Petri Kettunen and Maarit Laanti. 2006. How to steer an embedded software project:
tactics for selecting agile software process models. International Journal of Agile
Manufacturing, volume 9, number 1, pages 59-77.

© 2006 International Society for Agile Manufacturing (ISAM)

Reprinted by permission of International Society for Agile Manufacturing.

IJAM international Journal of Agile Manufacturing

How to Steer an Embedded Software Project:
Tactics for Selecting Agile Software Process Models

Petri Kettunen, Maarit Laanti
Nokia Corporation, P.O. Box 301, 00045 NOKIA GROUP, FINLAND
E-mail: petri.kettunen@nokia.com, maarit.laanti@nokia.com

Abstract: Large, modern, new product developments (NPD) typically are characterized by many uncertainties and frequent
changes. Often, the embedded software development projects working on such products face many problems compared to
traditional, placid project environments. One of the major project management decisions is the selection of the project’s
software process model. An appropriate agile process model could help in coping with the challenges and even could pre-
vent many potential project risks and problems. On the other hand, an unsuitable process choice often causes additional
problems. This industrial paper investigates the agile software process model selection in the context of large, market-
driven, embedded software product development for new telecommunications equipment. Based on a quasi-formal compari-
son of publicly known agile software process models, including XP, ASD, Scrum, FDD and RUP, we propose a process
model selection frame, which the project manager can use as a systematic guide for (re)choosing the project’s process
model. A novel feature of this comparative selection model is that we make the comparison against typical software project
problem issues. Some past real-life project case examples are examined against this model. The selection matrix expresses
how different agile process models answer to different questions, and indeed there is not a single process model that can
answer all questions. On the contrary, some of the seeds to the project problems are in the process models themselves, and
no agile process model is a silver-bullet solution. Nevertheless, being conscious of these problems and pitfalls when steering
a project enables the project manager to master the situation and to take advantage of agile process models.

Key Words: Software Project Management, Agile Software Process Models, Risk Management, Embedded Systems, New
Product Development.

1. Introduction

Managing modern industrial product develop-
ment projects successfully requires situation-aware
control of possible and inevitable trouble, taking the
anticipated and even unexpected situational conditions
into account [20]. Often, the embedded software
development projects working on such emerging
products face many problems compared to traditional,
placid project environments [27].

A powerful tool any project manager might have
to cope with in such challenges is the command of
initially choosing and — if necessary — later revising the
software process model [7, 25]. Recently, a new
software process (methodology) philosophy of agility
has been advocated as a potential solution to such

turbulent software project cases. Those agile software
process models emphasize certain key practices of
project mission elaboration, project initiation, short
iterative (time-boxed) development cycles, constant
feedback, and customer intimacy [17]. The underlying
principles have been stated in the well-known “Agile
Manifesto” [40].

Many different published agile software devel-
opment methodologies are available: e.g., eXtreme
Programming (XP) [4], Scrum [33], and Adaptive
Software Development (ASD) [16] — just to name a
few. The problem is now for the project manager to
select an appropriate process model among the many
alternatives. In this paper, we present a systematic
approach regarding when it would be wise to use a
certain agile software process model under certain
project conditions, and why. Specifically, we are

Volume 9, Issue 1
© 2006 ISAM 59

How to Steer an Embedded Software Project:
Tactics for Selecting Agile Software Process Models

interested in investigating how different agile process
models cope with different project problems. The
purpose is to provide pragmatic aids for practicing
project managers by combining and distilling
knowledge from a variety of literature sources coupled
with our practical experience.

In this study, we focus on one specific type of
software project, namely, market-driven development
of embedded software for telecommunications
products (e.g., mobile phones, radio network
elements). Even within this category there are many
different project types, such as completely new product
development, new features development for existing
products and derivatives, and platform developments.
Here, we limit ourselves to the first type, i.e., the
software development for a whole new product. We
have held that limitation to new product development,
since we feel that there is much more freedom for the
project manager to choose the initial software process
used, than to make changes to one that already has
been established and used for many past software
releases. Neither of the two limitations, however, is
exclusionary nor definitive as to the usage of our
guidelines — the reader is encouraged to explore the
suitability to her own application area.

The rest of the paper is organized as follows:
Chapter 2 explores the background and related work,
and sets the exact research question. Chapter 3 then
describes our solution ideas, while Chapter 4 evaluates
them. Finally, Chapter 5 offers concluding remarks and
outlines further research ideas.

2. Many Agile Software Process Model
Alternatives

2.1 Software Process Models and Project
Problems

In this paper, we define “software process
model” broadly so that it includes all the project life-
cycle activities of project planning, tracking, and
requirements management, as well as the actual
software construction and release. Sometimes a more
holistic concept of “methodology” is used in this
context [9]. Software process, thus, is more than just a
software development life cycle. “Agility” refers to the
ability of the process to support responsive software

60

product development, ultimately for the business
success [17].

During the past few years, many agile software
development process models have been proposed.
Many research investigations and numerous software
engineering guidebooks compare and contrast the
different models. See, for example, [1, 3, 6-7, 9, 19, 25,
38]. Those different investigations use various different
comparison viewpoints of the process models, such as

universal prescription vs. situational adaptation [1];

e process definition flexibility (accommodating
change) [21];

e primary objectives (e.g., rapid value vs. high
assurance) [6];

e size, criticality, project priorities [9];

e cycles of operation (number
formalism (“ceremony”) [25];

e relevance to software engineering (construction)
vs. management [19];

o life-cycle coverage [3];
people factors [38]; and

¢ multidimensional home ground profiles [7].

and length),

Note also that similar aspects of software process
models have been investigated already earlier, although
the term “agile process” was not yet coined explicitly
at the time of the writing. See, for example, [28, 35].

In modern software product development envi-
ronments, the basic premises and assumptions of the
traditional process models have been stretched so much
that many such classic models have become partially
unsuitable. In addition, the growing understanding of
innovation patterns and organizational learning has
influenced software engineering management
(knowledge management). Because of many unknowns
and uncertainties coupled with ambitious time-to-
market goals, basic serial document-driven
development is often not feasible. Modern business
pressures and technological advances require
responsive, last-minute changes in the product
contents. Agile software process models address such
aspects in particular.

The current trend in software process model
development advocates more adaptable and flexible
ways of working, i.e., moving from rigid, all-defining,
huge organizational processes toward sketched,

PETRI KETTUNEN, MAARIT LAANTI

tailorable, agile processes. The typical way of working
is to give only a few of the most essential practices to
the project — more like a process skeleton — in which
the practices gradually can be added. The mental
model here is merely to let the project determine the
practices, when ready to take them into use, rather than
following a well-set rigid model [14, 16/Ch. 8]. The
underlying premise is that since uncertainty and
frequent changes are inherent in current projects, it is
typically not reasonable to lock the project’s process in
a prescriptive way.

Embedded systems have, in addition, certain
intrinsic software project problems [37]. Software
developers often must understand interdisciplinary
product application domain knowledge. Systems
engineering, then, is a key activity. Note that in
complex product systems (e.g., mobile phones), there
are often many profoundly different types of embedded
software sub-systems ranging from real-time hardware
drivers to sophisticated man-machine interfaces. The
most recognized software models are pure models in
the sense that the focus is only on software. Models
used in embedded software development are often
variations of these. Most existing process models,
however, can be tuned, to some extent, to real-time
embedded software projects by taking into account the
systems engineering and hardware dependencies.

In industrial new product development environ-
ments, there are also many limiting business
constraints to be taken into account [15, 27]. The
embedded software project teams working in such
environments often face many sources of turbulence,
as illustrated in Fig. 1.

Business Environment
(customers, corzgetirors, technology) HE

NPD COMPANY Product/Project Portfolio Management

Product Program

Product Systems
\ Engineering

N
AN
8
<
N

Agile

...............

Figure 1: Embedded Software
Project Team NPD Context.

The company, responding to emerging and
fluctuating market needs, has to manage its product

development portfolio accordingly. This may
consecutively introduce various changes to the
embedded software project teams (e.g., product
features, release schedules, project resourcing). In
addition, the other internal parts of the product
development program (e.g., concurrent hardware
engineering) may cause changes to the software part.

The question is now for a practicing software
project manager to choose an appropriate agile process
model for her particular project, taking into account
the current and anticipated problems of the project. To
the best of our knowledge, none of the published
investigations cited above provides comprehensive
guides for such purposes from that point of view. This
is what we want to address.

2.2 Research Question

Based on the background in Ch. 2.1, we now
offer the following specific question:

o How do different agile process models respond to
different project problems faced in turbulent
environments (if at all)?

The challenge is for the software project man-
ager to find an appropriate agile process model among
the many different alternatives, knowing how the
selected model works under given project problem
conditions [13]. Our aim here is to offer pragmatic aids
for doing this in a systematic way, preventing the basic
problems of selecting a fundamentally wrong model
(“Lifecycle Malpractice™), or even not choosing any
definite process model at all [8, 28/Ch. 7]. By making
conscious choices, the project manager also can avoid
any inherent disadvantages of the process model. She
thus can avoid typical project problems by selecting an
appropriate agile software process model, based on the
project situational factors, realizing how the process
model prevents particular problems from happening, or
helps in mitigating them.

The rest of this paper proposes answers to that
question. The research method for the question is a
quasi-formal comparison based on distilling features
[36]. As stated in Ch. 1, our special focus is embedded
software development for new telecommunications
products. In addition, we concentrate on large-scale
projects, requiring tens of man-years of work effort.

61

How to Steer an Embedded Software Project:
Tactics for Selecting Agile Software Process Models

Our underlying premise for investigating this
question is that the process model is a significant
productivity and quality factor for large software
development projects. We do not argue, however, that
it is the most important success factor. Often, people
factors tend to be the ultimate keys [38]. Nevertheless,
an efficient project management and development
process has been recognized to be one typically
characteristic of successful projects [22].

We earlier investigated similar questions with a
broader scope elsewhere [23]. Here, our focus is on
agile process models.

3. Tactics for Selecting the Agile Software
Process Model

3.1 Software Process Model Comparison
Matrix

Many agile process models are available, each
having different characteristics and areas of suitability
(home ground). The problem, then, is to find good
matches with the actual project environment and
current situational factors. No standardized solutions
exist for this.

In order to help, we have composed an agile
process model comparison matrix. Table 1 shows that
structure. Table 2 is a sample excerpt of the actual
matrix (top left-hand corner). See Appendix 1 for the
complete matrix.

|:1 Agile Software Process Model

Project How does this process model
Problem, prevent that particular problem
Risk, Failure | from happening, or help

Factor mitigate it (in the context of

large embedded software
projects)?

Table 1: Software Process Model
Comparison Matrix (Appendix 1) Structure.

62

Related AGILE PRINCIPLES ified Process)
ther

navid
Jaive them the environment and support they.
bheed. and trust them to get the job don

Table 2: Software Process Model
Comparison Matrix (Appendix 1) Example.

This matrix (Appendix 1) is basically a com-
parative analysis of different agile software process
models. A notable feature of the matrix is that we have
based the comparison on how well (if at all) each
process model tackles typical problems of large
embedded software projects. The reader is assumed to
be familiar with the basics of the models in order to be
able to understand the analysis points.

Note that the matrix (Appendix 1) is by no
means an all-encompassing directory of agile software
process models or potential project problems. The
matrix has, in principle, been composed as follows.

We have selected the process model alternatives
based on a literature survey (see Ch. 2.1), as well as on
our own experience with large embedded software
development projects. The idea is to cover the most
well-known and widely used agile models. Currently,
our matrix includes the following process models
(columns): Rational Unified Process (RUP) [24],
Feature-Driven Development (FDD) [30], Adaptive
Software Development (ASD) [16], eXtreme
Programming (XP) [4], and Scrum [33]. We also have
included an antimodel titled “hacking” for contrasting
purposes. RUP generally is not advocated as a pure
agile process model, but since it is possible to use it in
a lightweight way, we have included it as well [18].
Note that many other agile methodologies have been
proposed. See, for example, [7, 17, 25].

No generally accepted scale of “agility” exists,
although some informal ratings have been suggested
[7, 10]. Therefore, the order of the process models
(columns) in our matrix is not strictly defined, but we

PETRI KETTUNEN, MAARIT LAANTI

put RUP to the leftmost end, based on its traditional
background, and “hacking” to the other end, following
Boehm’s spectrum [6].

For the comparison points, we have distilled
distinct project problem areas and risk factors, based
on well-known investigations (for example, [5, 22,
34]), coupled with our own large embedded software
project experiences. Currently, our matrix includes
some 50 problem items (rows). They incorporate, for
example, the classic Boehm’s risk list [S]. The rows are
grouped according to the project life cycle: project
initiation, execution, and completion (see the leftmost
column of Table 2). The idea here is to cover a wide
range of such essential project factors, which make a
clear difference between the models in the context of
large embedded software projects. Again, we
acknowledge that other factors could have been
included, and thus, that different orderings would be
possible. Currently, the matrix includes mostly
traditional project problem factors, but with agile
process models, certain problem areas could be
emphasized more.

Most (if not all) agile methodologies advocate at
least some of the same common principles [40].
Therefore, we have included one column into our
matrix reflecting how each project problem could be
tackled in general (see column titled Related AGILE
PRINCIPLES in Table 2). Note, however, that this
reflection is just for reference purposes, since those
agile principles have been formulated in quite a general
way.

In addition, we have compiled an accompanying
key point table of each agile process model’s home
ground, drawbacks, and typical pitfalls. Table 3 shows
the outline (Appendix 2). Assuming that the reader is
familiar with each process model in general, this
summary serves as a quick reminder of notable
remarks. Considering embedded systems, it
summarizes the applicability of each process model for
large embedded software projects. Notably current
agile process models do not specifically address
embedded software development [32].

Agile Software Process Model

Most applicable project
environment(s) — “sweet spot”

Home ground

Consequences,
Side-effects,
Drawbacks:

Scope Coverage of the model
(project life-cycle activities)

Nature Methodological characteristics

Advantages Key benefits

Constraints, Limitations and disadvantages,

Disadvantages prerequisites

Cautions! Significant risks and pitfalls

Notes Miscellaneous remarks

EMBEDDED Particular considerations for

SYSTEMS embedded software projects

Table 3: Software Process Model
Characteristics Matrix (Appendix 2) Structure.

3.2 Using the Comparison Matrix

A project manager can use the matrix (Appendix
1) described in Ch. 3.1 in the following two basic
ways:

e By columns: Selecting the project’s agile process
model by comparing the basic alternatives accord-
ing to the prevailing or anticipated project problem
situation, i.e., by reflecting presented problem
areas to her own known problem areas, and
optimizing the best solutions, selecting a process
model that supports it best.

e By rows: Evaluating how specific project problems
can be tackled with different agile process model
alternatives (if at all).

One even could give ratings of problems and the

solutions each process model would provide — and
calculate averages or weighted averages for each

63

How to Steer an Embedded Software Project:
Tactics for Selecting Agile Software Process Models

process model, and make analytical decisions on that
basis.

In addition, certain color codes could be used in
the matrix to highlight how well each process model
tackles each problem. Such a colored cell map could
provide a quick overview about the whole matrix.

4. Evaluation and Discussion
4.1 Validation

At the time of this writing, we are not ready to
publish empirical case study data regarding the use of
our agile process model selection matrix presented in
Ch. 3 (Appendix 1). The following examples based on
certain past real-life projects within Nokia, however,
test some main points. Note that the examples have
been sanitized for confidentiality reasons.

4.1.1 Example 1

PROBLEM: The project develops embedded
software for a plug-in unit of a new product. Because
of the time-to-market pressure, the unit hardware
engineering and the software project are launched
concurrently. The hardware design is based on new
technology, and the hardware engineers cannot
provide detailed frozen specifications of the hardware
design to the software project until they have
developed a series of prototype boards. The software
project, therefore, must proceed, based on incomplete
specifications and will be subject to many changes.

SUGGESTIONS: The synchronization with the
hardware prototype development and the volatile
hardware specifications are the keys here. ASD
addresses such a situation by nature (see row titled
Incomplete Requirements / Specs (Poorly Defined
Parts)). Most of the agile models expect that the
"customer” is able to define and clarify the software
requirements. In this case, there could be an internal
customer within the hardware team, and, for example,
XP then could be applied. With short iterative cycles
(e.g., Scrum), you should be able to accommodate the
changes in a controlled manner (see row titled Vague
Milestones). None of the agile process models,
however, tackle especially well the problem with
software project external dependencies (see row titled

64

Project External Dependencies Late and / or Imperfect
(e.g., System Specs)).

4.1.2 Example 2 [23]

PROBLEM: The product systems design is
based on complex ASIC circuits and embedded
software cooperation. The product development
program initially is based on a waterfall model. At a
late stage, however, when the first ASIC prototypes
become available, a subtle ASIC design fault is
discovered. Because of the tight product release
schedule target, there is no time to redesign the ASIC.
Instead, a non-trivial software workaround algorithm is
specified, requiring considerable additional software
design and testing efforts.

SUGGESTIONS: The initial choice of the water-
fall model may have been wrong, if such a risk has
been foreseeable from the beginning (see row titled
Underestimation of Project Size, Complexity). None of
the process models covered addresses such external
dependency failures directly (see row titled Project
External Dependencies Late and / or Imperfect), but
such a change makes it difficult to continue with the
waterfall model (see row titled Project Redirected).
Agile, adaptive replanning is needed. One way of
tackling this problem could be to have a new
concurrent feature team to work on the additional
functionality (FDD).

4.1.3 Example 3

PROBLEM: The project needed to develop a
testing tool for an embedded product development with
short time to market. The project had competent
personnel, but it also was known that the project was
unable to set up all the requirements correctly from the
beginning. Moreover, there was some technical
challenge due to the immature development
environment. Because of all the uncertainty that the
project had, it was clear that it would have been bound
to fail if non-agile process models had been chosen for
use.

SUGGESTIONS: The project originally had
enjoyed using XP due to its good reputation and close
time-to-market requirement (this was almost a Death
March project). Pure XP, however, could not have
been utilized fully because the developer’s compe-

PETRI KETTUNEN, MAARIT LAANTI

tences were not equal: Each developer had some
special knowledge that was required for part of the
final solution. Thus, the tasks were allocated to
software developers based on features, as in FDD (c.f.
row titled Extreme Project). Also, the XP practice of
pair programming was abandoned partially because of
the same reason: There was too little time to share the
developers’ special knowledge.

The project was experiencing some problems
during the planning phase: First, requirements were
changing a lot. This was tackled mainly by XP style
having close contact with the customer (see row titled
Unstable (Volatile) Requirements, Continuous
Requirement Changes). Second, the project was
missing some information from the product that the
testing system was supposed to serve. Third, the
project was forced to reuse some existing system
solutions due to an extremely short project schedule.

The principal problems of this project case
stemmed from the diversity of the domain knowledge
and the technological environment. The main solution
was to adopt FDD-style key practices. The project was
quite successful, partially because the tasks were
allocated correctly, based on competences and due to
successful software reuse. In addition, the daily builds
and their testing were automated successfully. The
latter two problems mentioned above could not really
have been avoided by any process model solutions
alone.

4.2 Answering the Question

In Ch. 2.2, we offered a research question. We
now evaluate our proposals presented in Ch. 3 against
that question with respect to the literature reviews (Ch.
2.1).

How can the project manager steer the project
through a problem-conscious selection of the project’s
software process model? What are the possible pitfalls
of the selected agile process model? We have
addressed this in the context of large embedded
software projects by composing a software process
selection matrix (Appendix 1).

Based on the limited set of retrospective project
use cases examined in Ch. 4.1, we can conclude, that
the process selection matrix works reasonably well on
at least some typical embedded software project

problem scenarios. It is certainly not a silver-bullet
problem solver, however, and there are probably many
situations in which the matrix cannot help so much.
The usefulness depends much on the experience and
assessment capabilities of the project manager.

How well do different agile process models
work? Our comparison matrix suggests that there are
certain project problem areas that none of the reviewed
agile process models tackle especially well, such as the
following (rows in Appendix 1):

Lack of resources (people);
New, immature software technology; and
The project is large in size.

On the other hand, many typical problem areas
tend to be addressed by every agile model, such as the
following (rows in Appendix 1):

Overplanning / underplanning;

e The march order: what should be done first and
what next (phasing); and

e Unstable (volatile) requirements,
requirements changes.

continuous

The usefulness of each model thus depends on
the actual project context and its prevailing problems.
The key is to recognize the unique problems and goals
of the particular project environment. Example 3 (Ch.
4.1.3) verifies the experience that many projects have
reported: that, at least in larger projects, following the
XP practices strictly is quite challenging. This leads to
the thought that probably the problem space
experienced with agile methods is somewhat different
from the problem space described in literature based on
the experience with traditional process models. When
more experience is gathered utilizing agile methodolo-
gies, the agile-specific problems (and their possible
solutions) also will become better known.

Our selection matrix does not provide new in-
formation about any agile process models nor project
problem items, but the value of the matrix is in its
systematic composition. The matrix contains distilled
advice about the selected process models in a concise
form. Notably, none of the reviewed investigations
(Ch. 2.1) uses the viewpoint of the comparison based
on project problem factors. Hull, et al., compare a
couple of generic process models with a rather similar
approach on whether the process models support the

65

How to Steer an Embedded Software Project:
Tactics for Selecting Agile Software Process Models

avoidance of certain project failure factors or not [19].
Ould has used a similar viewpoint but with a much
more limited scope [29/Ch. 4]. A recent work by
Boehm and Turner includes an extensive comparison
of many agile process models, based on a project’s risk
factors profile [7]. Larman categorizes some agile
models based on their level of “ceremony”, cyclic
nature, and home ground on the “Cockburn scale” [25].
Typically, software process model comparisons are
coarse-grained, indicating in general only the
circumstances of when a certain model is suitable or
not. We have elaborated this onto a more specific level.

Finally, embedded software development puts
emphasis on certain process areas, as described in Ch.
2.1. The software process activities then must be
focused upon accordingly [37]. We have highlighted
this in the selection matrix by including a dedicated
summary table for embedded software use (see Table
3). An even more thorough analysis, however, could be
done. For example, Ronkainen and Abrahamsson have
made a limited investigation in that direction [32].
Jaufman and Przewoznik compare a set of software
process models, including many agile models with
respect to their suitability for one specific branch of
embedded systems (the automotive industry) [21].
Their particular concern is how well different process
models accommodate change to new project
conditions.

4.3 Application Possibilities

The main idea of using the selection matrix
(Appendix 1) is, first, to select the agile process model
by comparison, based on the problem issues (see Ch.
3.2). No reason exists, however, why the matrix could
not be used in other ways, as well.

Another use of the matrix is to evaluate an on-
going project in case the process model already has
been fixed (for external reasons). The project manager
then can use the matrix to see how the process model
behaves under certain problem conditions. In case
there seem to be some weak points, she can start
thinking about potential future mitigation strategies.
Hence, the matrix helps in staying alert to those
problems.

One also can use the matrix for training pur-

poses. Although the matrix does not explain the basics
of the agile process models, systematic reading of it

66

may raise new thoughts about the project’s potential
risks and problems, or possibly useful new practices.

4.4 Limitations

Our agile process model selection matrix (Ap-
pendix 1) provides alternative ways (heuristics) to
manage a large embedded software development
project. It does not show any single best way of
running a project — there is no one-size-fits-all
methodology. Note that, typically, there is more than
one way to tackle a certain problem. Also, some trade-
offs often exist.

All in all, this is about advanced software proc-
ess competence (Level 3 competence, according to
Turner and Boehm [38]). The degree to which the
potential advantages of a certain process model
actually can be realized depends much on the
knowledge and skills of the project manager and the
team.

5. Conclusions

Modern NPD project environments require
flexible modes of operation. Hence, an important part
of software project management is the selection of a
suitable software process model. Agile process models
provide many tools for coping with such turbulent
project challenges, but it is often not straightforward to
select an appropriate process model among the many
alternatives. In this paper, we have developed some
pragmatic aids for doing this in a systematic way.

We have made a comparative analysis of a range
of agile software process models. Our specific
viewpoint is to compare the models with respect to
their characteristics under typical project problem
conditions. The outcome of this comparison is not any
particular process model recommendation, but the idea
is that a project manager can use the comparison
matrix (Appendix 1) to support her own selection of
the particular process model. Each agile process model
amplifies certain characteristics of the project. The key,
then, is to match the current project situation with the
process model alternatives.

Often, for a large, complex project, no single
process model is the best. Instead, a hybrid model that

PETRI KETTUNEN, MAARIT LAANTI

blends and balances the practices of different models is
often the choice [2, 6-7, 8/Ch. 4, 29, 35]. This depends
on the varying characteristics of the different parts of
the product and the project environment. Many
industrial experience reports conclude that it is often
less complicated to adopt certain key practices of one
or more process models than to replace an existing one
completely [10, 11, 15, 26, 27, 39].

The world of software engineering is in a state of
continuous flux. As the products become more
complex, the project complexity increases, making the
projects subject to more difficult problems. Companies
try to fight this complexity by hiring experienced
managers (personal competence), as well as by
building knowledge inside the organization (such as
building detailed process models). In this paper, we
have summarized some first-hand information to a
structured form, giving the software fellows a fresh
viewpoint of agile process models.

Our comparison matrix indicates that those agile
process models tackle many potential project problems.
Large variations exist, however, depending on the
nature of the models. Some models (e.g., Scrum)
address project management issues in particular, while
other models (e.g., XP) focus more on the engineering
area. None of the analyzed models are free from at
least some limiting constraints.

Our special focus has been on large embedded
software projects. None of analyzed agile process
models is intended specifically for embedded software
development, but most of them are applicable to some
extent, and, for example, XP and Scrum have been
applied to embedded and mission-critical software
development [11]. The special concerns of large
embedded software projects are not so much in
software construction but in the related systems and
hardware engineering issues.

This paper leaves room for further study:

(1) Empirical validation: At the time of the writing,
we are not yet able to present current empirical
validation data about our propositions. Such data
could be collected by experimenting with the
matrix (Appendix 1) in ongoing software projects.

(2) An improvement could be to add a different sort of
keys to problem factors in the matrix (Appendix

1). In different situations, after all, different views
might be useful. For example, Ambler has com-
pared some development approaches with respect
to their ability to support certain overall project
requirements [2/Ch. 1]. Does the project need to
prioritize—for example predictability, flexibility,
or visibility?

(3) Changing the focus from large-scale embedded
systems to some other, e.g., multisite or web site
development project.

(4) How do other project management dimensions
(people, technology) affect the process model
selection?

Acknowledgments

The authors would like to thank Jani Kykyri
(Yomi) for his input.

References

1. Abrahamsson, P., et al, 2003, “New Directions on
Agile Methods: A Comparative Analysis,” Proceedings
of the 25th International Conference on Sofiware
Engineering (ICSE), 244-254.

2. Ambler, S., 1998, Process Patterns — Building Large-
Scale Systems Using Object Technology, Cambridge,
UK, Cambridge University Press.

3. Ambler, S. W., 2003, “The Right Tool for the Job,”
Software Development, December, 50-52.

4. Beck K. and M. Fowler, 2001, Planning Extreme

Programming, Addison-Wesley / Pearson, Upper
Saddle River, NJ, USA.
5. Boehm, B., 1991, “Software Risk Management:

Principles and Practices,” IEEE Software, 8(1), 32-41.

6. Boehm, B., 2002, “Get Ready for Agile Methods, with
Care,” IEEE Computer, 35(1), 64-69.

7. Boehm, B. and R. Turner, 2004, Balancing Agility and
Discipline — A Guide for the Perplexed, USA: Addison-
Wesley / Pearson Education, Boston, MA.

8. Brown, W. J., et al, 2000, AntiPatterns in Project
Management, John Wiley & Sons, New York, NY.

9. Cockburn, A., 2002, Agile Software Development,
Addison-Wesley / Pearson, Boston, MA.

10. Dagnino, A., 2002, “An Evolutionary Lifecycle Model
with Agile Practices for Software Development at

67

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

68

How to Steer an Embedded Software Project:
Tactics for Selecting Agile Software Process Models

ABB,” Proceedings of the 8th International Conference
on Engineering of Complex Computer Systems
(ICECCS), 215-223.

Drobka, J., Noftz, D. and R. Raghu, 2004, “Piloting XP
on Four Mission-Critical Projects,” IEEE Software,
21(6), 70-75.

Fairley, R. E. and M. J. Willshire, 2003, “Why the Vasa
Sank: 10 Problems and Some Antidotes for Software
Projects,” IEEE Software, 20(2), 18-25.

Glass, R. L., 2004, “Matching Methodology to Problem
Domain,” CACM, 47(5), 19-21.

Gnatz, M., et al, 2003, “The Living Software
Development Process,” SQP, 5(3), 4-16.

Greene, B., 2004, “Agile Methods Applied to
Embedded Firmware Development,” Proceedings of the
Agile Development Conference (ADG), T1-717.

Highsmith, J. A., 2000, Adaptive Software Development
— A Collaborative Approach to Managing Complex
Systems, Dorset House Publishing, New York, NY.

Highsmith, J. A., 2002, Agile Sofiware Development
Ecosystems, Addison-Wesley / Pearson Education,
Boston, MA.

Hirsch, M., 2002, “Making RUP Agile,” Proceedings of
the Object-Oriented Programming Systems Languages
and Applications (OOPSLA), Practitioners Reports.

Hull, M. E. C., et al, 2002, “Software Development
Processes — An Assessment,” Information and Software
Technology, 44(1), 1-12.

lansiti, M., 1995, “Shooting the Rapids: Managing
Product Development in Turbulent Environments,”
California Management Review, 38(1), 37-58.

Jaufman, O. and S. Przewoznik, 2004, “Suitability of
State-of-the-Art Methods for Interdisciplinary System
Development in Automotive Industry,” Proceedings of
the ACM Workshop on Interdisciplinary Software
Engineering Research (WISER), 78-82.

Jones, C., 1996, Patterns of Sofiware System Failure
and Success, Boston, MA, International Thompson
Computer Press, USA.

Kettunen, P. and M. Laanti, 2004, “How to Steer an
Embedded Software Project: Tactics for Selecting the
Software Process Model,” Information and Software
Technology, 47(9), 587-608.

Kruchten, P., 2000, The Rational Unified Process: An
Introduction, Reading, MA, USA: Addison-Wesley,
USA.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Larman C., 2004, Agile and Iterative Development — A
Manager’s Guide, Addison-Wesley / Pearson, Boston,
MA.

Lindvall, M., et al., 2004, “Agile Software Develop-
ment in Large Organizations,” IEEE Computer, 37(12),
26-34.

Manbhart, P. and K. Schneider, 2004, “Breaking the Ice
for Agile Development of Embedded Software: An
Industry Experience Report,” Proceedings of the 26th
International Conference on Software Engineering
(ICSE), 378-386.

McConnell, S., 1996, Rapid Development: Taming Wild
Software Schedules, Microsoft Press, Redmond, WA,
USA.

Ould, M. A., 1999, Managing Software Quality and
Business Risk, John Wiley & Sons, Chichester, UK.

Palmer, S. R. and J. M. Felsing, 2002, A Practical
Guide to Feature-Driven Development, Prentice-Hall,
Upper Saddle River, NJ.

Reifer, D., 2002, “Ten Deadly Risks in Internet and
Intranet Software Development,” IEEE Software, 19(2),
12-14.

Ronkainen, J. and P. Abrahamsson, 2003, “Software
Development Under Stringent Hardware Constraints:
Do Agile Methods Have a Chance?” Proceedings of the
4th International Conference on Extreme Programming
and Agile Processes in Software Engineering, 73-79.

Schwaber K. and M. Beedle, 2002, Agile Sofiware
Development with Scrum, Prentice-Hall, Upper Saddle
River, NIJ.

Smith, J., 2002, “The 40 Root Causes of Troubled IT
Projects,” /EE Engineering Management Journal, 12(5),
238-242.

Sommerville, 1., 1996, “Software Process Models,”
ACM Computing Surveys, 28(1), 269-271.

Song, X. and L. J. Osterweil, 1992, “Toward Objective,
Systematic Design Method Comparisons,” [EEE
Software, 9(3), 43-53.

Taramaa, J., et al., 1998, “Product-based Software
Process Improvement for Embedded Systems,”
Proceedings of the 24th Euromicro Conference (2),
905-912.

Turner, R. and B. Boehm, 2003, “People Factors in
Software Management: Lessons From Comparing Agile
and Plan-Driven Methods,” CrossTalk, 16(12), 4-8.

Vanhanen, J., Jartti, J. and T. Ké&hkonen, 2003,
“Practical Experiences of Agility in the Telecom
Industry,” Proceedings of the 4th International Confer-

PETRI KETTUNEN, MAARIT LAANTI

ence on Extreme Programming and Agile Processes in
Software Engineering, 279-287.

40. http://www.agilemanifesto.org/, January, 2005.

Biographies

Petri Kettunen is an R&D software engineering
specialist with Nokia Corporation, Finland. He
received his M.Sc. in Computer Science at Helsinki
University and his Lic.Sc. (Tech.) at Helsinki
University of Technology. He has been involved with
industrial embedded software development for more
than 15 years in various positions. His current research
interests include new product development project
management methods, as well as embedded software
engineering process models.

Maarit Laanti is a Senior Project Manager with Nokia
Corporation, Finland. Her interest is in new product
development, project management and leadership. She
has been leading variously-sized software development
projects for more than ten years in Nokia, including a
two-year assignment in Dallas, Texas, USA. She holds
an M.Sc. in Data Transfer and Computer Sciences
from Helsinki University of Technology.

Appendices

1. Agile Software Process Comparison Matrix
NOTE: The column titled References shows the

problem item numbers used in the respective

publications, e.g., [34/#1] refers to the first item of the

list in [34].

2. Agile Software Process Characteristics
Matrix

69

PETRI KETTUNEN, MAARIT LAANTI

Appendix 1: Agile Software Process Comparison Matrix

Project Problem ure Factors References

Project Initiation:
Unclear project objectives (lack of a project
mission)

Owerplanning f underplanning (e.g., "glass
case" plany

Lack of resources (people)

Lack of competence {personnel shortfalls)

Underestimation of project size, complexity,
novelty

Research-oriented development
{unprecedented, either the project ends or
the means of meeting them are very much
unknown)

Related AGILE PRINCIPLES

[Software Process Models
IRUP (Rational Unified Process)

FDD (Feature-Driven Di

ASD (Adaptive Software Dew.)

Scrum

XP {(Extreme Pr

No di {chaotic "hacking")

[3451, #2]

[B/Planning
811]
[F4#132,#15]

[58#1]

[3154#1]
[5A1]
[345#24]

[3487, #10,
#12,#17]

4. Business people and developers must
work together daily throughout the project

10. Simplicity - the art of maximizing the
amount of watk not done - is essential

5. Build projects around mativated
individuals. Give them the ervironment and
suppottthey need, and trust them to get the
job done

5. Build projects around moativated
individuals. Give them the erwironment and
support they need, and trust them to get the
job done

12. Al regular intervals, the team reflects on
how to become more effective, then tunes
and adjusts its behavior accordingly

4. Business people and developers must
wiork together daily throughout the project
12, Atregularintervals, the team reflects on
how to become maore effective, then tunes
and adjusts its behavior accordingly

2. Welcome changing reguirements, even
late in development. Agile processes
harness change for the customer's
competitive advantage.

11. The hest architectures, requirements,
and designs emerge from self-organizing
tearns.

12. Al regular intervals, the team reflects on
how to become maore effective, then tunes
and adjusts its behavior accordingly.

[The Inception phase produces the
project's Yision document defining the
objectives (scope and constraints)
[The phase completes with a Lifecycle
Objective (LC0) milestone, which
critetia include a stakeholder
agreement on the scope and the main
requirements (features)

[There are two types of plans: a coarse-
grained Phase Plan, and a more
detailed teration Plan {for the current

B = ive planning beyond
the current harizan is not favored. The
plans have evolving levels of detail.
Generally, no work should be done
outside the iteration plans

RUP does not cover resource
management issues (hiring).
Howewer, a part of the iteration
management is the "acquiring” of staff,
A balance must somehow be found
hetween the resources, effort, and
schedule for each iteration,

RUP does not cover resource
management issues (raining.
However, it recommends defining not
anly the number of staff, but also their
skills, experience, and “caliber' while
=taffing the project. Role descriptions
uide this

[The purpose ofthe use-case
rmodeling is to clearly understand what
the software must do. Itis used as the
hasis for the project estimates. The
highest risks should be tackled early

RUP is directed mare towards arderly
engineering projects. In research-
orignted collaborative environments,
the Vision documentis more impartant|
than predefined requirements.

FDD does not cover the project
initiation phase nor the customer
requirements elicitation. Howewer, a
part of the Domain (Ohject) Model
dewvelopment is to understand, what
the system is supposed to do. The
maodel and the Features List are
recommended to be agreed with the
custamers (stakeholders). With FOD,
staged delivery is often
recommended, thus the
knownispecified features can be
madelshipped first

Overall project planning is not covered.
However, FOD emphasizes
systermatic up-front planning of the
feature list. The feature development
planis then based on that FOD does
not really emphasize estimation. It
relies more on systematic monitoring
ofthe progress of each feature. The
reasoning here is that the features are
small (no mare than two weeks).

FDD does not cover resource
management. Prioritize the features,
and concentrate on the most important)
ones. Make effort estimation analysis
and adjustthe plans to what is
reasonable with your resources

FDD does not tackle especially this
problem (staffing). There are six key
project roles defined with certain
gualifications. The features are
prioritized based on customer
needs/expectations, sothe
implementation can be technically
demanding already in the beginning of|
the project.

MNew estimate of the project-complete
day is needed, if features are just
higger and more camplex than
estimated. The planned features
should be small (ho mare than two
weeks effort).

By definition, a feature is a "client
valued function”. In research-oriented
development it may be difficult to plan
such items in advance.

The Adaptive Life Cycle defines a
project initiation phase, which covers
explicit project mission arifacts:
Froject Yision (Charter), Project Data
Sheet, and the product =pecification
autline

Short, time-boxed delivery cycles
freeze the requirements piece by
piece.

Each project should have an Executive
Sponsar controlling the resourcing.
The project tearn and the sponsor
should agree on the projecttargets
and the resource needs during the
project initiation phase. After each
cycle, re-evaluation should be dane.

The Adaptive Development Model
encourages intensive team
collaboration and learning by
developing the product iteratively. In
addition each memkber should develop
histher personal software engineering
competence. However, you may not
wantto run an extrerme project with a
juniar team

Extreme projects are by nature
uncertain. Everybody must understand
that from the heginning. Re-evaluation
and replanning will be done after each
cycle when maore is learmed

Froblem-solving is by nature an
emerging activity requiring Nexikility,
ASD absarbs this

Serum s customer-driven. There is a
planning phase (Pregame) which
creates the project vision and sets the
main goals and expectations. The
Product Backlog, initiated during the
planning phase and continuously
iterated throughout the project, records
the features to be developed. The
projectvision and organizational goals
are constantly communicated during
the Scrum meetings.

Only the first iteration is planned in
detail prior to the actual development
cycles, hased on currently known
requirements. After each iteration, the
results are evaluated (Sprint Review),
and the next iteration is planned. The
Backlogs are revised accordingly,
sefting the work to be done in the
future iterations. Scrum thus
addresses these problems
specifically

Serum assumes thatthe higher-level
management can provide the needed
resources. Incase there is a lack, the
features to be developed must be
adjusted accordingly, before a
developrment iteration (Sprint)
cammences. Scrum is heavily
dependent on the development team.
Ifyou do not have the critical mass of
skilled people, you should probably
nottry Scrum at all. The team can be
reformed after each Sprint

Serum depends heavily on the skilled
developmentteam. The members of
each team should be selected based
an their knowledge and expertise. The
projectteam has the authority to
organize their own work in whatever
wiay to seem most effective. The
manager is more a coach. They are,
for instance, allowed {o hire external
experts to compensate for lack of
campetence.

The estimates are iterated frequently
during the Pregame phase. The
projectis re-evaluated after each
development cycle (Sprint). Ifthe
release target turns out to be mare
challenging than initially estimated,
the project team must adjust the work
(Backlogs) together with the customer
(Product Owner). In extreme cases the
team may even decide to cancel the
current Sprint ifturns outto be
unattainable

Serum acknowledges the fact that
software developmentis by nature an
exploratory effort (empirical process). i
provides maximum flexdbility in the
project contents. With that respect, it
might be suitable for research-
ariented projects, too. However, in that
case the project expectations must be
set accordingly, and the Product
Owener must understand the inherent
uncerainties.

Strong connection with the customer.
The customer should be present on
weekly planning sessions, and check
thatwhat is planned is consistent to
what is expected. Ifthe project
objective is not clear to the customer
either, itis wery unlikely that the project
will deliver anything useful at all
Requirements elicitation is mostly
done by the an-site customer,

P is based on continuous planning
"planning driven"y. The plans are
continuously adjusted based on latest
achievementsimetrics and the
customer's changes. The
recommended planning harizon is twa
iterations (2-3 weeks ! iteration).

+P needs a few, skilled resources. If
you have lack of resources, you
should not try %P at all

The ¥P expects the majority of the
people to be hasically on the expert-
level. Only few nowices can be trained
aside the project. Ifyou have new
project personnel, you should not try
HP. For example, a "programmer”
must know in addition integration,
configuration management, etc
special competences

Mew estimate ofthe project
campletion day is needed
Replanning is a part of XP. The
customer is atways involved.

The primary aoal in =P is to put out a
good quality product within
reasonahle time. Thera is a mismatch
with typical research goals.

This is often the reason why projects
resortto hacking. However, hacking
with unclear project objectives may
lead to prototypism: you think you have
a ready product when you are justthe
halfway there

Underplanning is definitely a risk here

Too few resources is the main
reasan, why hacking is usually taken
as a project practice. You have to
notice, though, that some things (like
documentation) is typically left
undaone. This may save some
resources, butthe longer-term
congenuences can he severe

Lack of competence is directly
reflected as poor guality when
hacking. Professional people are
usually reluctantto do any hacking
whatsoever. Learning is usually not
improved by hacking.

The problem is that there are probably
no estimates at all. New estimate of
the project completion day is needed.

This may even make some sense,
since research work is by nature
"chaotic". However, even then tatally
undisciplined way ofworking is hardhy
acceptahle

How to Steer an Embedded Software Project:
Tactics for Selecting Agile Software Process Models

Appendix 1: Agile Software Process Comparison Matrix
(cont.)

Mew, immature sofware technology

The march order. what should e done first

and what after that (phasing).

The project is big of a size (maybe even a
mega project), .2, the project will reguire

many (even hundreds afy man-years of wiark

to complete.

The project is too big for"ane shot' (problem

size).

Unrealistic schedule target

Extrerne project thigh speed, high change)

References

Related AGILE PRINCIPLES

[Software Process Models
IRUP (Rational Unified Process)

FDD (Feature-Driven Di

ASD (Adaptive Software Dew.)

Scrum

XP {(Extreme Pr

No discipline {chaotic "hacking")

[34/#3]

[34/#13, #20]

[344%5]

[345#13]

312
[5H2)
[345]

(18]

9. Continuous attention to technical
excellence and good design enhances
agility.

3. Deliver working software frequently, from
3 couple of weeks to a couple of months,
with a preference to the shorter time scale
10. The best architectures, requirements,
and designs emerge from self-organizing
teams

4. Business people and developers must
wiork together daily throughout the project

1. Our highest priority is to satisfy the
customer through early and continuous
delivery of valuable software

2. Agile processes promote sustainable
development. The sponsors, developers,
and users shauld be able to maintain a
canstant pace indefinitely.

2. Agile processes promote sustainahle
development. The sponsors, developers,
and users should he able to maintain a
constant pace indefinitely.

Recommended to put more efforts on
[the Elaboration phase.

[A project comprises four phases
i{Inception, Elaboration, Construction,
[Transition). Each phase concludes
with a defined milestone. The

of each phase are primarily
ordered based on the risks

[The iterations of a larger project are
longer, because the coordination of
rmany people is more complicated.

[There is no specific upper limit for the
size. Alarger project uses longer

|4 realistic understanding of the project
targets should be developed in the
Inception and Elabaration phases. If
this fails, the milestones are not
passed, and the project should not
rmove to the Construction phase

RUFP does notembrace such projects
by nature

FDD does not cover this area

The march order follows narmal
gpecify-implement-test cycle, the
features can just be on different
stages atthe time. Be aware though
that the stages are well defined
MNotably FOD does not care about the
feature start dates (justthe
completion).

Thisiswere FOD is atits best FDD
was originally developed to answer
the problem of rather big development
projects. Feature-based allocation
may help to manage

Splitthe praject inta features, and
dewvelop the features in stages. Awery
long project can be sectioned with
time-hoxing. Each feature should not
take more than two weeks. Splitany
higger features to smaller ones.

Adjustthe contents, i.e. keep the
targets but deliver less features.
During the project Flanning phase, the
feature sets completion dates are
estimated (measured in maonths). That|
planis recommended to be reviewed
with the stakeholders, possibly
revising the project goals.

FDD is not so much intended for
extrerne cases, but a reasonable
amount of changes can be absorbed.
Concurrent development of some
features may speed up the project

This is one source of project
uncertainty. ASD emphasizes gaining
better understanding by iterative
development cycles

The Adaptive Planning Cycle includes
assianing the tasks into the
development cycles It encourages
concurrent engineering ifor high
speed), which may he more difficult to
manage, though

In a larger project, increase the rigor
and discipline. Define and maonitar
component dependencies
systematically.

ASD does not address especially this
problem.

The project initiation phase includes
the determination of the project time-
boyx boundary dtarget date). However,
the project tearm commits to their
planned date

ASD is targeted for extreme projects.

Scrum does not address any
particular technology issues. There
can be exploratory design studies
(e.g., protatypes) during the planning
stage. The projectteam is expected to
adjust theirways of warking, so they
could hire coaches, for example. Ifthe
progress is slower than expected, the
future iterations must re-evaluated
However, problems with technology
should hecame known after the first
iteration.

The new development wark to be done
is defined and prioritized hy the
Product Backlog, agreed together with
the customer (Product Owner) prior to
each iteration (Sprinty. During the
Sprint, the projectteam is expected to
settheir own ordering of the activities

Secrum is primarily targeted for small
teams of less than 10 people
However, there could possibly he
several Scrum teams farming a larger
project, coordinated by a comman
management body.

Each iteration cycle is basically time-
boved to exactly 30 days. This sets a
limit to what one Scrum team can
accomplish during one iteration
However, the number ofiterations is
notfixed, and there could possibly be
multiple Scrum teams working on the
same larger project. The iterations
done by several teams should then
somehow be coordinated, and the
interfaces agreed

Each iteration cycle (Sprint) is time-
boxed to 30 days. The iteration ends
exactly at that date, with a reduced set
of functionality if necessary. The next
iteration is then planned accordingly.
The owerall release schedule goals
are set during the project planning
phase, butthis is not expected to he
precise, and the number of iterations
is not fiked atthat stage, L.e., the
project end date is set during the
project execution. The Backlogs show
the actual velocity, The wery first
Postgame phase should already
reveal possible gaps between the
sthedule and the requirerments.
Serum is specifically targeted to high
change, but not so much on high
speed. The basic premise is that the
projectteam is insulated of external
pressures (hy the Scrum Master). The
wiatk 1o be done in each iteration is
agreed togetherwith the projectteam
and the customer (Product Owner),
and that is not supposed to be
changed during the iteration.

Often this does not match well with the
P philosophy of "guick planning” and
"simple design’. The infrastructure is
assumed to be doable on the fly.

Flanning sessions followed by
implementation rounds followed by
automated testing. The iterations are
recommended to be short (some 2
weeks).

There should not be mare than 10
programmers in an XP project, so you
can't do anvthing too big with it. it
might be possible to have multiple
concurrent P teams, each working on
their own stories.

WP wiarks only with small-size
projects. The project team should not
exceed ten developers by definition,
soyou cannot handle very big
developments with <P alone.

P is optimized towards rapid
development. However, one needs o
balance the costs fwaorking with expert
team, making custormer available).
The team has its natural velocity. The
customer and the project team should
agree on the realistic schedule target.

P is targeted for extreme projects

Same & hot experiments may even
be justified

The march order is typically decided
by the key designer. A lotis depending
on histher competence and
communication skills.

Hacking in a higger project leads to
chaos, and bad usage ofthe available
resources (part of the project
personnel may not know what they
should da). You simply cannat
coordinate and synchronize a large
projectwith hacking

Hacking in a bigger project leads to
chaos, and bad usage ofthe available
resources (part of the project
personnel may not know what they
should do).

Unrealistic schedule targetis the
other main reason, why hacking is
applied to. You have to notice, though
that some things {like documentation)
ig left undone. With excessive
avertime, you may even be able to
meetthe schedule (hutwith 2
corresponding high cost of attrition,
et

Wiarninal Hacking is often used with
extreme projects. This may lead o
burn-out of the key persannel. You
may be able to stretch your
capabilities, but after a certain limit it
simply won'twork.

PETRI KETTUNEN, MAARIT LAANTI

Appendix 1: Agile Software Process Comparison Matrix

(cont.)

problem: a project whose "project
parameters" exceed the norm by at least
0% A death march projectis ane for which
an unhiased, ohjective risk assessment
determines that the likelihood of failure is
=50% [vourdan]

Project Execution:
Incomplete requirements [specs (poarly
defined parts), lack ofuser input

Unstable (wolatile) requirements, continuous
requirements changes

Poor requirements management
{uncontrolled requirements changes,
requirements creep)

Gold plating (developers adding
unnecessary functionality)

References

Related AGILE PRINCIPLES

[Software Process Models
IRUP (Rational Unified Process)

FDD (Feature-Driven Di

ASD (Adaptive Software Dew.)

Scrum

XP (Extreme Pr

{chaotic "hacking")

[315%#3, #5]
[34/#8]

[5H8]
[34/#18, #25]

[5h#]

4. Business people and developers must
[work together daily throughout the project.
8. Agile processes promote sustainable
development. The sponsars, developers,
and users should be able to maintain a
constant pace indefinitely.

6. The most efiicient and effective method of
conwveying information ta and within a
development tearn is face-to-face
conversation.

9. Continuous attention to technical
excellence and good design enhances
agility.

2. YWelcome changing requirements, even
late in development Agile processes
harness change for the custamer's
compelitive advantage.

B. The most efficient and effective method of
canwveying information to and within a
development team is face-to-face
conversation

0. Simplicity - the art of maximizing the
amount of work not done - is essential

[The iterative approach may provide
some aids for balancing the edge of
chaos

RUP is Use-Case-driven. The use-
case model is supposed to make it
sure that all the functional
requirements are handled by the
systern. The Vision document provides
a high-lewel view.

Baszically you should mostly be ahle to
agree on the major requirements
ifeatures, use cases) during the first
phases of the project. Controlled
change management is advocated

[The use-case model is the basis for
the development. Contralled change
management is emphasized (CCH).
Requirements management tools are
advocated. Unifled Change
Management has been proposed.

[The use-case model sets the
boundaries and keeps it focused.

FDD does not tackle especially this
problem. Splitting the work into
smaller chunks makes the project
easierto manage, but does not
necessarily ease the effort. There may
not be intermediate work products to
shiow, either.

There is a Domain (Object) Model. The
Daornain Experts wark together with the
feature teams, helping to clarify the
problem to be solved. Domain
‘Walkthroughs are conducted to clarify
any unclear details

A feature can he replaced by anather
feature, with maore advanced
functionality and enlarged
specifications. (Like replacing
navigation system with more precise
ane.) The requirements (features) are
recommended to he prioritized
somehow systematically. Up to 10% of|
change is supposed to be absarbable
without extra actions.

Reguirements are allowed to be
changed, hut FOD emphasizes
controlled change management.
Reguirements (features) source
traceability is emphasized

The Features Listfocuses the
development.

This an extremne case of an exreme
project. However, there is atways
some limit for "stretching”. Basically
ASD encourages realistic planning,
and not committing to arbitrary targets.
Rational extrerme projects are not
death marches

Uncertainty and |ack of initial
understanding are seen natural The
idea is to learn more with iterative
development cycles providing frequent
feedback The key is to progress to the
right direction.

The development cycles are time-
boxed, "forcing” to make trade-off
decisions gradually. Unhealthy
oscillation could be avoided by
focusing on the project mission and
the problem definition early. Shorter
cycles should be used for areas of
high uncertainty

Short, time-boxed delivery cycles
freeze the requirements piece by
piece.

Tirme-boxed cycles limit.

Scrum does not address such
exfremes specifically. The idea is that
the Scrum Master removes any
abstacles for the prajectteam and
does notinterfere with their work. If'the
project is challenged from the
beginning, the Backlogs and the
iteration planning reveal that soon
amyway. Try doing smaller iterations,
sothatthe output could be monitored
rare frequently. Even with tight
schedules, one must resist the
termptation to skip Postgame
sessions hecause that would only
lead o increasing risk of failure.

Scrum does not address
requirements engineering. It expects
the customerto be present an
Pregame sessions. The Product
Owiner is supposed to ensure that the
customer expectations are addressed
all the time with the Product Backiog.
The projectteam could, far example,
hire damain expents in case of lack of
domain knowledge. Note that what you
have defined in Product Backlog, you
willl get. If the items listed in Product
Backlog are poorly defined, there is
high tisk in the project

Adaptation to changes is the true
nature of Serum. The Product Backlog
recards the change requests, and itis
re-evaluated for the next iteration.
However, no requirements changes
are allowed during the iteration
(Sprint).

The Product Backlog, managed by the
Froduct Owner, is expected to take
care ofthe product requirements.
There is no specific guidance, how
this can be implemented in practice,
though. You should be very careful
with your Product Backlog, because
that defines your project contents and
length. Ifyou loose to manage that,
wou loose the control of your project.

The features to be implemented are
fixed for the iteration (Sprint) during the
iteration planning. Mo changes are
allowed during the iteration. New
feature iterns can be added to the
Froduct Backlog for future
cansideration for the subseguent
iterations. Definite timeboxes for
Sprints prevent polishing the features

forever.

The customer is in close contactwith
the projectteam all the time, so
progress is made very wisible. This is
usually enough ta make the customer
wait for the product she wants.

Strong connection with the customer
is a prereguisite of XP. The customer
should he present on weekly planning
sessions, and check that what is
planned is consistent to what is
expected. If the project objective is not
clear to the customer either, itis very
unlikely that the project will deliver
amything useful at all.

Welcoming changes is the true nature
of ¥P_The project is redefined on
weekly basis

This is a part of the Planning Game
However, because of the nature of XP
development, there is not much farmal
change management

The customer decides the features to
be implemented during the Planning
Game

Wiarning! Attempting hacking in a
death march project is very high-risky.
"fou are likely to end up with a high
cost of attrition, ete

Itis typical for projects using hacking
1o skip ar run though the requirement
phase. The changes cause more
hacking.

You may be ahle to accommodate a
cerain amount of changes, provided
that the project key personnelisnt
changing.

Typically there are no formal
requirements to he managed.

This is a natural conseguence. It may
even work within small limits, but
definitely not on larger projects.

How to Steer an Embedded Software Project:
Tactics for Selecting Agile Software Process Models

Appendix 1: Agile Software Process Comparison Matrix
(cont.)

Canstantly changing schedule target

Foor software architecture design guality

‘Wyrong architecture solution selected in the
first phase (inadequate systems
engineering)

Inappropriate design methods

Unsuitable or low-guality ools

Integration difficulties

Low wisihility to progress

References

Related AGILE PRINCIPLES

[Software Process Models
IRUP (Rational Unified Process)

Scrum

FDD (Feature-Driven Di

ASD (Adaptive Software Dew.)

XP {(Extreme Pr

{chaotic "hacking")

[341#30]

[5810]
[345#14]

[31#7]
[345#21]

[34528, #32]

[345#22]

3. Deliver working software frequently, from
3 couple of weeks to a couple of months,
with a preference to the shorter time scale

9. Continuous attention to technical
excellence and good design enhances
agility.

11. The best architectures, requirements,
and designs emerge fram self-organizing
tearns.

9. Continuous attention to technical
excellence and good design enhances
agility.

9. Continuous attention to technical
excellence and good design enhances
agility.

12. Al regular intervals, the team reflects on
how to become maore effective, then tunes
and adjusts its behawior accardingly,

12. Al regular intervals, the team reflects on
how to become more effective, then tunes
and adjusts its behawior accardingly,

4. Continuous attention to technical
excellence and good design enhances
agility.

3. Deliver working software frequently, from
a couple of weeks to a couple of months,
with @ preference to the shorter time scale
4. Continuous attention to technical
excellence and good design enhances
agility.

11. The best architectures, requirements,
and designs emerge from self-organizing
teams

7. Working software is the primary measure
of progress

10 Simplicity - the art of maximizing the
amount of work not done - is essential

[The iteration plan defines the start and
end dates, and the delivery date. You

should not change the current iteration
rmuch. However, the next ane could be

d.

RUP is an architecture-centric process
emphasizing, evalutionary, component|
hased architecture wark with visual
rodeling (UML)

[The architecture choices are hased on
architecturally significant use cases
lAn (evolutionand architectural
prototype is recommended. Thus, no
totally wrong solutions should result
(architecture first)

RUP advocates certain design
rmethods which are supposed ta be
generally applicable (such as Use
Cases, UML, components).

RUP is very much tool-oriented. There
is a wide set of commercially available
tools.

RUP encourages almost continuous
test and integration (executable

far each iteration). Any
breakage should thus become visible
early. Early architectural risk reduction
is emphasized

Frogress is measured interms of use
cases (features) completed, test
cases passed, performance
requirements satisfied, and risks
eliminated. Regular, demonstration-
based assessmentis emphasized
Iteration Assessments are conducted
after each iteration {e.g,, revalidating
[the requirements)

Features are recommended to he very
small (no maore than two weeks of
effort). Feature sets could occasionally
be reassigned between the teams
(hut not too often).

FOD does not tackle especially this
problem. It may be very hard to make
any corrections to the architecture in
the middle ofthe project, when half of
your features are already ready,

FDD does not tackle especially this
problem. It may be very hard to make
any corrections to the architecture in
the middle ofthe project, when half of
your features are already ready.

Rework features to some later release
with better tonls

FDD does cover any tool issues.

FDD does not define integration in any
exact way. However, the Chief
Programmers are responsible for
testing their features. FOD used with
staged delivery makes the integration
steps smaller, and thus easier A
regular build schedule is
recommended (supported by solid
configuration management)

FDD provides good visibility to
progress, because delivery of each
feature can be monitored. The
progress reporing is recommend to
be done hased on feature
completeness Ifthe projecttakes
longer than some 3 manths, farmal
maonthly progress reviews are
recommendad

The project is time-hoxed. The cycle
dates are not changed. If the original
schedule turns outto be wrong, it can
be renegotiated in cycle replanning

ASD does not cover architecture
desian details.

The problem definition done during
the project initiation guides the
architecture selections. lterative
development cycles support learning
mare ahautthe architectural choices

ASD does not cover design details

ASD does not cover any tools details

There is no particular emphasis on
integration, but each cycle should end
with valid executable results.

ASD does not improve the traditional
project visibility since it relies on
intense collaboration (tacit
knowledge). The documents evolve
during the whole development. Only
the results matter.

Scrurm is rather balancing with the
features than the time. Each iteration
cycle (Sprinf) is time-boxed to exactly
30 days. The number of iterations is
notfixed atthe project outset, though.
The project completion date is thus
set during the project Adding more
iteration cycles makes also a risk,
though.

The systermn architecture is expected to
be defined during the planning phase.
The software architecture emerges
and evalves during the iterations
However, Scrum does not address
how the architecture is actually

d. The projectteam is
expected to solve the problems an
their own. Small changes to
architecture can be implemented
easily.

The systen architecture is expected to
be defined during the planning phase
The projectteam is expected to solve
the technical problems on their own. If
woU make wrong initial choises, vou
might loose the waork done during the
first iterations.

Serum does not address such
enginesting issues. Changing the
tools should be possible during the
Fregame.

Serum does not address such
engineering issues. Changing the
tools should be possible during the
Fregame.

Each iteration (Sprint) produces a
working (integrated and tested)
software package. Daily builds are
recommended. Potential integration
difficulties are thus revealed early. The
whole software team can patticipate to
the integration.

This should not be a problem at all
with Scrum. The project team reports
the progress in daily Scrum meetings,
estimating the remaining effort. The
Sprint Backlog is updated accordingly.
This constant manitoring (Sprint
Backlog Graph) ensures high visibility.
The Product Backlog is always visible,
showing the current priorities of the
wiork to he done. The working features
after each Sprint demonstrate the true
prograss for the Release Backlog

The iterations are time-hoxed. The
releases are small. MNew releases can
be scheduled, ifthe customer wishes
that.

Small changes to architecture can be
implemented easily. However, XP
does not offer much support for
system architecture design (ust
"metaphors” and "simple desian").

P does nottackle especially this
problem. It might be hard to convince
the custormer to buy the development
cost for the better architecture (when
the custormer is actually expecting
progress in form an Same new
features). Refactoring could help to
some extent, but fundarmentally wrang
solutions cannot be salved.

Replan and re-schedule your project.
Ifthe customer accepts this, can be
done. In general, do nottry to use
totally new design methods with XP.

P does not cover any tool details. But
there would not be any sense of
buying the best experts on the field
and equip them with poor toals. In
general, do not try to use totally new
tools with XF.

"fou have the whole sofware team to
back-up the integration. However, this
requires that everybady knows how to
do the integration. Mote also that it
may be difficultto manage the
integration of a large complex system
without rigorous up-front planning.

This should not he a problem at all
with XP. The customer sees the
progress weekly.

The schedule depends very much on
the key persons. They may or may not
be able to make it, but it is hard to tell
thatin advance (poor predictability)

This is definitely a risk, since typically
there is no systematic architecture
design at all. "Quick-and-dirty"
solutions are typical

This is an obvious risk for any longer-
term development

e can try to change them on the fly,

Wie can try to change them on the fly,

Hacking is likely to lead to
undocumented code and unspecified
interfaces, which make the integration
step extremely difficult.

You may be ahle to show some
progress by demonstrating the
software. Howewer, fypically the quality
tends to be unpredictable. The
progress is often variable due to
unplanned design

PETRI KETTUNEN, MAARIT LAANTI

Appendix 1: Agile Software Process Comparison Matrix

(cont.)

Vague milestones

Communication gaps (project internaly

Excessive documentation (overhead)

Froject external dependencies {including
subcontracting) |ate and/or imperfect (e.a.,
systermn specs)

Geographically dispersed teams

Loss of (key) staff (either hecause they [eave
or get transferred)

Low marale, mativation

"Crunch" mode (tight schedule just
achievable with extracrdinary measures)

[Software Process Models

References Related AGILE PRINCIPLES IRUP (Rational Unified Process) FDD ({Feature-Driven Di ASD (Adaptive Software Dew.) Scrum XP {(Extreme Pr {chaotic "hacking")
3. Deliver working software frequently, from |The phases are defined with given Foreach feature, there are siksharp |Each shor cycle (6-10 weeks for a ‘Your Pregame, Sprint and Postyame |The progress is determined by the Typically there are no predefined
3 couple of weeks to a couple of months, major milestones (generically milestones defined: Domain long project) has a definite end-result. [are your milestones. Each stories (features) completed. Weekly |milestones atall.
with a preference to the shortertime scale. Jdefined). The minor milestones ‘Walkthrough, Design, Design A milestone is reached when the development cycle (Sprint) is time- meetings with the customer to verify
7. Working software is the primary measure fdepend on the iterations. Each Inspection, Code, Code Inspection, artifacts are determined to be inthe boxed to 30 days, producing a defined [them serve as milestones. However,
of progress. iteration should have a clear objective. |and Promote to Build. The whaole planned state. wiorking sofhware package (Sprint wou must he able to agree onwhat
Change the plans ifthe phase seguence should not take maore than Goal). This is a sharp milestone. exactly it means to complete a story
milestones are not passed. some two weeks. {without detailed documentation).
[31/#9] 6. The most efficient and effective method of |RUP emphasizes tool-based artifacts |The Domain Experts work together ASD emphasizes rich and intense Scrum is heavily dependent on the P is based on open and freguent Wyith little farmal documentation, the
[34/#9] conwveying information to and within a [for sharing the information. with the feature teams. This should collaboration, even with wirtual teams. [performance ofthe teamn. It advocates [communication. Inside the tearn, the [communication relies on the tacit
development team is face-to-face improve the communication. However, this requires considerable [constant communication and communication gaps are fatal. From |knowledge shared face-to-face.
conwversation attention. Custorer focus-groups and [knowledoe sharing. Each iteration team to other parties (where the team
software inspections are specific (sprinf) is planned together might hawe loose connection) these
technigques for leaming. (Pregame). The projectteams are could do serious damage (as the
small, and they meet every day during [documentation is often plan one and
the Sprintin Scrum meetings throwe aveay-of type).
declaring the progress and potential
problems. Frarn tearn to other patties
fwhere the tearm might have loose
connection) these could do serious
damage (as the documentation is
done afterwards in the Postgame).
7. Working software is the primary measure |RUP prefers tool-hased models to FOD ig not 50 much document-driven. |ASD is not document-driven. Instead it [This problem should not exist. Scrum |[¥P emphasizes working sofware over |Often there is no documentation
of progress paper documents It leaves the documentation details relies on tacit knowledge and intense [does not prescribe any detailed documentation whatsoever- g, there is certainly ho
6. The most efficient and effective method of open to he decided by the project collaboration. documentation. The project team is risk to end up with too much
conveying information to and within a manager according to the current encouraged to make whatever documentation.
developrment tearn is face-to-face needs. Intranet-based hyper linked docurnentation they see useful - but
conwversation. documentation tools are not maore 'as litle cerermany as
10. Simplicity - the art of maximizing the recommended. Good user possible”)
amount of watk not done - is essential docurmentation is emphasized
[31/#4] 11. The best architectures, requirements, [There is no particular suppartfar this, |This is notreally addressed by FDD, |The projectvision document identifies |The Scrum Master is expected to take |You end up with the team waiting. The |Such risks are usually not controlled.
o7, #48] and designs emerge from self-organizing butyou should monitor those risks hut such dependencies could he the dependencies. The dependencies |care of such external issues. This may|customer must be involved. Perhaps some ad hoc workarounds
[34/#16, #31] [teams frorm the beginning, and plan the taken into account while planning the | are revalidated in each cycle review. be a tisk - howewer, you can always are possible
i accordingly. RUP does not [feature development arder, have the next Pregame where the
cover Systems Engineering. Product Backlog is updated
5. Build prajects around motivated l4 toal-based process implementation |FOD does not address this issue ASD considers wirtual teams as a A co-located team is preferred (or X relies on a co-lacated team This may be a big problem with litle
individuals. Give therm the emvironment and fmay help in lessening the problems. natural mode of operation. must) since the team meets daily in external documentation. Depends on
supportthey need, and trust them to getthe JHowever, in general this complicates Serum meetings, and the software is the key persons.
job dane the Construction phase anly documented after it is done inthe
6. The most efficient and effective method of Fregame.
conveying information to and within a
development team is face-to-face
conversation.
[31/#8] 5. Build projects around motivated [The lteration Plan must be adjusted It may he difficul to replace some Each cycle review reassesses the Serum does not address such issues. [Replanning when the team changes | Such risks are not managed. Usually
5] individuals. Give therm the environment and Jaccordingly for the nest iterations: class owners quickly. Some feature resourcing situation against the In principle the prajectteam is (velocity). Sudden loss of key persons [no continuation if the key persons
[34/#23] supportthey need, and trust them to get the teams may have to be replanned. targets assumed to be highly committed. This [may be a serious problem, since the |leave.

job done

5. Build projects around moativated
individuals. Give them the ervironment and
support thew need, and trust them to get the
job done

4. Continuous attention to technical

and good design enhances
agility.

5. Agile processes promote sustainable
development. The sponsars, developers,
and users should he able ta maintain a
constant pace indefinitely.

[The iterative approach lets the
developers see working software
eatlier. This may help keeping the
it

[This iz not in line with the philosophy
of RUP._ wWith sensible iteration plans,
no such thing should happen.

The feature-hased tracking may help.
So-called Feature Kills sessions may
be uplifing. Public, colored feature
tracking charts are advocated

Basically this is notin line with the
FOD philosophy. With arderly planning
and manitaring afthe features, there
should not be any need to operate in
such a mode

Building "great groups" is ane of the
comerstones of ASD. Given the right
environment, people motivate
themselves

ASD is designed for high speed, high
change circumstances

is a high risk, unless the team can
reorganize itself, replacing the loss
Hopefully the documentation
(knowledge sharing) was done on
sufficient level during the last
Fostyame

Scrum does not address such issues

In principle the project
team is assumed ta be highly
maotivated. Low marale or motivation in
the development team will paralyze
Scrum project, since itis highly
dependent on the team capabilities
and commitments.

Scrum addresses more change than
schedule. Each development cycle
(Sprinf) is time-boxed to exactly 30
days. The functionality is not allowed
to change during the Sprint Ifthe
planned functionality cannot be
completed on time, a reduced setis
still released at the fixed end date. The
future iterations are then adjusted

accordingly,

source code is the main tanaible
piece of information

¥P pays special attention to developer
maorale and motivation. A sustainable
40-hour week is emphasized as a
narm. This may help people keeping
the spirit high. Pair programming may
be enjoyable

P emphasizes steady, good (~high)
output level. The productivity of the
team (welocity) is @ key planning
parameter. The customer and the
projectteam agree on whatis
reasonahle

Some individuals may like the
apparent freedom of tatally
unconstrained working

Wyith no defined process, you are
basically free to do whatever it takes
Butthere is always a limit.

How to Steer an Embedded Software Project:
Tactics for Selecting Agile Software Process Models

Appendix 1: Agile Software Process Comparison Matrix
(cont.)

Froject redirected {profound changes of the

schedule f functionality i resources)

Froject cancelled

Project Completion:
Trouble validating the system (acceptance
test)

Unstahle or poorly performing software
release

Unattractive software release (wrong,

obsalete or missing features)

How to make a good starting point far the
next project (e.g., updating the
documentation)?

Unclear project end-criteria

[Software Process Models

References Related AGILE PRINCIPLES IRUP (Rational Unified Process) FDD ({Feature-Driven Di ASD (Adaptive Software Dew.) Scrum XP {(Extreme Pr HNo di {chaotic "hacking")

[34/#34] 1. Our highest priority is to satisfy the Continuous refinement of the plans is |There are three ways to halance this: |Basically even major changes can be |Scrum does not address such The customer can present new This is really a part afthe approach. It
customer through early and continuous underlined. a) Lowwer-priority features are accommodated in the cycle reviews. [happenings specifically. However, specifications (new user stories] on |may even work within some limits, but
delivery of valuable software cancelled; b) The project schedule is Scrum is highly adaptable process the weekly meetings. eventually you may end up into a
2. Welcome changing reguirements, even extended, ¢} Mew feature teams model; these should nothe a havac.
late in development. Apile processes (people) are added to work problem. The current Sprint is not
harness change for the customer's concurrently, Ifthe overall project plan allowed to change, but after that the
competitive advantage. is changed drastically, a new project next iterations could be replanned

initiation should he considered,
howewer.
1. Our highest priarity is to satisfy the lafter the Inception and Elaboration This beyond the scope of FOD. You may agree on completing the Scrum does not address such The custormer can cancel the project | This is a considerable risk, if already
customer through early and continuous phases, there is supposedto bea However, the features completed so |current cycle so that the termination happenings specifically. The current [amy time on her will. What has the project setup was ad hoc.
delivery ofvaluable software clear understanding about the far could be somehow useful status is clear Since you have Sprint could be completed, producing [achieved to that point can be taken Typically the project cannot deliver
ibility of the praject (for GOIND-GO completed the earlier cycles, the atleast some useful results. into use. amthing usahle.
decision). Later, incage of a mid- project succeeded in producing some
project cancellation, you may he able results anyway.
to deliver some ofthe interim releases
produced so far.

[34/#37] 3. Deliver working software frequently, frorm [The use-case model defines the The systems consists of features A healthy project corwerges, By the Serum is customer-driven, The results [fyou implement %P properly, you Typical the acceptance criteria is ad
a couple of weeks to a couple of months, expected functionality. Continuous Validate the features separately. time of the last cycles, no major are evaluated togetherwith the should make automatic test cases hoc. The nutcome may be totally
with a preference to the shortertime scale. fintegration, prototyping, and surprises should not happen customers (Product Owner) after each [that are repeated continuously. This |different from the original idea. In
4. Business people and developers must demanstrations are encouraged. iteration (Sprint Review). This could leads ta overall better guality, and thus |addition, hacking may leave to
work together daily throughout the project. only he a problem ifyou have accepted|the end-product should be maore undocumented code which is hard to

pootly working releases from previous [easier to integrate. The custormer maintain and maodify. This may mean
cycles, orif you are working with defines and runs the acceptance problems when the code should be
multiple teams and have frouble tests. maodified to pass the acceptance test
integrating all the software together.

[31/%8] 3. Deliver working software frequently, from | The software is incrementally FDD advocates design and code The technical quality is maintained Scrum does not address such This should not happen in XP, since it |This is a serious risk.

[5H#8]
[34/4#30, #33]

[5i#3, #4]
[34/#27, #40]

5]
[34/#38, #39]

a couple ofweeks to a couple of months,
with @ preference to the shortertime scale
7. Working software is the primary measure
of progress.

1. Our highest priority is to satisfy the
customer through early and continuous
delivery of valuahle software.

2 Welcame changing requirements, even
late in development. Agile processes
harness change for the customer's
competitive advantage

4. Business people and developers must
wiork together daily throughout the project

integrated for each iteration. Thus any
breakage should be detected early.

[The features are agreed with the
customers (and other stakeholder)
fwiith the Wision document (business
Case)

RUP embraces tool-hased
engineering artifacts. Subsequent
project cycles may be partially
overlapping

[The use-case model senves as a
['contract” hetween the customers and
developers. There is a Praject
JAcceptance Review. The end criteria
=hould be defined during the
Inception

inspections, and same kind of unit
testing for quality assurance.

Feature list planning ensures focusing
on the right features. Ideally, the listis
accepted by the customers
(stakeholders) prior o the
construction. Regular pre-releases of
features demonstrate the progress.

The Domain (Object Model is a useful
asset for extending the product. The
feature fracking charts provide high-
lewel information about the completed
functionality. The user documentation
could be required as a part of each
feature completion

Basically the project ends, when all
the planned features have been built
according to the Features List The list
should have heen accepted by the
project stakeholders somehow (not
covered by FOD)

duting the development, in part, with
software inspections.

Customer Focus-Group (CFG) reviews
help getting timely feedback about the
product features.

ASD encourages "finishing strong”,
leaving a good trail

According to the ASD philosophy itis
notmal that the actual end state is
different framn the initial plan. The
project time-hox sets the schedule
boundary.

engineering issues directly. Howewer,
each iteration (Sprint) is expected to
produce a working software release
On the other hand, limiting Sprints into
30 days might - unless strictly
controlled - lead on successive, only
partially working releases with lacking
stahility and robustness.
Implementing new features while
trying to increase performance might
be highly rishky.

The results are evaluated tagether
with the custarmers (Product Owner)
after each iteration (Sprint Review).
This is taken as input for the next
Fregame.

Scrum does not address such issues
directly. There is a praject Closure
phase, butthere are no prescribed
rulgs for the documentation, far
instance. The software is noarmally
documented in Postaame. However, a
working sofhware release is always a
good staring point for future
development

The high-level expectations of the
project are set during the planning
phase. The results are evaluated
together with the customers (Product
Orwner) after each iteration (Sprint
Review). The management needs to
make a choise between number of
features and how many iterations are
wanted The project ends when the
results are satisfactory ('best
possible”)

advocates for making ¢even small)
pieces of working software from the
beginning

This is tackled with the Planning
Game. The customer selects the
features to he implemented.

Awarking software release is always
a good starting point, but not
necessarily enough. XP relies much
on tacit knowledge This may be a
serigus problem, in particular if the
projectteam changes

The projectis ended when the paying
customer is happy with the end-
product or cancels the development.
The customer opinion is checked
weekly.

Unpredictable

Hacking leads ta bad maintainability
and poor documentation

Undetermined.

References:

[40]

[24]

[30]

[16]

[28iCh. 7, 33]

14]

[28iCh. 73]

PETRI KETTUNEN, MAARIT LAANTI

Appendix 2: Agile Software Process Characteristics Matrix

Home ground:

Consequences, Side-effects, Drawbacks:

Scope

Nature

Advantages

Constraints, Disadvantages

Cautions!

References

Software Process Models
RUP (Rational Unified Process)

FDD (Feature-Driven D)

ASD (Adaptive Software Dev.)

Scrum

¥P {Extreme Programming)

No discij {chaotic "hacking")

RUP is a genetic process framework
intended to be tailored for different
projecttypes (development case)
However, not being a lightweight
rmethodalogy per se, itis more
suitable far larger, complex projects
"out of the bo'

RUP cowvers software project work
widely starting from the project
initiation ranging to the product
deployment. Also many suppaort
activities are addressed (like SCM)

RUP is tool- and work product
intensive [9]

RUP is a comprehensive process
framework with tool support available.
It provides detailed definitions for the
project milestones, artifacts, activities,
and roles.

The "out of the box' version of RUP is
intended ta be an organization-wide
process. The project-specific
processes may need adaptations.

The commearcial version of the
process model relies on certain tools
It may become more difficult to use the
process without those paricular tools.

Applicable to awide range of general-
purpose business systems. Can he
applied to "greenfield" development as
well a5 new feature development for
an existing product. The project size
can be much more than 10 people

FDD addresses only the software
canstruction process. Initial user
reguirements elicitation and system
tasts are beyond the scope

FDD emphasizes clientvalued
functionality (features)

Facusing on the features
systemnatically provides a coherent
wiew of the project.

The features must be known, and
priaritized. Once the features have
been selacted, itis very hard to
change the contents without causing
=serious damage to the project FOD
assumes aworking configuration
management system for shared
access. SCM can be more
complicated, if stages overlap and/or if|
featutes ate selected for each release
from a large hase.

I & large complex system, it may be
difficult to find a suitable development
order of the features, and organizing
the feature teams, ifthere are many
interdependencies. fyou only
concentrate on the business features,
there is a risk to neglect internal
technical features

High speed, high change ('extrernea"
projects)

ASD s primarily a managernent
approach. It does not offer much
support of how ta implement the
software engineeting tasks in practice

S0 s primarily work state-oriented

Admitting that diferent project
situations reguire different solutions
makes the project management
inherently adaptable.

ASD relies much on intense
cammunication and iterative learning
How to make this wark in practice may
not he that easy, though. ASD
recommends having a customer
available for conversation each day
17

Too much flexibility can be dangerous,
too.

Because ofthe generic high-lavel
nature, Scrum can in principle be
applied to many types of software
projects, including mission-critical
software development. Scrum was
ariginally targeted faor small teams
(less than 10 people, preferably from 5
to 8). Howewer, multiple Scrum teams
could possibly form a larger project.

Scrum focuses on the project
rmanagement area. It does not offer
ruch support of how to implement the
software engineering tasks in practice
Scrum was originally intended for new
feature development of existing
systems

Scrum targets to management of the
software development project merely
how the iteration cycles should be
managed. It emphasizes sel-
arganizing teams. The software
developmentis seen as a chaordic
(empirical) process, which is not
reasonable to define in a prescriptive
way Scrum is at its bestwhen
adopting changes in the praject
Strang feedback fram the development|
to the planning. Scrum can he
complemented and combined with
other process models and practices
(like XP).

Scrum is notfor everyone, butthose
whi need to wrestle working systems
frarn the complexity of emerging
requirements and unstable technology|
[33, pp. 154]. Scrum does not provide
out-of-the-box solutions for the actual
software development activities. For
example, there are no documentation
terplates. Consequently, the project
has to define them on their own_ It is
highly dependent on the skilled
developmentteam. Scrum does not
really give concrete tools how to sole
rmost practical problems found in
software developrment

The basic philosophy of lefting the
project team organize their own work
without management control relies on
skilled and motivated persons. In case
there are problems with people, the
project progress may not be as good
as expected. Using Scrum in multiple
tearns may be challenging, because
ofthe output synchronization.

Prirmary objective: rapid value
Typically suitable for small projects
with @ familiar application area and
loww risks. XP is suited for projects in
the C4 to E14 categories [9]. Mot
recommended farvery [arge, complex
application systems as such

¥P actually focuses on the software
canstruction. The basic project
management activities (like planning,
change management, tracking) are
incorporated, although mostly
infarmally.

¥Pis activity intensive. XP suggests
maximizing concurrency (9]

The lightweight way ofworking can be
very efficient, provided thatthe project
home ground is right.

Collective code ownership may not
scale up. By XP definition the project
team should be an one site. Reguires
an active onsite customer, who is
willing to follow the rules ofthe
process model. [t may not he
reasonable in practice to make a new
customer release of a large systemn
everyweek or so often

The apparent light weight of XP
means that you have to define many
practices and rules on your own. If you
cannotfind a custorner who wants to
wiork that way you should nottry 5P at
all. P assumes a certain amaunt of
tacit knowledge and skill [17]

Mo place in large-scale professional
software development! Some small off}
line demos or feasibility studies might
justbe acceptable.

This is not really a process model at
all

Mo presetrules.

This is very flexible in the sense that
there are hasically no preset rules to
be followed. There is no management
or documentation overhead

It may be difficult for new people to join
the project (catching up), since the
process is not defined anywhere. The
wisihility is low (no intermediate
products or milestones defined).

The project {or the company
hecomes wery dependent on the key
programmers, in particular if there is
not much written documentation. The
project may easily slide into an
unrecoverable chaos

How to Steer an Embedded Software Project:
Tactics for Selecting Agile Software Process Models

Appendix 2: Agile Software Process Characteristics Matrix

(cont.)

Software Process Models
RUP (Rational Unified Process)

FDD (Feature-Driven D)

ASD (Adaptive Software Dev.)

Scrum

¥P {(Extreme Programming)

No discipli

{chaotic "hacking")

RUP is more like a heavwweight
methodology. Some lighter
adaptations have been proposed for
smaller projects

There are some real-time sofware
desigh specialities

Staged delivery causes partially same
problems as incremental
developrment (overhead in testing and
content management). FOD assumes
that the averall value ofthe features is
determined early in the project and
that scheduling those features should
be primarily a technical decision [17]

May be suitable Does not address
embedded systems specifically.
Planning the feature listwith
cancurrent hardware development
may he challenging.

There is a philosophy of complex
adaptive systems hehind,

May be suitable. Does not address
embedded systems specifically.

Since only the high-level management
frame is preset, Scrum leaves much
ranm for flexibility - but also puts a lot
of respansibility - for adjusting the
projectwork according to the
circumstances. Sprintis basically a
procedure for adopting to the changing
emironmental variables. Assumes
thatthe higher-level management can
provide enough resources and resolve
any external obstacles promptly (even
during the day). Product Backlog
defines everything thatis needed on
the final product.

There is no specific support for
embedded software development.
Huovweever, there are no paricular
impediments, either. May he suitahle,
especially if the hardware is already
available. Scrum has been used in
safety-critical software projects.

Auser story = a feature

May be suitable, especially ifthe
hardwate is already available. Does
not address embedded systems
specifically.

You should notreally consider this
model as an alternative. Hacking is a
process antipattern, sometimes
mistakenly justified by iterative
developrment [2]

Some software experiments with the
target hardware may make sense

. References
Conseguences, Side-effects, Drawbacks:
Notes
EMBEDDED SYSTEMS [32]
References:

[24]

120)

[18]

[28/Ch. 7, 33]

14]

[28/Ch. 7.2]

