Petri Kettunen. 2006. Troubleshooting large-scale new product development embedded
software projects. In: Jirgen Munch and Matias Vierimaa (editors). Proceedings of the
7th International Conference on Product-Focused Software Process |mprovement
(PROFES 2006). Amsterdam, The Netherlands. 12-14 June 2006. Springer. Lecture
Notesin Computer Science, volume 4034, pages 61-78.

© 2006 Springer SciencetBusiness Media

Reprinted by permission of Springer Sciencet+Business Media.

Troubleshooting Large-Scale New Product Development
Embedded Software Projects

Petri Kettunen

Nokia Corporation
P.O. Box 301, 00045 NOKIA GROUP, Finland
petri.kettunen@nokia.com

Abstract. Many modern new product development (NPD) embedded software
projects are required to be run under turbulent conditions. Both the business and
the technological environments are often volatile. Uncertainty is then an inher-
ent part of the project management. In such cases, traditional detailed up-front
planning with supporting risk management is often inadequate, and more adap-
tive project management tools are needed. This industrial paper investigates the
typical problem space of those embedded software projects. Based on a litera-
ture survey coupled with our practical experiences, we compose an extensive
structured matrix of different potential project problem factors, and propose a
method for assessing the project’s problem profile with the matrix. The project
manager can then utilize that information for problem-conscious project man-
agement. Some industrial case examples of telecommunications products em-
bedded software development are illustrated.

1 Introduction

Most new electronic products contain embedded software in particular to enable more
intelligent features and flexibility [1]. Thus, there will be more and more software
projects developing embedded software for such new product development (NPD)
markets.

Managing those modern industrial NPD projects successfully requires situation-
aware control with the possible and oncoming troubles, taking the anticipated and
even unexpected situational conditions into account [2]. Uncertainty is inherent [3, 4].
Project risk management is a traditional way of handling the obstacles, which may af-
fect the project success adversely [5-7].

In this paper our premise is that in turbulent industrial business environments the
product development projects must typically work under imperfect conditions. For
example, it is hardly ever possible to avoid all external schedule pressures. In other
words, the project management faces some problems all the time, and the project may
be in some trouble even from the very beginning. This is sometimes referred to as
project issue management [8]. In practice both proactive risk management as well as
reactive problem (issue) management are needed [9].

The first step of problem-aware project management is to be able to recognize the
current project problem factors. Project problems and uncertainties should be actively
searched [10, 11]. There are no standard solutions, since the actual unique project
context has to be taken into account.

J. Miinch and M. Vierimaa (Eds.): PROFES 2006, LNCS 4034, pp. 6178, 2006.
© Springer-Verlag Berlin Heidelberg 2006

62 P. Kettunen

The purpose of this paper is to propose focused aids for identifying and evaluating
the typical problem factors of large-scale NPD embedded software projects (such as
telecommunications equipment). The rest of the paper is organized as follows. Chap-
ter 2 explores the background and related work, and sets the exact research questions.
Chapter 3 then describes our solution ideas, while Chapter 4 evaluates them. Finally,
Chapter 5 makes some concluding remarks, and outlines further research ideas.

2 NPD Embedded Software Project Problems

2.1 Typical Software Project Problem Factors

Over the years, there have been numerous investigations about typical software pro-
ject problems and failure factors. Table 1 lists some of the known ones (ordered by
the year of publication). For more, see for example [6, 8, 12-19].

Table 1. A survey of software project problems, risks, and failure factors

Investigation Distillation

Brooks [20] Fundamental problems of software engineering management
Curtis, et al. Human and organizational factors affecting productivity and
[21] quality of large projects (including embedded systems)
Boehm [5] Top 10 general software project risk items

McConnell [22] | 36 “classic” software project mistakes; Common schedule risks
McConnell [23] | Software project “survival test”; Checklists

Royce [24] Top 10 risks of “conventional” process

Brown [25] Typical software project management malpractices and pitfalls
Ropponen, et al. | Categories of software project risks and their influencing fac-
[26] tors

Schmidt, et al. Systematic classification of empirically observed project risk
[27] factors

Smith [28] 40 root causes of software project failure

May, et al. [29] | Common characteristics of dysfunctional software projects
Fairley, et al. 10 common software project problem areas and some antidotes
[30]

It is possible to categorize different project problem factors from various different
points of view. For example the classic SEI taxonomy defines one way of categoriz-
ing common risk factors under project environment, product engineering, and pro-
gram constraints [31]. Other alternatives are for example in [22, 26, 27, 32].

It is in addition important to understand that in complex (multi)project environ-
ments the project problems do not usually manifest themselves in isolation, but there
are often multiple overlapping problems at the same time. Furthermore, there are of-
ten complex cause-effect relationships of the different problem factors, i.e., a single
problem may have adverse additional consequences [32/Ch. 5, 33/Ch. 3].

Troubleshooting Large-Scale NPD Embedded Software Projects 63

2.2 Embedded Software Project Concerns

Compared to traditional software projects, embedded systems introduce certain addi-
tional intrinsic software development problems. There are both software engineering
technical and management challenges [1, 21].

Figure 1 illustrates those many potential sources of problems. Notably many prob-
lems really stem from the software project external reasons and dependencies.

fluctuating,

'
-
y
pressurizing v
AN
e — /Project
{ackmg, Y | Managemeht
Resources ; Agontrol !
(people) | misdirecting, -, ~====""
e g — i vague, K i -
uncertain, i untimely | inaccurate,
conflicting R e \IV incomplete, —
B untimely late
Systems/ — H
—> | Requiremepts —> Software e ——> Software —_—

Engineering

incomplete,
T volatile

Reauirements Engineering Release(s)

invisible,

unproductive deficient

Special-purpose

1 - - Hardware
limited, immature, _—

incompletely

documented q\

—> Technology

Hardware

- i immature,
volatile

Fig. 1. Some embedded software project problem sources

Those special problem factors of embedded software projects have not been inves-
tigated especially widely in the literature. For some related studies, see for example
[34-36]. Many embedded software project problems originate fundamentally from
knowledge management issues [37].

2.3 NPD Software Project Characteristics

The development of new market-driven commercial products creates additional spe-
cial characteristics of the software project environment. Figure 2 illustrates a typical
NPD environment: The embedded software project team is an element of it. The
NPD environment is not fundamentally different from other software development
contexts. However, the emphasis on business drivers and product innovation man-
agement put considerable weight on certain problem areas in particular in large
organizations.

The embedded software project teams working in such environments often face
many sources of turbulence [4, 38]. The company, responding to emerging and fluc-
tuating market needs, has to manage its product development portfolio (aggregate

64 P. Kettunen

Business Environment

; .
(customers, competitors, technology) - 1 External turbulence E
'

NPD COMPANY Product/Project Portfolio Management

Fig. 2. Embedded software project team NPD context

Product Program

, Product Systems
. Engineering ’

Embedded |~ Hardware
Engineering

Software
Jeam

N,
\

project plan) accordingly [39/Ch. 2]. This may consecutively introduce various
changes to the embedded software project teams (e.g., product features, releases
schedules, project resource allocation). In addition, the other internal parts of the
product development program (e.g., concurrent hardware engineering) may cause
changes to the software part. It is important to understand the true nature of the pro-
ject and the success criteria, and to incorporate the embedded software development
as an integral part of the overall product system development [35, 40].

The problems of NPD projects have gained increasing research interests due to the
current major transitions in many product development areas (e.g., telecommunica-
tions industry). A seminal survey of NPD literature is presented in [25]. An integra-
tive model of different contributing product development project success factors is
constructed. Ernst makes a critical summary of the NPD success factors empirical re-
search results [41]. Notably there is no universal definition of “success”. Recently for
example Cooper, Edgett and Kleinschmidt survey the general success/failure factors
[42]. In general, software new product development can be seen as a series of ques-
tions and problems to be solved [11].

2.4 Research Questions

Based on the background presented in Ch. 2.1-2.3, we now set the following specific
research questions:

1. How to recognize the typical problems of large-scale NPD embedded software
projects?
2. How to assess the feasibility and achievability (“health™) of such projects?

Answering the former question brings insight to the latter one. By recognizing the
particular alerting problem areas, the project manager can conduct and steer the pro-
ject rationally, even under considerable trouble conditions.

The rest of this paper proposes pragmatic aids for answering those questions in a
systematic way. The research method is constructive, based on the literature surveys

Troubleshooting Large-Scale NPD Embedded Software Projects 65

coupled with our own practical experiences with large-scale embedded software
development for new telecommunications products. Our primary scope is in break-
through development projects, creating entirely new market-driven products for the
organization. Note that project financial issues (such as budgeting, rewarding) are
excluded.

3 Troubleshooting NPD Embedded Software Projects

3.1 Project Problem Profiler

Our proposition for recognizing and evaluating the project problem issues is a matrix
of typical problem factors and their likely impacts. Table 2 illustrates the overall
structure of the matrix (see Appendix for the complete table).

Table 2. Project problem profiler (Appendix) structure

Characteristic Pro- Categori- | Typical Typical Project Pro-

ject Problems, Risk zation NPD IMPACT | STATUS | ject

Factors (Nominal) | Embedded index
SW

Program/Project

Management

Ineffective project Company | - Critical! X, Y,

management

Inadequate planning | Project - Moderate | x, Y,

and task identifica-

tion

Inter-component or Project NPD Major X, A

inter-group special

dependencies concern!

Personnel Manage-

ment

The matrix has two main sections. The static part is basically a directory of typical
software project problem factors, with a special emphasis on NPD embedded software
projects. It comprises the following read-only fields (see Appendix):

o Characteristic Project Problems, Risk Factors:
This column is a list of potential problem factors. They are grouped under the main
sections of Program/project Management, Personnel Management, Scheduling and
Timing, Requirements Management, System Functionality, Resource Usage and
Performance, and Subcontracting. Under these main headings there are two levels
of subgroups (only level 1 shown in Table 2).

66 P. Kettunen

e Categorization (Nominal)
The problem items are further categorized according to the scope (Business Milieu /
Company / Project / Team / Individual), class (Development Environment / Product
Engineering / Program Constraints), type (Business / Technical / Process / People /
Organizational), and the project phase of most likely concern (Project Initialization /
Scoping / Planning / Execution / Completion).

e Typical NPD Embedded SW
This highlights those problem areas, which are typically of special significance in
embedded software projects (see “NPD special concern!” in Table 2).

e Typical IMPACT
This value indicates the typical seriousness (Critical-Major-Moderate) of the prob-
lem for the project success.

The latter part of the matrix is dynamic, intended to be filled in by the user (more
about that in Ch. 3.2). It consists of the following two fields:

e Project STATUS
This value is the current evaluation of the project status with respect to the problem
items (No problem / Minor issue / Concern / Serious!).

e Project INDEX
The project’s profile is indicated as a numeric value for each problem item. It is
calculated based on the fields Typical IMPACT and Project STATUS as defined be-
low (Formula 1). This index can further be used to plot graphical profiles of the
current project situation (Ch. 3.2).

The matrix has in principle been composed as follows. The reasoning is discussed fur-
ther in Ch. 4.

We have distilled a wide range of typical project problem factors (Characteristic
Project Problems, Risk Factors) based on the literature survey (Ch. 2), coupled with
our own real-life product development project experiences, with a special focus on
NPD embedded software project concerns. Currently our matrix contains some 500
problem items organized in three levels (23 / 121 / 334 items, respectively). For ex-
ample the following references have been used as the sources: [4-6, 12-19, 22, 27, 29-
32, 34-36, 39, 42-48].

Most of the problem items are straightforward statements (e.g., “Poor communica-
tion”), but some of them are in a form of questions (like “Does management work to
ensure that all customer factions are represented in decisions regarding functionality
and operation?”’). We have normally used the exact wording of the respective sources,
with only some minor editorial changes.

The main grouping of the problem items is initially based on the seminal Boehm’s
risk list, refined by Ropponen and Lyytinen [5, 26]. We have in addition augmented it
with one more main group: program/project management (comprising overall plan-
ning and coordination).

The problem item categorization (Categorization (Nominal)) is only suggestive.
The Scope field is based on [21] and the Class field follows [31].

We have then estimated the relevance and typical impact of each problem item for
NPD embedded software projects (Typical NPD Embedded SW, Typical IMPACT).

Troubleshooting Large-Scale NPD Embedded Software Projects 67

This evaluation is based partially on the ranking of the respective sources (if any
given), and partially on our own experiences.
Finally, the Project INDEX is calculated according to the following formula:

Project INDEX; = Weight * Typical IMPACT; * Project STATUS;)

where the scales are currently defined as follows:

Weight: 1 (constant)
Typical IMPACT: 0-3 (Critical = 3)
Project STATUS: 0-3 (Serious = 3)
Project INDEX: 0-9

This formula is influenced by the commonly used calculation rule of risk exposure
(more in Ch. 4.3).

3.2 Using the Profiler

The profiler matrix (Appendix) is in principle intended to be used as follows:

e For each problem item (level 1, 23 items altogether):
e Answer the following question:
— Is this currently a problem in our case?
— If so, how serious is it (Minor issue / Concern / Serious)?
e Write your rating down to the corresponding cell of the matrix (x; in Table 2).
e The corresponding Project INDEX value can then be calculated (y; in Table 2).

e Finally, the Project INDEX values can be plotted graphically like illustrated in Ap-
pendix (Profile Chart). This gives a visual profile of the project’s problem situa-
tion. The results can now be utilized in various ways during the course of the pro-
ject (see Ch. 3.3).

For helping the evaluation of each main level (1) problem items, the lower-level
(2, 3) items of the matrix can be used as guidance of thinking. For example, under the
problem heading “New market with uncertain needs”, there are more detailed items as
illustrated in Appendix (Problem Sheet). The user can first ponder these lower-level
items (at least part of them), and then give the aggregate rating of the level 1 item ac-
cordingly.

Naturally one can utilize the matrix also partially for example in case some sec-
tions are irrelevant (e.g., Subcontracting). On the other hand, it is of course also pos-
sible to extend the matrix with new problem items.

We have implemented the matrix as a computerized spreadsheet, which makes it
easy to browse the different levels of the problem items, and automate the Project
INDEX calculations and plottings. The Search functions of the spreadsheet can be
used for example to find all problem items with certain keywords (e.g., “NPD”).

3.3 Application Possibilities

The profiler matrix (Appendix) is a versatile tool. There is no one right way of using
it. However, our key idea is to utilize it as follows:

68 P. Kettunen

e The project manager can use the matrix to self-assess her project (even privately).
This assessment can be done while preparing the initial project plan as well as pe-
riodically during the course of the project:

e The initial evaluation gives early insight and warning.

e During the course of the project, the project manager can use the problem pro-
file to focus the management activities on the alarming areas and trends.

e The problem matrix can also be used as a tool in project (or iteration) post-
mortem reviews. What were the biggest problems? The profile data could then
be utilized for future projects (or iterations) for reference purposes.

e The assessments can also be done as group exercises together with the project
team. The project manager and the project team could compare their evaluations.

e A more objective assessment (‘“health check™) could be done by an outsider expert
(such as a Quality Manager). The program and even corporate management could
further utilize such information for ranking the individual projects. This kind of a
ranking of risky projects have been investigated in [49]. This may be sensitive.

Naturally it is not enough to just recognize the problems. The project manager has
to use other means to link the current identified problems to consequent improvement
actions. In some cases no immediate action may be needed, while in other areas
alarming trends (e.g., constant flow of unreasonable requirements changes) may re-
quire improvements even external to the current project. Combined results of individ-
ual project assessments could also be used for larger-scale company process im-
provement purposes (e.g., portfolio management).

4 Evaluation and Discussion

4.1 Empirical Experiments

We have conducted some empirical experiments with the problem profiler matrix
(Appendix) in certain industrial NPD project environments at a large company devel-
oping telecommunications products containing embedded software. The method was
to let the project managers to assess their project status with the matrix. Based on the
responses, we expected to be able to draw conclusions about how well the profiler
captures real project problem situations.

The following project background information was first recorded:

product type: terminal / network element / etc.

project nature: new features / completely new product / platform development
project size, length (order of magnitude)

major dependencies (e.g., hardware development, system integration)

current state: launch / active / ending / completed / canceled

The project managers were then asked to fill in the problem matrix like instructed
in Ch. 3.2. The survey was conducted by e-mail.

Table 3 shows a quantitative summary of the responses provided by the project
manager (or the project quality manager). For confidentiality reasons the actual prob-
lem profile values cannot be shown here. In these project cases 5 common problem
items (out of 23, level 1) were identified. All respondents provided additional narra-
tive description of their project’s main issues. This data was not codified, however.

Troubleshooting Large-Scale NPD Embedded Software Projects 69

Table 3. NPD project case studies

Project Case # of Problem # of Problem # of ‘NPD spe-
Items flagged Items assessed cial concern’
(out of 23) as ‘Serious!’ items (out of 6)

1 | Terminal software
platform subsystem,

8 2 2
new features;
Project ending.
2 | Network element
software, completely 17 5 6

new product;
Project completed.

We can see that the profiler matrix captured critical problem areas of the case study
NPD projects. None of the project cases identified any such significant problems that
were not covered by the matrix. It is not possible to say, if the matrix approach high-
lighted such problem areas which had not yet been seen by the project manager.

4.2 Answering the Research Questions

We have composed a structured directory of typical problems encountered in NPD
embedded software projects. This matrix (Appendix) helps identifying the project
problems by pointing out such key concern areas (Question 1 in Ch. 2.4). The matrix
is certainly not an all-encompassing database of all possible problem items, but the
idea is to guide the thinking like a checklist and a structured interview technique. The
user is encouraged to consider further problem items.

There are many ways of using the matrix, as described in Ch. 3.3. It can thus be
used to check the “health” of the embedded software projects either internally or in-
dependently by an outsider assessor (Question 2 in Ch. 2.4). Naturally such checking
can only give partial suggestions of the status of the project, but if this assessment in-
dicates even some problems, further focused investigations should be considered. On
the other hand, if there seem to be only very few problems (even none at all), one
should become equally suspicious.

The matrix (Appendix) is composed with a generic viewpoint of NPD projects.
While utilizing it in actual projects, it is important to understand the overall position-
ing and the nature of the project. Two such major issues are the front-end activities
done prior to starting the actual software development project, and the level of new
technology development involved. In NPD projects it is equally important to consider
both commercial as well as technical risks [42, 46/Ch. 12, 50].

4.3 Limitations

We acknowledge the following limiting factors and constraints of our propositions
presented in Ch. 3:

70 P. Kettunen

e The prescribed problems items scoping and categorization of the problem matrix
(Appendix) are inherent bias factors. That could possibly skew the project’s prob-
lem space exploration (even subconsciously). In some cases the assessor has to
make a subjective mental mapping between her actual problems and the ones writ-
ten in the matrix — unless there is an exact match. Consequently, different projects
could show somehow different profiles, although the underlying problems would
really be the same. These are typical pitfalls with checklist-based approaches [7].

e It is not reasonable to attempt to compose a complete list of absolutely all the pos-
sible project problems. Our matrix (Appendix) should therefore not be taken as a
universal answer to all questions but merely a framework of thought. The useful-
ness of the matrix depends much on the creativity, experience, and competence of
the project manager.

e There are many ways of categorizing and grouping different problem items, and
currently our matrix shows only one way of doing it. Some of the lowest-level
problem items could have been consolidated, but we have chosen to keep them
separate for reference purposes. However, it is important to realize, that many
problem items could be grouped under multiple categories, and there are different
levels of problems and cause-effect dependencies. Notably the computerized
spreadsheet of the matrix (Appendix) makes it possible to reorganize the problem
items and groupings quite easily.

e We have highlighted those problem areas, which are usually pivotal in industrial
NPD environments (Typical NPD Embedded SW). However, this is to some extent
relative to the actual project circumstances, and in some cases certain other areas
could still be key concerns. There is no guarantee, that following the matrix will
always reveal the most important project problems.

e We have given suggestive default values of the typical impacts of the different
problems (Typical IMPACT). However, the actual severity may vary depending on
the project situations. What is typically a “showstopper” in most cases may still be
manageable in some projects — with extreme measures. In addition, the sum effect
of different problem factors may amplify (or lessen) the actual impact. The Typical
IMPACT values should thus — if necessary — be adjusted (calibrated) to ensure the
fidelity of the calculated Project INDEX.

e The Project INDEX value is not an absolute measure of the project’s status. It is
merely a gauge of potential warning signals. In particular, it should not be used to
rank different projects unless the same person has done the underlying evaluation
according to equal criteria. The ultimate project success/failure cannot be deter-
mined based on this assessment alone (for example because of business factors).

e The suggested self-assessment method is obviously subjective. Healthy self-
criticism is necessary in order to avoid delusion. Cross-checking with multiple as-
sessors is therefore recommended like described in Ch. 3.3.

4.4 Discussion

The underlying theoretical foundation of our approach is in conventional project issue
and risk management. What is said about risk identification is in general applicable
here, too. However, we have taken a specific viewpoint of product development pro-
jects with embedded software concerns. While there is much related work published

Troubleshooting Large-Scale NPD Embedded Software Projects 71

about typical software project risks and failure factors in general (see Ch. 2.1), not
many investigations focus on embedded software projects, and only very few take the
NPD context into account. We see problem-awareness an inherent part of intelligent
project management practice in turbulent NPD environments.

Our problem matrix (Appendix) is in addition a survey of the related literature,
showing what different problem areas have been acknowledged by different investi-
gations over the years. Some common areas are identified by many studies, while
some problems are less frequently advocated, depending on the scope and viewpoints
of the investigations. Our special focus of NPD embedded software projects is not of-
ten published.

The question of how to group the project problem factor space has been addressed
by many investigations over the years. Clearly, there is no one absolutely right uni-
versal categorization, but it depends on the selected viewpoints. A notably rigorous
approach is presented in [27]. Traditional general-purpose categorizations are avail-
able in standards and other project management guides (e.g., PMBOK, ISO/IEC
15504). We have selectively adopted them. One newer alternative has been proposed
in [51]. A life-cycle process area categorization aimed specifically for embedded
products development is proposed in [34]. Product integration is one typical key prob-
lem area. Note, however, that with a computerized tool it is not necessarily binding to
fix any one particular grouping, but the user could basically reorganize the problem
item space from different points of views.

There is a profound underlying difference of our project problem assessments and
those ones done following general-purpose frameworks, such as CMMI. While such
generic models suggest a set of key activities expected to be performed for good
software engineering and management, our problem matrix (Appendix) does not pre-
scribe any particular activities. For example, while requirements management is one
of the level 2 key process areas in the CMMI model, we simply ask the project man-
ager to evaluate, whether it is a problem or not in her case. Such situational problem
diagnosis has been applied to embedded software projects in [52].

A high-level project risk factor matrix is shown in [53]. It includes some basic
technology, product acceptance, and project execution risks. A weighting scale is
suggested for each risk area. This is basically similar to our problem matrix.

One recent, similar to our questionnaire-based approach of recognizing ‘risky’
software projects is proposed in [54]. Likewise, they compose their questionnaire
(having the main categories of requirements, estimations, planning, team organiza-
tion, and project management) following a literature survey and some industrial ex-
periences of embedded software projects. However, more detailed embedded software
and NPD problem items are not covered.

A general-purpose (not limited to IT) project risk rating method has been presented
in [49]. It is similar to our method in the sense that the project manager rates a set of
project risk factors (risk drivers, e.g., novelty), and the overall project risk level is
then calculated accordingly.

A project uncertainty profile is proposed in [55]. Overall business, product, project,
and organizational risk factors are rated according to their level of uncertainty. This is
in principle similar to our problem profiling technique.

A project assessment method in terms of overall complexity and uncertainty is
proposed in [56]. Both complexity and uncertainty are rated based on a few

72 P. Kettunen

prescribed attributes (e.g., domain knowledge gaps, dependencies, project duration).
Project complexity and uncertainty indices are then calculated. This is essentially a
subset of our problem profile. However, in our case it is up to the project manager to
evaluate whether the increased uncertainty caused for example by a long project dura-
tion is really a problem.

Some publicly available / commercial risk management software tools provide
similar functionalities to our problem matrix. However, the purpose of our matrix is
not to replace such tools.

5 Conclusions

We have constructed some pragmatic aids for understanding the various trouble spots
of NPD embedded software projects. The outcome is not any particular solution for
managing such projects, but it provides a holistic view over the problem space. A
wise project manager can utilize this view for managing her particular project suc-
cessfully even under unfavorable circumstances. After all, such cases are not so un-
usual in modern turbulent product development environments [48].

The problem matrix (Appendix) is certainly not a silver-bullet troubleshooter of
every possible project problem case. However, the idea is to illuminate the overall
picture of the project’s problem space so that the major areas are revealed. Based on
this guidance, the project manager can then focus on analyzing the problem indicators
in more detail according to the project’s actual contextual information. The usefulness
of the matrix thus depends much on the experience of the project manager. For less
experienced managers it shows the major areas to be considered to begin with. For a
more experienced user, it serves merely as a structured checklist, giving hints and re-
minders of the typical trouble spots.

This paper leaves room for further study:

1. More empirical validation: At the time of the writing we are able to present only
limited empirical case data about our propositions. More data should be collected
by experimenting the matrix (Appendix) like described in Ch. 4.1. The empirical
validation could follow the principles used in [54]. In particular, are there any sig-
nificant problem areas that are currently not addressed in the matrix? How much
does the prescribed categorization bias the problem assessments?

2. More rigorous categorization of the problem space.

3. As defined now, the calculated Project INDEX value is a simple measure with cer-
tain bias limitations (see Ch. 4.3). More advanced measures could possibly be de-
veloped for example by taking into account the basic nature of the project (e.g.,
high market uncertainty vs. high technological uncertainty). Can the overall pro-
ject uncertainty and complexity be measured? Does the project type change it?

4. What can we say about projects based on their problem profiles (Appendix: Profile
Chart)? Can we identify particularly risky (or “unhealthy”) projects [49]? When
should we cancel or not even start the project? How does the problem profile
change over the project’s life-cycle? A reference database of problem profiles of
both successful and failed projects could be collected.

Troubleshooting Large-Scale NPD Embedded Software Projects 73

. Problem-conscious project management: The problem matrix could be extended

with suggestions of potential maneuvers for each problem item. We have already
investigated elsewhere, how different software process models tackle certain pro-
ject problems [57, 58]. Those results could be linked to the problem matrix.

Acknowledgements

The author would like to thank Maarit Laanti (Nokia Corporation) for her influence
and critique. We are also grateful to the anonymous case study project managers.

References

10.

11.

12.

13.

14.

15.

16.
17.
18.

. Farbman White, S., Melhart, B.E., Lawson, H.-W.: Engineering Computer-Based Systems:

Meeting the Challenge. IEEE Computer 34(11) (2001) 39-43

. lansiti, M.: Shooting the Rapids: Managing Product Development in Turbulent Environ-

ments. California Management Review 38(1) (1995) 37-58

. MacCormack, A., Verganti, R., Iansiti, M.: Developing Products on “Internet Time”: The

Anatomy of a Flexible Development Process. Management Science 47(1) (2001) 133-150

. Mullins, J.W., Sutherland, D.J. New Product Development in Rapidly Changing Markets:

An Exploratory Study. Journal of Product Innovation Management 15 (1998) 224-236

. Boehm, B.W.: Software Risk Management: Principles and Practices. IEEE Software 8(1)

(1991) 32-41

. DeMarco, T., Lister, T.: Walzing with Bears: Managing Risks On Software Projects. Dor-

set House Publishing, New York (2003)

. Kontio, J.: Software engineering risk management: a method, improvement framework,

and empirical evaluation. Helsinki University of Technology (2001)

. Glass, R.L.: Software Runaways. Prentice-Hall, Upper Saddle River (1998)
. Pavlak, A.: Project Troubleshooting: Tiger Teams for Reactive Risk Management. Project

Management Journal 35(4) (2004) 5-14

Kwak, Y.H., Stoddard, J.: Project risk management: lessons learned from software devel-
opment environment. Technovation 24 (2004) 915-920

Sheremata, W.A.: Finding and solving problems in software new product development.
Journal of Product Innovation Management 19 (2002) 144-158

Conrow, E.H., Shishido, P.S.: Implementing Risk Management on Software Intensive Pro-
jects. IEEE Software 14(3) (1997) 83-89

Evans, M.W., Abela, A.M., Belz, T. Seven Characteristics of Dysfunctional Software Pro-
jects. CrossTalk 15(4) (2002) 16-20

Houston, D.: Results of Survey on Potential Effects of Major Software Development Risk
Factors. http://www.eas.asu.edu/~sdm/dhouston/risksrvy.htm (1999) (accessed February
2005)

Jones, C.: Patterns of Software System Failure and Success. International Thompson
Computer Press, Boston (1996)

May, L.J.: Major Causes of Software Project Failures. CrossTalk 11(7) (1998) 9-12

Reel, J.S.: Critical Success Factors In Software Projects. IEEE Software 16(3) (1999) 18-23
Reifer, D.: Ten Deadly Risks in Internet and Intranet Software Development. IEEE Soft-
ware 19(2) (2002) 12-14

74

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

P. Kettunen

Wiegers, K.E.: Know Your Enemy: Software =~ Risk =~ Management.
http://www.processimpact.com/articles/risk_mgmt.pdf (1998) (accessed February 2005).
Brooks, F.P. Jr.: The Mythical Man-Month: Essays on Software Engineering (20th Anni-
versary Edition). Addison-Wesley (1995)

Curtis, B., Krasner, H., Iscoe, N.: A Field Study of the Software Design Process for Large
Systems. Communications of the ACM 31(11) (1988) 1268-1287

McConnell, S.: Rapid Development: Taming Wild Software Schedules. Microsoft Press,
Redmond (1996)

McConnell, S.: Software Project Survival Guide. Microsoft Press, Redmond (1998)
Royce, W.: Software Project Management. Addison-Wesley (1998)

Brown, S.L., Eisenhardt, K.M.: Product Development: Past Research, Present Findings,
and Future Directions. Academy of Management Review 20(2) (1995) 343-378

Ropponen, J., Lyytinen, K.: Components of Software Development Risk: How to Address
Them? A Project Manager Survey. IEEE Trans. Software Engineering 26(2) (2000) 98-111
Schmidt, R., Lyytinen, K., Keil, M., Cule, P.: Identifying Software Project Risks: An In-
ternational Delphi Study. Journal of Management Information Systems 17(4) (2001)
(Spring) 5-36

Smith, J.M.: Troubled IT Projects — prevention and turnaround. IEE (2001)

May, G., Ould, M.: Software project casualty. IEE Engineering Management Journal 12(2)
(2002) 83-90

Fairley, R.E., Willshire, M.J.: Why the Vasa Sank: 10 Problems and Some Antidotes for
Software Projects. IEEE Software 20(2) (2003) 18-25

Carr, M., Kondra, S., Monarch, 1., Ulrich, F., Walker, C.: Taxonomy-Based Risk Identifi-
cation (Technical Report CMU/SEI-93-TR-6). SEI (1993)

Brown, W.J., McCormick H.W. III, Thomas, S.W.: AntiPatterns in Project Management.
John Wiley & Sons, New York (2000)

Ould, M.A.: Managing Software Quality and Business Risk. John Wiley & Sons, Chiches-
ter (1999)

Kuvaja, P., Maansaari, J., Seppénen, V., Taramaa, J.: Specific Requirements for Assessing
Embedded Product Development. In: Proc. International Conference on Product Focused
Software Process Improvement (PROFES) (1999) 68-85

Rauscher, T.G., Smith, P.G.: Time-Driven Development of Software in Manufactured
Goods. Journal of Product Innovation Management 12 (1995) 186-199

Ronkainen, J., Abrahamsson, P.: Software development under stringent hardware con-
straints: Do agile methods have a chance? In: Proc. 4th Int’l Conf. Extreme Programming
and Agile Processes in Software Engineering (2003) 73-79

Kettunen, P.: Managing embedded software project team knowledge. IEE Proc. — Software
150(6) (2003) 359-366

Riek, R.F.: From experience: Capturing hard-won NPD lessons in checklists. Journal of
Product Innovation Management 18 (2001) 301-313

Wheelwright, S.C., Clark, K.B.: Revolutionizing Product Development: Quantum Leaps in
Speed, Efficiency, and Quality. The Free Press, New York (1992)

Song, X.M., Montoya-Weiss, M.M.: Critical Development Activities for Really New ver-
sus Incremental Products. Journal of Product Innovation Management 15 (1998) 124-135
Ernst, H.: Success factors of new product development: a review of the empirical litera-
ture. International Journal of Management Reviews 4(1) (2002) 1-40

Cooper, R.G., Edgett, S.J., Kleinschmidt, E.J., Benchmarking Best NPD Practices — III.
Research ¢ Technology Management 47(6) (2004) 43-55

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Troubleshooting Large-Scale NPD Embedded Software Projects 75

Jones, C.: Minimizing the Risks of Software Development. Cutter IT Journal 11(6) (1998)
13-21

Jones, C.: Software Assessments, Benchmarks, and Best Practices. Addison-Wesley
(2000)

Rautiainen, K., Lassenius, C., Nihtil4, J., Sulonen, R.: Key Issues in New Product Devel-
opment Controllability Improvement — Lessons Learned from European High-tech Indus-
tries. In: Proc. Portland Int’l Conf. Management of Engineering and Technology
(PICMET) (1999)

Smith, P.G., Reinertsen, D.G.: Developing Products in Half the Time: New Rules, New
Tools. John Wiley & Sons, New York (1998)

Ulrich, K.T., Eppinger, S.D.: Product Design and Development. McGraw-Hill, New York
(2000)

Yourdon, E.: Death March — The Complete Software Developer’s Guide to Surviving
“Mission Impossible” Projects. Prentice-Hall, Upper Saddle River (1999)

Baccarini, D., Archer, R.: The risk ranking of projects: a methodology. International Jour-
nal of Project Management 19 (2001) 139-145

Holmes, M.F., Campbell R.B. Jr.: Product Development Processes: Three Vectors of Im-
provement. Research ¢ Technology Management 47(4) (2004) 47-55

Keil, M., Cule, P.E., Lyytinen, K., Schmidt, R.C.: A Framework for Identifying Software
Project Risks. Communications of the ACM 41(11) (1998) 76-83

Iversen, J., Nielsen, P.A., Ngrbjerg, J.: Situated Assessment of Problems in Software De-
velopment. The DATA BASE for Advances in Information Systems 30(2) (1999) (Spring)
66-81

Fitzgerald, D.: Principle-Centered Agile Project Portfolio Management. Agile Project
Management Advisory Service Executive Report 6(5), http://www.cutter.com/
project/fulltext/reports/2005/05/index.html (2005) (accessed June 2005)

Takagi, Y., Mizuno, O., Kikuno, T.: An Empirical Approach to Characterizing Risky
Software Projects Based on Logistic Regression Analysis. Empirical Software Engineering
10 (2005) 495-515

DeCarlo, D.: Leading Extreme Projects to Success. Agile Project Management Advisory
Service Executive Report 5(8), http://www.cutter.com/project/fulltext/
reports/2004/08/index.html (2004) (accessed June 2005)

Little, T., Greene, F., Phillips, T., Pilger, R., Poldervaart, R.: Adaptive Agility. In: Proc.
Agile Development Conference (ADC) (2004) 63-70

Kettunen, P., Laanti, M.: How to steer an embedded software project: tactics for selecting
the software process model. Information and Software Technology 47(9) (2005) 587-608
Kettunen, P., Laanti, M.: How to Steer an Embedded Software Project: Tactics for Select-
ing Agile Software Process Models. In: Proc. International Conference on Agility ICAM)
(2005) 241-257

P. Kettunen

76

[0] [wamond on| e epop B uognosg sl sseonideiung weifold sfaig 0 Aqenh Jood) sxsey paulopad Aenlaia Jo s|epols
|] | | wigoud o] P . unnoaxg el ssan0udIeA1U07) WeB0 paing| (PUENDI00M] S1UBUNALIND PaLSILUNG AEWSTKE 10 S|EI0YS
Bupsenuosgng
0 wagod oy oy [juseouen epads gdn| uognosxg joeloug Jeaiuyoa) [sauiEu Jonpoad| weay | |e31uy3a] Burqae) sanpgeded adualds Jandluod Buluens
0 waproid oy e . BulLUEld il iz q wes] Salfin[0uy3a] JUBLId0EAaR 8ARIaHaL]
E snoyeg| T e T jea1ugaL eeupug fanpoid weal] S|lefHoys aoueLiopad au-eay
aauewlopad pue abesn asunosay
0 i o apeepon B uopnosx3 esiosg| jesiyoe lueaupug anposg) Jsioig fynJyyip 4o aienbapeu] adepagul Jasn Buouw Buidojasag
0 wagroid oy Lofen . uomnosxa palold ssa00id|ueauBUg Prpold el UMOPXEaI UOREJaads
] wago.d oy WaaunD Eads qdn| Buidoos painsg |ealoa) uasUBU3 1rpo.d| painig| 10U AJE JEU] SUDNAUNI] SUORJUN] alerqns Buom Buidojasag
T anssy Joupy B fuiueyd i) jea1ugaL eeupug fanpoid Sthuos) uopeddde xadwog
Mieuensung wsisis
[Uieauay Jolep B Buidoas sl ssaonigueauBug Jnpog| Jasloig] paj|o-u0aun) sabueyd sjualiaanbal jo weays Buinuuo)
1 anss! Uy appiapop - udoas el ssannigaaUBLT Mol el [SaImea] Aessananun buippe] Bured pog,
0 waigo.d oy oo |iweouna jereds adn| Buidoos el ssausnglue/suod wesBold| negy sseusng SpaaU LIEHEJUN LA JEL map
juawabeuey sjuawadinbay
0 waigo.d oy ol - uognoaxg yeloly diaua ql Joafodd| Ayananpoud Joog
0 waposd o peapon B BuuuEld sl iz q sfaig BURELNISa 1503 ajeinaded|
0 waproid oy Lofon . BulLUEld il iz q el EETEENESRIEENT]
£ anss1 10U am |jueouns pepeds gan | Buuue pelesy seausng|iegsung weJEoly sueduop| PEIELLIGSE JR0PNG pue B s)aBpng TsANpayas anseaun
Bujwi] pue Bujnpayos
0 wapgosd o salen B Trv el apong|iug peudoEnag wea] 3|E0U MO| JUBLLYLILIOT JEIS 40 {387
T st oup ol - T palosd] [euonEzINeRio e sUas weBoig| o Bulers 15aload o AQinanuod Jo #Je] pue Aigessu]
0 wagroid o o . W polond| puopzusBIo kU Wawdoag Pl S|[HS [EIRUT Yl S33IN0S3) auinboe o3 Ayjigey|
z ansst oupy 1olep B T peslosd] jeuonezinebi e eung wesbosg| ueduioy) 1313 pue [guuosiad paienh Jox2e|] s|lgfioys [auunsiad
uswabeuepy [suuosiag
0 wieigoid o ol Jissouos jereds g | uosnosa peinig) iz a sl salouapuadap dnosf-iegun 1o uauodwod-isgy|
0 o oy misRon N BUILUEl il iz a i UBMED USR] {51 pUE BULLE|T S1erbaped|
0 [i B 7 sl euopezineRio g pewdopsag| Jueduios fajqissod s/@sa) ajdyinud] Juauialiedew 1oafoid angaagau|
Juawabeuepy 30aloiduresbolq
* xmoz_i ﬁ:::# [LOvdWI[mS peppaqu3 3SVHd] 3dAl] SSY1D] 3d0DS
30afoug FLETLT R reoldht] adn 1esidAy {lreuiwon) :c_muwn_._omwumu

‘s300lo01d arem1jos pappaquia (JIN [821dA) Ul paAlasqo 9q [[m PINOd s3ulel Jo pury siyl 9duaLadxa Ino ur Inq ‘ased 30aloid
Ternonaed Aue judsardar jou op 21y Ind sonyeA §/ VIS 192[0.44 U], *9[qe) | [9AJ] 239[dwos) Smoys SUIMO[[0] YL, :J99YS WR[qOIJ

XIIBIA] JI[IJOIJ WR[qo1d 3df0ad xipuaddy

77

Troubleshooting Large-Scale NPD Embedded Software Projects

H _ Emocno_ Aol & Buidoos joalod £50004d [IMaUIBUT 1anp0ad 108i0.4d pa|jnunaun] safiueya sjuswaunbal o weans funuiunzy
l _ anssg| Loc_E_ 2qesap0N - Budons 1aioid SE2004d IHaaUIBUT 1anp0dd 108i04d {sainea) Aessadsuun Buippe] Guned pjog
r wsjodd opg - . §§§§ 30Ua18dW0g s Uoslad 108IU0D J0 HJET
L T -~ = VoS WAl 10 e
r wrajpad ang - . g /| LORELLIDUN 10 S paysiin-1atloisnsy
I wreiqod ony . . \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\§ IGEEER LE_mEm_,n BulfeT ualiyLod Jasn uiel o _mcz_:mu_
r wisiqodd ong - - \\\& s)yausg oy B 9 paseqoey) uonuyap 1onpoid Auea dieys
I wizigeed on| e | iw@ouoa e 7| 0} SI8LIOSND B} J0 ANIGEUI BUY Ljim PRJEID0SSE AUELIE0UN
I G o Aol LD (B 2 wuuzﬁ_uﬁ 10 SUDIANPoJIUL 1aHJIELl JO BLiun looH
r B SE Jou 1anpodd mad] S5auaARIunsIq NP0 40 H3ET
r . Jouadns Tanbiun afellespe 10npoig
r i Adauuaa e 3onpoad aU 5|
I . /] 29minjInoge uojSnjuDd pue SIaLU0Jsna JUSLNI U Sna0g
r solepy . 3L} 01 PaUNs 1530 Wea) aLg Ag uasoyd 3dadund ags 5|
I . 7 anadiiod Yl slaylew 1ailes Jo afielaand aenbapeuy
iy I 41aLU015N3 3801E) 847 51 DUAA,
r Ul palapisund ag pinoys sjUaibas 18l BUAA
r afueyD spaau ssausng
T S|eofl SSaUISNG Uan JUSLHUBIE SN
r - ey 51318 ADaes 1anpoud sap
i g oy [[E=TieY uaisia HUJUDLQ dE3|D 0 H2ET]
0 [wapoud oy o SPIAU LIEH3IUN LA JHIELL MEN
| Juawabeuey syuswalinbay
* X3aNI ﬁ:rﬁ# | LovdWI[ms pappaqug 3SYHd| 3dAl] ssvI10] m_n_oom|
yo8loid 108fo4d feardAl| Qdm residip {reunwon) uojeziiobare s

‘(ea0qe “J'0) 9[qe) ¢-7 [9A] papuedxa 9y} JO UOTOIS B SMOUS SUIMO[[0] AU, :J99YS WI[qOI]

P. Kettunen

78

(1uawysduwoooe siqeroipaidun Jo Ajienb Jood) syse} pauLopiad Alleuaixe o S|[eIous
(Aufenb 100d) SuBUOAWOD PaYSIUINY Al[2UIBIX® JO S|IEJLOUS

ONILOVHINOOENS

(1emod Bunndwioo pue suonnjos [ealuyos) Bupoe]) seniqedes ousis JaiNdwod Buuens
saiBojouyoe) JuswdojeAsp aAloaYBY|

sifesoys eouewopad sui-eay

3ONVNHOLH3d ANV 3OVYSN 308NOSIY

(unayyip Jo ejenbapeul) soepsjul Jesn Buoim Buidojereq

umopyealq uoneayads

(peyoads AjBuoim aie Jo papasu Jou 8Je ey} SUOIOUN)) suolouny aiemyos Buoim Buidojereq
uopeoydde xejdwo

ALITYNOILONNS W3LSAS

(seunmesy weyshs Jo eBueyo ajqeloy pue sebueo inbas Jo weans Buinunuoy
(seunjeay Auessaoauun Buippe) Bujeid pioo

SPeU UJBLIBOUN)M 183EW MON
ANIWIOVYNVIN SLININIHINOIY

Auanonpoud sood

Bunewnsa 1509 sjeinooeu|

Mey a|npayos Juasayu|

(Anoswioour pajewse 196png pue swn) sjebpng ‘seinpayos onsiieaiun
ONIWIL ANV ONITNA3HOS

B[_IOW MO] JUSWIIWILIOD JJEIS JO 0BT

Buyers 10eloid u ANURUOD Jo %oe| pue
SIS (01110 YW S80IN0SaI B1NboE 0] AYIGEU|

(aBueyo s1ay) pue jpuuosiad payiienb Jo ¥oe|) s||BJUOYS [auUOSIad
LN3W3OVNVIN TINNOSH3d

uoneoyuap! el pue Buiuueid sjenbapeu)
(slaissod sena] aidninw) JuswaBeuew 1afoid anjsyaU|

ANIWIOVNVIN LOIrO¥d/NYEO0Nd

X3aNI 108foid

wajqoud oN = 0 ‘[6-0] :2|e28
SVIIV TV

"9A0QE sanfea J39yS wa[qoid sjdwes ayy uo paseq eys d[yoid wajqoid ayy Jo joid ojdwexs ue smoys Suimo[oy Y], :3rey) AYoid

