
Petri  Kettunen  and  Maarit  Laanti.  2005.  How  to  steer  an  embedded  software  project:
tactics for selecting the software process model. Information and Software Technology,
volume 47, number 9, pages 587­608.

© 2004 Elsevier Science

Reprinted with permission from Elsevier.



How to steer an embedded software project: tactics for selecting

the software process model

Petri Kettunen*, Maarit Laanti1

Nokia Corporation, P.O. Box 301, 00045 Nokia Group, Finland

Received 19 May 2004; revised 7 November 2004; accepted 7 November 2004

Available online 25 December 2004

Abstract

Modern large new product developments (NPD) are typically characterized by many uncertainties and frequent changes. Often the

embedded software development projects working on such products face many problems compared to traditional, placid project

environments. One of the major project management decisions is then the selection of the project’s software process model. An appropriate

process model helps coping with the challenges, and prevents many potential project problems. On the other hand, an unsuitable process

choice causes additional problems. This paper investigates the software process model selection in the context of large market-driven

embedded software product development for new telecommunications equipment. Based on a quasi-formal comparison of publicly known

software process models including modern agile methodologies, we propose a process model selection frame, which the project manager can

use as a systematic guide for (re)choosing the project’s process model. A novel feature of this comparative selection model is that we make

the comparison against typical software project problem issues. Some real-life project case examples are examined against this model. The

selection matrix expresses how different process models answer to different questions, and indeed there is not a single process model that

would answer all the questions. On the contrary, some of the seeds to the project problems are in the process models themselves. However,

being conscious of these problems and pitfalls when steering a project enables the project manager to master the situation.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Software project management; Software process models; Risk management; Embedded systems; New product development
1. Introduction

Managing modern industrial software projects success-

fully requires situation-aware control with the possible and

oncoming troubles, taking the anticipated and even

unexpected situational conditions into account. A powerful

tool any project manager might then have is the power of

initially choosing and—if necessary—later revising the

software process model.

In this paper we present a systematic approach when it

would be wise to use a certain software process model under

certain project conditions, and why. Specifically, we are

interested in investigating how different process models

cope with different project problems. The purpose is to
0950-5849/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2004.11.001

* Corresponding author. Tel.: C358 50 382 3672.

E-mail addresses: petri.kettunen@nokia.com (P. Kettunen), maarit.

laanti@nokia.com (M. Laanti).
1 Tel.: C358 40 530 8056.
provide pragmatic aids for practicing project managers by

combining and distilling knowledge from a variety of

literature sources coupled with our practical experiences.

Obviously there are many other ways of directing the

project course than just selecting and adjusting the software

process. The project management tools in this sense form a

very wide arsenal. Some of these belong to the area of

organization psychology; some belong to the area of

financial control. Our purpose here is certainly not to

cover all different areas of effective project management.

In general, there is a wide range of software development

project types ranging from large contract-driven IT/IS

systems to small in-house developments. While they share

many common characteristics, each project type and context

induce particular considerations. In this study we focus on

one specific type of software projects, namely market-

driven development of embedded software for telecommu-

nications products (e.g. mobile phones, radio network

elements).
Information and Software Technology 47 (2005) 587–608
www.elsevier.com/locate/infsof

http://www.elsevier.com/locate/infsof


P. Kettunen, M. Laanti / Information and Software Technology 47 (2005) 587–608588
Even within this category there are many different project

types, such as completely new product development, new

features development for existing products and derivatives,

and platform developments. Here we limit ourselves to the

first type, i.e. the software development for a whole new

product. We have made that limitation to new product

development, since we feel that there is much more freedom

for the project manager to choose the initial software process

used, than to make changes to a one that has already been

established and used for many past software releases. Neither

of the two limitations is though exclusionary nor definitive

for the usage of our guidelines—the reader is encouraged to

explore the suitability to her own application area.

The rest of the paper is organized as follows. Chapter 2

explores the background and related work, and sets the exact

research question. Chapter 3 then describes our solution

ideas, while Chapter 4 evaluates them. Finally, Chapter 5

makes some concluding remarks, and outlines further

research ideas.
2. Many software process model alternatives

2.1. Software process models and project problems

In this paper, we define ‘software process model’ broadly

so that it includes all the project life-cycle activities of

project planning, tracking, and requirements management as

well as the actual software construction and release. The

process model defines the overall flow and order of the

project work. This definition covers also the new agile

software development methods.

Over the years, there have been many different software

process models around. Many research investigations and

numerous software engineering guidebooks compare and

contrast the different models, see for example [2–3,9–10,

14–15,29,33,36,44–45,47,49]. There are in addition various

handbooks, ‘checklists’, and even standards available. For

instance, the ISO/IEC standard 12207 has an accompanying

guide showing the key differences between the waterfall,

incremental, and evolutionary models [53].

Those different investigations use various different

comparison viewpoints of the process models, such as
†
 ease of management [47]
†
 suitability for different development types [45]
†
 suitability when poorly understood, unstable require-

ments [33]
†
 means for managing different software risks (uncer-

tainty) [36]
†
 size, criticality, project’s priorities [14,15]
†
 primary objectives (e.g. rapid value vs. high assurance)

[9]
†
 universal prescription vs. situational adaptation [2,3]
†
 people factors [49], and
†
 multidimensional home ground profiles [10]
In modern software product development environments

the basic premises and assumptions of the traditional

process models have been stretched so much that many

such models have become partially unsuitable. In addition,

the growing understanding of innovation patterns and

organizational learning has influenced software engineering

management (knowledge management) [26]. Because of

many unknowns and uncertainties coupled with ambitious

time-to-market goals, basic serial document-driven devel-

opment is often not feasible. The modern business pressures

and technology advances often require responsive last-

minute changes in the product contents [35]. New agile

software process models address such aspects.

The current trend in software process model develop-

ment advocates more adaptable and flexible ways of

working, i.e. moving from rigid all-defining huge organiz-

ational processes towards sketched, tailorable, agile pro-

cesses. Typical way of working is to give only a few most

essential practices to the project—more like a process

skeleton—where the practices can gradually be added. The

mental model here is mere to let the project decide about the

practices whenever ready to take those into use rather than

having well-set rigid model to follow [1,21,22(Ch. 8),25].

Embedded systems have in addition certain intrinsic

software project problems [48]. The software developers

must often understand interdisciplinary product application

domain knowledge [16]. Systems engineering is then a key

activity [51]. In industrial new product development

environments, there are also many limiting business

constraints to be taken into account [30]. Note that in

complex product systems (e.g. mobile phones) there are

often many profoundly different types of embedded soft-

ware subsystems ranging from real-time hardware drivers to

sophisticated man–machine interfaces. The most recognized

software models are pure models in a sense that only

software is focused into. Models used in embedded software

development are often variations of these. However, most

existing process models can to some extent be tuned to real-

time embedded software projects by taking into account the

systems engineering and hardware dependencies.

The question is now for a practicing software project

manager to choose an appropriate process model for her

particular project, taking into account the current and

anticipated problems of the project. To the best of our

knowledge none of the published investigations cited above

provide comprehensive guides for such purposes from that

point of view. This is what we want to address.

2.2. Research question

Based on the background in Ch. 2.1, we now set the

following specific question:
†
 How can the project manager avoid typical project

problems by selecting an appropriate software process

model, based on the project situational factors?



P. Kettunen, M. Laanti / Information and Software Technology 47 (2005) 587–608 589
The challenge is for the software project manager to find

an appropriate process model among the many different

alternatives, knowing how the selected model works under

given project problem conditions [19]. For example the

ISO/IEC standard 12207 simply states that the user is

responsible for selecting a life cycle model, although some

informative guidelines are suggested [53]. Our aim here is to

offer pragmatic aids for doing this in a systematic way,

preventing the basic problems of selecting a fundamentally

wrong model (‘Lifecycle Malpractice’), using an overly

bureaucratic process (‘One Size Fits All’), or even not

choosing any definite process model at all [13, 33(Ch. 7)].

By making conscious choices, the project manager can also

avoid any inherent disadvantages of the process model.

The rest of this paper proposes answers to that question.

The research method for the question is quasi-formal

comparison based on distilling features [46]. As stated in

Ch. 1, our special focus is embedded software development

for new telecommunications products. In addition, we

concentrate on large-scale projects, requiring tens of man-

years of work effort.

Our underlying premise is that the process model is a

significant productivity and quality factor for large

software development projects. However, we do not

argue that it is the most important success factor. Often,

people factors tend to be ultimate keys [49]. Never-

theless, an efficient project management and development

process has been recognized to be one typical character-

istic of successful projects [24].
3. Tactics for selecting the software process model
3.1. Software process model selection matrix

There are many process models available, each having

different characteristics and areas of suitability. The

problem is then to find good matches with the actual project

situations. There are no standardized solutions for this.

To help this, we have composed a process model

selection matrix. Table 1 shows that structure. Table 2 is a

sample excerpt of the actual matrix (top left-hand corner).

See Appendix A for the complete matrix.

This matrix (Appendix A) is basically a comparative

analysis of different software process models. A notable

feature of the matrix is that we have based the comparison

on how well each process model tackles typical problems of

large embedded software projects. The reader is assumed to
Table 1

Software process model selection matrix (Appendix A) structure

Software process model

Project problem,

risk, failure factor

How does this process model prevent that particular

problem from happening, or helps mitigating it (in the

context of large embedded software projects)?
be familiar with the basics of the models in order to be able

to understand the analysis points.

Note that the matrix (Appendix A) is by no means an all-

encompassing directory of software process models or

potential project problems. The matrix has in principle been

composed as follows. We have selected the process model

alternatives based on a literature survey (see Ch. 2.1) as well

as on our own experiences with large embedded software

development projects. The idea is to cover a wide range of

models, including both traditional and modern ones.

Currently our matrix includes the following process models

(columns): waterfall, incremental development, Spiral

model [7], RUP [27], FDD [37], ASD [22], XP [54], and

‘hacking’. However, we are fully aware of the fact that for

instance many other agile methodologies have been

proposed [2].

Similarly, we have distilled distinct project problem

areas and risk factors based on well-known investigations

(for example [8,11–13,16–18,24,32–34,40–43,52]) coupled

with our own large embedded software project experiences.

Currently our matrix includes some 50 problem items

(rows). They incorporate for example the well-known

Boehm’s risk list [8]. The rows are grouped according to

the project life cycle: project initiation, execution, com-

pletion (see the leftmost column of Table 2). The idea here

is to cover such essential factors, which make a clear

difference between the models in the context of large

embedded software projects. Again, we acknowledge that

other factors could have been included.

In addition, the matrix includes a key point section of

each process model’s home ground, drawbacks, and typical

pitfalls. Table 3 is the outline of that part (bottom left-hand

corner in Appendix A). Assuming that the reader is familiar

with each process model in general, this summary serves as

a quick reminder of notable remarks. Considering

embedded systems, it summarizes the applicability of each

process model for large embedded software projects.

Notably current agile process models do not specifically

address embedded software development [39].
3.2. Using the selection matrix

A project manager can use the matrix (Appendix A)

described in Ch. 3.1 in two basic ways:
(a)
 By columns: selecting the project’s process model by

comparing the basic alternatives according to the

prevailing or anticipated project problem situation, i.e.

by reflecting presented problem areas to her own known

problem areas, and optimizing the best solutions,

selecting a process model which supports it best.
(b)
 By rows: evaluating how specific project problems can

be tackled with different process model alternatives.
One could even give ratings of problems and the

solutions each method would provide—and calculate



Table 2

Software process model selection matrix (Appendix A) example

Project problems, fail-

ure factors

Software process models

Plan/specification-driven models Evolutionary models

Waterfall (serial development) Incremental development models Spiral model

(risk-driven iteration)

Project initiation

Unclear project

objectives (lack of

a project mission)

Waterfall model does not tackle especially this

problem. You should stay on the specification

phase, until your project objectives are clarified

Can start working on the known increments, and

clarify the rest later. Note! May arise other

problems later, if project is not well defined or if

the definition changes much later

.

Overplanning/under-

planning (e.g. ‘glass

case’ plan)

If you can do the planning reasonably well

up-front, there is less overhead than with the

iterative/incremental models. However, in the

case of major uncertainties.

. .

Lack of resources

(people)

. . .

P. Kettunen, M. Laanti / Information and Software Technology 47 (2005) 587–608590
averages or weighted averages for each method, and make

analytical decisions on that basis.
Table 3

Software process model selection matrix (Appendix A) structure (cont)

Software process model

Home ground Most applicable project environment(s)—‘sweet

spot’

Consequences,

Side-effects,

Drawbacks:

Scope Coverage of the model (project life-cycle activities)

Nature Methodological characteristics

Advantages Key benefits

Constraints Limitations and disadvantages, prerequisites

Cautions! Significant risks and pitfalls

Notes Miscellaneous remarks

Embedded

systems

Particular considerations for embedded software

projects
4. Evaluation and discussion

4.1. Validation

At the time of this writing we are not ready to publish

empirical case study data of using our process model

selection matrix presented in Ch. 3 (Appendix A). However,

the following examples based on certain past real-life

projects within Nokia Group test some main points. Note

that the examples have been sanitized for confidentiality

reasons.

4.1.1. Example 1

Problem. There is a project case, where some of the

requirements are known a lot earlier than other set of

requirements. This kind of a case could be a project, where

the underlying embedded system hardware is known, but

other requirements (such as customer and user interface

requirements) will only be found out later.

Suggestions. The project manager could decide, based on

the rows Unclear project objectives, Incomplete require-

ments/specs of the matrix, knowing that there might also be

Poor requirements management (uncontrolled requirements

changes), that a typical waterfall model used previously in this

organization does not provide an optimal fit in her case.

Instead, she decides to apply incremental development in such

a way, that the first increment is a generic-type of solution

supporting a newest version of her computing hardware, and

the two succeeding increments will consist of partially

customer and partially user interface requirements.

4.1.2. Example 2

Problem. An embedded software project implements a

new network system algorithm, based on a recent
international telecommunications standard. No other net-

work element vendor has yet implemented it. The algorithm

is complex, and the standard specifications leave some room

for interpretations. Therefore, the specification work is

expected to be a problematic area.

Suggestions. Considering the row Research-oriented

development, we can see that either the Spiral model or

ASD is an appropriate choice to begin with. Both emphasize

resolving the major uncertainties iteratively from the

beginning. Those process models do not prescribe how

exactly this could be done, but for example some simulation

studies or prototypes could in practice help clarifying the

specification details. After resolving the specifications

uncertainties, the rest of the project implementing the

specifications could be run incrementally, if the program

size is considerable (see row The project is too big for ‘one

shot’).
4.1.3. Example 3

Problem. The product systems design is based on

complex ASIC circuits and embedded software cooperation.

The product development program is initially based on



P. Kettunen, M. Laanti / Information and Software Technology 47 (2005) 587–608 591
a waterfall model. However, at a late stage, when the first

ASIC prototypes become available, a subtle ASIC design

fault is discovered. Because of the tight product release

schedule target, there is no time to redesign the ASIC.

Instead, a non-trivial software workaround algorithm is

specified, requiring considerable additional software design

and testing efforts.

Suggestions. The initial choice of the waterfall model

may have been wrong, if such a risk has been foreseeable

from the beginning (see row Underestimation of project

size, complexity). None of the process models covered

address such external dependency failures directly (row

Project external dependencies late and/or imperfect), but

such a change makes it difficult to continue with the

waterfall model (row Project redirected). Adaptive replan-

ning is needed. One way of tackling this problem could be to

have a new concurrent feature team for working on the

additional functionality (FDD).

4.1.4. Example 4

Problem. A framework project implements a new

Operations and Maintenance (O&M) framework by using

a spiral model. Work is well split on increments, and each

increment is specified before the software units are

implemented and tested. The increments are typically

completed in ahead of schedule. The product specific

O&M software is implemented by another team at the same

time with the framework. The plan is, that the product

specific O&M should utilize the new O&M framework. The

product specific O&M is following a waterfall model, and it

is having huge difficulties on meeting the deadlines. Later

on, when the framework integration with the product

specific O&M software starts, major flaws are revealed.

Part of the code is written twice (once by the framework and

once by the actual O&M) and part of the code seems to be

missing. Also it seems, that the split to framework and

product specific part was initially vaguely done. After huge

struggle, the remaining framework project is stopped, and

all the project personnel from the framework project and

product specific O&M project is moved to one big project

which goal is just to make a working O&M solution before

the first product launch—by using hacking.

Suggestions. In any two tightly coupled projects,

communication and interface design is always an issue.

The biggest problems here were that the product specific

O&M project was lacking interface specifications, and the

initial set-up for both of them was vague. Actually, there

was not anything wrong with the process model selected for

the framework project (the increments were completed on

time with the set of specified features) but the process

implementation may not have been that thorough (major

risks unmanaged, major documents missing). The product

specific O&M project might have benefited, if it had

identified its major problem (row Incomplete requirements,

poorly defined parts) and worked with some other than

waterfall process model that had better tackled this problem.
Ideal choice would have been a spiral model, which cycles

had been closely tight with the framework cycles. However,

the vague initial set-up is so fundamental problem that it

cannot be solved by any process selection.

4.2. Answering the question

In Ch. 2.2, we set a research question. We now evaluate

our proposals presented in Ch. 3 against that question with

respect to the literature reviews (Ch. 2.1).

What is problem-conscious project management? One

part of this steering is to select the project’s software process

model. What are the possible pitfalls of the selected model?

Could these pitfalls be avoided by careful planning or by

some other means? We have addressed this in the context of

large embedded software projects by composing a software

process selection matrix (Appendix A).

Based on the limited set of project use cases examined in

Ch. 4.1, we can conclude, that the process selection matrix

works reasonably well on at least some typical embedded

software project problem scenarios. However, it is certainly

not a silver-bullet problem solver, and there are probably

many situations in which the matrix cannot help so much.

The usefulness depends much on the experience and

assessment capabilities of the project manager, as illustrated

in Example 4.

Our selection matrix does not provide new information

about any process models nor project problem items, but the

value of the matrix is in its systematic composition. The

matrix contains distilled advice about the selected process

models in a concise form. Notably none of the reviewed

investigations (Ch. 2.1) uses the viewpoint of the compari-

son based on project problem factors. Ould has used a rather

similar viewpoint but with a much more limited scope

[36(Ch. 4)]. A recent work by Boehm and Turner includes

an extensive comparison of many generic process models

based on project’s risk factors profile [10]. Typically,

software process model comparisons are more coarse-

grained, only indicating in general the circumstances when

certain model is suitable or not. We have elaborated this

onto a more specific level.

Finally, embedded software development puts emphasis

on certain process areas as described in Ch. 2.1. The

software process activities must then be focused accord-

ingly [48]. We have highlighted this in the selection matrix

by including a dedicated summary section for embedded

software use (see Table 3). However, even more thorough

analysis could be done. Ronkainen and Abrahamsson have

made a limited investigation towards that direction [39].

4.3. Application possibilities

The main idea of using the selection matrix (Appendix

A) is to first select the process model based on the problem

issues (see Ch. 3.2). However, there is no reason why the

matrix could be used in other ways, too.



P. Kettunen, M. Laanti / Information and Software Technology 47 (2005) 587–608592
Another use of the matrix is to evaluate an ongoing

project in the case the process model has already been fixed

(for external reasons). The project manager can then use the

matrix to see, how the process model behaves under certain

problem conditions. In case there seem to be some weak

points, she can start thinking about potential future

mitigation strategies. The matrix helps thus staying alert

to those problems.

One can also use the matrix for training purposes.

Although the matrix does not explain the basics of the

process models, systematic reading of it may raise new

thoughts about the project’s potential risks and problems, or

possibly useful new practices.
4.4. Limitations

Our process model selection matrix (Appendix A)

provides alternative ways (heuristics) to manage a large

embedded software development project. It does not show

any one best way of running a project—there is no one-size-

fits-all methodology [14]. Note that typically there is more

than one way to tackle a certain problem. Also there are

often some trade-offs. All in all this is about advanced

software process competence (Level 3 competence accord-

ing to Turner and Boehm [49]).

There is an ongoing discussion, whether new agile

software development models are (or should be) CMM-

compatible or not [9–10,13(ch. 4),36,45]. The original idea

of many agile methods is to avoid heavyweight process

rigidity, thus making them less compatible. The home

ground and scope are different. However, often such agile

methods can be extended to become closer to the CMM(I)

framework (e.g. [28,31]). In this paper our intention is not to

specifically stress CMM-compatible solutions nor to object

them, but to emphasize situation-specific flexibility.

One must also notice, that no process model can ever fix

all the possible problems in product creation. For some of

the problems, tailoring the process might simply be the

wrong measure used. Fig. 1 describes the fact that process

methods provide just one viewpoint to the problems there

might be. It would not help, for example, to tailor the

process if the selected technology is too new and immature

to the project on hand. Respectively, with process

methodologies only people management issues can be
Fig. 1. Product process provides just one-angled view to the problems.
tackled, leadership issues typically falls to other scope.

Product issues fell in domain of business strategies and trade

than anything else. Such implications for software process

models have been raised for example by Curtis et al. [16].
5. Conclusions

Even good managers cause projects to fail, when they

don’t understand the business ecosystem in which their

projects must live, and the need in complex situations to

know their options and to be flexible [22(Ch. 7)]. In this

paper we have developed some pragmatic aids for a good

project manager to cope with such challenges.

We have made a comparative analysis of a range of

software process models, including agile software methods.

Our specific viewpoint is to compare the models with

respect to their characteristics under typical project problem

conditions. The outcome of this comparison is not any

particular process model recommendation, but the idea is

that a project manager can use the comparison matrix

(Appendix A) to support her own selection of the particular

process model. Each process model amplifies certain

characteristics of the project. The key is then to match the

current project situation with the process model alternatives.

For a large, complex project often no single model is the

best one. Instead, a hybrid model blending and balancing the

features of different models is often the choice [9,10,13

(Ch. 4), 36, 45]. This depends on the varying characteristics

of the different parts of the product. For example, while the

user interface part may benefit from agile modelling, more

stable core parts of the product may follow the waterfall.

The world of software engineering is in the state on

continuous flux [5(Ch. 18)]. As the products become more

complex, the project complexity increases, making the

projects subject to more complex problems. Companies try

to fight this complexity by hiring experienced managers

(personal competence) as well as building knowledge inside

the organization (such as building detailed process models).

In this paper we have summarized some first-hand

information to a structured form, giving the software

fellows a fresh viewpoint to process models.

Our special focus has been in large embedded software

projects. None of analyzed process models is specifically

intended for embedded software development, but most of

them are applicable to some extent. The special concerns of

large embedded software projects are not so much in
Table 4

Software techniques and practices selection chart structure

Software development method, technique, practice

Software process

model

How can this method, technique, or practice be used

with that process model (in the context of large

embedded software projects)? Does the process

model advocate it specifically or not?



Table A1

Project

Problems,

Failure

Factors

Software process models

Plan/specification-driven Models Evolutionary models Agile methodologies Ad hoc

Referen-

ces

Waterfall (serial

development)

Incremental development

models

Spiral model (risk-

driven iteration)

Rational unified

process (RUP)

Feature-driven develop-

ment (FDD)

Adaptive software

development (ASD)

Extreme program-

ming (XP)

No discipline

(chaotic ‘hacking’)

Project initiation

Unclear pro-

ject objectives

(lack of a pro-

ject mission)

[43/#1,

#2]

Waterfall model

does not tackle

especially this pro-

blem. You should

stay on the specifi-

cation phase, until

your project objec-

tives are clarified

Can start working on the

known increments, and

clarify the rest later. Note!

May arise other problems

later, if project is not well

defined or if the definition

changes much later. Rule

of thumb is: 80% of the

requirements should be

known in the beginning.

Make a project priority

chart, and plan the incre-

ments accordingly.

Sometimes the priorities

must be changed during

the project

Can start working on

the known parts, and

clarify the rest later.

Prioritize the work

according to the pro-

ject’s major risks

(time-to-market,

defect reduction,

response time, etc)

The Inception phase

produces the pro-

ject’s Vision docu-

ment defining the

objectives (scope

and constraints).

The phase com-

pletes with a Life-

cycle Objective

(LCO) milestone,

which criteria

include a stake-

holder agreement on

the scope and the

main requirements

(features)

FDD does not cover the

project initiation phase

nor the customer require-

ments elicitation. How-

ever, a part of the Domain

(Object) Model develop-

ment is to understand,

what the system is sup-

posed to do. The model

and the Features List are

recommended to be

agreed with the customers

(stakeholders). With

FDD, staged delivery is

often recommended, thus

the known/specified fea-

tures can be made/shipped

first

The Adaptive Life

Cycle defines a pro-

ject initiation phase,

which covers explicit

project mission arti-

facts: Project Vision

(Charter), Project

Data Sheet, and the

product specification

outline

Strong connection

with the customer.

The customer should

be present on weekly

planning sessions,

and check that what is

planned is consistent

to what is expected. If

the project objective

is not clear to the

customer either, it is

very unlikely that the

project will deliver

anything useful at all.

Requirements elicita-

tion is mostly done by

the on-site customer

This is often the

reason why projects

resort to hacking.

However, hacking

with unclear project

objectives may lead

to prototypism: you

think you have a

ready product when

you are just the half-

way there

Overplanning/

underplanning

(e.g. ‘glass

case’ plan)

[13/Plan-

ning 911]

[43/#13,

#15]

If you can do the

planning reasonably

well up-front, there

is less overhead

than with the itera-

tive/incremental

models. However,

in the case of major

uncertainties it is

difficult to plan the

project fully in

advance. You must

really proceed with

the development to

understand it better

for realistic

planning

Incremental development

may make adjusting the

planning easier, but plan-

ning the increments

requires additional effort.

If you fail to split the

functionality into reason-

able, prioritized incre-

ments, you may loose the

benefits

The spiral model

emphasizes risk-dri-

ven planning. The

focus is always on

reducing the (next)

major risks

There are two types

of plans: a coarse-

grained Phase Plan,

and a more detailed

Iteration Plan (for

the current iter-

ation). Excessive

planning beyond the

current horizon is

not favored. The

plans have evolving

levels of detail.

Generally, no work

should be done out-

side the iteration

plans

Overall project planning

is not covered. However,

FDD emphasizes sys-

tematic up-front planning

of the feature list. The

feature development plan

is then based on that. FDD

does not really emphasize

estimation. It relies more

on systematic monitoring

of the progress of each

feature. The reasoning

here is that the features

are small (no more than 2

weeks)

ASD recognizes the

fact that in uncertain

environments the

initial plan is merely

a speculative outline,

which will be revised

after each develop-

ment cycle

XP is based on con-

tinuous planning

(‘planning driven’).

The plans are con-

tinuously adjusted

based on latest

achievements/metrics

and the customer’s

changes. The rec-

ommended planning

horizon is two iter-

ations (2–3 weeks/

iteration)

Underplanning is

definitely a risk here

(continued on next page)

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

5
9

3



Table A1 (continued)

Project

Problems,

Failure

Factors

Software process models

Plan/specification-driven Models Evolutionary models Agile methodologies Ad hoc

Referen-

ces

Waterfall (serial

development)

Incremental development

models

Spiral model (risk-

driven iteration)

Rational unified

process (RUP)

Feature-driven develop-

ment (FDD)

Adaptive software

development (ASD)

Extreme program-

ming (XP)

No discipline

(chaotic ‘hacking’)

Lack of

resources

(people)

[8/#1] The waterfall model

does not tackle

especially this

problem

If possible to start with the

first increment(s), more

resources may become

available later. The first

resources should though

be competent, otherwise it

might be that the first

increment is not usable

at all

The spiral model does

not tackle especially

this problem

RUP does not cover

resource manage-

ment issues (hiring).

However, a part of

the iteration man-

agement is the

‘acquiring’ of staff.

A balance must

somehow be found

between the

resources, effort,

and schedule for

each iteration

FDD does not cover

resource management.

Prioritize the features, and

concentrate on the most

important ones. Make

effort estimation analysis

and adjust the plans to

what is reasonable with

your resources

Each project should

have an Executive

Sponsor controlling

the resourcing. The

project team and the

sponsor should agree

on the project targets

and the resource

needs during the pro-

ject initiation phase.

After each cycle, re-

evaluation should be

done

XP needs a few,

skilled resources. If

you have lack of

resources, you should

not try XP at all

Too few resources is

the main reason, why

hacking is usually

taken as a project

practice. You have to

notice, though, that

some things (like

documentation) is

typically left undone.

This may save some

resources, but the

longer-term conse-

quences can be severe

Lack of

competence

(personnel

shortfalls)

[8/#1,

38/#1,

43/#29]

Cannot move to the

next phase until the

previous one is

completed. This

requires learning the

needed competence

as a whole. Some-

times this is a typi-

cal pitfall, delaying

the progress. This

may be a risk for

competitive time-

to-market goals

May be able to learn by

doing the first increments.

This may, however,

lengthen the project sche-

dule. There is a risk that

the first increments may

have to be reworked

Make first simpler

versions/iterations.

As the skills/knowl-

edge is grown, make

more sophisticated

versions/algorithms

RUP does not cover

resource manage-

ment issues (train-

ing). However, it

recommends defin-

ing not only the

number of staff, but

also their skills,

experience, and

‘caliber’ while

staffing the project.

Role descriptions

guide this

FDD does not tackle

especially this problem

(staffing). There are six

key project roles defined

with certain qualifica-

tions. The features are

prioritized based on cus-

tomer needs/expectations,

so the implementation can

be technically demanding

already in the beginning

of the project

The Adaptive Devel-

opment Model

encourages intensive

team collaboration

and learning by

developing the pro-

duct iteratively. In

addition each mem-

ber should develop

his/her personal soft-

ware engineering

competence. How-

ever, you may not

want to run an

extreme project with

a junior team

The XP expects the

majority of the

people to be basically

on the expert-level.

Only few novices can

be trained aside the

project. If you have

new project person-

nel, you should not

try XP. For example,

a ‘programmer’ must

know in addition

integration, configur-

ation management,

etc. special compe-

tences

Lack of competence

is directly reflected as

poor quality when

hacking. Professional

people are usually

reluctant to do any

hacking whatsoever.

Learning is usually

not improved by

hacking

Underestima-

tion of project

size,

complexity,

novelty

[43/#7,

#10, #12,

#17]

The waterfall model

does not tackle

especially this pro-

blem. Replanning of

the whole project is

needed. May even

require restarting

The incremental models

do not tackle especially

this problem. Replanning

of the project may be

needed

The spiral model

tackles the most

uncertain areas first.

Each new cycle is

assessed. New esti-

mate of the project-

complete day is

needed

The purpose of the

use-case modeling

is to clearly under-

stand what the soft-

ware must do. It is

used as the basis for

the project esti-

mates. The highest

risks should be

tackled early

New estimate of the pro-

ject-complete day is

needed, if features are just

bigger and more complex

than estimated. The

planned features should

be small (no more than 2

weeks effort)

Extreme projects are

by nature uncertain.

Everybody must

understand that from

the beginning. Re-

evaluation and

replanning will be

done after each cycle

when more is learned

New estimate of the

project completion

day is needed.

Replanning is a part

of XP. The customer

is always involved

The problem is that

there are probably no

estimates at all. New

estimate of the pro-

ject completion day is

needed

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

5
9

4



Research-

oriented

development

(unpreceden-

ted, either the

project ends

or the means

of meeting

them are very

much

unknown)

Strictly serial

waterfall is hardly

ever applicable for

such exploratory

situations, where

detailed preplan-

ning and specifica-

tion are not

reasonable by

nature

This is not really

addressed by incremental

development, but early

increments may help

resolving some uncertain-

ties earlier. However,

planning reasonable

increments could be diffi-

cult in this case

Spiral model could

possibly be applied

by focusing on the

unknowns and uncer-

tainties

RUP is directed

more towards

orderly engineering

projects. In

research-oriented

collaborative

environments, the

Vision document is

more important than

predefined require-

ments

By definition, a feature is

a ‘client-valued function’.

In research-oriented

development it may be

difficult to plan such items

in advance

Problem-solving is by

nature an emerging

activity requiring

flexibility. ASD

absorbs this

The primary goal in

XP is to put out a

good quality product

within reasonable

time. There is a mis-

match with typical

research goals

This may even make

some sense, since

research work is by

nature ‘chaotic’.

However, even then

totally undisciplined

way of working is

hardly acceptable

New, imma-

ture software

technology

[43/#3] Warning! You

should not try

waterfall with new,

immature software

technology. There is

a high risk your

project will be can-

celled. Waterfall

assumes a mature,

stable environment

This is not really

addressed by incremental

development, but it may

help resolving some

uncertainties earlier. The

first increments could

focus on clarifying the

technology uncertainties

Focus on the feasi-

bility risks first

Recommended to

put more efforts on

the Elaboration

phase

FDD does not cover this

area

This is one source of

project uncertainty.

ASD emphasizes

gaining better under-

standing by iterative

development cycles

Often this does not

match well with the

XP philosophy of

‘quick planning’ and

‘simple design’. The

infrastructure is

assumed to be doable

on the fly

Some ad hoc exper-

iments may even be

justified

The march

order: what

should be

done first and

what after that

(phasing)

[43/#13,

#20]

The march order is

exactly what water-

fall model is defining

accurately. This is a

way to make a large

group of people to

work towards a

common goal, with

clearly defined mile-

stone synchroniza-

tion gates

Plan the increments and

the milestones well. Note

that there is a probable

pitfall here, if the mile-

stones are not properly

followed up

The planning,

implementation and

testing cycles follow

each other. Note that

the amount of cycles

needed might be hard

to estimate

A project comprises

four phases (Incep-

tion, Elaboration,

Construction, Tran-

sition). Each phase

concludes with a

defined milestone.

The iterations of

each phase are pri-

marily ordered

based on the risks

The march order follows

normal specify-

implement-test cycle, the

features can just be on

different stages at the

time. Be aware though

that the stages are well

defined. Notably FDD

does not care about the

feature start dates (just the

completion)

The Adaptive Plan-

ning Cycle includes

assigning the tasks

into the development

cycles. It encourages

concurrent engineer-

ing (for high speed),

which may be more

difficult to manage,

though

Planning sessions

followed by

implementation

rounds followed by

automated testing.

The iterations are

recommended to be

short (some 2 weeks)

The march order is

typically decided by

the key designer. A

lot is depending on

his/her competence

and communication

skills

The project is

big of a size

(maybe even a

mega project),

i.e. the project

will require

many (even

hundreds of)

man-years of

work to com-

plete

[43/#6] This is were water-

fall is as it best: it

suits well to bigger

projects (which

need more formal-

ism than smaller

projects)

Use bigger (or more)

increments. However,

there is a limit here. Too

big increments spoil the

very idea of incremental

development

The spiral model suits

well to large, com-

plex system projects.

However, you must

control the iterations

carefully in bigger

projects. With bigger

projects the work

should be split into

reasonable tasks.

Managing task inter-

faces is an issue here,

because different

iterations might

change the task

boundaries

The iterations of a

larger project are

longer, because the

coordination of

many people is

more complicated

This is were FDD is at its

best. FDD was originally

developed to answer the

problem of rather big

development projects.

Feature-based allocation

may help to manage

In a larger project,

increase the rigor and

discipline. Define and

monitor component

dependencies sys-

tematically

There should not be

more than 10 pro-

grammers in an XP

project, so you can’t

do anything too big

with it. It might be

possible to have mul-

tiple concurrent XP

teams, each working

on their own stories

Hacking in a bigger

project leads to

chaos, and bad usage

of the available

resources (part of the

project personnel

may not know what

they should do). You

simply cannot coor-

dinate and synchro-

nize a large project

with hacking

(continued on next page)

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

5
9

5



Table A1 (continued)

Project

Problems,

Failure

Factors

Software process models

Plan/specification-driven Models Evolutionary models Agile methodologies Ad hoc

Referen-

ces

Waterfall (serial

development)

Incremental development

models

Spiral model (risk-

driven iteration)

Rational unified

process (RUP)

Feature-driven develop-

ment (FDD)

Adaptive software

development (ASD)

Extreme program-

ming (XP)

No discipline

(chaotic ‘hacking’)

The project is

too big for

‘one shot’

(problem size)

[43/#13] Waterfall model

was originally

intended for mana-

ging large scale

software systems.

However, a very

complex project

usually requires

additional means for

managing the inter-

dependencies, in

particular when

there are many

uncertainties

Split the project into

increments. Build func-

tionality gradually. How-

ever, this requires that you

understand the ‘big pic-

ture’, so that the incre-

ments converge towards a

complete solution

In this case the spiral

model attempts to

tackle the problem

definition risks first

There is no specific

upper limit for the

size. A larger pro-

ject uses longer

iterations

Split the project into fea-

tures, and develop the

features in stages. A very

long project can be sec-

tioned with time-boxing.

Each feature should not

take more than 2 weeks.

Split any bigger features

to smaller ones

ASD does not address

especially this pro-

blem

XP works only with

small-size projects.

The project team

should not exceed 10

developers by defi-

nition, so you cannot

handle very big

developments with

XP alone

Hacking in a bigger

project leads to

chaos, and bad usage

of the available

resources (part of the

project personnel

may not know what

they should do)

Unrealistic

schedule

target

[8/#2,

38/#2,

43/#5]

Waterfall model

does not tackle

especially this pro-

blem

Agree on the first incre-

ment(s), (re)negotiate the

delivery later. Incremen-

tal delivery may help to

manage

The schedule risk

becomes apparent

early. On the other

hand, some progress

can be shown on a

very early phase of

the project, which

might make the cus-

tomer more eager to

wait for the final

product (or redefine

the project)

A realistic under-

standing of the pro-

ject targets should

be developed in the

Inception and Elab-

oration phases. If

this fails, the mile-

stones are not

passed, and the pro-

ject should not

move to the Con-

struction phase

Adjust the contents, i.e.

keep the targets but deli-

ver less features. During

the project Planning

phase, the feature sets

completion dates are esti-

mated (measured in

months). That plan is

recommended to be

reviewed with the stake-

holders, possibly revising

the project goals

The project initiation

phase includes the

determination of the

project time-box

boundary (target

date). However, the

project team commits

to their planned date

XP is optimized

towards rapid devel-

opment. However,

one needs to balance

the costs (working

with expert team,

making customer

available). The team

has its natural vel-

ocity. The customer

and the project team

should agree on the

realistic schedule tar-

get

Unrealistic schedule

target is the other

main reason, why

hacking is applied to.

You have to notice,

though that some

things (like docu-

mentation) is left

undone. With exces-

sive overtime, you

may even be able to

meet the schedule

(but with a corre-

sponding high cost of

attrition, etc)

Extreme

project (high

speed, high

change)

[22] Strictly serial

waterfall is hardly

ever applicable for

such situations.

More flexibility is

required

By splitting the project to

incremental sections,

there might be some lim-

ited flexibility in

rearranging them. Some

increments could possibly

be developed concur-

rently

There is no particular

emphasis on such

circumstances, but

reducing the major

risks early should

help avoiding delays

caused by later

reworking

RUP does not

embrace such pro-

jects by nature

FDD is not so much

intended for extreme

cases, but a reasonable

amount of changes can be

absorbed. Concurrent

development of some

features may speed up the

project

ASD is targeted for

extreme projects

XP is targeted for

extreme projects

Warning! Hacking is

often used with

extreme projects.

This may lead to

burn-out of the key

personnel. You may

be able to stretch your

capabilities, but after

a certain limit it

simply would not

work

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

5
9

6



Death March

project; This

is a compound

problem: a

project whose

‘project par-

ameters’

exceed the

norm by at

least 50%. A

death march

project is one

for which an

unbiased,

objective risk

assessment

determines

that the like-

lihood of fail-

ure is O50%

[52] Waterfall model

does not tackle

especially this pro-

blem. Rather the

opposite: the work-

product is visible

only in the end of

the project. In

extreme projects,

you need more

flexibility

Staged delivery demon-

strates some visible pro-

gress. Maybe more time/

money/confidence can be

won in that way

Staged delivery of the

first iterations can be

used to demonstrate

some partial func-

tionality (like some

brute-force algor-

ithms), which can be

improved with the

later cycles

The iterative

approach may pro-

vide some aids for

balancing the edge

of chaos

FDD does not tackle

especially this problem.

Splitting the work into

smaller chunks makes the

project easier to manage,

but does not necessarily

ease the effort. There may

not be intermediate work

products to show, either

This an extreme case

of an extreme project.

However, there is

always some limit for

‘stretching’. Basi-

cally ASD

encourages realistic

planning, and not

committing to arbi-

trary targets. Rational

extreme projects are

not death marches

The customer is in

close contact with the

project team all the

time, so progress is

made very visible.

This is usually

enough to make the

customer wait for the

product she wants

Warning! Attempting

hacking in a death

march project is very

high-risky. You are

likely to end up with

a high cost of attri-

tion, etc

Project Execution

Incomplete

requirements/

specs (poorly

defined parts),

lack of user

input

Waterfall model

does not tackle

especially this pro-

blem. By model

definition you

should have stayed

on the specification

phase, until the

requirements and

specs were clarified

Can possibly start work-

ing on the known

requirements, and clarify

the rest for the subsequent

increments

Risk-driven specifi-

cation focuses on the

uncertain areas

RUP is Use-Case-

driven. The use-

case model is sup-

posed to make it

sure that all the

functional require-

ments are handled

by the system. The

Vision document

provides a high-

level view

There is a Domain

(Object) Model. The

Domain Experts work

together with the feature

teams, helping to clarify

the problem to be solved.

Domain Walkthroughs

are conducted to clarify

any unclear details

Uncertainty and lack

of initial understand-

ing are seen natural.

The idea is to learn

more with iterative

development cycles

providing frequent

feedback. The key is

to progress to the

right direction

Strong connection

with the customer is a

prerequisite of XP.

The customer should

be present on weekly

planning sessions,

and check that what is

planned is consistent

to what is expected. If

the project objective

is not clear to the

customer either, it is

very unlikely that the

project will deliver

anything useful at all

It is typical for pro-

jects using hacking to

skip or run though the

requirement phase.

The changes cause

more hacking

Unstable

(volatile)

requirements,

continuous

requirements

changes

[38/#3,

#5,43/#8]

Waterfall model

does not tackle

especially this pro-

blem. By the model

definition, you

should have stayed

on the specification

phase, until the

requirements were

clarified. Frequent

and/or late changes

are not welcome

Freeze the requirements

only for the current

increment, allowing

changes to the later

increments. Increments

provide feedback about

the changing needs.

However, excessive

change-rate can still be a

problem

Identify the most

volatile (Z risky)

areas. Changes can be

incorporated for next

cycles. Allow some

adjustment in project

timeframe

Basically you

should mostly be

able to agree on the

major requirements

(features, use cases)

during the first

phases of the pro-

ject. Controlled

change manage-

ment is advocated

A feature can be replaced

by another feature, with

more advanced function-

ality and enlarged speci-

fications. (Like replacing

navigation system with

more precise one). The

requirements (features)

are recommended to be

prioritized somehow sys-

tematically. Up to 10% of

change is supposed to be

absorbable without extra

actions

The development

cycles are time-

boxed, ‘forcing’ to

make trade-off

decisions gradually.

Unhealthy oscillation

could be avoided by

focusing on the pro-

ject mission and the

problem definition

early. Shorter cycles

should be used for

areas of high uncer-

tainty

Welcoming changes

is the true nature of

XP. The project is

redefined on weekly

basis

You may be able to

accommodate a cer-

tain amount of

changes, provided

that the project key

personnel is not

changing

(continued on next page)

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

5
9

7



Table A1 (continued)

Project

Problems,

Failure

Factors

Software process models

Plan/specification-driven Models Evolutionary models Agile methodologies Ad hoc

Referen-

ces

Waterfall (serial

development)

Incremental development

models

Spiral model (risk-

driven iteration)

Rational unified

process (RUP)

Feature-driven develop-

ment (FDD)

Adaptive software

development (ASD)

Extreme program-

ming (XP)

No discipline

(chaotic ‘hacking’)

Poor require-

ments man-

agement

(uncontrolled

requirements

changes,

requirements

creep)

[8/#6,

43/#18,

#25]

There should not be

many changes at all

since the uncertain-

ties are supposed to

be resolved at the

first stages

Increments allow deter-

mining the requirements

piecewise

If there is such a risk,

the focus should be

on taking the

requirements baselin-

ing under control

The use-case model

is the basis for the

development. Con-

trolled change man-

agement is

emphasized (CCB).

Requirements man-

agement tools are

advocated. Unified

Change Manage-

ment has been pro-

posed

Requirements are allowed

to be changed, but FDD

emphasizes controlled

change management.

Requirements (features)

source traceability is

emphasized

Short, time-boxed

delivery cycles freeze

the requirements

piece by piece

This is a part of the

Planning Game.

However, because of

the nature of XP

development, there is

not much formal

change management

Typically there are no

formal requirements

to be managed

Gold plating

(developers

adding

unnecessary

functionality)

[8/#5] The development

follows the accepted

specifications. Basi-

cally no additions

are allowed later

Incremental development

does not actually solve

this problem, but the con-

sequences become visible

earlier

The Spiral model

does not directly

address such details,

but this is an

additional source of

risk to be reduced

The use-case model

sets the boundaries

and keeps it focused

The Features List focuses

the development

Time-boxed cycles

limit

The customer decides

the features to be

implemented during

the Planning Game

This is a natural con-

sequence. It may

even work within

small limits, but defi-

nitely not on larger

projects

Constantly

changing

schedule tar-

get

This contradicts

with the assump-

tions of waterfall

development, which

relies on agreed

plans. Continuous

replanning is not

well accommo-

dated. You can also

try to cut your fea-

tures, but then you

are not following

pure waterfall

model any more

Increments make it poss-

ible to release the product

step by step, thus allowing

some adjustments of the

schedule targets within

reasonable limits

If the objective is to

able to accommodate

frequent reschedul-

ing, the Spiral model

concentrates on flex-

ible development

approaches

The iteration plan

defines the start and

end dates, and the

delivery date. You

should not change

the current iteration

much. However, the

next one could be

replanned

Features are rec-

ommended to be very

small (no more than 2

weeks of effort). Feature

sets could occasionally be

reassigned between the

teams (but not too often)

The project is time-

boxed. The cycle

dates are not chan-

ged. If the original

schedule turns out to

be wrong, it can be

renegotiated in cycle

replanning

The iterations are

time-boxed. The

releases are small.

New releases can be

scheduled, if the cus-

tomer wishes that

The schedule

depends very much

on the key persons.

They may or may not

be able to make it, but

it is hard to tell that in

advance (poor pre-

dictability)

Poor software

architecture

design quality

[43/#30] There could be a

separate architec-

ture design phase

with a milestone

review. However, if

the architecture

later turns out to be

deficient, major

redesign is difficult

to manage

Incremental development

requires a solid architec-

ture. Otherwise it may be

difficult to incorporate

new functionality. Parts of

the architecture could

possibly be refactored for

some increment

Architectural risks

can be iterated to

some extent

RUP is an architec-

ture-centric process

emphasizing, evol-

utionary, com-

ponent-based archi-

tecture work with

visual modeling

(UML)

FDD does not tackle

especially this problem. It

may be very hard to make

any corrections to the

architecture in the middle

of the project, when half

of your features are

already ready

ASD does not cover

architecture design

details

Small changes to

architecture can be

implemented easily.

However, XP does

not offer much sup-

port for system

architecture design

(just ‘metaphors’ and

‘simple design’)

This is definitely a

risk, since typically

there is no systematic

architecture design at

all. ‘Quick-and-dirty’

solutions are typical

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

5
9

8



Wrong archi-

tecture sol-

ution selected

in the first

phase

(inadequate

systems

engineering)

[8/#10,

43/#19]

There could be a

separate architec-

ture design phase

with a milestone

review. However,

the architectural

solutions must be

committed early in

the project. If they

are based on false

assumptions, later

redesign may be

difficult. The water-

fall model assumes

that the architecture

solution can be

understood early

Incremental methods do

not tackle especially this

problem. However, you

can probably see the pro-

blem earlier

If there is a risk of

making wrong

choices, the architec-

ture selection could

be emphasized first.

You could always

throw out some code

and start from the

beginning. (But will

you loose your faith

to the project on the

same?)

The architecture

choices are based on

architecturally sig-

nificant use cases.

An (evolutionary)

architectural proto-

type is rec-

ommended. Thus,

no totally wrong

solutions should

result (architecture

first)

FDD does not tackle

especially this problem. It

may be very hard to make

any corrections to the

architecture in the middle

of the project, when half

of your features are

already ready

The problem defi-

nition done during the

project initiation

guides the architec-

ture selections. Itera-

tive development

cycles support learn-

ing more about the

architectural choices

XP does not tackle

especially this pro-

blem. It might be

hard to convince the

customer to buy the

development cost for

the better architecture

(when the customer is

actually expecting

progress in form on

some new features).

Refactoring could

help to some extent,

but fundamentally

wrong solutions can-

not be salved

This is an obvious

risk for any longer-

term development

Inappropriate

design

methods

[38/#7,

43/#21]

Waterfall model

does not tackle

especially this

problem

The methods could be

changed for some incre-

ment. On the other hand,

one essence of the incre-

mental development is to

test the tool-chain early,

so you will loose these

benefits

If there is a risk of

selecting an inap-

propriate method, the

first risk reduction

cycle could concen-

trate on testing the

suitability of the

method

RUP advocates cer-

tain design methods

which are supposed

to be generally

applicable (such as

Use Cases, UML,

components)

Rework features to some

later release with better

tools

ASD does not cover

design details

Replan and re-sche-

dule your project. If

the customer accepts

this, can be done. In

general, do not try to

use totally new

design methods with

XP

We can try to change

them on the fly

Unsuitable or

low-quality

tools

Waterfall model

does not tackle

especially this

problem

Test the tools during the

early increments. Con-

sider replacing the pro-

blem tools for the later

increments. On the other

hand, one essence of the

incremental development

is to test the tool-chain

early, so you will loose

these benefits

If there might be a

risk with some new

tools, focus on them

first

RUP is very much

tool-oriented. There

is a wide set of

commercially

available tools

FDD does cover any tool

issues

ASD does not cover

any tools details

XP does not cover

any tool details. But

there would not be

any sense of buying

the best experts on

the field and equip

them with poor tools.

In general, do not try

to use totally new

tools with XP

We can try to change

them on the fly

Integration

difficulties

[43/#28,

#32]

Waterfall model

directs to integrate

the whole system on

one shot, which

often leads to inte-

gration difficulties

(‘big bang’). So the

model rather creates

this problem than

prevents it

Increments force the inte-

gration early, discovering

the possible breakage,

while there is still time to

correct it

There should not be

big integration in the

end of the project, if

the spiral model has

been properly fol-

lowed up—but the

product has been

integrated and tested

along the way

RUP encourages

almost continuous

test and integration

(executable releases

for each iteration).

Any breakage

should thus become

visible early. Early

architectural risk

reduction is empha-

sized

FDD does not define

integration in any exact

way. However, the Chief

Programmers are respon-

sible for testing their fea-

tures. FDD used with

staged delivery makes the

integration steps smaller,

and thus easier. A regular

build schedule is rec-

ommended (supported by

solid configuration man-

agement)

There is no particular

emphasis on inte-

gration, but each

cycle should end with

valid results

You have the whole

software team to

back-up the inte-

gration. However,

this requires that

everybody knows

how to do the inte-

gration. Note also

that it may be difficult

to manage the inte-

gration of a large

complex system

without rigorous up-

front planning

Hacking is likely to

lead to undocumen-

ted code and unspe-

cified interfaces,

which make the

integration step

extremely difficult

(continued on next page)

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

5
9

9



Table A1 (continued)

Project

Problems,

Failure

Factors

Software process models

Plan/specification-driven Models Evolutionary models Agile methodologies Ad hoc

Referen-

ces

Waterfall (serial

development)

Incremental development

models

Spiral model (risk-

driven iteration)

Rational unified

process (RUP)

Feature-driven develop-

ment (FDD)

Adaptive software

development (ASD)

Extreme program-

ming (XP)

No discipline

(chaotic ‘hacking’)

Low visibility

to progress

[43/#22] One of the typical

pitfalls when using

the waterfall model.

Not any working

software is available

until at the final

stage. The only sign

of progress is the

documentation

(which may be

enough in some

cases, though)

Regular increments

demonstrate the progress.

The duration of each

increment should not be

too long to retain the

visibility

Already the first iter-

ations show some

view what the final

product could be.

Risks are shown to be

gradually reduced

with every spiral

cycle. A new cycle

should not be started

before the objectives,

risks, and constraints

are understood

Progress is

measured in terms

of use cases (fea-

tures) completed,

test cases passed,

performance

requirements satis-

fied, and risks

eliminated. Regular,

demonstration-

based assessment is

emphasized. Iter-

ation Assessments

are conducted after

each iteration (e.g.

revalidating the

requirements)

FDD provides good visi-

bility to progress, because

delivery of each feature

can be monitored. The

progress reporting is rec-

ommend to be done based

on feature completeness.

If the project takes longer

than some 3 months, for-

mal monthly progress

reviews are recommended

ASD does not

improve the tra-

ditional project visi-

bility since it relies on

intense collaboration

(tacit knowledge).

The documents

evolve during the

whole development.

Only the results

matter

This should not be a

problem at all with

XP. The customer

sees the progress

weekly

You may be able to

show some progress

by demonstrating the

software. However,

typically the quality

tends to be unpre-

dictable. The pro-

gress is often variable

due to unplanned

design

Vague

milestones

The basic premise

of the waterfall

model is strict

milestone gating.

Waterfall model

with vague mile-

stone definitions

changes easily to a

unmanaged project,

living its own life

without control

Increments are major

milestones. For each

increment, there should

be a clearly defined pur-

pose

Each cycle com-

pletion is a clear

milestone (provided

that the cycle objec-

tives have been

planned clearly).

Three project ‘anchor

point’ milestones

have been developed

(like RUP): Life

Cycle Objectives,

Life Cycle Architec-

ture, Initial Operating

Capability

The phases are

defined with given

major milestones

(generically

defined). The minor

milestones depend

on the iterations.

Each iteration

should have a clear

objective. Change

the plans if the

phase milestones

are not passed

For each feature, there are

six sharp milestones

defined: Domain Walk-

through, Design, Design

Inspection, Code, Code

Inspection, and Promote

to Build. The whole

sequence should not take

more than some 2 weeks

Each short cycle

(6–10 weeks for a

long project) has a

definite end-result. A

milestone is reached

when the artifacts are

determined to be in

the planned state

The progress is

determined by the

stories (features)

completed. Weekly

meetings with the

customer to verify

them serve as mile-

stones. However, you

must be able to agree

on what exactly it

means to complete a

story (without

detailed documen-

tation)

Typically there are no

predefined milestones

at all

Communi-

cation gaps

(project

internal)

[38/#9,

43/#9]

The serial develop-

ment relies much on

passing the docu-

mentation between

the phases. This

may not be enough

for carrying all the

necessary infor-

mation (tacit

knowledge)

Incremental development

does not really solve this

problem. However, more

feedback information

become available with

early releases

This problem is not

specifically addressed

RUP emphasizes

tool-based artifacts

for sharing the

information

The Domain Experts

work together with the

feature teams. This should

improve the communi-

cation

ASD emphasizes rich

and intense collabor-

ation, even with vir-

tual teams. However,

this requires con-

siderable attention.

Customer focus-

groups and software

inspections are

specific techniques

for learning

XP is based on open

and frequent com-

munication. Inside

the team, the com-

munication gaps are

fatal. From team to

other parties (where

the team might have

loose connection)

these could do serious

damage (as the docu-

mentation is often

plan one and throw

away-of type)

With little formal

documentation, the

communication relies

on the tacit knowl-

edge shared

face-to-face

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

6
0

0



Excessive

documen-

tation

(overhead)

Excessive docu-

mentation is a clas-

sic problem when

using the waterfall

model. The problem

could grow even

bigger if rework

makes intermediate

documents obsolete

This may be a problem

with incremental devel-

opment. Planning and

managing the increments

require some additional

documentation. However,

some documentation

rework could be avoided

if the increments match

well

Risk-driven docu-

mentation: Concen-

trate on those parts in

which incomplete

documentation is

risky. Complete spe-

cifications are not to

be insisted prema-

turely

RUP prefers tool-

based models to

paper documents

FDD is not so much

document-driven. It

leaves the documentation

details open to be decided

by the project manager

according to the current

needs. Intranet-based

hyperlinked documen-

tation tools are rec-

ommended. Good user

documentation is empha-

sized

ASD is not docu-

ment-driven. Instead

it relies on tacit

knowledge and

intense collaboration

XP emphasizes

working software

over documentation

Often there is no

documentation what-

soever—i.e. there is

certainly no risk to

end up with too much

documentation

Project exter-

nal dependen-

cies (includ-

ing subcon-

tracting) late

and/or

imperfect

(e.g. system

specs)

[8/#7, #8,

38/#4,

43/#16,

#31]

Waterfall model

does not directly

address such issues,

but for example if

some input spec is

late, the specifica-

tion phase cannot be

concluded

The dependency risks can

be addressed by different

increments

If there is such a risk,

the Spiral model

considers possible

alternatives

There is no particu-

lar support for this,

but you should

monitor those risks

from the beginning,

and plan the iter-

ations accordingly.

RUP does not cover

Systems Engineer-

ing

This is not really

addressed by FDD, but

such dependencies could

be taken into account

while planning the feature

development order

The project vision

document identifies

the dependencies.

The dependencies are

revalidated in each

cycle review

You end up with the

team waiting. The

customer must be

involved

Such risks are usually

not controlled. Per-

haps some ad hoc

workarounds are

possible

Geographi-

cally dis-

persed teams

Waterfall model

does not cover such

issues

Incremental development

does not really tackle this

problem

This problem is not

specifically addressed

A tool-based pro-

cess implemen-

tation may help in

lessening the pro-

blems. However, in

general this compli-

cates the Construc-

tion phase

FDD does not address this

issue

ASD considers vir-

tual teams as a natural

mode of operation

XP relies on a co-

located team

This may be a big

problem with little

external documen-

tation. Depends on

the key persons

Loss of (key)

staff (either

because they

leave or get

transferred)

[8/#1,

38/#8,

43/#23]

Waterfall model

does not cover

staffing. However,

comprehensive

documentation

helps accomodating

staff changes

The increments help lim-

iting the consequences.

May be able to adjust the

later increments (if the

consecutive increments

are independent)

Such issues are not

directly addressed. If

there is a risk of

loosing some key

staff, possible

alternatives should be

considered. Staff

changes may be a

problem unless the

previous spiral cycles

are well documented

The Iteration Plan

must be adjusted

accordingly for the

next iterations

It may be difficult to

replace some class owners

quickly. Some feature

teams may have to be

replanned

Each cycle review

reassesses the resour-

cing situation against

the targets

Replanning when the

team changes (vel-

ocity). Sudden loss of

key persons may be a

serious problem,

since the source code

is the main tangible

piece of information

Such risks are not

managed. Usually no

continuation if the

key persons leave

Low morale,

motivation

Waterfall model

does not cover this.

Working on the

documentation long

before seeing any

working software

may be demotivat-

ing

Regularly released work-

ing increments typically

boosts the morale

Focusing on the risks

may help convincing

that the project pro-

ceeds in a sensible

way

The iterative

approach lets the

developers see

working software

earlier. This may

help keeping the

spirit

The feature-based track-

ing may help. So-called

Feature Kills sessions

may be uplifting. Public,

colored feature tracking

charts are advocated

Building ‘great

groups’ is one of the

cornerstones of ASD.

Given the right

environment, people

motivate themselves

XP pays special

attention to developer

morale and motiv-

ation. A sustainable

40-hour week is

emphasized as a

norm. This may help

people keeping the

spirit high. Pair pro-

gramming may be

enjoyable

Some individuals

may like the apparent

freedom of totally

unconstrained work-

ing

(continued on next page)

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

6
0

1



Table A1 (continued)

Project

Problems,

Failure

Factors

Software process models

Plan/specification-driven Models Evolutionary models Agile methodologies Ad hoc

Referen-

ces

Waterfall (serial

development)

Incremental development

models

Spiral model (risk-

driven iteration)

Rational unified

process (RUP)

Feature-driven develop-

ment (FDD)

Adaptive software

development (ASD)

Extreme program-

ming (XP)

No discipline

(chaotic ‘hacking’)

‘Crunch’

mode (tight

schedule, just

achievable

with extra-

ordinary

measures)

Waterfall assumes a

stable environment.

No ‘crunch’ mode

of operation is

really expected

With careful planning of

the increments, you could

be able to deliver at least

some partial functionality

on time. That is often

better than delivering the

full functionality but late

This problem is not

specifically

addressed. In general,

the Spiral model

attempts to avoid

such extremes by

resolving the related

risks early

This is not in line

with the philosophy

of RUP. With sen-

sible iteration plans,

no such thing

should happen

Basically this is not in line

with the FDD philosophy.

With orderly planning and

monitoring of the fea-

tures, there should not be

any need to operate in

such a mode

ASD is designed for

high speed, high

change circumstances

XP emphasizes

steady, good (whigh)

output level. The

productivity of the

team (velocity) is a

key planning par-

ameter. The customer

and the project team

agree on what is

reasonable

With no defined pro-

cess, you are basi-

cally free to do

whatever it takes. But

there is always a limit

Project

redirected

(profound

changes of the

schedule/

functionality/

resources)

[43/#34] The pure waterfall

model cannot adapt

well to major mid-

course changes. The

lifecycle must

usually be restarted

You may have to rene-

gotiate the remaining

increments, but the

already delivered ones are

anyway available

The next cycle of the

spiral restarts the

planning

Continuous refine-

ment of the plans is

underlined

There are three ways to

balance this: (a) lower-

priority features are can-

celled; (b) the project

schedule is extended; (c)

new feature teams

(people) are added to

work concurrently; If the

overall project plan is

changed drastically, a

new project initiation

should be considered,

however

Basically even major

changes can be

accommodated in the

cycle reviews

The customer can

present new specifi-

cations (new user

stories) on the weekly

meetings

This is really a part of

the approach. It may

even work within

some limits, but

eventually you may

end up into a havoc

Project

cancelled

The project cannot

show any results

(except documen-

tation) since no

working software is

available before the

integration stage

If some increments have

been delivered, the pro-

ject managed to release

something tangible

The Spiral model

incorporates such a

possibility. For each

cycle there is a

hypothesis. If it fails,

the spiral is termi-

nated. The idea is to

resolve the major

risks early, so the

probability of a com-

pletely surprising

cancellation should

become lower while

the spiral proceeds

After the Inception

and Elaboration

phases, there is

supposed to be a

clear understanding

about the feasibility

of the project (for

GO/NO-GO

decision). Later, in

case of a mid-pro-

ject cancellation,

you may be able to

deliver some of the

interim releases

produced so far

This beyond the scope of

FDD. However, the fea-

tures completed so far

could be somehow useful

You may agree on

completing the cur-

rent cycle so that the

termination status is

clear. Since you have

completed the earlier

cycles, the project

succeeded in produ-

cing some results

anyway

The customer can

cancel the project any

time on her will.

What has achieved to

that point can be

taken into use

This is a considerable

risk, if already the

project setup was ad

hoc. Typically the

project cannot deliver

anything usable

Project completion

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

6
0

2



Trouble vali-

dating the

system

(acceptance

test)

[43/#37] Waterfall model

does not provide an

answer to this pro-

blem. The system

tests are done

according to the

predefined plans

and specs. If they

are wrong, this is a

problem

Incremental delivery

allows early feedback

When iterations are

used, the system is

often tested on the

way. Thus it is very

unlikely, that this

problem would exist

in a project using this

method

The use-case model

defines the expected

functionality. Con-

tinuous integration,

prototyping, and

demonstrations are

encouraged

The systems consists of

features. Validate the fea-

tures separately

A healthy project

converges. By the

time of the last

cycles, no major sur-

prises should not

happen

If you implement XP

properly, you should

make automatic test

cases that are

repeated continu-

ously. This leads to

overall better quality,

and thus the end-pro-

duct should be more

easier to integrate.

The customer defines

and runs the accep-

tance tests

Typical the accep-

tance criteria is ad

hoc. The outcome

may be totally differ-

ent from the original

idea. In addition,

hacking may leave to

undocumented code

which is hard to

maintain and modify.

This may mean pro-

blems when the code

should be modified to

pass the acceptance

test

Unstable or

poorly per-

forming soft-

ware release

[8/#9,

38/#6,

43/#30,

#33]

The integration

stage does not end

until the software is

fully tested

Each increment should be

a stable subrelease

If there is such a risk,

the iterations should

plan measures for

reducing potential

quality problems (e.g.

early performance

analysis). Note that a

long sequence of

iterative refinements

may lead to an unde-

finitely performing

system (like proto-

typism)

The software is

incrementally inte-

grated for each iter-

ation. Thus any

breakage should be

detected early

FDD advocates design

and code inspections, and

some kind of unit testing

for quality assurance

The technical quality

is maintained during

the development, in

part, with software

inspections

This should not hap-

pen in XP, since it

advocates for making

(even small) pieces of

working software

from the beginning

This is a serious risk

Unattractive

software

release

(wrong, obso-

lete or missing

features)

[8/#3,#4,

43/#27,

#40]

The release is built

according to the

initial requirements

phase. If that phase

was conducted

poorly, the resulting

release is likely to

be unattractive

The customers can see the

growth of the software

with every increment.

There should not be any

big disappointments in the

end

If there is such a risk,

the iterations should

include some dedi-

cated activities for

reducing the uncer-

tainty (e.g. prototyp-

ing)

The features are

agreed with the

customers (and

other stakeholder)

with the Vision

document (business

case)

Feature list planning

ensures focusing on the

right features. Ideally, the

list is accepted by the

customers (stakeholders)

prior to the construction.

Regular pre-releases of

features demonstrate the

progress

Customer Focus-

Group (CFG) reviews

help getting timely

feedback about the

product features

This is tackled with

the Planning Game.

The customer selects

the features to be

implemented

Unpredictable

How to make

a good start-

ing point for

the next pro-

ject (e.g.

updating the

documen-

tation)?

[15,

43/#38,

#39]

By definition, this is

the last stage of the

waterfall

This should be a part of

the last increment, or

there might be an extra

finishing increment

Each iteration cycle

completes with a

well-defined evalu-

ation. This should

make a clear starting

point for the sub-

sequent project

cycles

RUP embraces tool-

based engineering

artifacts. Sub-

sequent project

cycles may be par-

tially overlapping

The Domain (Object)

Model is a useful asset for

extending the product.

The feature tracking

charts provide high-level

information about the

completed functionality.

The user documentation

could be required as a part

of each feature com-

pletion

ASD encourages

‘finishing strong’,

leaving a good trail

A working software

release is always a

good starting point,

but not necessarily

enough. XP relies

much on tacit knowl-

edge. This may be a

serious problem, in

particular if the pro-

ject team changes

Hacking leads to bad

maintainability and

poor documentation

(continued on next page)

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

6
0

3



Table A1 (continued)

Project

Problems,

Failure

Factors

Software process models

Plan/specification-driven Models Evolutionary models Agile methodologies Ad hoc

Referen-

ces

Waterfall (serial

development)

Incremental development

models

Spiral model (risk-

driven iteration)

Rational unified

process (RUP)

Feature-driven develop-

ment (FDD)

Adaptive software

development (ASD)

Extreme program-

ming (XP)

No discipline

(chaotic ‘hacking’)

Unclear pro-

ject end-cri-

teria

The end-criteria

definition is a part of

the planning phase

The end-criteria should be

planned as a part of the

increments planning

This can be a poten-

tial problem with

iterations: there is

always room to

improve. When do

we say it is final? The

cost increases with

every new spiral

cycle

The use-case model

serves as a ‘con-

contract’ between

the customers and

developers. There is

a Project Accep-

tance Review. The

end criteria should

be defined during

the Inception

Basically the project ends,

when all the planned fea-

tures have been built

according to the Features

List. The list should have

been accepted by the

project stakeholders

somehow (not covered by

FDD)

According to the

ASD philosophy it is

normal that the actual

end state is different

from the initial plan.

The project time-box

sets the schedule

boundary

The project is ended

when the paying cus-

tomer is happy with

the end-product or

cancels the develop-

ment. The customer

opinion is checked

weekly

Undetermined

References: [33(Ch. 7.1),

41(Ch. 1)]

[33(Ch. 7), 34, 41] [7] [27] [37] [22] [6] [33(Ch. 7.2)]

Home ground: Low speed, low

change [22]. Pri-

mary objective:

high assurance, pre-

dictability. It works

well on stable parts

in which you can

commit to the

requirements and

resolve the uncer-

tainties early.

Works well on

complex projects by

adhering rigid con-

trols and ordering

Basically any project that

has some advantage in

building and delivering

(externally or internally)

the software gradually in

slices rather than comple-

tely at the end

Low speed, high

change [22]. Evol-

utionary, iterative

development is a

natural approach with

volatile parts requir-

ing exploration (e.g.

complex user inter-

faces). Suits well for

very large, complex,

and ambitious pro-

jects (research-

oriented)

RUP is a generic

process framework

intended to be tai-

lored for different

project types

(development case).

However, not being

a light-weight

methodology per se,

it is more suitable

for larger, complex

projects ‘out of the

box’

Applicable to a wide

range of general-purpose

business systems. Can be

applied to ‘greenfield’

development as well as

new feature development

for an existing product.

The project size can be

much more than 10

people

High speed, high

change (‘extreme’

projects)

Primary objective:

rapid value. Typically

suitable for small

projects with a fam-

iliar application area

and low risks. XP is

suited for projects in

the C4 to E14 cat-

egories [15]. Not rec-

ommended for very

large, complex appli-

cation systems as

such

No place in large-

scale professional

software develop-

ment! Some small

off-line demos or

feasibility studies

might just be accep-

table

Consequen-

ces, Side-

effects, Draw-

backs:

Scope Generic software

development start-

ing from the system

requirements span-

ning to the oper-

ation and

maintenance

Generic software specifi-

cation and construction.

Incremental models:

- incremental develop-

ment

- incremental delivery

(internal/external), e.g.

Staged Delivery

The Spiral model is

actually a meta-

model, basically

encompassing all

process models. For

example, if the sche-

dule predictability is

a high risk, the model

unwinds to the

waterfall

RUP covers soft-

ware project work

widely starting from

the project initiation

ranging to the pro-

duct deployment.

Also many support

activities are

addressed (like

SCM)

FDD addresses only the

software construction

process. Initial user

requirements elicitation

and system tests are

beyond the scope

ASD is primarily a

management

approach. It does not

offer much support of

how to implement the

software engineering

tasks in practice

XP actually focuses

on the software con-

struction. The basic

project management

activities (like plan-

ning, change man-

agement, tracking)

are incorporated,

although mostly

informally

This is not really a

process model at all

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

6
0

4



Nature Waterfall model is

workflow-oriented

[22]

The basic idea is to split a

large project into smaller

sections. Working

aggressively, the incre-

ments could possibly be

developed overlapped in

parallel. The basic form of

incremental development

is to specify all require-

ments first, followed by a

sequence of builds. A

possible variant is to

make the specifications

incrementally, too

In general, advancing

in the spiral reduces

the risks, and

increases the project

cumulative cost. The

basic form of evol-

utionary development

is to let the require-

ments evolve with

iterations

RUP is tool- and

work product inten-

sive [15]

FDD emphasizes client-

valued functionality (fea-

tures)

ASD is primarily

work state-oriented

XP is activity inten-

sive. XP suggests

maximizing concur-

rency [15]

No preset rules

Advantages Properly

implemented water-

fall could be the

fastest way to run a

project under right

circumstances. It is

easy to manage

serial development.

The serial develop-

ment model is easy

to learn and follow,

even with inexperi-

enced people

The increments can be

delivered to the customers

for early feedback.

Changes can be accom-

modated by adjusting the

increments

Focusing on the risks

and considering the

alternatives systema-

tically makes the

project management

more robust and resi-

lient to uncertainties

RUP is a compre-

hensive process fra-

mework with tool

support available. It

provides detailed

definitions for the

project milestones,

artifacts, activities,

and roles

Focusing on the features

systematically provides a

coherent view of the pro-

ject

Admitting that differ-

ent project situations

require different sol-

utions makes the

project management

inherently adaptable

The lightweight way

of working can be

very efficient, pro-

vided that the project

home ground is right

This is very flexible

in the sense that there

are basically no pre-

set rules to be fol-

lowed. There is no

management or

documentation over-

head

Constraints Major midcourse

changes are basi-

cally not favored.

Waterfall is only

recommended for

stable project

environments

Incremental development

requires more manage-

ment activities. (The

integrity of the project

must be checked consist-

ently.) Requires more

testing, because all fea-

tures must be re-tested for

each increment. SCM is

more complicated,

especially if increments

are developed in separate

branches that will be

merged later on. Mana-

ging parallel increments is

more complicated. Not

every application can be

delivered in increments

[4]

With iterations one

should be ready to

throw away some

versions of the work-

ing software. In a

sense, this means

compromise with the

schedules. A signifi-

cant disadvantage of

iterative development

is that it is often

difficult to define

deliverables [4]

The ‘out of the box’

version of RUP is

intended to be an

organization-wide

process. The pro-

ject-specific pro-

cesses may need

adaptations

The features must be

known, and prioritized.

Once the features have

been selected, it is very

hard to change the con-

tents without causing

serious damage to the

project. FDD assumes a

working configuration

management system for

shared access. SCM can

be more complicated, if

stages overlap and/or if

features are selected for

each release from a large

base

ASD relies much on

intense communi-

cation and iterative

learning. How to

make this work in

practice may not be

that easy, though.

ASD recommends

having a customer

available for conver-

sation each day [23]

Collective code own-

ership may not scale

up. By XP definition

the project team

should be on one site.

Requires an active

onsite customer, who

is willing to follow

the rules of the pro-

cess model. It may

not be reasonable in

practice to make a

new customer release

of a large system

every week or so

often

It may be difficult for

new people to join the

project (catching up),

since the process is

not defined any-

where. The visibility

is low (no intermedi-

ate products or mile-

stones defined)

(continued on next page)

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

6
0

5



Table A1 (continued)

Project

Problems,

Failure

Factors

Software process models

Plan/specification-driven Models Evolutionary models Agile methodologies Ad hoc

Referen-

ces

Waterfall (serial

development)

Incremental development

models

Spiral model (risk-

driven iteration)

Rational unified

process (RUP)

Feature-driven develop-

ment (FDD)

Adaptive software

development (ASD)

Extreme program-

ming (XP)

No discipline

(chaotic ‘hacking’)

Cautions! If there are major

uncertainties at the

outset, the waterfall

model is often not

suitable. Because

the model relies on

completely defined

plans and specifica-

tions, later changes

may cause heavy

rework

The increments must be

chosen wisely, so that

each increment builds to

the previous one. Other-

wise the project may end

just coding parts of the big

functionality several

times, because earlier

implementations are not

parts of the latter one. If

the deployment of the

system is complicated, it

may not make sense to

deliver new increments

often

This abstract model

requires careful plan-

ning. It may be diffi-

cult to apply it in

practice

The commercial

version of the pro-

cess model relies on

certain tools. It may

become more diffi-

cult to use the pro-

cess without those

particular tools

In a large complex sys-

tem, it may be difficult to

find a suitable develop-

ment order of the features,

and organizing the feature

teams, if there are many

interdependencies. If you

only concentrate on the

business features, there is

a risk to neglect internal

technical features

Too much flexibility

can be dangerous, too

The apparent light

weight of XP means

that you have to

define many practices

and rules on your

own. If you cannot

find a customer who

wants to work that

way you should not

try XP at all [6]. XP

assumes a certain

amount of tacit

knowledge and skill

[23]

The project (or the

company) becomes

very dependent on the

key programmers, in

particular if there is

not much written

documentation. The

project may easily

slide into an unreco-

verable chaos

Notes There are MODI-

FIED WATER-

FALLS: Overlap-

ping phases, parallel

subprojects, risk

reduction iterations

Some form of incremental

development is a key

characteristic of most (if

not all) agile methods. A

question to ponder (for the

management): What is the

distinction between an

increment and a separate

release?

Requires good soft-

ware risk manage-

ment experience

RUP is more like a

heavyweight meth-

odology. Some

lighter adaptations

have been proposed

for smaller projects

Staged delivery causes

partially same problems

as incremental develop-

ment (overhead in testing

and content manage-

ment). FDD assumes that

the overall value of the

features is determined

early in the project and

that scheduling those fea-

tures should be primarily

a technical decision [23]

There is a philosophy

of complex adaptive

systems behind

A user story Z a

feature

You should not really

consider this model

as an alternative.

Hacking is a process

antipattern, some-

times mistakenly jus-

tified by iterative

development [4]

EMBEDDED

SYSTEMS

[39] May be suitable in

case you can agree

on the hardware/

software specifica-

tions early. Typi-

cally, there is a

common synchroni-

zation milestone

with the software

and hardware

developments

The software increments

can be synchronized with

concurrent hardware

development (e.g. proto-

type boards)

Sometimes the hard-

ware development is

best done with the

sequential waterfall

model, while the

software develop-

ment may apply the

spiral model

There are some real-

time software

design specialities

May be suitable. Does not

address embedded sys-

tems specifically. Plan-

ning the feature list with

concurrent hardware

development may be

challenging

May be suitable.

Does not address

embedded systems

specifically

May be suitable,

especially if the

hardware is already

available. Does not

address embedded

systems specifically

Some software

experiments with the

target hardware may

make sense

Note: The column References shows the problem item numbers used in the respective publications, e.g. [43/#1] refers to the first item of the list in [43].

P
.

K
ettu

n
en

,
M

.
L

a
a

n
ti

/
In

fo
rm

a
tio

n
a

n
d

S
o

ftw
a

re
T

ech
n

o
lo

g
y

4
7

(2
0

0
5

)
5

8
7

–
6

0
8

6
0

6



P. Kettunen, M. Laanti / Information and Software Technology 47 (2005) 587–608 607
software construction but in the related systems and

hardware engineering issues.

This paper leaves room for further study:
(1)
 Empirical validation: At the time of the writing we are

not yet able to present current empirical validation data

about our propositions. Such data could be collected by

experimenting with the matrix (Appendix A) in ongoing

software projects. How useful is the matrix? However,

even now it reflects some of our practical project

experiences and learnings, like illustrated in Ch. 4.1.

Also other authors have recognized the need for such

industrial empirical evidence [30].
(2)
 An improvement could be to add different sort keys of

the problem factors in the matrix (Appendix A). In

different situations different views might be useful. For

example Ambler has compared some development

approaches with respect to their ability to support

certain overall project requirements (e.g. ‘critical

features must be put into production as soon as

possible’) [4(Ch. 1)]. Does the project need to prioritize

for example predictability, flexibility, or visibility?

What are the prerequisites? In addition, certain color

codes could be used in the matrix to highlight, how well

each process model tackles each problem. Such a

colored cell map could provide a quick overview about

the whole matrix.
(3)
 The matrix (Appendix A) could be extended with other

comparisons, for example such as suggested by Table 4

(c.f. Table 1). The different practices could be selected

in particular among the generally advocated agile

practices [50]. The practices could be grouped for

example on collaboration, project management, and

software development practices [23(Ch. 25)].
(4)
 Changing the comparison focus from large-scale

embedded systems to some other, e.g. multisite or

web site development project.
Acknowledgements

The authors would like to thank Tuomo Kähkönen

(Nokia Corporation) for reviewing an earlier version of this

paper.
Appendix A. Software process selection matrix

Table A1.
References

[1] I. Aaen, Software process improvement: blueprints versus recipes,

IEEE Software 20 (5) (2003) 86–93.
[2] P. Abrahamsson, et al., Agile Software Development Methods:

Review and Analysis, Technical Research Centre of Finland, VTT

Publications 478, Finland, 2002.

[3] P. Abrahamsson, et al., New Directions on Agile Methods: A

Comparative Analysis, Proceedings of the 25th International

Conference on Software Engineering, 2003 pp. 244–254.

[4] S. Ambler, Process Patterns—Building Large-Scale Systems Using

Object Technology, Cambridge University Press, Cambridge, 1998.

[5] P.G. Bassett, Framing Reuse: Lessons from the Real World, Prentice-

Hall, Upper Saddle River, NJ, 1997.

[6] K. Beck, M. Fowler, Planning Extreme Programming, Addison-

Wesley/Pearson, Upper Saddle River, NJ, 2001.

[7] B. Boehm, A spiral model of software development and enhancement,

IEEE Computer 21 (5) (1988) 61–72.

[8] B. Boehm, Software risk management: principles and practices, IEEE

Software 8 (1) (1991) 32–41.

[9] B. Boehm, Get ready for agile methods, with care, IEEE Computer 35

(1) (2002) 64–69.

[10] B. Boehm, R. Turner, Balancing Agility and Discipline—A Guide for

the Perplexed, Addison-Wesley/Pearson Education, Boston, MA,

2004.

[11] F.P. Brooks, No silver bullet: essence and accidents of software

engineering, IEEE Computer 20 (4) (1987) 10–19.

[12] F.P. Brooks, The Mythical Man-Month: Essays on Software

Engineering (20th Anniversary Edition), Addison-Wesley, Reading,

MA, 1995.

[13] W.J. Brown, et al., AntiPatterns in Project Management, Wiley, New

York, 2000.

[14] A. Cockburn, Selecting a project’s methodology, IEEE Software 17

(4) (2000) 64–71.

[15] A. Cockburn, Agile Software Development, Addison-Wesley/Pear-

son, Boston, MA, 2002.

[16] B. Curtis, et al., A field study of the software design process for large

systems, CACM 31 (11) (1988) 1268–1287.

[17] R.E. Fairley, M.J. Willshire, Why the Vasa Sank: 10 problems

and some antidotes for software projects, IEEE Software 20 (2) (2003)

18–25.

[18] R.L. Glass, Software Runaways, Prentice-Hall, Upper Saddle River,

NJ, 1998.

[19] R.L. Glass, Matching methodology to problem domain, CACM 47 (5)

(2004) 19–21.

[20] H. Glazer, Dispelling the process myth: having a process does

not mean sacrificing agility or creativity, CrossTalk 14 (11) (2001)

27–30.

[21] M. Gnatz, et al., The living software development process, SQP 5 (3)

(2003) 4–16.

[22] J.A. Highsmith, Adaptive Software Development—A Collaborative

Approach to Managing Complex Systems, Dorset House Publishing,

New York, NY, 2000.

[23] J.A. Highsmith, Agile Software Development Ecosystems, Addison-

Wesley/Pearson Education, Boston, MA, 2002.

[24] C. Jones, Patterns of Software System Failure and Success,

International Thompson Computer Press, Boston, MA, 1996.

[25] F. Keenan, Agile Process Tailoring and Problem Analysis (APTLY),

Proceedings of the 26th International Conference on Software

Engineering, 2004 pp. 45–47.

[26] P. Kettunen, Managing embedded software project team knowledge,

IEE Proceedings—Software 150 (6) (2003) 359–366.

[27] P. Kruchten, The Rational Unified Process: An Introduction, Addison-

Wesley, Reading, MA, 2000.

[28] T. Kähkönen, P. Abrahamsson, Achieving CMMI Level 2 with

Enhanced Extreme Programming Approach, Proceedings of the Fifth

International Conference of Product Focused Software Process

Improvement (PROFES), 2004 pp. 378–392.

[29] C. Larman, Agile and Iterative Development—A Manager’s Guide,

Addison-Wesley/Pearson, Boston, MA, 2004.



P. Kettunen, M. Laanti / Information and Software Technology 47 (2005) 587–608608
[30] P. Manhart, K. Schneider, Breaking the Ice for Agile Development of

Embedded Software: An Industry Experience Report, Proceedings of

the 26th International Conference on Software Engineering (ICSE)

2004; 378–386.

[31] L.V. Manzoni, R.T. Price, Identifying Extensions Required by RUP

(Rational Unified Process) to Comply with CMM (Capability

Maturity Model) Levels 2 and 3, IEEE Transactions on Software

Engineering 29 (2) (2003) 181–192.

[32] G. May, M. Ould, Software project casualty, IEE Engineering

Management Journal 12 (2) (2002) 83–90.

[33] S. McConnell, Rapid Development: Taming Wild Software Sche-

dules, Microsoft Press, Redmond, WA, 1996.

[34] S. McConnell, Software Project Survival Guide, Microsoft Press,

Redmond, WA, 1998.

[35] W. Mellis, Software quality management in turbulent times—are

there alternatives to process oriented software quality management?,

Software Quality Journal 7 (3-4) (1998) 277–295.

[36] M.A. Ould, Managing Software Quality and Business Risk, Wiley,

Chichester, 1999.

[37] S.R. Palmer, J.M. Felsing, A Practical Guide to Feature-Driven

Development, Prentice-Hall, Upper Saddle River, NJ, 2002.

[38] D. Reifer, Ten deadly risks in internet and intranet software

development, IEEE Software 19 (2) (2002) 12–14.

[39] J. Ronkainen, P. Abrahamsson, Software development under

stringent hardware constraints: Do agile methods have a chance?,

Proceedings of the Fourth International Conference on Extreme

Programming and Agile Processes in Software Engineering 2003;

73–79.

[40] J. Ropponen, K. Lyytinen, Components of software development risk:

how to address them? A project manager survey, IEEE Transactions

on Software Engineering 26 (2) (2000) 98–111.

[41] W. Royce, Software Project Management, Addison-Wesley/Pearson,

Upper Saddle River, NJ, 1998.
[42] J.M. Smith, Troubled IT Projects—Prevention and Turnaround, IEE,

London, UK, 2001.

[43] J. Smith, The 40 root causes of troubled IT projects, IEE Engineering

Management Journal 12 (5) (2002) 238–242.

[44] J. Smith, A Comparison of the IBM Rational Unified Process and

eXtreme Programming. White paper, IBM/Rational (http://www-306.

ibm.com/software/rational/info/literature/lifecycle.jsp#White papers,

January 2004)

[45] I. Sommerville, Software process models, ACM Computing Surveys

28 (1) (1996) 269–271.

[46] X. Song, L.J. Osterweil, Toward objective, systematic design method

comparisons, IEEE Software 9 (3) (1992) 43–53.

[47] R. Sorensen, A comparison of software development methodologies,

CrossTalk 8 (1) (1995).

[48] J. Taramaa, et al., Product-based software process improvement for

embedded systems, Proceedings of the 24th Euromicro Conference 2

(1998) 905–912.

[49] R. Turner, B. Boehm, People factors in software management: lessons

from comparing agile and plan-driven methods, CrossTalk 16 (12)

(2003) 4–8.

[50] J. Vanhanen, J. Jartti, T. Kähkönen, Practical experiences of agility in

the telecom industry, Proceedings of the Fourth International

Conference on Extreme Programming and Agile Processes in

Software Engineering 2003; 279–287.

[51] S.F. White, et al., Engineering computer-based systems: meeting the

challenge, IEEE Computer 34 (11) (2001) 39–43.

[52] E. Yourdon, Death March—The Complete Software Developer’s

Guide to Surviving “Mission Impossible” Projects, Prentice-Hall,

Upper Saddle River, NJ, 1999.

[53] IEEE/EIA 12207.0-1996 IEEE/EIA Standard Industry Implemen-

tation of International Standard ISO/IEC 12207: 1995 (ISO/IEC

12207) Standard for Information Technology Software Life Cycle

Processes, 1998

[54] http://www.extremeprogramming.org/, March 2004.

http://www-306.ibm.com/software/rational/info/literature/lifecycle.jsp#Whitepapers
http://www-306.ibm.com/software/rational/info/literature/lifecycle.jsp#Whitepapers
http://www.extremeprogramming.org/

	How to steer an embedded software project: tactics for selecting the software process model
	Introduction
	Many software process model alternatives
	Software process models and project problems
	Research question

	Tactics for selecting the software process model
	Software process model selection matrix
	Using the selection matrix

	Evaluation and discussion
	Validation
	Answering the question
	Application possibilities
	Limitations

	Conclusions
	Acknowledgements
	Software process selection matrix
	References


