L21 separately in proximity
structures, to answer question such as: i) what are the mathematical implications
to the kinetic equations (2.50), and ii) is the effect in practice large enough to
be measured. This is what was done in V. Earlier, the coefficient L21 had been
computed from a tight-binding model in [106], but only for small structures with
significant finite-size effects.

Mathematically, what the time reversal symmetry amounts to in the kinetic equa-
tions (2.50) is that there is a conserved flux, (see V)

J = ρ†j[ψ]− ψ†j[ρ]− jSρ
†τ̂1ψ (2.64)

where ρ = (fL, fT ) is any solution to the kinetic equations, ψ a solution to the time-
reversed equations, and J = (jL, jT ) contains the corresponding spectral currents.
That the above quantity is conserved for any choice of boundary conditions can then
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be used to derive the relation

L̃ij
αβ(E) = L̃ji

βα(E)|TR , (2.65)

between elements of the spectral thermoelectric matrix (2.56). Note that also the
terminal indices i and j are exchanged in this relation, and that it applies at each
energy E separately. The above relation is also valid only when i and j correspond
to normal terminals. The Kelvin relation (2.61) appears as a direct consequence of
(2.65).

That the conservation ∇ · J = 0 applies also inside superconductors can be used for
deriving effective boundary conditions for NS interfaces in some limiting cases, as
noted in VI. These are needed when one wants to avoid solving differential equations
inside the terminals, but still model the fact that superconducting terminals do not
necessarily stay at equilibrium.

Typically, when one studies controlling heat current with charge current, the mag-
nitude of the effect is quantified with the Peltier coefficient

Π =
dIQ

dIc

. (2.66)

As for the Seebeck coefficient S, in the geometry of Fig. 2.13a there are two possible
ways for defining a Peltier coefficient:

ΠNS ≡
dI1

Q

dIc

∣∣∣∣
I1
c =I2

c =Ic/2

, ΠNN ≡
dI1

Q

dIc

∣∣∣∣
I1
c =−I2

c =Ic

. (2.67)

These correspond to different ways to drive the current Ic in the structure, illustrated
in Fig. 2.15a. Similar calculation as made in the preceding section for the Seebeck
coefficients S results now to (see V, VI)

ΠNS = TSNS , ΠNN = TSNN , (2.68)

ie., the two Peltier coefficients are directly related to the Seebeck coefficients (2.60a)
by the Kelvin relation discussed above. From the estimates given above, one finds
“typical” magnitudes ΠNS ∼ 1µV at temperatures close to T = 400 mK.

The ability of a Peltier element to induce cooling can be measured with the dimen-
sionless figure of merit

ZT =
Π2G

TGth

. (2.69)

Where this expression comes from can be understood by studying the structure in
Fig. 2.15, where terminal 1 is assumed to be thermally isolated, apart from the heat
contact via the proximity structure. Its temperature is then determined from the
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Figure 2.15: a) Peltier current flow configurations. b) Predicted temperature
oscillations, when terminal T1 is thermally isolated, apart from the contact to the
circuit. Current is driven in the“NS”configuration (black) or“NN”(gray) configura-
tions, with ϕ = ±π/2 (solid/dashed). Parameters are chosen as in V. Temperature
oscillations are numerically computed by varying V1 and V2, solving I1

c and I2
c with

δT1 determined so that I1
Q = 0, and finally interpolating to find δT1 under the correct

current configuration.

heat balance

I1
Q = −GthδT1 + ΠI1

c + [I1
c ]2/G = 0 , (2.70)

and the maximum relative cooling obtainable is

δT1/T = −1

4
ZT . (2.71)

For best Peltier coolers near room temperatures, ZT ∼ 1, and the number scales
as Tα with α & 1 to low temperatures. For the proximity-induced effect here,
ZT ∼ 10−4. It follows that building a thermoelectric cooler based on the prox-
imity effect is not very practical, especially as better alternatives that work in the
same size and temperature range exist [6]. The small value of ZT is problematic
also for the detection of this cooling effect. However, the amplitude of proximity-
modulated oscillations in δT1 is proportional to the current Ic and can be larger than
the maximum cooling, see Fig. 2.15. For practical parameters it is expected to be
in the millikelvin range. Moreover, the oscillation is expected to be antisymmetric
in the magnetic flux, and can so be distinguished from the symmetric oscillations
of proximity-modified heat conductivity. While temperature changes this small are
challenging to measure, sufficient resolution has already been experimentally demon-
strated [131].

Existence of Peltier cooling that appears essentially because of supercurrent at first
sight seems to contradict the fact that supercurrent does not carry entropy. [28]
However, presence of the normal current allows this to occur in this nonequilibrium
effect. Indeed, to change the temperature, a nonequilibrium process must take place.
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Figure 2.16: Left: Computed change δfL in the distribution function, with spin-
flip rates Γsf = 0 (solid), 0.65ET (dashed), and 2.5ET (dotted). Experimental data
from III corresponding to potential U = 63µeV is shown as dots. Fitted ET =
3.47µeV is assumed; it mostly affects the scaling of the x-axis. Right: schematic
structure.

2.5 Tuning the electron distribution

In addition to studying how the proximity effect changes energy-integrated quanti-
ties such as the charge and heat currents, one can also consider spectral quantities
such as the electron distribution function f(E). It is, however, not a directly observ-
able quantity, and can only be inferred indirectly. Two situations in which changes
in it are expected to be visible are discussed below.

2.5.1 Nonequilibrium Peltier-like effect

A distinct signature of the proximity effect appearing in the distribution function was
predicted in [132], and measured by N. Birge’s group in III, using tunnel junction
spectroscopy [133]. A low-energy change δfL(E) = fL(E;U) − fL(E,U = 0) (cf.
Fig. 2.16) arises in a part of the structure, when a voltage bias U drives normal
current alongside the same path as the supercurrent flows. In a sense, this is similar
to the Peltier effect discussed above, as the nonequilibrium feature in the distribution
function corresponds to changes in the effective temperature in different parts of the
structure [66]. However, it occurs far from equilibrium, and in the configuration of
[132] changes in temperatures of reservoirs cannot be obtained.

To find a quantitative match between Ref. [132] and the experiment, we made a
detailed comparison between the experimental results and the model, and I investi-
gated some additional effects left out in [132]: breaking of the “rigidity” approxima-
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tion of the superconducting terminals (cf. Section 2.1.6), self-consistent computation
of ∆ (cf. Eq. (2.17)), and the effect of spin-flip scattering Σ̌sf = 1

τsf
τ̂3Ǧτ̂3 from the

small applied magnetic field (see Section 2.2.3 and Fig. 2.16). Note that the de-
convolution of δfL was performed independently and prior to this analysis, and is
explained in detail in Ref. [134].

The main result obtained in the analysis is that the feature δfL in the electron
distribution function is robust with variations of the model parameters, such as the
size of the superconducting terminals or whether the energy gap ∆ is assumed rigid
or whether it is self-consistent. The main effect from taking into account what occurs
inside the superconductors is an effective lengthening [62] of the normal wire, by
2ξ0 = 2

√
~D/2|∆|. The behavior of δf can be contrasted to the proximity-modified

density of states. Understanding the experimentally observed DOS required taking
the finite size of the superconducting terminals into account, as we discuss in III
and VIII. Such behavior of the density of states is in agreement with the findings
of Refs. [79, 135].

2.5.2 Stable phase states

Driving the electron distribution function far from equilibrium has direct and in-
direct consequences. A direct consequence is that a change in f can, in addition
to changing the dissipative charge current, alter also the non-dissipative supercur-
rent component. [136–138] This is directly visible in Eqs. (2.50): the supercurrent
component is

IS(ϕ) = −Aσ
2e

∫ ∞

−∞
dE jS(E,ϕ)fL(E) , (2.72)

and as visible in Fig. 2.5, this part is sensitive to changes in the low-energy part
of fL. By adjusting the distribution function, one can also make the supercurrent
contribution change its sign. [65, 82, 136, 139] A sign change in the current–phase
relation I(ϕ) changes the stable value of ϕ satisfying the stationarity condition
I(φ) = 0. This is seen in the RCSJ washboard potential [23]

U(ϕ) =
~
2e

∫ ϕ

0

dϕ′ IS(ϕ′) ∼ (1− cosϕ)EJ , (2.73)

as a change of minimum from ϕ = 0 to ϕ = π. Such a π-state originating from
nonequilibrium has been experimentally realized, [140–142] and π-states have also
been created for example using ferromagnetic materials [22].

The π state is one of the effects that appears in proximity circuits when the super-
conducting phases φ at the terminals can adjust freely, ie., the structure is not phase-
biased (see Section 2.2.1). Another effect of this type was examined in [83, 134],
where one superconducting terminal floated, and its phase was determined from the
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Figure 2.17: The modelled structure: four superconducting terminals, two of them
forming a loop, connected by normal wires. Phase differences across the two vertical
SNS junctions are marked. It is assumed that on the left, the current IH creates
a nonequilibrium electron distribution fq(E), which spreads along the horizontal
wire. The transconductance G = dI/dV discussed in the text corresponds to voltage
induced in the right terminal when current is injected from the right terminal to the
superconductors.

condition

I = Is(φ) + In = 0 , (2.74)

ie., that the supercurrent entering the terminal cancels the normal current.

From the theoretical point of view, article VII was concerned with an effect between
the two types discussed above. The studied schematics is shown in Fig. 2.17. All
of the superconducting arms are floating, and current IH is injected in a part of
the circuit. What is observed in the corresponding experiment is that the N-S
transconductance G undergoes two rapid changes as the current IH is increased.
We offered one possible qualitative explanation for this in VII: with increasing IH ,
first the SNS junction on the left switches to π-state, and after it the one on the
right. These transitions show up in the magnetoconductance.

The theoretical picture is as follows. The first question is what determines the phase
state in this type of a multiterminal structure when out of equilibrium. For finding
the transitions, we used in VII an extended RCSJ model,

~
2e

Cφ̈ = I[φ] = IS(φ) +
~
2e

G[φ]φ̇ , (2.75)

where φ = (φ1, . . . , φN) contains the phases of the terminals, I = (I1, I2, . . . , IN)
the currents entering the terminals, and the dissipative and the nonequilibrium
supercurrent parts of the total current are written separately. This model is gauge-
invariant (we neglect magnetic field): replacing φj(t) 7→ φj(t) + χ(t) with arbitrary
χ(t) retains the form of the equations since row sums of conductance and capacitance
matrices G and C vanish. Similarly to (2.74), stationary solutions φ̇ = 0 are found
where IS(φ) = 0, if no bias currents enter the superconductors, as is the case in
Fig. 2.17. Not all of these points are stable, however, similarly as in the simpler
π-state problem. The stability is determined by whether the vector field IS tends
to make small deviations from a stationary point to grow or to decrease. These
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conclusions do not crucially depend on details of C and G.

Finding the supercurrent IS is a problem that can be directly addressed based
on the time-independent quasiclassical theory. In fact, reasonable approximations
for IS can be obtained analytically, with the methods discussed in Section (2.2.1)
and Appendix (A.2): one can find an accurate closed-form expression for jS(E)
even in this somewhat involved multiterminal circuit. This allows evaluating the
supercurrent from Eq. (2.72) also under nonequilibrium conditions, extending the
approach of Ref. [65]. From this method, one finds an approximate expression for
the washboard potential, (see VII)

U(φ) = − ~
2e

∑
mk

Imk(VH) cos(φm − φk) , (2.76)

where Imk are critical currents obtained by the approximation method, in the pres-
ence of a potential VH characterizing the nonequilibrium distribution of electrons. If
the finite inductance of the superconducting loop needs to be included, an additional
term can be added to this potential to represent the imperfect phase bias. Equation
(2.76) can be directly used to pinpoint the stable states.

Once a stable phase configuration is found, the corresponding transconductance
can be evaluated numerically, by solving the kinetic equations (2.50), taking into
account the measurement current configuration in the boundary conditions. When
considering linear response, we used a slightly more convenient way to do this,
making use of the thermoelectric matrix (2.55) and writing

dI i
c =

∑
j

Lij
11 dVj +

∑
j

Lij
12 dTj /T +

∑
j

∂I i
c

∂φj

∣∣∣∣
{V }=0,{φ}

dφj . (2.77)

The last term in the above equation needs to be included in principle, since in floating
terminals the superconducting phases adjust to cancel any additional quasiparticle
currents, similarly as in Eq. (2.74). Note, however, that for currents entering normal
terminals, ∂I i

c/∂φj = 0, so that dI i
c and dT j determine dV j for the normal terminals

uniquely (for superconductors dV = 0 due to stationarity). This implies that the
transconductances can be computed if Lij

αβ are known, and it is not necessary to
compute ∂I i

c/∂φj. This is a significant help, since the coefficients L can be easily
obtained from the matrix L̃(E) discussed in Section 2.3.3. An example of oscillations
computed in this way for the stable phase state is shown in Fig. 2.18. However,
away from linear response, the above argument is not valid and the adjustment of
the superconducting phases must be fully included.

The above theory produces a qualitative match between the observed and predicted
conductance oscillations, and can produce two sudden transitions. However, the
agreement between the predicted and observed positions in IH is not very satis-
factory. The model also neglects fluctuations, and effects such as electron-electron
interactions that can limit nonequilibrium-induced π-states (cf. VIII). Moreover,
it assumes as a first step a model form of the electron distribution function fq on
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Figure 2.18: Left: Computed phase jumps. Same parameters as in VII. Right:
Computed resistance oscillations, as VH (in units of ET ) is increased, as a function
of the phase difference φloop = 2πΦ/Φ0 related to the magnetic flux in the loop of
Fig. 2.17. The finite inductance of the loop affects the shape of the low VH part of
the oscillations.

the left, as details of the superconducting injection contacts were neglected. These
bring uncertainty to the comparison of the model to the experiment.

An interesting fact following from (2.77) is that (within this model) in a proximity
circuit, a N-S transconductance does not depend on which superconducting contact
the measurement current injected from the N contact goes to. This occurs because
all of the superconducting parts in a circuit are in principle linked together by the
proximity effect, no matter how distant they are from each other. If the injected
current is smaller than the smallest critical current of any of these links, then it can
first be converted to supercurrent in the nearest superconductors, and then travel
the rest of the way without dissipation. The measured resistance arises solely from
the first step. I am not aware of experiments explicitly probing for this multiterminal
effect.

One point that is glossed over in Eq. (2.76) is that, strictly speaking, such a wash-
board potential cannot be defined out of equilibrium, when there are three or more
superconducting contacts. This is because existence of a potential U such that
IS = −∇U implies that the vector field IS(φ) satisfies ∇× IS(φ) = 0. That this is
valid at equilibrium follows from the observation that the Usadel equations (2.33)
result to ∫

Sj

n · ∂jS
∂φk

=

∫
Sk

n · ∂jS
∂φj

, (2.78)
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ie., total spectral supercurrents going through terminal interfaces Sj satisfy a reci-
procity relation. This can be shown using similar techniques as used in V to show
Eq. (2.65). Since at equilibrium fL = tanh(E/2T ) everywhere, Eq. (2.78) is equiv-
alent to ∂I i

S/∂φj = ∂Ij
S/∂φi, ie., ∇ × IS = 0. Out of equilibrium, however, there

does not appear to be a reason why this law could not be broken, and numerical
calculations indicate that it breaks. Of course, in structures with only one phase
difference (ie. at most two superconductors) defining a 1D potential U(ϕ) is always
possible, so observing any effects caused by this requires at least three superconduct-
ing probes. In summary, Eq. (2.76) applies only approximatively, and in reality a
small non-conservative part of IS is expected. However, in the structure of Fig. 2.17,
we estimated this to be negligible compared to the dissipation.

The non-conservative part of the supercurrent in the structure of Fig. 2.17 attempts
to transfer a part of the heat current flowing through the structure to motion of
the superconducting phases φ. If undamped, this could induce measurable finite
potentials in the superconductors. Hence, this effect is also closely related to the
discussion in Section 2.4. One can note that a thermoelectric effect in which the
normal-state thermopower (2.58) causes an SNS junction to switch to a finite-voltage
state because of applied temperature difference has been both predicted [143] and
observed [144]. At the moment, it is an open question whether there is a structure in
which similar effects can occur because of the proximity effect, or whether dissipation
always stabilizes some of the stationary phase states or if fluctuations disturb the
effect significantly.

Above, we have shown that driving the electron system out of equilibrium is expected
to lead to interesting effects for the phase configuration in multiprobe structures.
Moreover, the experiments in III demonstrated that effects arising from similar
parts of the quasiclassical theory that give rise to thermoelectric effects (jS and T )
can be observed also far from equilibrium.

Several aspects of the proximity effect are discussed in this Section 2. Compensation
between supercurrent and normal current leads to thermoelectric effects, and in suit-
able situations also to observable changes in the distribution function. Interference
contributions that are important for these nonequilibrium transport phenomena are
also sensitive to breaking of geometrical symmetries. Moreover, non-locality caused
by supercurrents flowing in response to applied normal currents must be taken into
account when considering these structures. This shows that mesoscopic proximity
circuits can support several complex phenomena, even if we consider only stationary
situations.
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3 Mesoscopic noise

The interest in detailed physics of electrical noise and its statistics is a recent de-
velopment in mesoscopics. [13] The main idea is that the measured noise reflects
internal properties of the conductor, such as the charge of the elementary excita-
tions [145]. This is especially relevant for mesoscopic structures, since many features
of their transport properties are not necessarily visible in the average value of the
current.

Classical noise in the current is most often characterized with a spectrum of the
current-current correlator: [13]

S(ω) = 2

∫ ∞

−∞
dt eiωt 〈δI(t)δI(0)〉 , δI(t) = I(t)− 〈I〉 , (3.1)

where the brackets 〈·〉 denote an average over the realizations of all possible fluc-
tuations δI. This does not capture all information about the fluctuations δI, as
Eq. (3.1) essentially represents only the standard deviation for the distribution of
fluctuations. So, higher-order moments such as

M3(ω, ω
′) =

∫ ∞

−∞
dt dt′ eiωt+iω′t′ 〈I(t)I(t′)I(0)〉 (3.2)

M4(ω, ω
′, ω′′) =

∫ ∞

−∞
dt dt′ dt′′ eiωt+iω′t′+iω′′t′′ 〈I(t)I(t′)I(t′′)I(0)〉 , (3.3)

can also be studied. A different viewpoint is taken in studies of full counting statis-
tics, where the probabilities PN(t) for N charges to pass through the conductor in
time t are studied instead. Typically this information is there discussed using the
generating function of the distribution

eSt(χ) =
∑
N

eiχNPN(t) , (3.4)

which contains the full information of the statistics, and from which all moments of
the distribution can be computed.

In quantum coherent mesoscopic conductors, generalizations of Eqs. (3.1) and (3.4)
are required. Detailed reviews on this can be found in Refs. [13, 36, 146]. The main
points are that one can define a quantum analogue of (3.1) as

S(ω) =

∫ ∞

−∞
dt eiωt

〈
{δÎ(t), δÎ(0)}

〉
, (3.5)

in terms of a current operator Î. The symmetrization is necessary for obtaining
the classical correspondence, since the operators at different times do not commute.
[13] A second point is that generalization of Eq. (3.4) has certain subtleties, part of
which also arise from non-commutativity. [14, 36, 146, 147] One can however write
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a generating function on the Keldysh contour, [14, 147–149]

eS(χ) =
〈
Tc[Sce

R
c dτ χ(τ)Î(τ)]

〉
, (3.6)

and this quantity can be interpreted similarly as Eq. (3.4), although with certain
restrictions [14, 150, 151]. The quantity χ is commonly called the counting field.
Studying the counting statistics (3.6) and the higher-order correlations (3.2) in meso-
scopic conductors has recently generated significant interest.

Below, I discuss two contributions to the field of mesoscopic noise: a connection be-
tween the Green function circuit theory for computing (3.6) and certain semiclassical
theories, and then one possible way in which (3.1) and (3.2) could be probed.

3.1 Noise in N-S circuits

A semiclassical theory for computing the zero-frequency noise (3.5) in normal-metal
superconductor hybrid circuits was introduced in Refs. [152–154]. Incoherent implies
that the Thouless energy ET is vanishingly small and the proximity effect can be
neglected. 7 However, the fact that Andreev reflection blocks energy currents still
needs to be taken into account. An equivalent-circuit Green function theory was
also formulated under these conditions in [158], based on the general theory of
Refs. [148, 149]. Article X presented an addition to these results, by showing how
the Green function theory connects to the semiclassical one, extending previously
demonstrated special cases [152] to a more general statement.

One of the main points of X is that expansion of the incoherent Green function in
the counting fields,

Ǧj =

(
τ̂3 2ĥj τ̂3
0 −τ̂3

)
+
∑
k∈T

iχk

(
−ĥj b̂

j
k 4ĉjk − b̂jk

b̂jk ĥj b̂
j
k

)
+ . . . , (3.7)

leads to an interpretation of the components bjk as the characteristic potentials, [159]
which indicate how the potential in node j depends on the potential in terminal k.
These can be understood as probabilities for the particle at node j to eventually end
up in terminal k. Dealing with expansion (3.7) becomes impractical already at the
third order, but it is manageable in the second order. We showed in X how starting
from (3.7), the Green function approach of [148, 149] leads to the semiclassical noise
formula

S̃kl =
∑
(i,j)

∫ ∞

−∞
dε (bik − bjk)(b

i
l − bjl )sij(ε) , (3.8)

which connects the noise cross-correlations observed between terminals k and l to
noise sij generated in individual circuit elements. The terms sij coincide with pre-

7Changes from the proximity effect were discussed in [155–157].
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dictions from the scattering theory: [13] for example the one between nodes reads

sij =
1

4
gij[2− (f i

L + f i
T )2 − (f j

L + f j
T )2 + Fij(f

i
L + f i

T − f j
L − f j

T )2] , (3.9)

where F is the Fano factor [13] and g the conductance of the connector. As in
the semiclassical theory, [152–154] the noise sij(ε) depends on the distribution of
electrons at each energy, and is expected to be sensitive to the nonequilibrium
state. Theories of the above kind can be useful in interpreting cross-correlation
measurements.

3.2 An on-chip detector for higher moments

Noise is often measured by“classical”means: using electronics that consist of macro-
scopic components. These function so that they capture the classical signal I(t) and
square and band-pass filter it to produce an estimator for example for the power
spectral density (3.1). However, accessing the higher moments of the statistics (3.4)
this way turns out to require long averaging times, and accessing the very-high-
frequency parts of the noise spectra is difficult. [160–162] Hence, there has been
interest in designing on-chip detectors: structures fabricated in the vicinity of the
studied mesoscopic conductor, for the purpose of transforming the electrical noise
of the conductor to a quantity that is experimentally easier to access.

Several different types of on-chip detectors have been proposed and used to detect
the noise or higher moments so far: quantum point contacts or single-electron tran-
sistors for resolving individual electron tunnelling events [163, 164] and Josephson
junction threshold detectors [165–168], to mention a few. The detector proposed
in IX was also based on a Josephson junction, but in a different limit of device
parameters than the threshold detector.

It was noted and explained in [169, 170] that a Coulomb blockaded Josephson junc-
tion can detect the asymmetry, ie., the third moment of the noise in its environment.
This idea was taken further in IX where we constructed a scheme for relating the
measured I(V ) of the junction to the power spectrum (3.1) and the third moment
correlator (3.2). Related work on a somewhat similar type of a detector was also
made in [171–174] concerning the power spectrum.

The measurement device studied in IX and [169, 170] is an ultra-small Josephson
tunnel junction in the Coulomb blockade limit. [175] These devices have a small
capacitance, which makes the charging energy EC = q2/2C associated with addi-
tional charges q on the capacitor so large that electrons and Cooper pairs cannot
pass through the junction unless supplied with additional energy E ∼ EC . This
additional energy can come from electromagnetic fluctuations in the environment of
the junction, or from the bias voltage over the device. This mechanism enables the
junction to probe for the electromagnetic fluctuations in its vicinity.

The Cooper pair tunnelling current in a SIS Josephson tunnel junction can be com-
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puted in the simplest way based on a tunnelling Hamiltonian, [175]

H = Henv −
EJ

2
(e−iφ + eiφ) , (3.10)

which consists of a Hamiltonian for the electromagnetic environment of the junc-
tion, and the Cooper pair tunnelling part, where EJ = ~Ic/2e is the Josephson
energy. Quasiparticle tunnelling is neglected here. The phase operators φ repre-
sent a macroscopic degree of freedom, the electromagnetic/superconducting phase
φ(t) = 2

∫ t
dt′ V (t′) (see [175, 176] for details), which is a conjugate variable to the

charge q on one side of the SIS junction.

Applying the standard Golden rule or linear response theory to the above Hamilto-
nian yields the current: [170, 175]

I(V ) = πE2
J(Pφ(2eV )− P−φ(−2eV )) , (3.11)

P±φ(E) =
1

2π

∫ ∞

−∞
dt eiEt

〈
e±iδφ(t)e∓iδφ(0)

〉
. (3.12)

This current depends now on the fluctuations of the phase δφ = φ − 〈φ〉, which in
turn depend on the electromagnetic environment of the junction. If a noise source is
coupled to the junction, this will be visible in the current-voltage relation. Moreover,
the above expression is not symmetric under the transformation φ 7→ −φ, and so
the tunnelling current I(V ) will in general depend also on the odd moments of φ,
and consequently, on the odd moments of the voltage fluctuations. In general, the
odd moments of noise in mesoscopic conductors can be separated from the even ones
by reversing the direction of the current generating the noise: the signal associated
with them is antisymmetric.

In the approach taken in IX, we made a cumulant expansion for the correlator,〈
e±iδφ(t)e∓iδφ(0)

〉
= eC2(t)+C3(t)+... , (3.13a)

C2(t) = −〈(δφ(t)− δφ(0))δφ(0)〉 , (3.13b)

C3(t) = ∓1

2
〈δφ(t)(δφ(t)− δφ(0))δφ(0)〉 , . . . . (3.13c)

This is motivated by the fact that for a “macroscopic” electromagnetic environment,
only C2 is expected to be finite, ie., the fluctuations are Gaussian for that case.
[175] However, when a mesoscopic noise source is introduced in the vicinity of the
Josephson junction, also the higher cumulants, starting from C3, are expected to
become nonzero.

We also separated the phase correlators into two parts, by subtracting the Gaussian
equilibrium fluctuations: C = Ceq + (C − Ceq) = Ceq + Cexc. The equilibrium
fluctuations are related to the impedance Z of the environment of the junction by
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Figure 3.1: Setup for fluctuation measurements. The spectrum of fluctua-
tions, 〈δV (ω)δV (−ω)〉 and 〈δV (ω′)δV (ω)δV (−ω − ω′)〉 affects the detection cur-
rent ID(VD) relation in the Josephson junction, through the capacitive coupling via
Cm � CJ .

the fluctuation-dissipation theorem in the standard way, [175]

C2,eq(t) = −2

∫ ∞

0

dω
ReZt(ω)

RQ

1

ω

[
coth

(β~ω
2

)
(cos(ωt)− 1)− i sin(ωt)

]
. (3.14)

Moreover, we rewrote the expression for ID(VD) so that it involves only the current
I0
D(VD) with the noise source turned off, and the “excess” cumulants. This way,

some of the details of the measurement device itself vanish from the formulation, as
ID(VD) itself is a measurable quantity.

Relating the excess correlators Cj,exc to the fluctuations of the current in a meso-
scopic conductor requires some assumptions made about the measurement setup.
In IX the schematics of Fig. 3.1 were assumed, and we computed the phase correla-
tors in terms of current correlators of the mesoscopic source, using classical circuit
theory — which neglects some quantum effects in the shot noise, see below. We
showed that for a small coupling between the detector and the noise source, one
finds the simpler formulas reported in IX for the symmetric and antisymmetric
changes IS(V ) = I(V ) + I(−V ) and δIA(V ) = I(V ) − I(−V ) − 2ID(V ) in the
current, in terms of the current correlators of the noise source:

δIA(VD) =

∫ ∞

−∞

dω

2π
DA(ω, VD)S2I(ω) , (3.15)

DA(ω, VD) =

(
πRSCm

RQCJ

)2

R2C2
J

I0
D(VD + ω/2) + I0

D(VD − ω/2)− 2I0
D(VD)

1 + (ωRCJ)2
, (3.16)

IS(VD) =
1

4π

∫ ∞

−∞
I0
D(VD − E/2)Kφ(E) , (3.17)
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and

Kφ(ω) =
1

π

∫ ∞

−∞
ImS3φ(ω, ω

′,−ω − ω′) , (3.18)

S3φ(ω, ω
′, ω′′) '

(
πRSCm

RQCJ

)3
(RCJ)3

e3
S3I(ω, ω

′, ω′′)

(1− iωRCJ)(1− iω′RCJ)(1− iω′′RCJ)
,

(3.19)

where it is here assumed that the current fluctuations are converted to voltage
fluctuations using a macroscopic load resistor, and Cm � CJ . These results could
be used for spectroscopy of noise power and the third cumulant. One point to
note is that the RC bandwidth on which the current correlators are accessed in
the above expressions can for typical parameters of a Josephson junction be large,
∆ω ∼ 100 GHz, which allows for high-frequency measurements.

To my knowledge, the above detection scheme has so far never been used. One
experimental challenge is that the weak coupling required to make the response
of the detector linear in the excess noise, ensuring the validity of the cumulant
expansion and making the results easier to analyze, also makes the signals δIA(V )
and IS(V ) small as compared to the unperturbed current I0

D(V ). Some related work
for the limit of strong coupling between the detector and noise source can be found
in Refs. [170, 177, 178]; however, the relationship between the frequency-dependence
of the noise correlators (3.1), (3.2) and the current I(V ) appears to be relatively
unexplored in this limit.

Above, it is crucial for the result (3.14) that the correlator C2 is not symmetrized and
the difference between emission and absorption [171] in the high-frequency quantum
equilibrium noise is taken into account (cf. [13, 175]). An interesting question is if
similar quantum effects can be seen also in the shot noise and the higher moments;
lack of symmetrization in Eq. (3.13) implies they should be visible. It is known that
in mesoscopic structures, different orderings of current operators Î generally give
different results for the noise correlators, [13, 147, 179, 180] and different devices
are expected to measure different quantities [179, 181]. To my knowledge, there
are currently two experiments that attempted explicitly to comment on this: [161]
and [173]. The measurement in [161] claimed to contradict [179] for C3. However,
the current fluctuations were there converted to voltage fluctuations using a macro-
scopic load resistor, and the voltage fluctuations were measured using conventional
electronics, so it is unclear what this implies. The experiment reported in [173] on
the other hand confirmed that C2 should appear as nonsymmetrized in their on-chip
detector, also for the excess noise. Recently, more theoretical work addressing this
issue has also been published, [182] and the question whether this type of effects
can be detected in C3 is still open.
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4 Conclusions

This dissertation concentrates on the physics of mesoscopic superconducting het-
erostructures. Studying their nonequilibrium response can reveal both their intrinsic
properties and characterize their environment. Much of the research in this thesis
was motivated by recently published experiments, and part was done alongside them.
New predictions are also made. Of these, measuring the Peltier coefficient directly
could shed more light on the proximity thermoelectricity, and it might be possible
to look for quantum effects in higher-order noise using the Josephson detector.

The relationship between thermoelectricity and the superconducting proximity ef-
fect is discussed in Section 2.4. Presence of thermoelectricity is partly due to
temperature-dependence of supercurrent and charge conservation. However, in gen-
eral it arises from several related sources, resulting in a rich variety of predictions.
Some of these are sensitive to details. Currently, the theory has not been shown
to quantitatively match with the experiments. However, as we have showed, essen-
tially the same theory that gives predictions for the thermoelectric effects matches
reasonably well with experimental observations as far as the nonlinear changes in
the electron distribution function are concerned. This gives hope for quantitatively
bridging the gap between experiments and theory also for thermoelectricity. In-
disputably, there are many future challenges left in this, both theoretical and ex-
perimental. From the theoretical point of view, one task is to collect the existing
results for the charge imbalance contributions discussed here and the normal-state
contributions, to produce a coherent single picture. On the experimental side, it
should be pointed out that several predicted features in the geometry-dependence
of the effect have not yet been systematically investigated. Also, one way forward
for testing the predictions could be measuring the Peltier coefficient, which gives an
alternative way to access the thermoelectric coupling.

Supercurrent plays a role in thermoelectric and nonlocal effects in proximity struc-
tures. We showed a simple scheme for calculating it in metallic proximity circuits,
which may prove useful for estimating them in scientific applications. In mesoscopic
structures with multiple superconducting parts, supercurrent-phase relations also
determine the stable configuration of superconducting phase differences. If such a
system is driven out of equilibrium, it may be possible to realize detailed control
of the current-phase relations via the electron distribution, beyond single junctions,
and conductance measurements could offer a way to probe the phase configura-
tion. Previously, inducing a π-state using Zeeman splitting of energy levels in a
magnetic field was suggested. However, as shown in Section 2.2.3, in practice very
thin structures are required to avoid the dephasing caused by the magnetic field.
This is important to take into account in any future experiments. Our estimates
point towards that for observation of this spin-dependent effect, nearly atomic-size
materials such as graphene may be required.

Detecting the spectrum of correlators with a Josephson junction is proposed in Sec-
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tion 3. The detector has several interesting properties: sensitivity to higher-order
correlators, tunable high bandwidth, and possible sensitivity to quantum aspects
of the measured correlators. However, the device may be experimentally challeng-
ing to realize, and similar power spectrum detectors working in a different regime
have already been demonstrated. Still, methods for accessing high-frequency noise
are of primary scientific interest. One reason is that in mesoscopic conductors, dis-
tinctive features are expected to appear in the noise on the frequency scale of the
electron transport time through the conductor. The same is true for the higher-
order correlators, and accessing this regime of fluctuations experimentally could aid
understanding the dynamics of electron transport.

Superconducting heterostructures already have device applications. Fully realizing
their potential is likely to require a detailed understanding of their physics, which
can be gained by basic research on their properties. Clearly, there are unanswered
questions, and not all of them even in the details. Especially time-dependent ef-
fects, which are important for radiation detection, are incompletely understood in
proximity structures. The challenge here is in making a connection between the
microscopic description and a phenomenological theory useful for engineering. Ap-
plications aside, there are also more fundamental questions. For example, what are
the limitations on quantum behavior of the phase of the superconducting conden-
sate? Understanding the sources of its decoherence is important for the development
of quantum bits. Studying superconductivity and nonequilibrium transport in non-
conventional superconductors or in non-metallic systems, such as quantum dots,
graphene, or nanotubes, where electron-electron interactions and electronic struc-
ture can play a larger role, is also of general interest. Many fruitful opportunities
for research are currently available in mesoscopic superconductivity.



52

References

[1] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai. Nature, 398, 786 (1999). (p. 1)

[2] D. V. Averin. Nature, 398, 748 (1999). (p. 1)

[3] Y. Makhlin, G. Schön, and A. Shnirman. Nature, 398, 305 (1999). (p. 1)

[4] D. Twerenbold. Rep. Prog. Phys, 59, 349 (1996). (p. 1)

[5] K. D. Irwin and G. C. Hilton. Topics Appl. Phys., 99, 63 (2005). (p. 1)
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[74] T. T. Heikkilä, F. K. Wilhelm, and G. Schön. Europhys. Lett., 51, 434
(2000). (p. 21, 23, 24)

[75] S.-K. Yip. Phys. Rev. B, 62, R6127 (2000). (p. 21, 23)
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Appendix A Usadel equation on a circuit

Consider a general proximity circuit consisting of several normal wires, joined to-
gether by contacts with some given interface resistances. In the spirit of circuit
theory [59, 60] it is useful to divide the structure to nodes, terminals, and connec-
tors (diffusive wires, tunnel junctions, etc.) between them, cf. Fig. 2.6. What are
the equations modelling such a structure?

In general, the problem can be formulated in terms of Kirchoff-type conservation
equations for the matrix currents Ǐ[Ǧi, Ǧj] flowing from one node to another, which
depend on the Green’s functions on the nodes. [59, 60] For short connectors, the
matrix current can be expressed in terms of a distribution of transmission eigenvalues
Tn, [59]

Ǐ[Ǧi, Ǧj] =
∑

n

2Tn[Ǧ1, Ǧ2]

4− Tn({Ǧ1, Ǧ2} − 2)
. (A.1)

This is valid for structures through which electrons travel fast compared to the time
scales given by superconductivity, temperature, etc., ~/∆, ~/T, . . . The above result
also makes the assumption that nodes are sufficiently much larger than the elastic
scattering length, so that electron trajectories inside them are randomized.

For larger connectors where the electron spends more time, decay of the supercon-
ducting coherence should be taken into account. One way to do this is to model
it with “parasitic” connectors [59] that leak coherence. For diffusive wires, one can
however also solve the Usadel equation (2.23) to find the Green function Ǧ and the
corresponding matrix current density ǰ = σǦ∇̂Ǧ. This yields a relation Ǐ[Ǧ1, Ǧ2]
for the matrix current and the Green functions Ǧ1, Ǧ2 at the edges of the connector,
and it can be at least numerically evaluated.

In large connectors, the effect of magnetic field may also need to be taken into
account. This is simple to do if the field penetrating the connector can be neglected,
as is the case for sufficiently thin wires. Then, one can gauge the field away from
inside the connector with a transformation Ǧ(R) 7→ eiϕ(R)τ̂3/2Ǧ(R)e−iϕ(R)τ̂3/2 where
ϕ(R) = 2

∫ R

R0
dl ·A is a magnetic phase, which is well defined if ∇×A is assumed

negligible. (Cf. [68, 69, 183].) However, as a consequence, the matrix currents
acquire the additional phase factors φ(R2) − φ(R1), which affect the properties of
the circuit unless it is simply connected, ie., contains no loops.

Below, we discuss a systematic approximation for computing the supercurrent in
this type of circuits, based on the above approach.
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A.1 Linearized spectral equation

One configuration where the proximity circuit problem is analytically tractable is
when the superconducting coherence in the structure is weak, and all equations can
be linearized in the coherence parameters γ. This can be the case for example due
to strong tunnel barriers or large pieces of normal metal between superconductors
and the part of the structure under study. This approximation is commonly used in
the literature.

The linearized equations need to be coupled to the more strongly coherent parts of
the circuits by matching conditions. When we are interested only in γ, it is necessary
to consider only the parts Iγ = 1

2
N−1[P+I

RP−]12Ñ
−1 and Iγ̃ = 1

2
Ñ−1[P−I

RP+]21N
−1

of the matrix current (see Appendix C). The latter can also be usually related to
the former by exchanging tildes on all quantities, so we need only to consider Iγ.
Note that gauging away the magnetic field results in an additional phase factor of
eiφij in Iγ,ij where φij is the magnetic phase difference across the junction.

In the case where the coupling connectors are short junctions of large resistance,
Eq. (A.1) can be used. For tunnel junctions it then reduces to Kupriyanov-Lukichev
boundary conditions; [58] for an SN contact this reads after linearization

Iγ = −R−1
B

γS − (1− γS γ̃S)γ

1 + γS γ̃S

+O(γ2) , (A.2)

where γS = tanh(θ0/2), θ0 = artanh(|∆|/E) is the coherence parameter inside the
superconductor, and RB the interface resistance.

Another simple case occurs when the weak-proximity part is coupled to a super-
conductor via a long quasi-1D diffusive wire, assumed to be of length L. The cor-
responding matrix current can be solved when the phase χ (in θ-parameterization)
does not change appreciably inside this wire; this approximation can be justified by
the fact that typically the largest changes in χ occur where |θ| is the smallest. If so,
the Usadel equation in the θ parameterization reads simply

∂2
xθ = k2 sinh θ , (A.3)

where k =
√
−2iE. Assuming a superconductor at x = 0 and a weak-proximity

structure at x = L, this has the solution∫ θ(L)/2

θ0/2

dq√
sinh2 q − A

= −kL . (A.4)

The integration constant is A = −(2k)−2(∂xθ)
2 + sinh2(θ/2). Now, one can expand
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the above integral in θ(L), in terms of a formal small parameter λ:∫ λθ(L)/2

θ0/2

dq√
sinh2 q − λ2A

= ln

[(
q +

√
q2 − λ2A

)
q−1 tanh

q

2

]∣∣∣∣q=λθ(L)/2

q=θ0/2

+O(λ2 lnλ) .

(A.5)

Solving A from (A.4) and (A.5) in leading order in e−kL and θ(L) results into

A = θ1(θ(L)− θ1) , θ1 = 4e−kL tanh
θ0

4
. (A.6)

Expanding the expression of A to the same accuracy, one finds the associated matrix
current at the edge of the weak-proximity region:

Iγ = −k(θ1e
iφ − γ) , (A.7)

using the equality that γ ≈ θeiχ/2 for |γ| � 1. Here, φ is the superconducting phase
of the superconductor at the other end of the diffusive wire. The result (A.7) is an
extension of the approximation derived in [62, 67] to multiterminal circuits.

Finally, interconnector currents are given in the weak-proximity regime for diffusive
wires by

Iγ,ij = −Aijσijk coth(kL)(sech(kL)γj − γi) ' −Aijσijk(2e
−kLγj − γi) , (A.8)

where the latter approximation is valid for kL � 1. For tunnel junctions a similar
equation reads

Iγ,ij = −R−1
B (γj − γi) . (A.9)

These follow from the solution of the linearized (|γ| � 1) time-independent Usadel
equation

∇2γ = k2γ , (A.10)

and linearization of the Kupriyanov-Lukichev boundary condition (eg. linearizing
Eq. (A.2) in γj = γS).

A.2 Supercurrent

There is an illustrative way to find the supercurrent in weak-proximity circuits.
First, notice that the currents (A.2, A.7, A.8, A.9) can be written in the form

Iγ,ij = aijγj − bijγi (A.11)
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for suitably defined aij and bij. These are summarized in Table. 2.1. The conserva-
tion equations for the matrix currents then take the form∑

j∈N

aijγj −
∑
j∈N

bij︸ ︷︷ ︸
=bi

γi = −
∑
j∈T

aijγj ⇔ (A−B)γ = −A′γ0 , (A.12)

decomposed to sums over nodes N and terminals T . The solution to this problem
can be written as a Neumann series

γ = B−1

∞∑
n=0

(AB−1)nA′γ0 . (A.13)

Note that B is diagonal. Consider the value of γ in node i0 and write the matrix
products explicitly:

γi0 =
∑
k∈T

∞∑
n=0

∑
i1,...,in∈N

ai0,i1 · · · ain−1,inain,k

bi0 · · · bin
γk =

∑
k∈T

∑
P:k 7→i0

CPγk︸ ︷︷ ︸
=Qi0,k

(A.14)

The two inner sums are in fact nothing but a sum over all paths P connecting k to
i0 in the circuit, weighed by amplitudes CP. We can now write down the spectral
supercurrent flowing from node i to terminal j,

jE|ij = 2i[γ̃∂xγ − γ∂xγ̃]|ij = 2i
∑
k∈T

[
γ̃kQ̃i,k

(
aijγj − bi

∑
p∈T

Qi,pγp

)
− tildes exch.

]
.

(A.15)

The total supercurrent entering terminal j then becomes

jE,j = 4
∑
k∈T

∑
P:k 7→j

C̄Pγ̄kγ̄j sin

(
ϕj − ϕk −

2e

~

∫
P

dl ·A
)
, (A.16)

where we have extracted the magnetic phase factors from aij = āije
iφij , ãij =

āije
−iφij , CP = C̄P exp(i

∑
(i,j)∈P φij) and γj = γ̄je

iϕj , γ̃j = −γ̄je
−iϕj , noting that

b̃j = bj. The argument inside sin is the gauge-invariant phase difference along the
path P. Note also that CP ∼ e−kLR−m

B where L is the length of the path in dif-
fusive conductors and m the number of tunnel barriers it traverses through. Since
the amplitude often is large only for a small number of paths, Eq. (A.16) is a useful
representation for quick estimates of supercurrent in hybrid structures. Examples
and more detailed discussion on its use can be found in Section 2.2.2.
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Appendix B Fourier representations

The following representations of two-time correlation functions are commonly used:

A(E, T ) =

∫ ∞

−∞
dt eiEtA(T +

t

2
, T − t

2
) , (B.1)

A(ω1, ω2) =

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 e

iω1t1e−iω2t2A(t1, t2) , (B.2)

A(E, ω) =

∫ ∞

−∞
dt

∫ ∞

−∞
dT eiEteiωTA(T +

t

2
, T − t

2
) , (B.3)

involving the “relative” and “center-of-mass” (CM) times t = t1 − t2 and T = (t1 +
t2)/2, and the relative and CM energies ω = ω1 − ω2 and E = (ω1 + ω2)/2. It is
useful to remember the relations

∂T = ∂t1 + ∂t2 , ∂t =
1

2
(∂t1 − ∂t2) , (B.4)

∂t1 = ∂t +
1

2
∂T , ∂t2 = −∂t +

1

2
∂T . (B.5)

and the correspondences

∂T ↔ −iω , ∂t ↔ −2iE . (B.6)

With respect to the above representations, time convolutions take the forms

(A ◦B)(E, T ) = e
i
2
(∂E1

∂T2
−∂E2

∂T1
)A(E1, T1)B(E2, T2)

∣∣∣
E1=E2=E, T1=T2=T

, (B.7)

(A ◦B)(ω1, ω2) =

∫ ∞

−∞

dω3

2π
A(ω1, ω3)B(ω3, ω2) . (B.8)

It is useful to note that time convolution in the (E, T ) representation has the prop-
erty

A(E, T ) ◦ eiωT = eiωTA(E +
ω0

2
, T ) , eiωT ◦ A(E, T ) = eiωTA(E − ω0

2
, T ) , (B.9)

i.e., periodic perturbations only generate energy shifts.

Similar formulas as above hold for the spatial coordinates r1, r2, relative and CM
coordinates r = r1 − r2, R = (r1 + r2)/2, and the relative and CM momentum p
and P .
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Appendix C Consequences of the normalization

The normalization condition Ǧ2 = 1 has some interesting mathematical conse-
quences. These are most useful for time-dependent problems where the ◦ products
are non-commutative, but also simplify some issues for time-independent problems.
First, the normalization implies that eigenvalues of Ǧ are only +1 and −1, so that Ǧ
can be written in the spectral representation Ǧ = P+−P− where P± are projectors
onto the positive and negative subspaces of Ǧ. These projection operators are also
known as the Shelankov projectors, [43]

P̌± =
1

2
(1± Ǧ) , (C.1)

and they come useful when dealing with the Riccati parameterization (cf. eg. [54]).
Another consequence of normalization is that the equation [Ǧ, σ̌] = 0 which for
example determines the bulk Green functions, is solved by Ǧ = sgn σ̌, by properties
of the matrix sign function.

Equations of motion for the γ parameters are conveniently derived by taking She-
lankov projections and extracting the Nambu elements,

N−1[PR
+ (. . .)PR

− ]12Ñ
−1 , Ñ−1[PR

− (. . .)PR
+ ]12N

−1 (C.2)

of for example the Usadel equations written for the Green functions. The point in
this is that the projectors, when written in terms of Riccati parameters are (cf. eg.
[50])

P+ =

(
N Nγ
γ̃N γ̃Nγ

)
, P− =

(
γÑγ̃ −γÑ
−Ñ γ̃ Ñ

)
, (C.3)

and they have the property

∇P± = ±P+[∇U ]P− ± P−[∇Ũ ]P+ , U =

(
0 γ
0 0

)
, Ũ =

(
0 0
γ̃ 0

)
, (C.4)

which helps in unravelling the gradient terms. For example, one can directly see
that N−1[P+(GR∇GR)P−]12Ñ

−1 = 2∇γ.
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Appendix D Summary of equations

The set of γ–f parameterized stationary Usadel equations are collected in this Ap-
pendix, for convenience and completeness.

The Green function is parameterized as [(2.26), (2.28)]

ĝR =
1

1 + γγ̃

(
1− γγ̃ 2γ

2γ̃ −1 + γ̃γ

)
, ĝA = −τ̂3(ĝR)†τ̂3 (D.1)

ĝK = ĝR

(
fL + fT 0

0 fL − fT

)
−
(
fL + fT 0

0 fL − fT

)
ĝA . (D.2)

The Usadel equations governing the coherence parameters γ, γ̃ read [(2.33)]

D(∇− 2iA)2γ − 2γ̃[(∇− 2iA)γ]2

1 + γγ̃
= −2iEγ + i∆∗γ2 + i∆ , (D.3a)

D(∇+ 2iA)2γ̃ − 2γ[(∇+ 2iA)γ̃]2

1 + γγ̃
= −2iEγ̃ + i∆γ̃2 + i∆∗ . (D.3b)

The kinetic equations governing the distribution functions fL, fT read [(2.50)]

D∇ · jL = 0, jL ≡ DL∇fL − T∇fT + jSfT , (D.4a)

D∇ · jT = (∇ · jS)fL + 2|∆|RfT , jT ≡ DT∇fT + T∇fL + jSfL , (D.4b)

with the coefficients [(2.51)]

DL = |N |2(|γ|2 − 1)(|γ̃|2 − 1) , DT = |N |2(|γ|2 + 1)(|γ̃|2 + 1) , (D.5a)

T = |N |2(|γ̃|2 − |γ|2) , jS = Re 2N2[γ(∇+ 2iA)γ̃ − γ̃(∇− 2iA)γ] , (D.5b)

R = 2|N |2 Re[(1 + |γ̃|2)e−iφγ − (1 + |γ|2)eiφγ̃] , N ≡ 1

1 + γγ̃
. (D.5c)

where the order parameter is ∆ = |∆|eiφ.

The observable charge and heat currents are [(2.52)]

jc = −σN

2e

∫ ∞

−∞
dE jT , jQ =

σN

2e2

∫ ∞

−∞
dE(E − µ) jL . (D.6)

Boundary conditions at a circuit node read [(2.32)]∑
j

Ajσj∂xγj =
∑

j

Ajσj∂xγ̃j =
∑

j

Ajσj∂xjT,j =
∑

j

Ajσj∂xjL,j = 0 . (D.7)

Currents sum to zero, and, in addition, γ, γ̃, fL, and fT are continuous.
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Boundary conditions at clean contacts to normal terminals are

γ = γ̃ = 0 , fL = f 0
L = f 0(µN − E)− f 0(µN + E) , (D.8)

fT = f 0
T = 1− f 0(µN − E)− f 0(µN + E) , (D.9)

where f 0(E) = 1/(eE/T + 1) is the Fermi function and µ and T terminal potential
and temperature. At superconducting terminals,

γR = − ∆

E + i
√
|∆|2 − (E + i0+)2

, γ̃R = +
∆∗

E + i
√
|∆|2 − (E + i0+)2

, (D.10)

n̂ · ∇fL = 0 , fT = 0 , for |E| < |∆| , (D.11)

fL = f 0
L , fT = f 0

T , for |E| > |∆| . (D.12)

Potential of superconducting terminals is chosen as µS = 0, and charge imbalance
in superconductors is neglected.
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