
TKK Dissertations 186
Espoo 2009

AGILE SOFTWARE DEVELOPMENT IN LARGE-SCALE
NEW PRODUCT DEVELOPMENT ORGANIZATION:
TEAM-LEVEL PERSPECTIVE
Doctoral Dissertation

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

Petri Kettunen

TKK Dissertations 186
Espoo 2009

AGILE SOFTWARE DEVELOPMENT IN LARGE-SCALE
NEW PRODUCT DEVELOPMENT ORGANIZATION:
TEAM-LEVEL PERSPECTIVE
Doctoral Dissertation

Petri Kettunen

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission
of the Faculty of Information and Natural Sciences for public examination and debate in Auditorium
T2 at Helsinki University of Technology (Espoo, Finland) on the 4th of December, 2009, at
12 noon.

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

Teknillinen korkeakoulu
Informaatio- ja luonnontieteiden tiedekunta
Tietotekniikan laitos

Distribution:
Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering
P.O. Box 9210 (Tekniikantie 14)
FI - 02015 TKK
FINLAND
URL: http://www.cse.tkk.fi/
Tel. +358-9-451 4851
Fax +358-9-451 4958
E-mail: petri.kettunen@tkk.fi

© 2009 Petri Kettunen

ISBN 978-952-248-113-9
ISBN 978-952-248-114-6 (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)
URL: http://lib.tkk.fi/Diss/2009/isbn9789522481146/

TKK-DISS-2655

Multiprint Oy
Espoo 2009

ABSTRACT OF DOCTORAL DISSERTATION
HELSINKI UNIVERSITY OF TECHNOLOGY
P.O. BOX 1000, FI-02015 TKK
http://www.tkk.fi

Author Petri Kettunen

Name of the dissertation
Agile Software Development in Large-Scale New Product Development Organization: Team-Level Perspective

Manuscript submitted June 1, 2009 Manuscript revised November 5, 2009

Date of the defence December 4, 2009

 Monograph Article dissertation (summary + original articles)

Faculty Information and Natural Sciences
Department Department of Computer Science and Engineering
Field of research Software Engineering
Opponent(s) Prof. Markku Oivo (University of Oulu)
Supervisor Prof. Tomi Männistö
Instructor Prof. Pekka Abrahamsson (University of Helsinki)

Abstract
Many modern intelligent products and systems (e.g., automotive, consumer electronics, telecommunications) contain more
and more embedded software. Often the new product development (NPD) companies developing such products operate
under turbulent circumstances stemming from the business environment, technology development and other, even
disruptive sources. The embedded software development functions of such NPD organizations then face the uncertainties
directly or indirectly, often coupled with time-to-market, quality and productivity pressures. Agile software development
has been advocated as a new way of coping with such circumstances in particular with small independent teams developing
customer-driven software products. This thesis investigates in contrast how it can be utilized with embedded software
development teams in large-scale market-driven industrial NPD context.
The exploratory, problem-driven research process is based on interpretive design science and action research principles.
The author worked as a full-time software quality and process development specialist employee inside the case
organization, thus acting as a reflective practitioner. The longitudinal study research cycles were conducted over several
years in that particular NPD organization context. The cycle viewpoints evolved from first recognizing typical software
project problems and uncertainties, and developing certain solutions to software team knowledge management and
software process model selection. This development led to consider, what problems current agile software methods
address. The realization of agile software development was then further examined with respect to the cost factors, and
finally towards integrating agile software product development teams into larger-scale NPD organization.
The main result of this research is that agile software development models address many typical key issues in large-scale
industrial NPD context, and the cost/benefit factors are in principle justifiable. However, if agile software methods are
applied just bottom-up trying to integrate isolated agile software teams into larger organizational context, this inside-out
approach leads often to problems with organizational barriers and impediments. Thus, in order to be able to leverage the
potential benefits, agile software development should be approached more from the strategic business perspective (outside-
in), viewing the software development functions as elements of the total value-creation system in the NPD organization.
Different software development (project) teams may have different roles and needs for agility in this complex over time.
The contributions imply that rational software team-level improvements require in many cases wider, even enterprise-level
perspectives in creating and improving the agile capabilities of the NPD organization. It is thus fundamental to
conceptualize agility in the NPD context by combining software development with the overall NPD processes. In particular
in large organizations, the improvements may require more actions at the organizational level than in software teams.

Keywords process improvement, agile software methods, embedded software, new product development

ISBN (printed) 978-952-248-113-9 ISSN (printed) 1795-2239

ISBN (pdf) 978-952-248-114-6 ISSN (pdf) 1795-4584

Language English Number of pages 153 p. + app. 95 p.

Publisher Helsinki University of Technology, Department of Computer Science and Engineering

Print distribution Helsinki University of Technology, Department of Computer Science and Engineering

 The dissertation can be read at http://lib.tkk.fi/Diss/2009/isbn9789522481146/

VÄITÖSKIRJAN TIIVISTELMÄ
TEKNILLINEN KORKEAKOULU
PL 1000, 02015 TKK
http://www.tkk.fi

Tekijä Petri Kettunen

Väitöskirjan nimi
Ketterä ohjelmistokehitys isossa tuotekehitysorganisaatiossa: tiimitason näkökulma

Käsikirjoituksen päivämäärä 1.6.2009 Korjatun käsikirjoituksen päivämäärä 5.11.2009

Väitöstilaisuuden ajankohta 4.12.2009

 Monografia Yhdistelmäväitöskirja (yhteenveto + erillisartikkelit)

Tiedekunta Informaatio- ja luonnontiede
Laitos Tietotekniikka
Tutkimusala Ohjelmistotuotanto
Vastaväittäjä(t) Prof. Markku Oivo (Oulun yliopisto)
Työn valvoja Prof. Tomi Männistö
Työn ohjaaja Prof. Pekka Abrahamsson (Helsingin yliopisto)

Tiivistelmä
Monet nykyaikaiset älykkäät tuotteet ja järjestelmät (esim. autotekniikka, kulutuselektroniikka, telekommunikaatio) sisäl-
tävät yhä enemmän upotettuja ohjelmistoja. Usein tällaisia tuotteita kehittävät (NPD) yhtiöt toimivat turbulenteissa oloissa
aiheutuen liiketoimintaympäristöstä, teknologian kehityksestä ja muista, usein yllättävistäkin lähteistä. Tällaisten NPD-or-
ganisaatioiden upotettujen ohjelmistojen kehitysfunktiot kohtaavat epävarmuudet suoraan tai epäsuorasti, usein julkaisuai-
kataulu-, laatu- ja tuottavuuspaineiden kera. Ketterää ohjelmistokehitystä on pidetty uutena tapana toimia sellaisissa tilan-
teissa erityisesti pienissä itsenäisissä, asiakaskohtaisia ohjelmistotuotteita kehittävissä tiimeissä. Tämä väitöstyö tutkii sitä
vastoin, miten sitä voidaan hyödyntää upotettujen ohjelmistojen kehitystiimeissä isossa markkinaorientoituneessa teolli-
sessa NPD-kontekstissa.
Tämä kartoittava, ongelmalähtöinen tutkimusprosessi perustuu tulkinnallisiin suunnittelutieteen ja toimintatutkimuksen
periaatteisiin. Tutkija työskenteli kokopäiväisenä ohjelmistojen laatu- ja prosessispesialistina tapausorganisaatiossa, ollen
näin reflektoiva praktiikassa. Pitkittäistutkimuksen syklit tehtiin useiden vuosien kuluessa ko. NPD-organisaatiokonteks-
tissa. Syklien näkökulmat kehittyivät alkaen tyypillisten ohjelmistokehitysongelmien ja epävarmuuksien tunnistamisesta
eräiden ratkaisutapojen kehittämiseen ohjelmistotiimien tiedonhallintaan ja ohjelmistoprosessimallien valintaan. Tämä
kehitys johti selvittämään, mitä ongelmia nykyiset ketterät ohjelmistomenetelmät koskettavat. Ketterän ohjelmistokehityk-
sen toteuttamista tutkittiin sitten edelleen kustannustekijöiden ja lopuksi ketterien ohjelmisto-tuotekehitystiimien integroin-
nin suhteen laajamittaiseen NPD-organisaatioon.
Tutkimuksen päätulos on, että ketterät ohjelmistokehitysmallit käsittelevät monia tyypillisiä avainongelmia laajoissa teolli-
sissa NPD-organisaatioissa, ja kustannus/hyötytekijät ovat periaatteessa perusteltavissa. Jos ketteriä ohjelmistomenetelmiä
kuitenkin sovelletaan vain alhaalta-ylös pyrkien integroimaan erillisiä ketteriä ohjelmistotiimejä laajempaan organisaatio-
yhteyteen, tällainen sisältä-ulos -lähestymistapa johtaa usein ongelmiin organisatoristen rajojen ja esteiden takia. Siksi ket-
terän ohjelmistokehityksen täysimittaiseksi hyödyntämiseksi sitä olisi tarkasteltava strategisesta liiketoimintanäkökulmasta
(ulkoa-sisään) tarkastellen ohjelmistokehitysfunktioita elementteinä NPD-organisaation koko arvontuottosysteemissä. Eri
ohjelmistokehitys(projekti)tiimeillä voi olla eri rooleja ja vaatimuksia tässä kompleksissa ajan suhteen.
Tutkimuksen kontribuutiot implikoivat, että rationaaliset parannukset ohjelmistotiimitasolla vaativat useissa tapauksissa
laajempaa, jopa yritystason perspektiiviä NPD-organisaation ketteryyskyvykkyyksien luomisessa ja parantamisessa. Siksi
on perustavan tärkeää käsitteellistää ketteryys NPD-kontekstissa yhdistämällä ohjelmistokehitys koko NPD-prosessiin. Eri-
tyisesti isoissa organisaatioissa parannukset saattavat vaatia enemmän toimia organisaatiotasolla kuin ohjelmistotiimeissä.
Asiasanat prosessinkehitys, ketterät menetelmät, upotetut ohjelmistot, tuotekehitys

ISBN (painettu) 978-952-248-113-9 ISSN (painettu) 1795-2239

ISBN (pdf) 978-952-248-114-6 ISSN (pdf) 1795-4584

Kieli englanti Sivumäärä 153 s. + liit. 95 s.

Julkaisija Teknillinen korkeakoulu, Tietotekniikan laitos

Painetun väitöskirjan jakelu Teknillinen korkeakoulu, Tietotekniikan laitos

 Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/2009/isbn9789522481146/

i

Preface

Academic dissertations have much in common with expeditions. There is a bold
overall goal coupled with many uncertainties about the execution and final outcome.
Careful preparations and appropriate equipment as well as persistent but flexible and
nimble conduct are necessary for success. This is the essential nature of research
work.

Considering the subject of this thesis, the competitive environments of many
product development companies are nowadays “bitter cold”. Like with expeditions,
definite preplanned goals are not enough, but also sensible flexibility in action is
required. Agility is the general business concept for prosperity under such conditions.
Such characteristics have been necessary during this thesis work, too. Indeed, major
changes and even turbulence occurred both globally and personally while writing this
dissertation between the years 2007-2009.

This thesis represents in a way the current state of my learning and experience
gained during my 20-year long industrial career in software product development,
although the actual research work is based on the past five years in the
telecommunications sector. It is thus impossible to give credit to all the persons who
have influenced me either directly or subconsciously over the years. However, I
would like to thank a few them by name in here since they have had major impacts in
the course of this thesis work.

Maarit Laanti (Nokia Corporation) is the co-author of a part of the publications of
this thesis. We used to work together in the same software project at the time of the
initiation of the research activities, and had many inspiring and thought-provoking
discussions of many of the ideas presented in this thesis (and much more). Her impact
has thus been profound. Maarit is the one who initially urged me to write a doctoral
thesis. I appreciate the encouragement and insightful suggestions over the years.

Maarit also introduced me to Prof. Pekka Abrahamsson (now University of
Helsinki), who acted subsequently as my Instructor. He has had – being a
distinguished researcher – a major impact for bridging the gap between scientific
research work and my industrial practice. It is largely thanks to him that I realized
how to present my contributions in the form of a concise summary.

Pekka in turn connected me to Prof. Tomi Männistö at Helsinki University of
Technology (SoberIT) who then became my Supervisor. Tomi guided me through the
milestones of dissertation work in a supportive and enthusiastic way. He also gave
certain insightful scientific comments, complementing Pekka’s instructions.

Finally, the pre-examiners Prof. Frank Maurer (University of Calgary) and Prof.
Markku Tukiainen (University of Joensuu) had a major responsibility for reviewing
the dissertation. I appreciate their efforts and improvement comments in particular
emphasizing my role as a reflective practitioner.

In addition, I had an opportunity to finalize the thesis writing with the financial
support of the Graduate School on Software Systems and Engineering (SoSE). I
acknowledge that appraisal.

ii

Overall, although I have made most of my work career in the Helsinki metropolitan
area, there are many close connections to my home town Kuusankoski (now
Kouvola). I thank my parents and sister for their background support, and I am
especially grateful to Pinja, Pauli, and Pihla for the many inspiring discussions round
the kitchen table.

Espoo, November 2009

Petri Kettunen

iii

Table of Contents

Preface ..i
Table of Contents ... iii
List of Original Publications ... vii
List of Abbreviations ...viii
List of Figures ... ix
List of Tables ... x
1 Introduction ... 1

1.1 Motivation .. 1
1.2 Research Problem.. 2
1.3 Research Scoping .. 4
1.4 Overview of the Thesis .. 5
1.5 Structure of the Summary .. 7

2 Theoretical Framing and Foundations ... 8
2.1 Flexible Software-Intensive New Product Development 8

2.1.1 Overview of NPD Competence Area.. 8
2.1.1.1 Knowledge Space .. 9
2.1.1.2 Basic Models... 10
2.1.1.3 Success Factors... 12
2.1.2 Flexible NPD Concepts ... 14
2.1.2.1 Uncertainty ... 14
2.1.2.2 Flexibility.. 15
2.1.3 Software-Intensive NPD .. 18
2.1.3.1 Product Creation and Software Development............................. 18
2.1.3.2 Embedded Software ... 22

2.2 Agility in Product Development .. 23
2.2.1 Concepts and Definitions ... 23
2.2.2 Agile Capabilities .. 26
2.2.3 Agility Improvement ... 27
2.2.3.1 Metrics.. 28
2.2.3.2 Analysis Models .. 29
2.2.3.3 Capability Development .. 32

2.3 Agile Software Development ... 33
2.3.1 Principles .. 34
2.3.2 Agile Software Development Methods ... 35
2.3.2.1 Origins and Scoping .. 35
2.3.2.2 Premises and Focuses ... 36
2.3.2.3 Empirical Evidence ... 39
2.3.3 Agile Adoption .. 40

2.4 Summary of Knowledge Gaps and Research Needs................................ 43
2.4.1 Problem Space .. 43
2.4.1.1 NPD Problems .. 43
2.4.1.2 Research Needs ... 44

iv

2.4.2 Positioning the Thesis Research ... 47
2.4.2.1 Connections .. 47
2.4.2.2 Rationale .. 48

3 Research Design .. 50
3.1 Research Methods ... 50
3.2 Research Environment... 52

3.2.1 Case Industry Characteristics ... 52
3.2.2 Case Environment ... 53
3.2.3 Strategic Concerns... 54

3.3 Research Process ... 55
3.3.1 Interconnections .. 55
3.3.2 Realization .. 55

3.4 Research Scrutiny and Evaluation Criteria ... 58
4 Results... 61

4.1 Typical Problems of Large-Scale NPD Software Projects 61
4.1.1 Project Problems / Uncertainties .. 62
4.1.2 Managing Information Uncertainty .. 64
4.1.3 Tactics for Selecting the Software Process Model 67

4.2 Agile Solutions for Typical Software Project Team Problems................. 69
4.2.1 Responding to Problems with Agile Software Process Models........ 70
4.2.2 Cost-Based Justification of Agile Software Development 71

4.3 Agile Software Project Teams within NPD Enterprise Context 73
4.4 Synthesis ... 75

4.4.1 Research Cycles .. 75
4.4.2 Compound Results .. 76

5 Discussion ... 78
5.1 Answering the Research Problem and Goals .. 78
5.2 Comparing and Contrasting Related Work ... 79
5.3 Evaluation ... 80

5.3.1 Relevance.. 80
5.3.2 Rigor and Validity ... 81
5.3.2.1 Design Rationale ... 81
5.3.2.2 Soundness ... 81
5.3.2.3 Methodological Fit .. 83
5.3.2.4 Presentation .. 84
5.3.3 Generalization ... 85
5.3.4 Limitations .. 85

5.4 Inferences and Implications ... 87
5.4.1 Theoretical Inferences ... 87
5.4.1.1 Positioning Agile Software Development 87
5.4.1.2 Effects of Agile Software Development 88
5.4.1.3 NPD Organizational Development .. 88
5.4.2 Managerial Implications .. 89
5.4.2.1 Strategic Goal-Orientation .. 90
5.4.2.2 Agile Capability Development ... 90
5.4.2.3 Complementary Organizational Improvements 90

6 Conclusions ... 91

v

6.1 Key Contributions ... 91
6.2 Future Research .. 93

References ... 95
Appendix ... 110

vi

vii

List of Original Publications

I Kettunen, P., 2006. Troubleshooting large-scale New Product Development

embedded software projects. In: Proc. 7th Int’l Conf. Product Focused Software
Process Improvement (PROFES), pp. 61-78.

II Kettunen, P., 2003. Managing embedded software project team knowledge. IEE
Proceedings: Software 150(6), 359-366.

III Kettunen1, P., Laanti, M., 2005. How to steer an embedded software project:
tactics for selecting the software process model. Information and Software
Technology 47(9), 587-608.

IV Kettunen2, P., Laanti, M., 2006. How to steer an embedded software project:
tactics for selecting agile software process models. International Journal of Agile
Manufacturing 9(1), 59-77.

V Laanti, M., Kettunen3, P., 2006. Cost Modeling Agile Software Development.
International Transactions on Systems Science and Applications 1(2), 175-179.

VI Kettunen, P., 2007. Extending Software Project Agility with New Product
Development Enterprise Agility. Software Process: Improvement and Practice
12(6), 541-548.

1 idea formalization and analysis, main content writing
2 idea development, main content writing, shared conference presentation
3 idea development, main content writing

viii

List of Abbreviations

ASD Adaptive Software Development
B2B Business-to-Business
B2C Business-to-Customers
CASE Computer-Aided Software Engineering
CMM Capability Maturity Model
CMMI Capability Maturity Model Integrated
CSF Critical Success Factor
DSDM Dynamic Systems Development Method
FDD Feature-Driven Development
FMS Flexible Manufacturing System
HR Human Resources
HRD Human Resource Development
HW Hardware
IS Information Systems
ISD Information Systems Development
IT Information Technology
LOC Lines-of-Code
NPD New Product Development
NPV Net Present Value
OD Organization Development
OPF OPEN Process Framework
OT Organization Theory
R&D Research and Development
ROI Return-on-Investment
RUP Rational Unified Process
SPI Software Process Improvement
SW Software
TDD Test-Driven Development
TQM Total Quality Management
UCD User Centered Design
WiMAX Worldwide Inter-operability for Microwave Access
XP eXtreme Programming
3G 3rd Generation (telecommunications technology)

ix

List of Figures

Fig. 1. Organizational leveling of the research questions 5
Fig. 2. NPD competence positioning... 10
Fig. 3. Basic general-purpose new product development process model 11
Fig. 4. Basic NPD return-of-investments flow ... 12
Fig. 5. Flexible product development process principles.................................... 16
Fig. 6. Agility viewed as an organizational capability 24
Fig. 7. Cost modeling agility dimensions .. 30
Fig. 8. Characteristic cost-of-change curves of different NPD approaches 30
Fig. 9. Key management attributes of agile software development 38
Fig. 10. Taxonomy of research methods ... 50
Fig. 11. Spiral model of the thesis research ... 56
Fig. 12. Main research flow .. 57
Fig. 13. Embedded software project knowledge planning template 66
Fig. 14. Embedded software project knowledge sharing chart 66
Fig. 15. Software process model comparison / selection matrix excerpt 68
Fig. 16. Agile software process model comparison matrix excerpt....................... 70
Fig. 17. Agility cost modeling example case ... 72
Fig. 18. Organizational extensions with Scrum ... 74
Fig. 19. Project agility dimensions .. 74

x

List of Tables

Table 1. GQM-oriented framing of the research problem 4
Table 2. Representative software NPD success/failure factor findings 20
Table 3. Representative approaches to flexible software NPD 21
Table 4. Agility in different business competence areas 26
Table 5. Agility measurement approaches ... 28
Table 6. Agility assessment approaches ... 32
Table 7. Definitions of software development agility ... 34
Table 8. Uncertainty management approaches in agile software development 37
Table 9. Agile software development assessment approaches............................... 41
Table 10. Agile software development research areas .. 45
Table 11. Software-intensive NPD research cross-connections 47
Table 12. Research needs and questions .. 49
Table 13. Key characteristics of the industrial case environment 53
Table 14. Guidelines for design-scientific information systems research 58
Table 15. Project Problem Profiler structure excerpt .. 63
Table 16. NPD project problem profiling case studies ... 64
Table 17. History data based evaluation of the propositions 67
Table 18. Software process model comparison / selection matrix structure 68
Table 19. Software process model selection matrix structure (cont) 69
Table 20. Summary of the research cycles ... 75
Table 21. Evaluating the soundness of the research work 82
Table 22. Methodologically fit new research designs ... 83
Table 23. Evaluating the methodological fitness of this research design 83
Table 24. Research contributions by research steps.. 91
Table 25. Representative NPD success/failure factor findings 110
Table 26. Representative approaches to flexible NPD .. 114
Table 27. Definitions of agility ... 117
Table 28. Empirical evidence of applying agile software development 118
Table 29. Typical barriers and impediments of agile software development 122
Table 30. Agility improvement / transition approaches .. 129

1

1 Introduction

This opening section of the thesis compendium outlines briefly the domain, overall
drivers, and the motives of the research (Sect. 1.1). The quest for agility in product
development in general and agile software development in particular is reasoned,
leading to the specific research questions of the thesis (Sect. 1.2). The focus and scope
of the work are then refined (Sect. 1.3). The research steps (papers) are introduced,
highlighting the key results (Sect. 1.4). Finally, the structure of this thesis summary is
explained (Sect. 1.5).

1.1 Motivation

Many modern intelligent electronic devices and equipment include more and more
software-based functionality. For example digital cameras, mobile phones, and home-
entertainment equipment are typically such products – just to name a few.
Furthermore, embedded software can increasingly be found in such products as
automotive and even white goods (e.g., microwave ovens). The role of embedded
software in future European automotive industry value creation is for instance
expected to almost double (up to 35%) by the year 2015 (TNO/IDATE 2005;
Tuormaa 2009).

In addition to such mass market consumer products (business-to-customer), many
systems products (business-to-business) are software-intensive. For example 3G
telecommunications, digital TV broadcasting, and broadband Internet networks rely
heavily on complex software-based components.

New product development (NPD) companies make their business by creating and
manufacturing those products. Notably, because of the embedded nature, many such
companies do not necessarily appear as software-intensive organizations.

The competitive environment of many NPD companies is nowadays dynamic and
often increasingly turbulent (Doz and Kosonen 2008). The sources of uncertainties
and turbulence can be manifold and intertwined, stemming from such factors as for
example
• customers / markets
• competition
• technology
• regulations
• globalization
• organization
• social and environmental factors

Such turbulence factors affect the embedded software development functions of the

company either directly or indirectly. Consequently, the software development faces
not only the inherent product complexities and embedded software engineering
technical difficulties, but also the many external business-related disturbances. The

2

unpredictable and dynamic nature of the current competitive environments of many
NPD organizations characterized above calls for new models of software product
development.

Agile software development has been advocated as a prominent solution for many
such software production problems; see for example (Highsmith and Cockburn 2001;
ITEA 2004; Boehm and Turner 2005). Agility has also been applied in other
disciplines facing similar business problems like manufacturing.

 In general, agility is a capability of an organization (entity) relative to its
environment. There is no one generally agreed definition of agility, but the essential
characteristics are proficiency at change and responsiveness under unpredictable
environmental conditions. As such a broad concept, agility is not unique to NPD or
software development. We elaborate and scrutinize the concepts of agility in detail in
Sect. 2.2.2, but for the purposes of this investigation we follow the generic definition
by Conboy and Fitzgerald (2004):
• “the continual readiness of an entity to rapidly or inherently, proactively or

reactively, embrace change, through high quality, simplistic, economical
components and relationships with its environment”

Software process improvement (SPI) is the overall activity of developing the

software production capabilities of the organization. This entails in general setting the
strategic goals and target levels, evaluating the current capabilities with respect to the
targets, and executing improvement activities accordingly. In particular in large
companies the improvements could range from software engineering technical items
up to organizational issues, relating to process improvement and organizational
development in general. In turbulent NPD environments the improvement activities
should continuously be adjusted with the current strategic goal alignments and
environmental factors, which are often subject to even disruptive changes.

This thesis investigates embedded software product development (in devices) and
its software process improvement with respect to agility in large-scale industrial NPD
organizational context. Agile software development on the one hand and flexible
NPD on the other have been active research topics for some years now, and there
appears to be even more growing interests to adopt them in the industry because of
the fundamental changes taking place in many competitive environments. This work
is primarily initiated at the software (project) team level, but it is subsequently
extended towards the enterprise level organizational capabilities, and even to the
business milieu.

1.2 Research Problem

There can be many possible, not always obvious software process improvement issues
in any large NPD organization. The nature and weighting of the different problems
and improvement areas vary across different companies depending for example their
current contextual factors, strategic choices, and historical background (Abrahamsson
2002; Börjesson 2006; Fugetta 2000; Humphrey et al. 2007; Liu et al. 2006; Ojala
2006; Taramaa et al. 1998). Consequently, conceptualization and more systematic
framing of the problem space are needed.

3

Agile software development models offer several prospective solutions to many
software production problems. However, so far agile software development has been
investigated mostly at a small-scale team level, but it is not well understood how it
really works when integrated into large-scale NPD organizational context.

Following that line of thinking leads to the overall goal of this research to gain
deeper, holistic understanding of primarily embedded software development agility
and its consequent SPI potential in large-scale NPD environments. Traditionally,
those areas have been investigated separately in different disciplines, and they are not
well understood in combination. Hence, we formulate the principal research problem
as follows:

How can agile software development be utilized in large-scale NPD context?

This is a complex multi-issue problem. We approach the compound problem with

the following research questions and viewpoints:
1. What are the typical problems of large-scale NPD embedded software projects?
2. What problems and goals does agile software development address?
3. How can typical large-scale NPD problems be tackled with agile software

development methods?

From an industrial NPD organization point of view, this research problem setting
addresses the following organizational development goals:
(i) recognizing and understanding embedded software project team problem areas

and consequently process improvement items specifically with respect to agility
(ii) understanding the relationships with the surrounding NPD organizational context
(iii) distilling the impacts up to the NPD enterprise level

The fundamental question of why to contemplate agility improvement stems from
the industrial background of this particular research environment as described in Sect.
3.2. The environment has many such characteristics, which are often advocated as the
“home ground” for agile software development (major uncertainties in new products,
high productivity/time-to-market pressures, and yet high product quality
expectations).

However, the product development case environment also has many such elements,
which are often mentioned as less favorable for agile software development models:
• large, complex product systems
• embedded software development (mission-critical and partially real time)
• large, even globally distributed development teams and program structures

It is not clear how beneficial software development agility really is in such

industrial NPD environments, and whether other improvement areas would bring
more advantages. Indeed, like stated above, a general aim of this research work is to
understand the NPD environmental and situational factors favoring or possibly
contradicting agile software product development. Such holistic understanding would
make it possible to exploit agile software development appropriately in order to gain

4

competitive advantages, and also to realize areas for additional improvement needs in
context.

Recapping, the research problem set above can be decomposed and framed like
shown in Table 1. The Goal-Question-Metric template aggregates the essence of this
entire research effort (Kujala 2007).

Table 1. GQM-oriented framing of the research problem

Element This Research
Analyze: (how) agile software development
In order to: understand, rationalize, exploit (SPI)
With respect to: benefits/costs, applicability
From perspective of: embedded software teams
In the context of: case NPD organization
Because: competitive environment (needs, drivers)

1.3 Research Scoping

This research work is conducted in a large industrial product development
organization context as defined in Sect. 3.2. The scope of the empirical research is
thus limited to one particular industrial organization setting. This constrains the field
of industry to one sector of telecommunications, and within that sector into a single –
though a major one – company only. Furthermore, inside this particular large
company environment only certain product development units/projects are covered.

Large (more than 100 employees) industrial product development organizations are
by nature structured into smaller work units in one way or another (Trott 2005; Ulrich
and Eppinger 2000). The primary scope of this research stems from the software team
level, but it is subsequently expanded towards the larger-scale NPD organizational
levels (see Fig. 1). In particular with large complex systems products, there are
usually multiple different software teams and also concurrent development projects
(multiproject programs). Furthermore, with embedded software development, it is
generally necessary to consider also the related hardware and product systems
engineering functions to some extent.

5

Research
Questions:

Teams

NPD

Company

People

Business
Unit

Functions

Projects

Scope of Influence Level of Impact

1.

2.

3.

Strategic

Tactical

Operational

Fig. 1. Organizational leveling of the research questions

In practice, such a large multidisciplinary research problem space cannot be
covered completely in detail in one investigation. Many sectors of this problem space
are distinct fields of research on their owns. In particular, the following areas are
beyond the focal scope of this thesis:
• embedded software engineering (design) technology (e.g., CASE) and tools
• other NPD disciplines than electronics (e.g., industrial design, mechatronics)
• product innovation (e.g., UCD, open sourcing)
• general large-scale organizational management (e.g., financing, communications,

subcontracting, multisite structures)
• organizational culture (ideology) and dynamics (behavior, ecosystems), people and

social factors (e.g., wellbeing, motivation, rewarding)

In general, the intention of this thesis work is not to provide particular case-specific

evidence of how beneficial agile software development can be nor how exactly in
practice it can be implemented (deployed) in real-life organizations. The practical
realization of the changes and improvements is thus mostly outside the scope. The
research design (Chapter 3) takes this intentional scoping into account. We discuss the
impacts of these practical constraints and limitations in Chapter 5.

1.4 Overview of the Thesis

The conclusions of this research work derive from the longitudinal stream of process
improvement studies reported in the research papers I-VI (see pp. vii). The stream
follows the decomposed research questions (1-3) and viewpoints stated in Sect. 1.2.

We began by exploring the overall problem space of embedded software product
development (Research Paper I). This investigation resulted in problem and
uncertainty profiles of individual software project teams.

Based on the project problem profiling, certain problem areas calling for new
solutions were selected for further studies. One of the reflections is that knowledge

6

management is an intrinsic part of embedded software product development, although
the formal term ‘knowledge management’ is not always underlined. We therefore
focused first on the problems of managing knowledge and information at the software
team level (Research Paper II). This work produced certain practical tools to address
the information and knowledge management needs of embedded software product
development projects.

The problem-based project management perspective and the specific but partial
solutions with the knowledge management area (Research Paper II) led to the insight
that also more comprehensive and overarching project steering solutions would be
needed in uncertain environments. This line of thinking brought up the idea that a
fundamental part of software product development and project management is the
life-cycle model. There are many different software development process models
proposed over the past few years. In general, each software process model addresses
certain decision (problem) areas of software projects, and the project organization
must select an appropriate model in the particular project context. Our next research
question was therefore to compare and contrast systematically certain software
process models with respect to how they address certain key areas of embedded
software product development (Research Paper III). This work is partially based on
the knowledge gained with the project problem profiles (Research Paper I).

Those problem-based investigations brought up the question of whether agile
software development models could be an effective solution path. We therefore
developed the software process comparison (Research Paper III) further to focus more
on agile software process models (Research Paper IV). We discovered that agile
software process models address certain problem areas more effectively than the
compared traditional models. This is in particular under uncertain development
conditions when the project steering tactics are based on frequent adjustments and
feedback-driven development cycles. On the other hand many larger-scale
organizational areas are beyond the scope of the current agile software development
models. Consequently, we directed the research work towards those concerns, and
delved into NPD agility in more general.

An important part of process improvement (SPI) efforts is not only to develop
point solutions but also to understand the cost/benefit factors of improving the
organizational capabilities and requisite enabling factors. For instance efficient
knowledge management (Research Paper II) is typically one of the key enablers of
building such capabilities. Consequently, there is a need to analyze the realizable
benefits and associated costs of agile software development solutions. We therefore
examined next certain general cost models of agility in respect of software product
development (Research Paper V). The findings and observations indicate that agile
software development should be matched with the overall NPD performance goals of
the organization in terms of the cost-effectiveness and agility. System-level value
stream mapping is one way of doing this in practice.

Finally, by understanding the needs and drivers of agility (Research Paper I-III)
and the insights gained with the solutions (Research Paper IV) coupled with the cost
analysis (Research Paper V), it becomes obvious that in large organization
environments it is not enough to work at the software project team level alone. A
more comprehensive agile perspective is thus needed up to the NPD enterprise level
to realize the full benefits at the team level (Research Paper VI).

7

In summary, by synthesizing the different findings of all the research steps and
inferring the conclusions, the main contribution of this thesis is the realization that in
large-scale industrial NPD context beneficial agile software development requires a
holistic view considering not only the software engineering function, but also the
related product engineering functions together with the overall business model of the
organization. Notably there is an intentional cross-discipline perspective (even
“boundary spanning”) here.

While agile software development has been investigated actively over the past few
years independently mostly at team-level, the cross-functional combination with the
NPD discipline is to our knowledge an under-researched area. This thesis attempts to
fill that gap.

1.5 Structure of the Summary

The rest of this thesis compendium is structured as follows. Following this
introductory Chapter 1, Chapter 2 surveys the previous published work highlighting
the knowledge gaps. This grounding begins with an overview of contemporary new
product development concepts in general, and modern flexible NPD models in
particular. The role of software production within the NPD context is then scoped.
Agility in NPD and agile software development are defined. This exploration justifies
the research problem, and rationalizes the research aims of the thesis.

Chapter 3 explains the research design. The constructive research approach is
explained with the connections to the industrial case environment. The research rigor
and criteria are set.

Next, Chapter 4 presents the detailed results and findings of the research. The
presentation is organized following the research questions, and the individual research
papers I-VI are linked accordingly. The main research problem can be answered by
combining and synthesizing all the stepwise results.

The results section is followed by analysis discussion in Chapter 5 further
elaborating the answer to the research problem. The related research literature and the
targeted knowledge gaps are contrasted. The overall research work of the thesis is
then scrutinized, and the quality is assessed. Moreover, certain inferred implications
and recommendations are presented. Due to the interdisciplinary nature of the
research problem, the implications are also manifold considering both theory and
practice.

Finally, Chapter 6 summarizes the contributions of the thesis. The research work
done here opens up many new ideas and potential avenues for future studies.

8

2 Theoretical Framing and Foundations

This literature-based background section reviews the key concepts of the thesis
research field and surveys the prior published research work. Based on that
exploration, the knowledge gaps can be highlighted and the research questions of the
thesis set in Sect. 1.2 can be put into appropriate context and grounded to the
knowledge base.

The review begins with a general overview of software-intensive NPD in (large-
scale) organizational context (Sect. 2.1). There are many related business competence
knowledge areas (e.g., marketing) and disciplines. It is important to realize the overall
positioning and interdependencies, although most of them are beyond the scope of
this thesis. The basic NPD concepts are then explored in more detail. Typical NPD
project success factors are surveyed. The conventional models have evolved towards
modern flexible NPD processes for uncertain and turbulent conditions. Finally,
software development in this NPD context is characterized.

Following the development of general flexible NPD models, agility is featured
(Sect. 2.2). The concepts and principles are first reviewed generally in different
disciplines. NPD agility can then be reasoned. This is continued with the overall
approaches to develop agile capabilities in (large-scale) organizational environments,
taking into account typical obstacles observed in practice.

Agile software development as currently known and typically practiced is then
examined (Sect. 2.3). The linkage to NPD is established. Organizational adoption of
agile software development methods is discussed.

Finally, the research rationale of the thesis is shown based on the above ground-
work (Sect. 2.4). The new research is connected to the prior scholarship and research
streams.

2.1 Flexible Software-Intensive New Product Development

In order to be able to realize the nature of the software development problem space in
large-scale NPD context, it is first necessary to understand the basic technology-
independent principles and concepts of new product creation (Sect. 2.1.1). On that
basis it can then be seen, which factors are typical keys to successful NPD projects in
traditional business environments. However, many modern competitive environments
are much more uncertain, requiring more advanced NPD models (Sect. 2.1.2).
Following that groundwork, the nature and problems of embedded software
development in the modern NPD environments can be comprehended (Sect. 2.1.3).

2.1.1 Overview of NPD Competence Area
It is first instructive to view new product development in the total business
competence knowledge space (2.1.1.1). The traditional basic NPD process models are
then overviewed (2.1.1.2), coupled with typically recognized success/failure factors
(2.1.1.3).

9

2.1.1.1 Knowledge Space
This primary field of study of this research is software engineering. However, in
particular in large NPD organizational context, there are several other related
disciplines.

Industrial product development can be defined as the commercial exploitation of
market needs and opportunities with new products utilizing the available
technological possibilities (Krisnan and Ulrich 2001). It is important to understand in
general how embedded software development relates to them in order to be able to
achieve comprehensive competitive advantage improvements. Notably in some cases
the main focus the improvement actions should actually be set outside the software
development function.

It is therefore essential to understand the nature of the product development
(including software) and the related discipline functions in the organizational context,
such as business and strategy management, collaboration, and innovation (Nambisan
2003; TEKES 2006). Those competences4 together make up the organizational
capabilities providing competitive advantages for the NPD organizational entity.
However, it is not generally agreed what all areas comprise business competence, and
the definitions vary (Näsi and Neilimo 2006). The competitive advantages and the
required capabilities are relative to the particular competitive environment of the
organization or unit (Chakravarthy 1997).

There are several general schemes to organize this body of knowledge. For
instance Day (1994) develops a framework of market-oriented organizational
processes. He views the NPD function as a spanning process like illustrated in Fig. 2.
The key point is to see market-orientation as the total focus of the entire organization,
and the role of the NPD function in the network of the interrelated functions.
However, this overall model needs to be refined for the purposes of this thesis in
order to understand the intrinsic factors and interdependencies of software-intensive
NPD.

4 The terminology of competencies and capabilities is not clear-cut in the extant literature. The

terms are sometimes used interchangeably. In this thesis, the term ‘competence’ is defined to
mean the know-how of conducting different functional operations. Consequently, the term
‘capability’ means here the ability to utilize the competencies. This aligns with the recent
literature of NPD dynamic capabilities (Mathiassen and Vainio 2007; Pavlou and El Sawy
2006).

10

Outside-In Processes
• Market Sensing
• Customer Linking
• Channel Bonding
• Technology Monitoring

Inside-Out Processes
• Financial Management
• Cost Control
• Technology Development
• Integrated Logistics
• Manufacturing/Transform
• Human Resources
• Environment Health, Safety

Spanning Processes
• Customer Order Fulfilment
• Pricing
• Purchasing
• Customer Service Delivery
• New Product Development
• Strategy Development

EXTERNAL
EMPHASIS

INTERNAL
EMPHASIS

Fig. 2. NPD competence positioning (Day 1994)

In general, products and their development can be examined from different
perspectives, such as marketing, organizations, engineering design, and operations
management (Krisnan and Ulrich 2001). The NPD process area can further be
categorized in different ways varying in scope and primary viewpoints. Software
engineering can then be regarded as one technical discipline in the NPD context.

Notably the different bodies of knowledge are currently not clear-cut, but they are
partially overlapping and intertwined. For example, the software engineering
discipline utilizes general project management knowledge. In the general-purpose
project management knowledge and practices software development is a particular
application area technical element, and new product development is a management
specialization (PMBOK 2004 / Ch. 1.4).

2.1.1.2 Basic Models
The basic purpose of industrial product development is to create either completely
new products, or enhance and improve the existing ones (Smith and Reinertsen 1998;
Trott 2005; Ulrich and Eppinger 2000; Wheelwright and Clark 1992). Nowadays
product development offerings are increasingly often combinations of tangible
components coupled with various intangibles providing ‘total solutions’.

Product creation process models are intended to guide the development of such
new products. They are in particular for coordination and steering purposes. Fig. 3
illustrates a traditional, sequential product development process model (Ulrich and
Eppinger 2000). In this system development management model view the product
software construction is a part of the detailed product design, together with the
hardware engineering and other technology-dependent activities. Typically they
follow their internal project management and technical engineering process models.

11

Technical
Engineering
Process Models

Planning Concept
Development

System-level
Design

Detailed
Design

Testing

Production
Ramp-up

Front-end
Activities

Software
Engineering

Fig. 3. Basic general-purpose new product development process model

There are different types of product development projects. Typically the following
four generic types are distinguished (Wheelwright and Clark 1992):
• research and advanced development
• radical breakthroughs
• platform (next generation) development
• derivatives (enhancements and improvements; e.g., cost reduction versions)

Considering new products, it is important to realize that the ‘newness’ is relative to
the particular NPD company and the competitive environment. From that point of
view, product developments can be (Trott 2005; Ulrich and Eppinger 2000):
• new-to-the-world (fundamentally new products)
• new-to-the-firm (new product lines, platforms)
• additions to the existing product lines (derivatives of existing product platforms)
• incremental improvements and revisions to the existing products (e.g., cost

reductions)

Basically the product and project types follow from the company strategy.
Typically in large NPD organizations there are multiple development projects of
different types active concurrently, depending on the company product portfolio and
future strategic intents (Benko and McFarlan 2003; Davis 2002). Some companies
make strategic choices of avoiding new-to-the-world developments (disruptive
innovations) requiring risky, possibly heavy investments for years until profits can be
gained (Deloitte 2007). Depending on the product portfolio, different types of
uncertainties and risks involved must be taken into account at different stages (Davis
2002). All this calls for proactive NPD strategies balancing the short-term business
pressures and long-term growth paths (Kotler et al. 1996; Nakano 2007; Scinta 2008).

Overall, it is illuminating to understand how the basic role of organizational NPD
(R&D) has evolved over the years in general starting from separate corporate research
laboratories towards cross-functional integration of marketing, manufacturing, and
eventually networking across different organizations (Augier and Teece 2007;
Nambisan 2003; Nobelius 2004). However, in many cases it is still sensible to
distinguish between pure research-oriented activities and efficient execution of
commercial product development efforts.

12

2.1.1.3 Success Factors
In order to analyze comprehensively how successful software development can be
realized in NPD contexts, it is first necessary to understand the overall success factors
of NPD operations. This contextual perspective makes it then possible to see the
possibilities of agile software development models in NPD organizations.

In general, determining successful NPD efforts is non-trivial. Basically, successful
new product development comprises the following (Trott 2005):
• developing right products at the right time (product innovation management)
• developing the products right (product development process)

Product development performance can be measured from multiple viewpoints

typically in terms of product quality, development cost and development time
(Mäkelä 2008). Such performance indicators are for instance product technical
performance, innovativeness, cost (design and production), service level, lead time,
and market “fit” (attractiveness) (Krisnan and Ulrich 2001).

In commercial industrial NPD contexts the ultimate success is usually defined in
terms of financial performance (Brown and Eisenhardt 1995; McGrath 2004). Fig. 4
illustrates the type typical overall cost structure of NPD projects (Ulrich and Eppinger
2000; Chillarege 2002; Porter 1993). The future sales determine the overall financial
success in the long run, which in some NPD cases can only be seen after several years
(NPV). A typical traditional measure of NPD financial performance is the share of
profits and sales accounted for products introduced within the last (5) years (Kotler et
al. 1996). More advanced measurements have also been developed (Salem 2001).

Product
Life-cycle

Time

New Product
Cumulative

Profits

Product
Launch

Research
and

Development

Fig. 4. Basic NPD return-of-investments flow

However, with more complex NPD product and project portfolios, the combined
financial performance figures are not always so straightforward to analyze (Benko
and McFarlan 2003; Davis 2002). For instance there may be market and technology
probing projects and next-generation platform developments, where the overall
success effects for the entire NPD company in the long rung is more difficult to
amortize. Many NPD companies operating under fierce business conditions attempt
thus to shorten the new product development cycles (“time-to-cash”).

13

It is also important to realize that success can be measured at different levels of a
large NPD organization. Success at the product development project level does not
necessarily result in long-term business success at the company level. All and all this
is about value engineering (Lindstedt and Burenius 2003; Raivio et al. 2006).
Ultimately this leads to the question of how ‘success’ is defined, and what makes a
high-performance company (Atkinson 1999; Kirby 2005).

Over the years there have been numerous research investigations about the success
and failures of NPD efforts. A seminal, yet still much applicable summary of the
published NPD success factor research is the one by Brown and Eisenhardt (1995).
Regarding the research problem of this thesis, the most insightful part of the survey is
its proposition for an integrated model of different factors affecting the business
performance of the NPD organization as a whole – in particular the NPD process
performance (lead-time, productivity), NPD team process, and the product fit with the
market needs.

More recently for instance Ernst (2002) compiles an extensive survey of empirical
research results of NPD success factors. They use five main categories – notably
including organizational and cultural factors:
• NPD process
• organizational aspects of NPD
• cultural aspects
• role and commitment of senior management
• NPD strategy

Table 25 (Appendix) presents a literature summary of typical NPD success/failure

influencing factors in different industries (including the surveys discussed above).
Notably the studies conducted by Cooper and Kleinschmidt over the years are
instrumental here. While there are no straightforward answers to what is a ‘right’
product or an ideal product development process model, certain key success factors
have been advocated frequently time and again by many different studies. Those
include in particular (early) customer involvement and market sensing, collaborative
cross-functional teamwork, adaptive situational processes, trust-based project
leadership (culture), and supportive senior management commitment.

As a conclusion, it is important to realize that, in general, successful new product
developments require typically combined efforts of many different parties in large
organizations (“total-company effort”) (Kotler et al. 1996). The different factors stem
from many sources of the NPD process, technology, and organization. In particular,
the co-operative interplay between the marketing/sales and R&D functions is one of
the common keys to success (Day 1994; Souder and Moenaert 1992). However, often
people factors are underlined as the single most fundamental source of advantage
(Cohan and Unger 2006; Liker 2004; Takeuchi and Nonaka 1986).

McGrath (2004) sees that the main focus of NPD management (“mega-trend”) has
evolved over the past decades from basic successful product development project
management to time-to-market reduction, and more recently to overall R&D
productivity emphasis. However, it is important to realize that this is context-
dependent, and in large NPD organizations different product development projects
may have different performance drivers over the product life-cycles (Chillarege 2002;
Tyrväinen et al. 2004). Often there is a subtle balance between short-term

14

productivity gains and the long-term success of the product development (Mintzberg
2007). Organizational R&D capability investments create potentially future earnings
(Nakano 2007).

It is beyond the scope of this thesis to analyze all NPD success influencing factors.
Furthermore, currently there is no common agreement on what all factors are really
influential, and the theoretical frame working is diverse. However, for the purposes of
this research work, it is necessary to realize how the software product development
function interrelates to the overall NPD success, in particular with respect to
flexibility (Sect. 2.1.2) and agility (Sect. 2.2).

2.1.2 Flexible NPD Concepts
New product development is inherently uncertain in many modern competitive
environments (2.1.2.1). In such cases more flexibility is needed for successful project
conduct, and the basic NPD process models need usually to be replaced by more
flexible ones (2.1.2.2).

2.1.2.1 Uncertainty
The very nature of NPD entails uncertainties and risks. The two main categories of
uncertainty are usually the product and/or process technology and market risks. While
technical uncertainties can often be managed to a large extent with conventional
engineering management techniques, business risks are often much more subtle to be
coped with successfully, requiring multidisciplinary techniques and cross-functional
knowledge (e.g., weak signal interpretation). This is particularly relevant in modern
turbulent business environments, where market uncertainties are often more
dominating failure factors than technical risks (Smith and Reinertsen 1998).

In general, a turbulent competitive environment is characterized by high
complexity and high change rate (Chakravarthy 1997). For instance MacCormack et
al. (2001) define uncertain and dynamic product development environments as such
in which market and technology evolutions are unpredictable and happen rapidly. In
general, such uncertainties stem from the following main areas:
• What product to develop (concept, features) in order to maximize the current

market/customer value and development investments?
• How to design and implement it accordingly (technology, processes, people)?
• environmental circumstances (organization internal and external competitive

environment)

It is furthermore possible to distinguish between the degree of uncertainty ranging
from small variations to foreseen and unforeseen uncertainty, and even to chaos (De
Meyer et al. 2002). Different types of uncertainties call for different types of product
development project management tactics – possibly even questioning the very
purpose of the project (Atkinson et al. 2006). Traditional project risk management
techniques must then be extended towards more intrinsic project uncertainty
management (Charette 1996; Smith 2007). Discovery-driven planning acknowledges
the premise that in uncertain business environments the planning assumptions are
often not stable, and they must be systematically stated and revisited throughout the
execution while new information and feedback is received (McGrath and MacMillan

15

1995). This is one of the key premises in flexible and agile software development
models.

Notably the degree of uncertainty varies typically between the different areas of the
product creation (for example, high market uncertainty but low technical uncertainty).
It is therefore important to understand the uncertainty profile of the specific NPD
project context, and how it evolves over the life-cycle (Chillarege 2002; Davis 2002;
Little 2005; Royce 2005). Moreover, different elements of large, complex products
face often different types and levels of uncertainties over time.

Most of those sources of uncertainties, trends (e.g., globalization) and changes in
industrial NPD environments have actually been anticipated already for some decade
ago (Wind and Mahajan 1997). In particular it has been recognized that there is a
growing need for new NPD approaches to cope with discontinuous changes and
uncertainties in many competitive environments (Eisenhardt and Brown 1998; Iansiti
1995; Smith 2007).

2.1.2.2 Flexibility
The traditional basic NPD process model described in Sect. 2.1.1.2 is relatively well
understood in stable, predictable environments. However, under turbulent conditions
with considerable uncertainties and frequent, even disruptive changes, the basic
sequential planning and execution premises are often not so successful, and more
flexible ways of conducting the NPD work are needed.

Currently there is no one standardized definition of ‘flexibility’ in NPD. It can be
addressed from different perspectives and at different levels. Consequently there is no
one agreed measure of NPD flexibility. For instance Upton (1994) characterizes
flexibility (in manufacturing) in abstract terms as the ‘ability to change or react with
little penalty in time, effect, cost or performance’. Likewise, Smith (2008) underlines
the ability to make (even late) changes without excessive ‘disruptions’. One possible
general formulation of flexibility in NPD is to define it in terms of the cost and time
of making (late) changes and/or corrective actions (Verganti 1999). One proposed
metric is the (incremental) economic cost of modifying the product (Krisnan and
Ulrich 2001).

In general, flexibility in NPD can be realized in multiple dimensions and at
different levels including flexible products (both design and use), flexible NPD
project and process models, organizational flexibility, and even the company strategic
flexibility. For example product platforms and mass customization are typical ways of
enabling flexibility with a variety of product combinations (Anderson 1997; Männistö
2000). This thesis focuses on the product creation processes in general.

It is important to realize what creates the flexibility enabling internal process
capabilities, and how those capabilities are utilized externally for competitive
advantages (Upton 1994). The basic constraint of flexibility in the traditional
sequential NPD process (Fig. 3) stems from the early product concept definition,
which is not supposed to be changed during the downstream development (Iansiti
1995). The “fuzzy” front-end has often been pointed out as one of the main root-
causes of NPD project problems and failures due to uncompetitive/inappropriate
product concept or feature selection and/or slow start of the actual design work
(Nobelius and Trygg 2002; Rautiainen et al. 1999; Smith and Reinertsen 1998).

16

The principal solution to such inflexibility of the traditional sequential product
concept freezing followed by the fixed implementation and market introduction is to
allow the product definition (concept) to evolve concurrently with the actual product
implementation like illustrated in Fig. 5 (Iansiti 1995). Further and more current
information can thus be incorporated. It is then possible to define the responsiveness
of the NPD process as the time delay (Development Lead Time) between the market
introduction and the last moment of accepting changes (Concept Freeze).

The key difficulty with such overlapping is in general the increased complexity of
managing the work, since the incoming new information of the initial product
definition may affect the work already done and the subsequent planning. The product
development functions should then be prepared for accommodating changes in
product concepts and specifications during the concurrent development.

FLEXIBLE

Time

TRADITIONAL

Concept Development

Concept
Freeze

Market
Introduction

Implementation

Development
Lead Time

Project Start

Concept
Lead Time

Concept Development

Concept
Freeze

Market
Introduction

Implementation

Development
Lead Time

Project Start

Concept
Lead Time

Fig. 5. Flexible product development process principles (Iansiti 1995)

The choice between a basically linear and more flexible concurrent NPD process
models should typically be strategy-based following the environment-specific drivers
for flexibility (Treacy and Wiersema 1995). Usually it is not reasonable to attempt to
strive for maximum flexibility in all dimensions (Thomke and Reinertsen 1998).
Identifying early the critical project uncertainties and preparing how to handle those

17

criticalities with reaction capabilities guide necessary planned flexibilities (Verganti
1999). The competitive environment moderates the needs for flexibility in different
areas. It is thus important to understand, where and when the NPD organization needs
in particular
• predictable and straightforward project execution (operational efficiency) and/or
• abilities to accommodate new midcourse information and make changes.

NPD process acceleration has got considerable attention over the past years

(Eisenhardt and Brown 1998; MacCormack et al. 2001; McGrath 2004; Rauscher and
Smith 1995; Smith and Reinertsen 1998). Product development speed is coupled with
flexibility in many interrelated ways (Smith and Reinertsen 1998). Fast product
development cycle times make it possible to adapt more quickly to customer/market
changes and technological developments. Moreover, if the product development lead
time is short enough, there may be less needs for making changes altogether during
the development period.

There are two general principles of accelerating product development: compression
models (c.f., Fig. 5) and experiential models (Nambisan and Wilemon 2000). Often in
stable, predictable environments compression models are suitable while in uncertain
environments flexible experiential models are more effective (Eisenhardt and Tabrizi
1995). This is also one of the key premises in agile software development. However,
in addition several organizational and environmental factors affect the effectiveness
of the acceleration methods and their suitability.

Another dimension of flexibility is at the NPD management level. The NPD
flexibility can be increased by maintaining a balanced project portfolio supporting
both the current business strategy setting as well as anticipated future strategic
scenarios (Raynor and Leroux 2004). The latter perspective is in particular important
in turbulent competitive environments (Brown and Eisenhardt 1998; Chakravarthy
1997; Johnson et al. 2006).

NPD flexibility can also be viewed from the overall organizational perspective.
The flexibility of the NPD is interrelated with other strategic flexibilities in large
organizations. It is therefore important to understand the effects of the NPD flexibility
across the entire value chain (network) of the company – even extending beyond the
company boundaries (Goldman et al. 1995; Raivio et al. 2006; Worley and Lawler
2006). For instance supply chain flexibility is often closely connected to it (Kaipia
2007; Vehtari 2006).

The research stream of firm strategic dynamic capabilities has got growing
interests during the past few years (Mäkelä 2008; Wang and Ahmed 2007). The
works by Sanchez are foundational here (Sanchez 1995; Sanchez and Mahoney
1996). According to their view, high resource flexibility allows to utilize the product
development resources for alternative purposes with rapid and low-cost reorientation,
while high coordination flexibility makes it possible to take an advantage of such
flexible resources. However, they do not prescribe how to realize such organizational
advantages in practice.

Haeckel (1999) advocates likewise a model of an adaptive enterprise based on
dynamic sense-and-respond capabilities. Again, there is no prescription for
implementing such a conceptual model in reality, though. Worley and Lawler (2006)
emphasize the people factors in such organizational capabilities.

18

Notably in large NPD organizations the flexible organization view can be
considered as a hierarchical pattern with internal customers (Haeckel 1999). There
may then be some more stable internal subfunctions where less adaptation is needed
although the organization as a system is flexible (Sanchez and Mahoney 1996).

Table 26 (Appendix) summarizes various literature suggestions and findings about
flexible NPD (including the ones discussed above). Interestingly, one of the early,
highly influential and often-cited investigations of rapid and flexible new product
development was published already some 20 years ago by Takeuchi and Nonaka
(1986). This is because the investigation addressed technology-independent elements
of NPD organization and management. Consequently, they are still valid to a large
extent. However, the recent development of many IT-based solutions (e.g., virtual
prototyping) has made it possible to achieve fundamentally more flexibility in many
phases of the NPD process, though (Nambisan 2003).

It is beyond the scope of this thesis to elaborate all those factors more extensively.
The concluding point is to realize that, in general, flexibility and speed in NPD
depend on many interrelated factors. Usually no single element or “best practice” is a
key solution, but mutually enforcing different organizational, process, technology,
and people factors are typically combined and balanced.

2.1.3 Software-Intensive NPD
Software development is an increasingly important part of the creation of many
modern new products (2.1.3.1). In such product environments embedded software
engineering is typically a core competence for successful product creation (2.1.3.2).

2.1.3.1 Product Creation and Software Development
Software development relates to new product development at different levels
depending on the role of the software in the products. In general, the outputs of
industrial software production can be categorized as pure software products (stand-
alone), customized software, and embedded software (Hietala et al. 2004). However,
it is useful to realize how much software development is done in different industrial
organizations in addition to specialized software product companies (Tyrväinen et al.
2004). In particular, embedded software production (in devices but also increasingly
in services5) is a major activity for instance in the telecommunications industry.
Consequently, software engineering can be one of the component disciplines of the
larger product creation process (see Fig. 3), or the entire NPD process is about
software production.

Basically all that is said about NPD processes in Sect. 2.1.1 and Sect. 2.1.2 applies
to software product development as well, but the intrinsic factors of software put
weight on specific process key areas. However, such technology-independent factors
as early customer involvement and systematic product architecture design are keys to
success (MacCormack 2001).

In practice many industrial software product development set-ups may be even
much more complicated. A complex software-intensive new product is typically

5 In this thesis, the term ‘embedded software’ is by default used with the former meaning (in

telecommunications equipment).

19

created as a series of embedded software and hardware releases. For example, large
telecommunications system products may be under development for several years.
Such a continuous development streaming stretches the traditional concept of
software projects (Koskela and Howell 2002; Levine 2005). For instance the
following additional technical and organizational factors are typically involved in
large-scale software-intensive NPD organizations:
• different (even asynchronous) development time-schedules for the product

software and hardware parts (e.g., hardware development started first without
related software development)

• externally furnished components (software and hardware)
• product software and/or hardware configurations compatibility constraints
• legacy systems and components
• software and hardware platform developments
• multiple parallel product lines (product portfolio)
• existing customer bases and product installations

Software product development productivity is a general strategic concern in many

current industrial sectors in general (Baskerville et al. 2006). At the same time the
complexity of software-intensive product development is often increasing in many
dimensions (ARTEMIS 2006; ITEA 2004; ITID 2008; Nidiffer and Dolan 2005;
Rauscher and Smith 1995). Those factors introduce new challenges for success. The
key issue is to realize the role of the software development in the total product
development value chain over time (Raivio et al. 2006). In particular, there are often
extensive needs to transfer knowledge both spatially and temporally (Büchel 2007).

Over the years there have numerous research investigations about general software
product development project success/failure factors and risks. However, the NPD
context is much more sparsely studied.

One of the seminal investigations of large-scale industrial software product
development problems (including embedded software) was conducted by Curtis et al.
(1988) already in late 1980s. A key conclusion was that large software development
problems are much about learning, communication, and negotiation between different
stakeholders with different knowledge domains. Interestingly, they stem from
organizational dynamics and management structures, which have not fundamentally
changed since the time of that field study.

Table 2 summarizes typical software-intensive NPD success factors discussed
above. In addition, what is known about software project successes and failures in
general is also relevant here – see for example Smith (2001), Sommerville (2001). It
is beyond the scope of this thesis to cover all such factors in more detail, however.
Sufficient to conclude that the NPD context brings the business dimension into
specific consideration.

20

Table 2. Representative software NPD success/failure factor findings (chronological order)

Publication Influencing Factors Success Criteria
(Curtis et al.
1988)

NEGATIVE:
• thin spread of application domain knowledge
• fluctuating and conflicting requirements
• communication bottlenecks and breakdowns
POSITIVE:
• exceptional designers (system-level thinkers

with good communication and coordination
skills)

• managing learning (in particular when major
changes in the application area, technology)

• not formalizing (requirements) specifications
until the major uncertainties have been reduced;
negotiation and coordination processes for
resolving requirements conflicts

• organizational communication channels
between the customers and developers, and
between successive project teams; informal
communication networks

software productivity and
quality

(MacCormack
2001)

POSITIVE:
• early release of the evolving product to

customers
• frequent (daily) incorporation of new software

code (new information) and rapid feedback on
design changes

• project teams with broad-based experience of
developing multiple projects

• investments in the product architecture design

product quality (reliability,
technical performance,
breadth of functionality)
compared to the
competitors, project
resource productivity

(Baskerville et
al. 2006)

NEGATIVE:
• time-to-market compression demands
• ambiguous and fluid requirements
• changing environment
• insufficient programmer productivity
• lack of design time and experience
POSITIVE:
• concurrent development with frequent releases
• customer involvement and prototyping
• structured architecture
• efficient tools and reusable components
• tailored methodology with right team expertise

quality, cost, and
development speed balanced

Section 2.1.2 explores flexible NPD in general. The same principles can to a

considerable extent be applied also for the software parts of products, with the
additional inherent flexibility of software. Notably for that reason many modern
product designs allocate more and more functionality into the embedded software
components (Tuormaa 2009). This increases the overall flexibility of the product
system design, but puts even more emphasis on the flexibility requirements in the
software development (Turner 2007). Two key points are then the last change to the
architecture (conceptual changes), and the last change at the module level (feature
changes) (MacCormack and Verganti 2003).

Most of the currently advocated approaches and practices for flexible software
product development have actually been known for years (Larman and Basili 2003).

21

However, the current trends in many competitive environments and organizational
business models (e.g., networked product development) on one hand, and the modern
software development and IT tool advancements on the other have recently made
them more and more attractive (McGrath 2004). Every NPD organization should
nowadays consider the influence of Internet to their business and products on the one
hand (e.g., Open Innovation), and the fundamental nature of software development
enabled by even global networking (e.g., Global Software Development) on the other
(Baskerville et al. 2006; Yourdon 2002).

Table 3 highlights the key literature viewpoints and findings of flexibility in
software new product development. It is typically achieved essentially with the same
basic principles as in NPD processes in general (c.f., Table 26, Appendix).

Table 3. Representative approaches to flexible software NPD (chronological order)

Publication Approaches Potential Benefits
 Costs and Problems
(Gilb 1988;
2006)

PROCESS:
• evolutionary systems development

and delivery in short (even 1 week)
and small (some 2% of the total
budget) value-based increments

• continuous learning and adjustment
of the goals according to the current
needs and feedback on delivered
increments

Focuses on current most valuable
delivery goals; rapid adjustments with
constant feedback; no excessive budget
overruns (visibility)

Assumes quantifiable systems goals,
expecting good systems engineering
capabilities and skills.

(Yoffie and
Cusumano 1999)

ORGANIZATION:
• swift strategic decisions
• small product teams, authorized to

make decisions for their products
• leveraging external resources to

compensate in-house capabilities
(e.g., beta-testers, open source)

Closely following and even influencing
the customer expectations and market
trends; Maintaining “small-company”
flexibility and creativity in large scale;
Balancing internal resource bottlenecks
with external resources.
lack of coordination between different
groups in large organizations

(MacCormack
2001;
MacCormack,
Verganti and
Iansiti 2001)

PROCESS:
• investments in architectural design
• earlier feedback on product

performance from the market
ORGANIZATION:
• development teams with greater

amounts of “generational” (system-
level) experience

Closer match with the evolving
requirements; Dedicated architecture
work can maximize the product
performance and support flexibility.

Overlapping: Need to start detailed
design before the product architecture
is completed; Need to start integrating
the system with partially ready
components;

(MacCormack
and Verganti
2003)

PROCESS:
• analyzing the sources and levels of

project context-specific uncertainty
(new design work and markets)

• matching the development process
model (practices supporting
flexibility) accordingly to address
the uncertainties (contingent view)

Investments in architectural design, and
early technical and market feedback are
associated with better performance of
projects facing high uncertainties.
The cost of increasing the flexibility
(e.g., developing a highly modular
product architecture) should be
weighed against the potential gains of
such options. Building the flexible
capabilities may require significant
long-term efforts (proaction).

22

Publication Approaches Potential Benefits
 Costs and Problems
(Mikkonen and
Pruuden 2001)

PROCESS:
• defining explicit flexibility

requirements for certain parts of the
software system to accommodate
future information and/or late
changes

Allows the software development to
proceed with incomplete and unstable
information.
Requires careful architectural design
decisions identifying the critical
flexible parts. May lead to trade-offs
and compromises with other product
goals (e.g., performance).

(Moløkken-
Østvold and
Jørgensen 2005)

PROCESS:
• flexible development models

(incremental, evolutionary, agile)

Promote continuous dialogue between
the customers and the software
developers.
Requires competent clients.

(Subramaniam
and Hunt 2006)

TECHNOLOGY, PROCESS:
• avoiding making premature

irreversible commitments to new
technologies (in case of
uncertainties)

Keeps change options open.
May delay development decisions
unnecessarily. Requires understanding
of the technology development
maturity.

Overall, interdisciplinary organizational studies of NPD software development are

still dispersed. There is no clear research stream, and the publications are diverse
(Glass et al. 2004). However, recently the concept of firm dynamic capabilities has
gained considerable attention also in the software development context (Aramand
2006; Kivelä 2007; Mathiassen and Vainio 2007; Mäkelä 2008).

2.1.3.2 Embedded Software
A fundamental characteristic of embedded system product development is its
multidisciplinary nature. Software engineering is then one of the component
disciplines, while systems engineering brings the different elements together as a
complete product design (Leppälä et al. 2005). In principle, it is about integrating
software computing models, the target hardware execution limits, and the system
environment constraints (e.g., response time) into a coherent realization (Henzinger
and Sifakis 2006).

Such industrial embedded software new product development entails certain
inherent difficulties compared to other software production categories (Sect. 2.1.3.1).
They stem typically from the complicated dependencies with the environment and the
target hardware:
• The customers (users) do not usually perceive the software part as a such, but they

action with the combined hardware/software product. Consequently, the customer
requirements do not necessarily address the software directly.

• With business products (B2B) and deeply embedded systems there may be
different levels of users/customers (B2B2C). The software solutions may not be
equally visible at every level – if at all (e.g., telecommunications network systems).

• There may be critical non-functional system requirements pertaining for example
real-time performance and reliability.

• The technical requirements for the software include often a complex set of
interfaces to external systems and to (proprietary) hardware devices. The external

23

system requirements may be defined by international technical standards (which
could be subject to change or still under development).

• The software implementation is often constrained by the target hardware resource
limitations (e.g., processing power).

• The target hardware platform may consist of various computing, peripheral, and
interface units often realized as a distributed system.

• The software testing in the target hardware environment may be complicated,
requiring special-purpose laboratory set-ups, auxiliary measurement devices, etc.

• The software part may have to support in addition to the actual customer
functionality various internal hardware testing functions for instance for field
testing and hardware manufacturing purposes.

• If the target hardware is under concurrent development with the embedded
software parts, the software development may have to be started with incomplete
hardware specifications, and the early testing phases may have to be done with
prototype hardware.

• It is not unusual that some target hardware design defects are discovered late,
requiring additional software workarounds.

A recent European investigation indicates that there appears to be considerable

gaps between the theoretical research advancements of embedded software
engineering and the industrial practice in many sectors (Graaf et al. 2003). The key to
industrial embedded software NPD success is to be able to develop such technically
complex and large products with high business productivity and quality (Sifakis 2007;
Solingen 2002). One of the key challenges is then to develop flexible software
process models integrated with the systems and hardware engineering design flows
(ITEA 2004; ITID 2008; Rauscher and Smith 1995).

A long-term vision is to have systematic end-to-end product development
processes and tools for complex software-intensive and embedded systems taking into
account industrial business drivers and constraints (ARTEMIS 2006). Sufficient to
conclude here that embedded software development expands the software engineering
technical dimension while the NPD context (Sect. 2.1.3.1) emphasizes the business
dimension.

2.2 Agility in Product Development

In order to fully understand the role and effects of agile software development (Sect.
2.3) in large-scale NPD context, it is first necessary to comprehend the general
principles and foundations of agility (Sect. 2.2.1). This grounding then makes it
possible to reason agile capabilities in NPD (Sect. 2.2.2). Furthermore, the key
enablers and tactics for developing such necessary agile capabilities can be devised
(Sect. 2.2.3).

2.2.1 Concepts and Definitions
Currently there is no unified definition of ‘agility’ in product development. Different
authors use it in varying – sometimes even confusingly – in different scopes and

24

depths. In general, it is an attribute which can be linked to organizational entities
ranging from individuals to entire enterprises. For example Goldman et al. (1995)
view it from an enterprise-level perspective comprising marketing, production,
(product) design, organization, management, and people.

Table 27 (Appendix) presents a representative set of different general definitions of
agility used in the literature of various disciplines over the years. The essence of
agility is that in turbulent competitive environments there are many unpredictable
changes taking place often and dynamically, and thus traditional forecast-based
planning and strategy assumptions do no longer hold (Doz and Kosonen 2008).
Agility is seen as a viable way of competing successfully in such new environments.
The ultimate business goal can be attributed to profitability and adaptability
requirements (Dove 2004).

It is not in the interests of this thesis to propose a new definition of agility. Like
stated in Sect. 1.1, we adopt as a working definition the one by Conboy and Fitzgerald
(2004) because of its wide-ranging interdisciplinary yet software-oriented nature; see
Table 27 (Appendix). It also aligns with the scoping of this research (Sect. 1.3).

That said, this thesis maintains the view that agility is a system capability of an
organizational entity relative to its competitive environment. Fig. 6 illustrates this
view. It is an inferred synthesis based on the different formulations and definitions of
agility summarized in Table 27 (Appendix). Here an entity may be the entire (virtual)
company as well as the internal NPD function or an individual software project team.

Entity
(Projects)

• Resources
• Assets
• Structures
• Processes
• Values

Offerings

Competitive
Environment

Other
Organizations

(Projects)

• Suppliers
• Partners

Agility

Agile Capabilities

Drivers

Organization Unit

Fig. 6. Agility viewed as an organizational capability

Notably this is an open dynamic system. In general, agility can thus be
decomposed into the following dimensions with respect to the interface between the
unit and its environment (Ismail et al. 2006):
• responsiveness (reacting appropriately to the changes)
• proaction (preparing for future changes, possibly also influencing them)
• robustness (ability to cope with unpredictable external changes)

25

Agility is fundamentally about dealing with uncertainties and learning over time. A
Learning Organization is proficient at adapting to its changing environment. It is
therefore important for the organization (unit) to understand the potential sources of
uncertainties and changes (drivers) in its competitive environment. The needs for
external agility and the appropriate internal management style tactics thus vary (De
Meyer et al. 2002).

Ideally, the offerings of an agile NPD organization are constantly competitive and
timely responses to market/customer changes, utilizing – whenever feasible – the
latest technological opportunities. This is typically achieved with adaptive,
customizable products realized by modular architectures and platforms. In addition,
they are created profitably with dynamically configured production set-ups, leading to
sustainable competitive advantages for the company even under disruptive
circumstances (Suikki 2007). However, not all changes require always immediate
responses, and sometimes no response may be a sensible choice (Lovén 2006). An
agile company may furthermore create and adapt its offerings proactively, thus
initiating itself desirable changes to the environment (Goldman et al. 1995; Highsmith
2002). Both product and process innovations are thus important (Lyytinen and Rose
2006).

In this respect, product development flexibility – as discussed in Sect. 2.1.2 – can
be interpreted as one enabler for agility. Oosterhout et al. (2006) distinguish between
flexibility and agility based on how predictable the changes are and how well the
responses can be predetermined. That is, flexibility alone may not be enough for
comprehensive agility.

Agility is often related to leanness because of their mutual goal-settings. The
essence of Lean Thinking is to continuously optimize the production value flow by
eliminating “wastes” and maintaining high quality (Liker 2004). The lean ideas have
subsequently been adopted further to product development and even to software
production (Mascitelli 2006; Poppendieck and Poppendieck 2004).

However, again, the conceptualization and terminology are not uniform and
harmonized here, and some authors consider ‘lean’ as a prerequisite for agility, whilst
other interpret it in a broader sense with a wider scope (Katayama and Bennett 1999;
Narasimhan et al. 2006; Ward 2007). There are even some propositions to define
‘leagility’ as the composite concept (Naylor et al. 1999; Hoque et al. 2008). ‘Lean’
(with a capital initial) is also used in a wider sense as a general organizational
improvement technique (Phillips 2008).

On the other hand for instance Haeckel (1999) sees that agility is not enough in
highly unpredictable environments, but organizational ‘adaptation’ is needed. Upton
(1994) views flexibility as the main concept with robustness and agility as its features.
Tsourveloudis et al. (1999) define (manufacturing) flexibility as the production
function-level attribute, while agility is a company-level capability of the whole
enterprise. Such corporate agility is the net-effect of all business processes, and
usually in practice both adaptive flexibility and routine efficiency is needed in an
appropriate balance in different process areas (Miers 2007). In that perspective
efficient product development could enhance company-level agility.

In principle, this is a matter of how ‘agility’ (and ‘lean’) is defined and scoped.
This thesis maintains the view that agility is the highest-level umbrella concept, and
flexibility, adaptation and leanness are constituent elements of comprehensive,

26

external agility. Depending on the level and nature of the uncertainties, more adaptive
(flexible) or streamlined (lean) internal capabilities are apt in order for the
organization (entity) to stay competitive. This is furthermore subject to change over
time, depending on the dynamics (turbulence) of the competitive environment. Agile
software development can be mapped to this spectrum (Sect. 2.3.1).

2.2.2 Agile Capabilities
Agility is not unique to either NPD or software development. The origins of most of
the current agility concepts trace back to early 1990s manufacturing field (Preiss
2005). At that time the traditional mass production business models were realized to
become uncompetitive in many sectors particularly in the USA. There was a need to
rethink the whole production system, and agility was devised to be the next
competitive edge in the new competitive environments. The key driver with flexible
manufacturing systems (FMS) and other related production means is that in many
industries facing unpredictable changes in product demands and customer needs the
traditional mass production mechanisms are no longer competitive enough, and more
adaptive production is needed.

Table 4 presents a concise literature overview of the general meaning and
objectives of agility in different business competence areas (Sect. 2.1.1.1). Although
the general goal is the same (sustainable profitable business in changing competitive
environments), the different areas address it from different points of view and in
different scopes. They are also partially overlapping.

Table 4. Agility in different business competence areas

Area Meaning / Objectives
Strategic Agility Strategic sensitivity (awareness and attention), leadership unity

(collective commitment), and resource fluidity (reconfiguration)
working as an integrated real-time system; Agility = Sensitivity ×
Unity × Fluidity (Doz and Kosonen 2008);

Business Agility Constant reconfiguration of strategies and processes and examination
of their market positioning while external conditions continually
change (Gould 1997); Quickly implement new business models and
value delivery systems (HP 2003); Being able to swiftly change
businesses and business processes beyond the normal level of
flexibility to effectively manage unpredictable external and internal
changes (Oosterhout et al. 2006); Capability to adjust the coordination
of resources and mechanism with smooth dexterity in response to
change and to maintain performance (Caswell and Nigam 2005)

Enterprise Agility Capabilities to thrive and prosper in a changing, nonlinear, uncertain
and unpredictable business environment (Kidd 1997); Accurate timely
awareness that changes should be made, effective prioritization among
competing changes and response-alternatives, abilities to change
business processes and to customize operational responses in real time
(Dove 2004); Adaptive enterprise (Haeckel 1999; HP 2003); Ability of
firms to sense environmental change and respond readily (Overby,
Bharadwaj and Sambamurthy 2006)

Agile Organization Adaptive (re)configuration of resources, structures, and routines to
address unpredictable changes and opportunities in the environment;
Nonlinear interaction with self-organization (decentralized control)
and coevolution (Atkinson and Moffat 2005);

27

Area Meaning / Objectives
Agile Workforce Responsiveness to changing customer needs and market conditions

(intelligence), speed of developing and acquiring new skills and
competencies, effectiveness of cross-functional cooperation and
moving between projects (collaboration), culture (empowerment), IS
(IT support) (Breu et al. 2001); All employees meet (can interact with)
customers (Goldman et al. 1995); Agile leaders;

IT Agility Efficient and flexible IT services for dealing with changes and
supporting organizational reconfigurations; New systems can quickly
be implemented, critical systems changed, or the IT infrastructure
restructured to provide new strategic and tactical capabilities or to
respond to changing market and competitive conditions (Skaistis
2006); Enabler for Business Agility (Crawford et al. 2003);

Agile Manufacturing Rapid and low-cost production of customized and high quality
products in varying lot sizes by combining the efficiency of lean
production with operational flexibility whilst delivering customized
solutions at the cost of mass-production (Adeleye and Yusuf 2006);
Production model that enables firms to react deliberately, effectively
and in a coordinated manner to changes in the environment (Vázquez-
Bustelo and Avella 2006); Efficiently changes operating states in
response to uncertain and changing demands (Narasimhan et al. 2006);

Agile Supply Chains Responding rapidly to changes in demand, both in terms of product
volume and variety (Christopher 2000); Coping with irregular
(unpredictable) demand patterns in volatile markets; Ability to sense
and respond quickly, predictably, with high quality, easily adapting to
changes in demand (Hofman and Cecere 2005);

Notably the concept of agility is currently not exactly or uniformly defined in all

those fields. For instance the literature of Agile Manufacturing proposes many
different definitions varying in scope from the actual production functions up to
enterprise-level virtual manufacturing networks (Yusuf et al. 1999). Overby et al.
(2006) conceptualize enterprise agility in terms of the environmental sensing and
responding capabilities of the entire organization.

Furthermore, agility-oriented principles have generally speaking been addressed in
different disciplines and business competence areas without using the term ‘agility’
explicitly. For instance Kotler (1994) characterizes Marketing as “the process by
which an organization relates creatively, productively, and profitably to the
marketplace”. This is essentially in line with the definitions in Table 27 (Appendix)
and Table 4, and concerns the NPD functions, too.

Following that line of holistic systems thinking, ultimately the entire value-creation
network of the company – including the NPD function with software development –
can be viewed with respect to agility. Considering the conceptual system view in Fig.
6, the NPD functions contribute to both the sensing and responding capabilities of the
organization. For example Krisnan and Ulrich (2001) have recognized the product
development supply chains thinking. Such systemic viewing should cover not only
the organizational structures and processes but also – and often even more
importantly – the people (workforce) involved (Atwater and Pittman 2008).

2.2.3 Agility Improvement
In search for applicable improvement approaches, the range of currently proposed
agility measurements in different disciplines are reviewed (2.2.3.1), along with some

28

more complex analysis tools (2.2.3.2). The current state of practice in introducing and
improving agile product development capabilities is then overviewed (2.2.3.3).

2.2.3.1 Metrics
Because of the diversity of the ways agility is defined and scoped, there is no unified
direct measurement of agility. However, it is typically attributed with the response
times and the economic cost of making changes. Referring to Fig. 6, the former is an
external metric observable at the customer interface while the latter is an internal
metric related to the agile capabilities. The ultimate (indirect) measure is then the
competitive business result achieved in the long run.

Zsifkovits and Engelhardt-Nowitzki (2007) survey and compare different
conceptual views of agility and measurement frameworks. For instance with supply
chains measurements a general problem is that the traditional metrics defined in the
past for stable environments are not necessarily representative in new turbulent
environments. In software development there is currently a similar problem of
determining the expressive power of conventional software engineering metrics with
agile software development models (Sect. 2.3). Some more business-oriented, macro-
level metrics have thus been proposed (Hartmann and Dymond 2006).

There are various propositions for agility metrics like presented in Table 5. They
are currently under debating, and no single measurement is commonly used. Typically
the proposed indices are aggregates. Again, much depends on the way agility is
defined in the first place. Notably there is currently no specific agreed measure on
agility in NPD.

Table 5. Agility measurement approaches (alphabetical order)

Publication Field, Scope Approach / Principles
(Caswell and
Nigam 2005)

IT Operational system change model calculus:
• (minimum) cost in time, money, and other resources of

making changes
(Conboy and
Fitzgerald 2004)

IS Implementing changes:
• # of changes implemented vs. costs (€)

(Dove et al.
1996)

Enterprise Change-proficiency:
• cost, time, robustness, scope

(Hofman and
Cecere 2005)

Supply chains • speed and predictability
• ease (of responding)
• quality (supplier, manufacturing, product)

(HP 2003; HP
2005)

IT; Financial
services, Network
service providers,
Manufacturing

Implementing changes:
• time, range, ease (Agility Index)

(Ismail et al.
2006)

Manufacturing Agility Strategic Framework:
• agility capability indicators
• environmental turbulence indicators

(James 2005) Manufacturing • cost of change
• time to change
• stability of change
• scope of change
• frequency of change

(Lin et al. 2006) Manufacturing • Agility Index

29

Publication Field, Scope Approach / Principles
(Oosterhout et
al. 2006)

Enterprise, IT Agility Gap Ratio:
• probability of business change
• difficulty to achieve business change (beyond the

normal level of flexibility)
(Overby,
Bharadwaj and
Sambamurthy
2006)

Enterprise Enterprise Agility Score (indirect aggregate function):
• Sensing score (ability to sense environmental changes)
• Responding score (ability to respond to the changes)
• alignment level between different sensing and

responding areas
(Tsourveloudis
et al. 1999)

Manufacturing Fuzzy-set based aggregate:
• production (time and cost of unanticipated changes)
• market (external customer service and marketing

feedback)
• people (training, motivation; Agile Workforce)
• information (capturing, managing, sharing)

For example Turkulainen (2008) has recently investigated similar measurement

questions in manufacturing plants − in particular the relationship between
organizational integration and the performance. Her submission is that performance is
a multidimensional measure (e.g., on-time new product launch, product
innovativeness), and in the manufacturing context a reasonable scale is comparative
(to the competition in the industry) rather than a one-dimensional absolute value.

2.2.3.2 Analysis Models
It is not obvious how exactly the different dimensions and levels of agility illustrated
in Sect. 2.2.2 are related to each other. This is partially an open research question. In
particular, it is not clear how much and under what specific circumstances they each
contribute to the business success of a large NPD company (Mäkelä 2008).

In theory, different organizations (units) can provide similar responses with very
different internal costs. The essence of total-company agility is the ability to sustain a
reasonable balance between the responsiveness and the associated costs under
changing (even turbulent) circumstances. For example Conboy and Fitzgerald (2004)
propose a general cost-based model of agile capability like illustrated in Fig. 7. A
proactive organization which is well-prepared is able to implement more changes
and/or at a lower cost during the same time than a less-prepared, reactive one. The
organization can utilize new learning to become continuously more capable (prepared
for future changes). If the organization initiates the changes by itself (creation), the
competitors may have to respond.

30

of
Changes
(realized)

Cost
(economics)

 Creation

Proaction

Reaction

Learning

Fig. 7. Cost modeling agility dimensions (Conboy and Fitzgerald 2004)

In traditional NPD models (Sect. 2.1.1.2) the premise is to first create the product
concept, design it, and then realize the chosen product design basically avoiding
(major) changes during the realization phase (c.f., Fig. 3). The reasoning here is that
in many product development areas the cost of changing the product design after
certain commitment points (e.g., hardware technology selection) increases drastically,
making it infeasible to realize major (late) changes.

Flexible NPD models (Sect. 2.1.2) on the contrary have a different basic
assumption to accept uncertainties, avoiding early (premature) design commitments,
and consequently making even late design changes throughout the product creation
(c.f., Fig. 5). Depending on the product technologies, there are various ways to
accomplish this, but in particular software-intensive systems have the advantage of
potentially low cost of making the product changes with software thereby keeping the
cost-level nearly uniform until the product release time (Thomke and Reinertsen
1998). Ideally, the cost of making even major changes remains flat throughout the
product development time period (robustness). However, the traditional sequential
NPD models (Fig. 3) strive to lock the product design early, consequently making
changes later more costly. The flexible NPD models attempt to avoid this (Fig. 5).
Fig. 8 illustrates this overall characterization (Boehm and Turner 2004; Glazer et al.
2008; Highsmith and Cockburn 2001; Smith 2008; Wils et al. 2006).

Product Development
Life-cycle Time

Cost of
Product

Changes Traditional
NPD

IDEAL
(robust)

Flexible/Agile
NPD

Fig. 8. Characteristic cost-of-change curves of different NPD approaches

31

In general, there are many possible ways to achieve the flatter slopes of the cost-
change curve. Like discussed in Sect. 2.1.2.2, flexibility in NPD requires typically
dedicated investments (e.g., in product architectures, extra capacity, options). Agility
is from that point of view a strategic NPD capability investment. Consequently, the
return-of-investment should be balanced and amortized over a longer period of time
for sustainable competitive advantages. For example reducing the “technical dept” of
an aging product design may require additional midstream work but decrease the cost
of future changes.

Also more formal cost calculus approaches have been proposed (Caswell and
Nigam 2005). A general problem is the lack of (published) quantitative evidence of
actual cost of change values and formulas in different disciplines (Smith 2008).

On the whole, care should be taken not to oversimplify complex product
development systems with idealized models such as in Fig. 7 and Fig. 8. In particular,
the underlying cost dynamics are in practice hardly ever fully continuous throughout
the entire product life-cycle. For example, there may be certain major architectural
decision points which limit the future change space radically. Such discontinuations
could make the ideal models only piecewise valid. Moreover, disruptive changes in
the competitive and technological environments can make the proactive preparations
and current learning partially obsolete, thus again increasing the costs (Fig. 7).

Overall, this is about investment appraisals and evaluation. In principle, there is a
risk of over/under-investing to agility (Overby, Bharadwaj and Sambamurthy 2006;
Mirakaj 2008). Currently there is no one universal technique used for such purposes
in IS/IT development. The evaluations can be approached from multiple different
points of view, such as (Irani and Love 2002):
• economic ratios and discounting
• strategic (alignment of the investments with the business goals)
• analytic (e.g., value analysis)
• integrated (multi-criteria)

A parallel discipline here is the investment evaluation of agile/flexible
manufacturing systems and supply chains (Heikkilä and Ketokivi 2005; Naik and
Chakravarty 1992; Raafat 2002; Vehtari 2006). For example Turkulainen (2008) takes
the viewpoint that integration benefits (in manufacturing) should not be taken for
granted since there are in general cost/benefit trade-offs. The positive effects of
integration are according to her findings not uniform in all performance dimensions.

The strategic viewpoint is the key concern considering the benefits and costs for
developing the agile capabilities in the NPD functions. We expect the same ideas to
be applicable with respect to agility in the NPD software production context.

In sum, different organizations may choose and are able to respond to changes in
different ways depending on their agile capabilities. There is a need for guiding such
strategic and tactical decisions in industrial NPD organizations. Current published
work lacks such guidance, and more multidisciplinary research is needed in
integrating the business, engineering, and large-scale organizational concerns of
agility.

32

2.2.3.3 Capability Development
Overall, the agile improvement is subject to organizational change management in
general. Depending on the market circumstances in one hand, and the competitive
position and current capabilities of the organization on the other hand, different
companies (organization units) may choose to conduct a radical transition to agility or
to implement incremental changes.

Following Schein’s (1999) generic change model, the fundamental driving
questions should be answered first:
• Why do we need agility? How agile should we be?
• What is our current state, respectively?

The gap between the current agile capabilities state and the desired strategic goal

state should then be addressed. An important part is to revisit and iterate this process
frequently. A fully agile organization is proficient at continuously reorganizing and
reconfiguring itself (Dove 2004).

One way of making this process more specific is to conduct systematic agility
assessments. Such assessments could help realizing the actual needs for agility, and to
evaluate the existing agile capabilities. Improvement actions can then be focused
accordingly.

Several different assessment approaches have been proposed in different
disciplines like surveyed in Table 9. Again, they vary considerably in scope and
depth. Assessing agile software development is discussed in Sect. 2.3.3.

Table 6. Agility assessment approaches (chronological order)

Publication Field, Scope Approach / Principles
(Dove et al.
1996)

Enterprise,
organizational
development

• Agile Enterprise Reference Model

(Sharifi and
Zhang 1999)

Manufacturing • tabularization of company agility needs, capabilities,
practices

• self-assessment
(Conboy and
Fitzgerald 2004)

ISD • Agility Assessment Framework

(Lin et al. 2006) Manufacturing,
supply chains

• Agility Index

The agility metrics (Table 5) are related to these assessments. In particular, it is

important to understand whether to assess/measure the effects of agility (business
outcomes) or the capabilities that enable agility, c.f., Fig. 6.

Currently there is no one uniform way (framework) of agility improvement. Table
30 (Appendix) presents a literature overview of different approaches to improving
agility in different disciplines. Like the definitions of agility (Table 27), they vary
considerably in scope and focus. It is important to realize how agile capabilities and
their development range from discipline-specific aspects to generic organizational
ones (Table 4).

In all, there is a fundamental question of why, where and when an organization
(entity) should strive for agility improvements (agility drivers). One should also
determine how “much” agility is really necessary (Lyytinen and Rose 2004; Sharifi

33

and Zhang 1999; Tsourveloudis et al. 1999). Those strategic questions can be
reasoned in structural and temporal dimensions.

The organizational structure levels can range from individual persons (workforce
agility) up to the entire company, and possibly even further to inter-enterprise leveling
(enterprise agility; c.f., Fig. 1 and Fig. 6). The temporal dimension factors stem for
instance from the life-cycle phase of the product portfolio, technology development,
marketing strategy and market positioning, and also the company (unit) business stage
(start-up vs. established) (Kotler et al. 1996 / Ch. 13; Levine 2005; Chillarege 2002;
Tyrväinen et al. 2004).

Once the organization (unit) has recognized and understood its current agility
drivers and needs, it can plan appropriate improvement actions – if necessary. In
principle, this means creating and developing the enabling capabilities and removing
the possible obstacles and impediments (if any for the time being). This results in
building the agile capabilities (resources, assets, structures, processes, values) like
depicted in Fig. 6.

Johnson et al. (2006) suggest that certain levels of threshold capabilities are
necessary in any competitive environment just to be able to maintain reasonable
business. Like with strategic development in general, there are different possible
strategic change approaches to agile transition and improvement: adaptation,
reconstruction, evolution, and revolution. The two general transformation strategies
applied in practice are top-down and bottom-up approaches (Day 1994). None has
been shown to be superior so far. Much depends on the historical background of the
company (organization unit) and its current context-specific needs and capabilities.

Middle managers may play key roles in large organizations (Ferrarini 2008). When
agility contradicts with the prevailing fundamental assumptions and values of the
organizational culture, a deep paradigm shift may be required to transform the
organization profoundly (Levine 2005; Northover et al. 2007; Schein 1999).

Finally, it is fundamental to realize that agility is in principle not a static property.
Any organization could also to some extent lose its current agility for example due to
unnoticed, gradual shifts in the competitive environment, or reduce it unintentionally
as negative side-effects of internal actions (like restructurings). Thus, it needs
constant attention and contextual adjusting – sometimes even rebuilding (Doz and
Kosonen 2008). This resonates with the organizational dynamic capability views
(Eisenhardt and Jeffrey 2000).

2.3 Agile Software Development

Agile software development is basically a software engineering discipline-specific
implementation of the general-purpose agile NPD capabilities discussed in Sect. 2.2.
It follows certain key principles and values (Sect. 2.3.1). They can be realized with
various different agile software methods (Sect. 2.3.2). Like with organizational agility
improvement in general, adopting them requires typically dedicated improvement
activities, including creating enablers and removing possible impediments (Sect.
2.3.3).

34

2.3.1 Principles
There is no uniform definition of ‘agile software development’, but the Agile
Manifesto (2001) is the de facto outlining of the key emphasis. A less-cited, more
business competence oriented characterization is the Declaration of Interdependence
(Agile DOI 2005).

The Agile Manifesto outlines certain overall values and principles of agile software
development, but it is not an exact definition (Conboy and Fitzgerald 2004). For
instance Anderson (2004) characterizes agile software development methods simply
as “more profitable” than traditional software process models. Highsmith (2004)
defines agility in terms of responding to and creating changes while balancing
flexibility and stability.

Table 7 summarizes how ‘agile software development’ is typically outlined in the
relevant literature. Essentially, they align with the more general definitions of agility
(Sect. 2.2.1) summarized in Table 27 (Appendix).

Table 7. Definitions of software development agility (chronological order)

Publication Definition
(Aoyama
1998b)

Quick delivery, quick adaptations to changes in requirements and surrounding
environments

(Cockburn
2002)

Being effective and maneuverable; Use of light-but-sufficient rules of project
behavior and the use of human and communication-oriented rules

(Highsmith
2002)

Ability to both create and respond to change in order to profit in a turbulent
business environment

(Anderson
2004)

Ability to expedite

(Larman 2004) Rapid and flexible response to change
(Schuh 2005) Building software by empowering and trusting people, acknowledging change as a

norm, and promoting constant feedback; producing more valuable functionality
faster

(Lyytinen and
Rose 2006)

Discovery and adoption of multiple types of ISD innovations through garnering and
utilizing agile sense and respond capabilities

(Subramaniam
and Hunt 2006)

Uses feedback to make constant adjustments in a highly collaborative environment

(Ambler 2007) Iterative and incremental (evolutionary) approach to software development which
is performed in a highly collaborative manner by self-organizing teams with "just
enough" ceremony that produces high quality software in a cost effective and timely
manner which meets the changing needs of its stakeholders;

(IEEE 2007) Capability to accommodate uncertain or changing needs up to a late stage of the
development (until the start of the last iterative development cycle of the release)

Wikipedia
(2007)

Conceptual framework for software engineering that promotes development
iterations throughout the life-cycle of the project;

Notably some definitions emphasize the ends without specifying the means. It is

important to distinguish between the organizational goals (ends) of the software
production and the means (e.g., agile software development methods) to achieve them
(Fitzgerald, Russo and O’Kane 2003). This resonates with the general
characterization of agile capabilities in product development outlined in Sect. 2.2.1 as
a spectrum of flexibility and efficiency.

35

2.3.2 Agile Software Development Methods
The background and intentions of commonplace agile software development methods
is highlighted (2.3.2.1). They share similar basic working principles and targets
(2.3.2.2). Current publicly available empirical information about utilizing them is
surveyed (2.3.2.3).

2.3.2.1 Origins and Scoping
Currently there is a range of what can be called agile software development methods,
for example eXtreme Programming (XP), Scrum, Feature-Driven Development
(FDD), Adaptive Software Development (ASD), and Dynamic Systems Development
Method (DSDM) (Abrahamsson et al. 2002; Boehm and Turner 2004; Cohen,
Lindvall and Costa 2004). In addition to those general-purpose methods, there are
also various in-house developments and more product-specific models, such as
Mobile-D (Dagnino 2002; VTT 2008).

Notably most of the methods have actually originated prior to the publication of
the Agile Manifesto, and the term ‘agility’ was attached to them subsequently (2001).
For instance the DSDM method dates back to the early 1990s with some later agile
practices support. In general, the origins of the current agile software development
models can be traced to late 1980s and early ‘90s. The different methods
philosophically joined by the Agile Manifesto have evolved from multiple different
paths like illustrated by Abrahamsson et al. (2003). For example Scrum was
influenced by the New Product Development Game ideas of Takeuchi and Nonaka
(1986) (Sutherland 2001).

The different agile software development models can be compared from many
points of view, such as:
• What is their level of concern (individual vs. enterprise) (Boehm and Turner

2004)?
• What are their prescriptive project characteristics, and to what extent do they

support key project activities (development, management, communication,
decision-making) (Cohen, Lindvall and Costa 2004)?

• What is their life-cycle scope (Abrahamsson et al. 2002)?
• How much formalism (“ceremony”) do they define (Larman 2004)?
• To what extent do they support the key characteristics of self-organizing,

explorative work (Schwaber 2001)?
• What project problems does each method tackle (subject of Research Paper IV)?
• How discerning are they about the project environment (Schuh 2005)?
• What requisite skills and competencies do they expect (Turner and Boehm 2003)?
• What is their overall “degree of agility” (in terms of flexibility, speed, leanness,

learning, responsiveness) (Qumer and Henderson-Sellers 2008)?
• What are their value stream cost structures (Anderson 2004)?
• How do they compare and contrast with NPD process models (Vainio et al. 2005)?

Those various comparison viewpoints are also keys to agility improvement

strategies (Sect. 2.3.3). However, there is a general problem of how to compare and
select between different methods in practice since there are currently no uniform

36

frameworks (Cohen, Lindvall and Costa 2004). Moreover, even the basic meaning of
‘agile’ in software development methods has evolved over the years in diverse ways.

Notably, like with the general concepts of agility (Sect. 2.2.1), the terminology is
not uniformly agreed here. In particular, some authors distinguish between ‘methods’
and ‘methodologies’ while other ones use only the term method (Cockburn 2002;
Henderson-Sellers and Serour 2005; Larman 2004). In general, methodologies can be
interpreted to encompass methods. In addition, software life-cycle models are then
parts of them. However, this thesis uses the terms ‘method’ and ‘process model’ for
simplicity to avoid taxonomic misconceptions and to descope philosophical and social
elements (ideology) of the research like set in Sect. 1.3.

2.3.2.2 Premises and Focuses
Overall, the basic premise of current agile software development models is that a
small, co-located self-organizing team working closely together with the customer(s)
can create a high-value product cost-effectively with frequent increments and short
iterations. Skilled and apt people are keys to this.

Typically, the following benefits are then advocated (Highsmith 2007; Schwaber
2007):
• increased customer satisfaction
• reduced time-to-market (better “time-to-benefit”)
• increased quality
• improved project portfolio and product management (project types, features)
• improved product development investment management (control and flexibility)
• reduced “waste” (increased efficiency, productivity, development cost)
• better predictability (visibility)
• better risk management (risk reduction)
• better workforce morale (developer satisfaction, well-being)

There is a growing body of empirical support for those advantages (Table 28), but

the statistical rigor is still uneven to be fully conclusive (Sect. 2.3.2.3). Nevertheless,
in general, these elements match well with the typical problems of turbulent software
product development environments (Baskerville et al. 2006):
• time-to-market pressures
• productivity demands
• fluid and ambiguous product requirements
• changing environment

A key principle of the agile software development models is that they expect
uncertainties and consequently changes throughout the product development life-
cycle. That is, the traditional forecast-based batch project planning is replaced with
continuous feedback-based value-driven planning cycles (Nerur and Balijepally 2007;
Poppendieck and Poppendieck 2004; Sidky 2007). With appropriate self-management
of versatile workforce, this should result in making the product development more
adaptive.

Working under such embraced uncertainties, agile software development models
base their risk management essentially on confronting the uncertainty areas early and

37

as frequently as necessary in order to understand and thus reduce the uncertainties as
soon as new information is learned (“fail fast”). Such continuous uncertainty (risk)
management is an intrinsic part of agile software development (Leishman 2001).
Table 8 summarizes the general approaches to address different uncertainty areas with
agile software development models.

Table 8. Uncertainty management approaches in agile software development

Uncertainty Area Agile Software Development Approaches
Product • close customer involvement (customer-driven development)

• incremental delivery
• periodic reprioritization of the product features
• assessing the current business value after each development cycle
• encouraging and supporting creativity and emergent innovation

Process, technology • short iterations providing rapid and frequent feedback
• continuous and early product integration and test activities
• learning and adapting designs and work practices accordingly
• teamwork (empowerment, self-organization, collaboration and

communication)
• skill-based staffing

Environment • dynamic replanning and reorganization
• networking

Aligning with the general characterization of agile product development capability

spectrum discussed in Sect. 2.2.1, in addition to being responsive to changes, agile
software development models emphasize efficient and effective work. This is
facilitated for example by team self-management (quick decision-making) and
efficient information / knowledge sharing (preferably face-to-face). High (or
negotiable, “good enough”) product quality is also an inherent part. That is
incorporated for instance with development practices (e.g., continuous integration and
testing) as well as with people-centric tactics (such as group accountability and
responsibility of the team deliveries). They rely heavily on skilled and flexible
workforce.

Fig. 9 illustrates how the key elements of ideal agile software development
outlined above show with respect to the traditional project management “Iron
Triangle”. In general, the schedule and cost dimensions are fixed (by iterations),
whilst the scope (functionality) is variable. A key control dimension is thus the time
of changing the different attributes (e.g., functionality). Time-planning (“rhythms”,
“takt”) is fundamental to this. In dynamic market environments the weighting and
balancing of the different parameters are often subject to change (Levine 2005).
However, there is lack of comprehensive management models for steering that in
practice. The theory base is incomplete (e.g., effort estimation).

38

Functionality

Cost / Resources

Schedule Quality

Customer-centered
feature definition and
prioritization

Time-boxed
(short) iterations “Right” quality expected with

customer-intimacy,
continuous feedback loops;

Incremental
(small) delivery

Fig. 9. Key management attributes of agile software development

With respect to the basic general new product development investment model
shown in Fig. 4, agile software development models strive to compress the scale
(“time-to-cash”) with short iterations and incremental delivery. The aim is thus to
drive the customer value up soon while bringing the risks down promptly
(Guckenheimer and Perez 2006). Overall, such mode of operation is supposed to
maximize the right value delivery and minimize the risks of false investments. In
many current fast-paced competitive environments the market windows are often
emergent, and the product life-cycles get shorter. This compression and opportunistic
concentration means, notably, that the underlying traditional assumption of a linear
time-scale in Fig. 4 may no longer be fully applicable. Then again, the theory base is
not fully developed (e.g., value analysis), and the empirical support is limited.

Notably, basically none of those principal ideas of agile software development is
fundamentally new in itself. The key point here is their weighting and combined
interplay. A fundamental trait is the emphasis on “soft” project management tactics
for example with respect to the project goals and stakeholder expectations (Crawford
and Pollack 2004). Agile software development models emphasize people factors and
sustainability. ‘Above-average’ self-organization, collaboration and learning
capabilities are thus necessary. Generalists are preferred to specialists.

In all, consequently, it is important to see the underlying − even implicit and
unstated − working assumptions behind the principles of different agile software
methods (Glazer et al. 2008; Leishman 2001; Levine 2005; Nerur and Balijepally
2007; Turk, France and Rumpe 2005; Turner 2007). In particular, there are certain
situations and software project conditions which may make some assumptions invalid
and thus limit the applicability, such as reliance on tacit knowledge sharing and
limited documentation with large project teams and complex systems products. The
project may need to prioritize for example predictability, flexibility, or visibility
(Ambler 1998).

It is also important to realize that the key elements of agile software development
are in principle technology-independent – i.e., they could be applied to ‘non-software’

39

products (subsystems) as well (Smith 2008). Consequently, the same basic ideas
apply for agility in NPD in general (Sect. 2.2.2).

The latter viewpoint is especially relevant for this thesis work. It is important to see
how the current agile software development models scope and focus in general with
respect to the generic NPD process (Fig. 3). In particular, much of the larger-scope
organizational activities (like marketing and production) are reduced to the role of the
Customer (product feature planning, acceptance testing). That is, agile software
development models mostly concentrate on the actual product construction at hand,
making simplifying assumptions about the product life-cycle front-end and product
commercialization activities – like (Kotler 1994):
• Is the product technically and commercially sound enough?
• Do the product sales satisfy the company objectives?
• Should we modify or enhance the mature product?

Overall, it is enlightening to position agile software development into a larger

context. There are many considerable parallels between agile software development
and agility in other fields as discussed in Sect. 2.2.2 (c.f., Table 4). Much of this can
be explained by understanding the historical progress path of lightweight, agile
software development approaches as a countermeasure to rigid, heavyweight
organizational process development problems in large-scale contexts (Glazer et al.
2008).

In general, current agile software development models concentrate mostly at the
single-team level and do not comprehensively address wider organizational
dimensions (other projects/products, management hierarchies) or longer-term
temporal dimension of product life-cycles (Overby et al. 2006; Chillarege 2002). The
coverage varies significantly following the historical development paths and the
chosen (or emerged) focus of the different methods (Abrahamsson et al. 2003).

In contrast, for example lean product development emphasizes more enterprise
level elements (Liker 2004; Morgan and Liker 2006; Ward 2007). Agile software
development methods are mostly limited to the micro-context of software product
design and delivery (exploitation) whereas higher-level innovation capabilities are
needed during explorative phases (such as new base technology adoption) (Lyytinen
and Rose 2006). Not surprisingly, the latest trends in agile software development seek
for such combinations and extensions in larger scale for instance by synthesizing
general Agile and Lean principles discussed in Sect. 2.2.1 (Benefield 2008;
Highsmith 2005; Leffingwell 2007).

2.3.2.3 Empirical Evidence
Current published empirical evidence of agile software development is uneven. The
scope and level in these works range from small teams to large-scale enterprise agility
issues, but this is not always obvious due to the conceptual disparity (c.f., Table 7).
Furthermore, the dimensions of analysis span from pure software engineering
technical disciplines to more general management and organizational studies – again
often without clearly stating so. All this causes the prior research to be scattered
across a large knowledge space with diverging goals and sometimes even confusingly
varying degrees of rigor and empirical support.

40

There are certain inherent difficulties in collecting and analyzing empirical
evidence of agile software development:
• Many of the interrelationships between the key software project attributes (Fig. 9)

are not fully understood even in traditional software engineering economics. Agile
software development models stretch them further.

• Some aspects (e.g., cultural, teamwork, and people factors) require new
measurement approaches beyond traditional software engineering metrics (e.g.,
behavioral sciences, organizational dynamics).

• The long-term effects of agile software development in complex large-scale
product development set-ups (e.g., product lines, legacy platform) are not yet
clearly visible in many organizations.

Nevertheless, under right conditions, there have been favorable results of applying

agile software development models like summarized in Table 28 (Appendix). So far
the reported findings are most often about the XP and Scrum methods and practices.
Typical benefits mentioned are better time-to-market targeting, increased
productivity, and higher quality. In addition, certain organizational improvements –
such as better developer motivation – are highlighted. A frequently mentioned trait is
that the basic agile software models and practices have been adapted and combined in
industrial settings (typically XP with Scrum). Notably the published results in large-
scale organizations are still scarce.

Embedded software product development has certain additional intrinsic
complications compared to pure software product development like discussed in Sect.
2.1.3.2. Agile software development methods have nevertheless been successfully
applied also in embedded software development environments (ITEA-AGILE 2007b;
Manhart and Schneider 2004; Ronkainen and Abrahamsson 2003; Salo and
Abrahamsson 2008). One constraint with deeply embedded systems development is
that there may not be any direct user interface for getting immediate visible customer
feedback (Turk, France and Rumpe 2005).

However, overall, it is not clear how much and under what circumstances each
element discussed above really contributes to the advocated benefits of using agile
software development models. A general problem is that there is still lack of
systematic body of statistically sound (quantitative) research evidence, and many of
the results are anecdotal in nature (Abrahamsson 2006; Dybå and Dingsøyr 2008;
Turk, France and Rumpe 2005). In addition, it is not obvious what exactly to measure,
since for instance social factors (e.g., higher motivation and job satisfaction) may be
difficult to specify objectively. Qualitative measures may be more appropriate.

2.3.3 Agile Adoption
Currently many industrial organizations are contemplating agile software
development and agile capability improvements in general (Schwaber 2005; Version
One 2008). This overall strategic move is often referred to as Agile Adoption / Agile
Transformation.

In particular in large product development organizations, there are many obstacles
to overcome in order to be able to implement and take full advantage of the agile
software process models. Table 29 (Appendix) illustrates typical issues faced in
practice. Notably in large organizations the problems are often related to the

41

integration of the agile software development teams with the rest of the organization,
product/project portfolio management, and organizational governance – i.e., the areas
that the current agile software development models do not comprehensively address
like concluded in Sect. 2.3.2. Limitations with large-scale product development
infrastructure and tools may be serious practical obstacles.

These are often key considerations for successful agile adoption and
improvements. Sidky (2007) suggests that if there are major impediments, the
organization should first correct them before proceeding with the adoption. However,
in typical industrial environments such an ideal is often not fully achievable soon
enough, but the adoption process should nevertheless be advanced. The key is to
openly recognize the situational, often path-dependent problem factors and attempt to
overcome them gradually possibly with multiple simultaneous approaches and partial
solutions.

There are some ‘readiness’ assessments to examine the starting point of the
organization (project) in order to determine the current abilities to adopt effectively
agile software development. For example the DSDM process model has such
accompanying Suitability Risk List questionnaires (DSDM 2004).

Following the initialization, there comes the need to assess the current status and
progress of the adoption. However, currently there are no standardized agile
assessment models publicly available (Pikkarainen and Mäntyniemi 2006). In fact, the
very idea of assessing (measuring) agility is somewhat controversial and under
debate, and some authors even doubt the need. In particular, there has been much
debate about how the CMM models and agile software development are related – if
they should be at all (e.g., Kane and Ornburn 2002; Pikkarainen 2008; Turner 2007).
Recent developments approach them as complementary rather than conflicting, in
particular for large organizations (Dutton and McCabe 2006; Glazer et al. 2008).

Nevertheless, the agility metrics (Table 5) are related to these assessments. In
particular, it is important to understand whether to assess/measure the effects of
agility (business outcomes) or the capabilities that enable agility, c.f., Fig. 6 (Lappo
and Andrew 2004).

Table 9. Agile software development assessment approaches (chronological order)

Publication Field, Scope Approach / Principles
(Boehm and
Turner 2004)

Software process,
organization

Agile Home Ground:
• project size (# of personnel)
• product criticality (impact of software failures)
• development dynamism (requirements change rate)
• personnel (skills, competence, experience)
• culture (favoring order vs. emergency)

(DSDM 2004) Software process,
organization

• Organization/Project Suitability Risk List

(Lappo and
Andrew 2004)

Software process,
organization

• organization-specific agile goals attainment (process,
organization and people, tools, software design and
quality)

• relative performance measurement (benchmarking)
(Hansson et al.
2006)

Software process,
organization

• degree of implementing the Agile Manifesto values
(individuals over processes, working software over
documentation, customer over contract, change over
plan)

42

Publication Field, Scope Approach / Principles
(Pettit 2006) Software process • Agile Maturity Model
(Highsmith and
Wysocki 2006)

Software process,
organization

Level of implementation of certain key agile practices:
• customer involvement and collaboration
• software development process (e.g., iterative plans)
• quality and testing (e.g., automated testing)
• engineering management (e.g., effectiveness, value vs.

efficiency)
• feedback and learning (e.g., learning support)

(Pikkarainen
2008;
Pikkarainen and
Mäntyniemi
2006)

Software process CMMI applied for assessing agile software development:
• evaluating the strengths and weaknesses of the current

(agile) processes in order to plan improvements
• mapping CMMI goals to agile practices
• finding suitable agile practices

(Sidky 2007) Software process,
organization

Agile Measurement Index:
• embracing change to deliver customer value
• planning and delivery of software frequently
• human-centric
• technical excellence
• customer collaboration

Currently there is no one uniform way (framework) of agile software development

improvement. Table 30 (Appendix) presents a literature overview of different
approaches applied. Like the definitions of agility (Table 7), they vary considerably in
scope and focus. It is important to realize how agile capabilities and their
development range from software-specific aspects to generic organizational ones.

The agile capabilities of the company are a combination of the different elementary
organizational components. Consequently, different software product development
teams may have to contribute to this in different ways. In particular, not all the teams
may need to be equally agile depending for example on their local product type
characteristics.

In general, the fundamental high-level agile principles should guide the lower-level
practices. A proactive NPD organization may for example choose to build a
framework of software process fragments to be quickly configured and tailored for
specific project instances. Software method tailoring can be positioned at project
(micro-level), organization (macro-level) and even industry levels (Fitzgerald, Russo
and O’Kane 2003; Henderson-Sellers and Serour 2005). Notably the agile software
development models themselves can be utilized for the improvement (Salo 2007).

Like with strategic development in general, there are different possible strategic
change approaches to agile transition and improvement (Sect. 2.2.3.3). However,
remarkably, in industrial practice many agile software development initiatives have
emerged from the team level in individual software projects (Mar 2006a). Often the
starting point has been in their practical problems with the existing development
processes and practices, which are or have become unsatisfactory under new
competitive and technological circumstances.

In particular in large organizations such a bottom-up team level development must
nevertheless be eventually supported by the surrounding organization, and therefore a
top-down strategy is also necessary for example to ensure management support and
organizational alignment. A hybrid model combining both top-down and emergent
bottom-up approaches is thus often a working strategy in practice (van

43

Schoonenderwoert 2007). Human-centric approaches (emergent strategies) are
increasingly advocated. However, profound organizational changes necessitate
usually more top-down actioning (Highsmith 2002 / Ch. 16).

2.4 Summary of Knowledge Gaps and Research Needs

Sect. 2.1-2.3 establish the conceptual background and survey the key literature of this
research field. The following concludes this groundwork by first recapping the
software-intensive NPD context problem space (Sect. 2.4.1). It then summarizes the
prior interdisciplinary agility-oriented research streams while pinpointing the main
knowledge gaps and research needs. Having done this, it is possible to put the agile
software development research problem of this thesis into the relevant context and
rationalize the research questions (Sect. 2.4.2).

2.4.1 Problem Space
The general problems of software-intensive new product development in current
competitive environments are summarized (2.4.1.1). They introduce a range of
research issues for agile software development (2.4.1.2).

2.4.1.1 NPD Problems
Over the years there have been various investigations of the software-intensive NPD
problem space. There are many field studies of project success/failure factors – even
“challenged” and “troubled” projects – and NPD performance. Some factors, such as
uncertain and unstable product requirements, market entry strategies and
technological dependencies, are addressed more often than others, but there is no
general agreement and mature understanding of all the related factors and their
interdependencies. In particular their interplay within organizational dynamics is not
well understood (Brown and Eisenhardt 1995; ITID 2008; Kotler et al. 1996; Levine
2005; Mäkelä 2008; Trott 2005).

One viewpoint of the NPD problem space is to consider it as a net of decisions to
be made. Krisnan and Ulrich (2001) survey the empirical NPD literature from that
point of view. As a conclusion, they call for cross-functional research to address in
particular product development supply chains. This mirrors to Fig. 2.

This viewpoint is also one of the key premises in our research, considering large-
scale NPD organizations and their software production. In an industrial company
environment this is further complicated for instance by the business model
considerations (Suikki 2007). It is necessary to master such multidomain knowledge
to a certain extent in order to be able to improve the integrated software development
function in the organizational problem context.

Moreover, many real-life problematic situations do not always link neatly into any
one prescribed conceptual knowledge maps, but there are interdependencies and
cause-effect-symptom chains (Brown at al. 2000). In turbulent environments the time-
dependencies and rapid, even disruptive changes of the problem space create
additional complexity. The new business model and strategy development suggest

44

even radically different approaches for the future competitive NPD enterprises
(Chakavarthy 1997; Doz and Kosonen 2008; Mäkelä 2008).

With respect to academic research NPD is still a relatively young and immature
field. An inherent source of research problems is its multidisciplinary nature. Current
active NPD research topics include uncertainty management, value chain analysis,
and innovation processes (ITEA 2004; Kahn et al. 2003). For the purposes of this
thesis work, the following research threads are of particular relevance:
• NPD project success/failure factors
• NPD process flexibility and acceleration (“next-generation” NPD process models)
• organizational models of successful NPD

Due to the multidisciplinary nature and relative immaturity, the NPD research is

subject to methodological concerns about the research rigor of the field studies (Ernst
2002). For instance the lack of common measures of NPD success and single-
informant bias are fundamental scientific threats for generalizing the results, although
most observations appear to be intuitively right in practice.

2.4.1.2 Research Needs
Overall, a critical analysis of the related prior work reviewed in Sect. 2.1-2.3 reveals
the current nascent state of the agile software development field. The lack of rigorous
conceptual base and uniform common definitions has led to a proliferation of diverse
practical approaches and theoretical studies. This is understandable given the mainly
practitioner-based origins of agile software development.

There is a need for comprehensive, systematic context-specific understanding of
the NPD problem space in general, and the role of agile software development in the
improvement in particular. Current generic knowledge frameworks on the one hand
and miscellaneous case studies on the other do not provide such directly applicable
pragmatic aids for the practitioners. Moreover, the conceptual theory-building
requires further interdisciplinary understanding.

In summary of the survey and discussion in Sect. 2.3, what is currently known and
have been experienced about agile software development is in general as follows:
• Agile software development models aim to tackle many of the typical software

project problems faced in practice in turbulent business environments.
• Agile software development methods have successfully been applied to a variety of

different software development types ranging from pure software products to
embedded systems in many application domains. However, it is not well
understood, which software types are the most suitable ones (“sweet spots”), and
furthermore, if there are any particular product development types which may
disfavor agile software models.

• There is a diverse body of empirical evidence of both successes and obstacles
observed in practice in various environments.

• However, it is not clear how much and under what circumstances agile software
methods really contribute to success (lack of statistically significant rigorous
evidence).

45

• The long-term effects of agile software development are yet to be seen due to the
mostly nascent state of the development. Many large-scale systems have very long
lifecycle times (up to ten years).

• There are many areas in particular in large NPD organizations, which are currently
not fully (if at all) addressed by the current models. Specifically, large-scale
product management, engineering management, and organizational development
require additional measures.

• Traditional organizational software process improvement methods may not be
effective enough in rapidly changing, fast-cycled product development
environments.

• The human-centric value-based philosophy of agile software development (Agile
Manifesto) may require fundamental paradigm shifts in traditionally structured and
managed organizations. Other disciplines – such as organizational development
(OD) – address such issues.

Following the development characteristics and success/problem factors presented

in Sect. 2.3, the current research trends in agile software development focus on the
following key topics and areas in particular summarized in Table 10.

Table 10. Agile software development research areas

Area Publications Relevance for This Thesis
large-scale agile
software development –
also distributed, even
globally

(Kähkönen 2004; Lindvall et al.
2004; Leffingwell 2007;
McMahon 2002; McMahon
2005)

• integrating (accommodating) agile
software development teams in
large-scale organizations

specific application
areas (e.g., mobile and
automotive embedded
software development)

(Dagnino 2002; Fitzgerald, et
al. 2006; Greene 2004; Khan
and Balbo 2005; Manhart and
Schneider 2004; Pyhäjärvi
2006; Salo and Abrahamsson
2008; Vanhanen et al. 2003;
Wils et al. 2006; Välimäki and
Kääriäinen 2008)

• embedded systems domain (in
particular, telecommunications)

cost/benefit analysis of
agile software
development (e.g., in
terms of productivity,
quality, product
maintainability), metrics

(Anderson 2004; Hartmann and
Dymond 2006; Heikkilä and
Holmström 2005; Itkonen et al.
2005; Lyytinen and Rose 2004)

• agile software engineering
economics

organizational models
for agile software
product development
(agile frameworks)

(Ambler and Kroll 2007;
Dagnino 2001; Highsmith 2005;
IEEE 2007; Karlström and
Runeson 2006; Kivelä 2007;
Mäkelä 2008; Wallin et al.
2002)

• NPD organization management
(governance)

46

Area Publications Relevance for This Thesis
transforming traditional
software development
organizations into agility
(agile adoption)

(Ågerfalk and Fitzgerald 2006;
Benefield 2008; Boehm and
Turner 2005; Börjesson 2006;
Ceschi et al. 2005; Dutton and
McCabe 2006; Hansson et al.
2006; Highsmith 2007; Mar
2006a; Pikkarainen and
Mäntyniemi 2006; Pyhäjärvi
2006; Salo 2007; Sidky 2007)

• NPD organizational development

cultural aspects, values,
and other organizational
development
considerations
(innovation, business
agility)

(Aramand 2006; Cockburn
2007; Coplien 2004; Levine
2005)

• large-scale organizational enablers
of agile capabilities

• strategic agility

In all, from the critical research point of view, there have so far been only

provisional conceptualization and preliminary theory-building, mostly basing
incrementally on existing mature constructs and disciplines. However, more
systematic research is needed to first capture the current developments, and then to
advance to potentially relevant multidisciplinary areas (e.g., economics,
organizational science). More empirical support is necessary accordingly.

Dybå and Dingsøyr (2008) have recently conducted an extensive literature survey
on empirical studies of agile software development. They conclude that there is in the
one hand a clear need for more empirical studies about the benefits and limitations of
agile software development, but on the other hand also the research methods should
be strengthened. Overall, Dybå and Dingsøyr call for more research on management-
oriented aspects of agile software development as well as more extensive
investigations about how and when it is beneficial to adopt agile software
development methods in practice.

Moreover, Dingsøyr et al. (2008) outline a roadmap for future research (up to
2015) of agile software development based on a current state analysis. They find the
following major gaps and needs in the current research and knowledge in order to
comprehensively understand agile software development:
• more empirical studies with rigorous research methodologies following more

established field paradigms (in particular information systems research)
• analyzing experienced teams and (large) organizations in complex industrial real-

life settings
• taking more into account related business competence areas (like management

science and organizational development)

This thesis attempts to address to some extent all those three key areas by working
in a large-scale, established industrial organization developing complex systems
products. The research work links software development with the NPD field.

Empirical support of the underlying theories is desirable accordingly. This thesis
builds mostly on combining the prior empirical evidence about flexible software-
intensive NPD on the one hand (Table 25, 26), and what is has so far been
experienced in agile software development and its adoption on the other hand (Table
28, 29). However, while the NPD field evidence is more mature recorded over a long

47

period of time, the empirical software development research is much more limited.
Considering the empirical support of the underlying work of the thesis, there is not
much prior integrative evidence linking NPD and software development together.
Multidisciplinary studies are rare.

2.4.2 Positioning the Thesis Research
The research problem is put into the relevant scientific context (2.4.2.1). This makes it
possible to rationalize the specific research questions of the thesis (2.4.2.2).

2.4.2.1 Connections
The main research problem of this thesis (Sect. 1.2) is by nature multidisciplinary.
Consequently, the key idea is to investigate the question from different perspectives,
looking for and combining applicable knowledge and solutions from related
disciplines and research fields. However, the main focus areas are project
management and software engineering. Table 11 outlines this bridging.

Table 11. Software-intensive NPD research cross-connections

Field Key Questions, Knowledge Areas
Computer Science (CS) fundamentals of software technology (discipline)
Software Engineering (SE) How to construct software (products) economically?
Information Systems (IS) How to develop software systems (IT)?
Project Management (PM) How to organize and govern the software development and

engineering work efficiently (time-cost-features)?
Operations Management (OM) How to produce and deliver the (software) products effectively?
Product Development (PD) How to conduct successful NPD in general?
Organization Design (OD) How to structure high-performance PD organizations?
Organization Theory (OT) How to improve PD organizations?
Marketing product (features) offerings
Business Strategy Development How to achieve firm performance goals with NPD?

In order to be able to comprehensively address the research problem of this thesis,

a wider range of NPD disciplines and business competence areas are of certain
relevance in conjunction with the actual software product development functions.
There are two main research threads here. The primary discipline of this thesis
research is software engineering (management). Agile software development is
essentially an extension to the traditional software engineering by emphasizing,
augmenting and reshaping certain key areas. The second main thread is NPD, which
is the host discipline in this thesis research context. The traditional NPD models have
subsequently been revised toward more flexible product creation.

In addition, there is a range of other potentially related business competence areas
and disciplines like discussed in Sect. 2.1. However, it is not possible to cover all such
areas within the scope of this thesis work, and most of them are excluded here like
defined in Sect. 1.3.

A fundamental insight here is to understand how the concepts of agility and
flexibility are realized in different disciplines. Furthermore, what is more profound is
to see, that the level and scope of different research streams vary considerably –

48

sometimes even in unclearly defined and confusing ways. In particular, the
dimensioning can vary from individual (software) teams up to entire enterprises.

Again, most of this goes beyond the scope of this thesis research focusing on the
software team level. However, it is important to realize that such connections and
dimensions do exist, and they offer potentially further research avenues.

2.4.2.2 Rationale
The profound tenet of this research work is that software development agility in
conjunction to NPD should be approached with a multidisciplinary perspective. Such
cross-functional thinking is not totally unusual, but to the best of our knowledge not
much research results have this far been published accordingly (Table 10).

Some authors have pointed out the need and potential for such interdisciplinary
research (Mäkelä 2008; Nambisan 2003; Rauscher and Smith 1995; Smith 2007). In
general, the links and possible interdependencies between the different areas shown in
Table 11 and possibly also with other business competence areas (Sect. 2.1.1.1) are
currently not comprehensively understood. The cross-functional linkages and
connections offer thus potentially innovative solution possibilities.

A few research publications make an explicit connection between software
development and NPD. For instance Nambisan and Wilemon (2000) compare and
contrast prevailing software development and NPD. For example Boehm and Turner
(2005) underline the integrated systems engineering perspective. Aramand (2006)
calls in general for more cross-disciplinary research between strategic management
and software product development.

Some authors have recently made agility-oriented connections between software
development, NPD and other related disciplines. For instance Larman (2004)
underscores that software production is by nature closer to new product development
than predictable mass production. Smith (2008) proposes enhancing NPD models
with agile software development principles, and Turner (2007) sees equal possibilities
in the traditional systems engineering processes. Vainio et al. (2005) compare and
contrast general-purpose NPD process models with commonly used (agile) IS
software development methods. Cockburn (2007) parallels agile software
development with agile manufacturing principles.

In sum, there is lack of knowledge and deeper understanding of embedded
software product development in NPD context in particular under the new, changing
competitive circumstances facing many large industrial organizations today
(Abrahamsson 2007). Large-scale agility is still an immature area in practice, and
specifically the benefits and costs of agile software development in such large
organizational settings is not yet well understood. Furthermore, the way agile
software development can be realized requires further investigations (Table 29).

In all, the general NPD research directions coupled with the above approaching
establish the rational basis for this research. This thesis maintains that in order to be
able to comprehensively develop the strategic capabilities of the embedded software
production functions, it is necessary to consider the wider organizational context and
the competitive environment. The essence is to realize how agile software
development capabilities can support the NPD strategy, which in turn should align
with the overall business strategy of the company.

49

That line of reasoning leads to the research questions of this thesis about how agile
software development can be utilized in large-scale NPD context as defined in Sect.
1.2. Table 12 recaps the research needs and knowledge gaps identified in Sect. 2.1-
2.3, and links the research questions of the thesis to address them.

Table 12. Research needs and questions

Research Needs, Knowledge Gaps Research Questions (Sect. 1.2)
understanding the essential NPD problems
affecting embedded software projects in
turbulent competitive environments (Sect. 2.1)

1. What are the typical problems of large-scale
NPD embedded software projects?

rationalizing agile software development
capabilities accordingly (Sect. 2.2, 2.3)

2. What problems and goals does agile software
development address?

integrating agile software project teams into
larger NPD organizational context (Sect. 2.3,
2.4)

3. How can typical large-scale NPD problems be
tackled with agile software development methods?

50

3 Research Design

There is no one specific research method, which is completely perfect in this
pragmatic research setting. All in all this thesis work follows the design scientific
approach with the researcher as a participatory observer. Those principles are
characterized (Sect. 3.1).

The empirical research case environment is described in Sect. 3.2. The particular
industrial organization context is rich in potential research issues, but there are also
many practical constraints. The nascent and interdisciplinary nature of the research
field calls for mixed research designs.

The actual realization of the overall research work is then described (Sect. 3.3).
The organizational connections are shown.

Last, the general quality criteria for the research design are defined (Sect. 3.4).
Both the relevance and rigor aspects are important in this kind of an industrial
research work.

3.1 Research Methods

Software engineering is an applied discipline. Consequently software engineering
(information systems) research often uses multidisciplinary research methods
(Mingers 2001). Fig. 10 presents a general-purpose taxonomy of all research methods
(Järvinen 2004).

Innovations

All Research Methods

Real-world Mathematical

Explanations

Conceptual-
theoretical

Empirical

Theory-testing Theory-building

Construction Evaluation

Fig. 10. Taxonomy of research methods after Järvinen (2004)

51

Like described in Sect. 3.2, this research work has been conducted in a large-scale
industrial product development organization software process improvement context.
With respect to the classification scheme in Fig. 10, the work is thus primarily about
constructing and evaluating innovations (artifacts). In addition, there are also some
empirical explanatory elements involved in order to be able to understand the
underlying fundamentals stemming from the real-life observations.

The constructive part of this research is about Design Science (van Aken 2004;
Hevner et al. 2004). The business environment sets the needs for the research
questions, thus ensuring their relevance. The purpose of the research is to create
innovative solutions (design artifacts, foundations, methodologies) for those problems
based on the existing body of knowledge – both organizational local as well as more
general scientific knowledge of the discipline, ensuring scientific rigor.

Action Research is an increasingly typical method of conducting design-scientific
research in software engineering (information systems) (Avison et al. 1999; Susman
and Evered 1978). The iterative change/improvement cycle is repeated until a
satisfactory and feasible solution is reached for meeting the organizational needs.
Depending on the nature of the design artifacts, different evaluation methods may be
appropriate (Hevner et al. 2004). Action research is often coupled with case studies.
Qualitative data analysis (descriptions, illustrations and interpretation) is typical in
such cases (Eisenhardt 1989).

Action research and case studies are becoming more and more commonplace in
software engineering research, since the current research problems address
increasingly managerial and organizational questions (Myers 2007). In such practice-
oriented organizational research settings it is often necessary to understand not only
software engineering (information systems) technical disciplines, but also (large-
scale) organizational dynamics, people factors, and even social sciences to some
extent (Jankovic 2005; Raelin 1997; Schön 1983).

Overall, the core principles of the action research approach can be summarized as
follows (Routio 2007):
• The starting point should be in the current actual state of the activity, not just in

theoretical assumptions.
• The problematic situation should be reflected from a wider point of view in order

to be able to recognize more general patterns with respect to the uniqueness of the
situation and consequently potential existing solutions.

• The original situation could be abstracted into a suitable theoretical model as a
reference base of the changes.

This kind of a participatory, collaborative design (clinical research) is increasingly

commonplace with research-in-industry settings. Ideally, there is a continuous
interplay between the researcher and the target community with shared goals
(Kiviniemi 1999). Recently for instance Börjesson (2006) and Suikki (2007) have
applied similar research approaches in comparable industrial organizations.

Dybå and Dingsøyr (2008) argue that agile software development is still such an
immature and unchartered (nascent) research area that exploratory qualitative studies
are needed in the field research. Action research is in their opinion a particularly
suitable approach in this context. Flexible case studies are in general appropriate

52

research approaches in such emerging research areas with potentially novel insights
(Eisenhardt 1989).

These elements serve well the objectives of this thesis research work in the case
organization environment (Sect. 3.2.2). The first steps of this research address
general, more mature problem areas while the later ones focus on the specific,
currently nascent issues of agile software development. Consequently, this research
design is adjusted accordingly in terms of leaning to existing theoretical constructs
and utilizing empirical data. The analysis is mostly qualitative. The fundamental
nature of action research supports such adjustments and focusing during the research
work (Heikkinen and Jyrkämä 1999).

The actual usage of the selected research methods discussed above varies during
this research work to some extent in the different phases and steps. They are defined
in described in detail in the individual Research Papers and summarized in Ch. 4. In
all, it is important to realize the state of the prior research in order to be able to fit the
research design appropriately in each phase (Edmondson and McManus 2007).

3.2 Research Environment

To begin with, it is necessary to understand the key characteristics and trends of the
industry sector and the competitive environment (Sect. 3.2.1). The specific case
organization key attributes can then be contextualized (Sect. 3.2.2), and the research
constraints underscored (Sect. 3.2.3).

3.2.1 Case Industry Characteristics
The empirical background of this research work resides at certain business units of a
telecommunications equipment vendor company in Finland over a period of several
years between 2000-2007. It is beyond the scope of this presentation to describe the
telecommunications business sector and product development industry in detail, but
there are two noticeable global developments worth highlighting during the period of
this research:
• the rise and rapid fall of the so-called “dot-coms” around year 2000 (Levine 2005)
• the huge expenditure of telecommunications operators for the 3G networks licenses

in the early 2000s

At the time of this research the global developments in the telecommunications

field indicate in particular the following trends in the competitive environment:
• The business sector is in general gradually recovering from those downturns (Ante

2007)6.
• There are some new entering equipment vendors with aggressive business models

challenging the incumbents.
• The vendors as well as the operator customers are driven by strict business

objectives of profitability and cost-effectiveness. The business models must be

6 Interestingly enough, as of this writing (in fall 2008) the global economic turmoil is again

causing stagnation in the telecommunications markets.

53

directed accordingly, affecting for example the product development
portfolio/feature strategies.

• There is no one predominant network technology, but a range of different
technologies combined with certain new ones emerging (e.g., WiMAX). This
implies that large-scale equipment vendors may decide to include very different
product types and platforms in their NPD portfolios at the same time.

• The telecommunications industry continues to be a significant developer of
embedded software-intensive products (TNO/IDATE 2005).

Those overall business milieu trends have affected also this particular research case

environment, causing considerable external turbulence, and consequently driving the
needs during the research period. At the time of this thesis research work the
organizational interests towards agile software development grew significantly due to
those overall telecommunications business environment drivers (Vodde 2006; Vilkki
2007; Tanskanen 2008). This general movement also motivated the research setting of
this thesis (Sect. 1.2).

3.2.2 Case Environment
This thesis research work has been conducted in an industrial telecommunications
product development context like typified in Sect. 3.2.1. The work concentrates on
one particular business unit of the larger organization. This particular case
environment can be characterized as follows in Table 13 (at the time of this research).
For confidentiality reasons only the overall scale is shown.

Table 13. Key characteristics of the industrial case environment (orders of magnitude)

ATTRIBUTE Company Case Business Unit
Field • telecommunications

(equipment and services)
• network element product

embedded software (and
hardware) development

• network element management
systems (workstation software)

Size of organization:
• # of people
• # of business units
• # of sites
• # of projects

• 10000 (worldwide)
• 10
• 10 (global)
• 100

• 1000
• n/a
• multiple
• 10

Typical project size:
• # of people
• # of sites
• # of teams
• team (persons)
• duration (months)

• n/a
• 100
• multiple
• 10
• 10
• 10

Typical product size,
complexity:
• LOC
• # of subsystems
• software domains
• expected life-time (years)

• n/a

• 1M
• 10
• multiple
• 10

54

The case software product development environment has in addition to the overall
industry-specific characteristics described in Sect. 3.2.1 the following particular
complexities and drivers:
• hyper competition in the business environment (e.g., cost reduction needs)
• new market/customer needs (volatile and emerging product requirements)
• high product reliability requirements (even mission-critical)
• interdependencies to proprietary target hardware engineering and manufacturing

Within this case environment, the author has worked as a full-time Quality and

Process Development Specialist in association with various embedded software
product development projects. This insider position has made it possible to work in
close contact with the practitioners of the software product development. In addition,
there has been full access to all the relevant knowledge sources in the case
environment (within the overall company confidentiality limits).

3.2.3 Strategic Concerns
In the particular type of the industrial environment described in Sect. 3.2.1-3.2.2, the
research strategy must consider not only the academic relevance and rigor, but also
the case organization current needs and constraints. In particular, it is usually
necessary to focus on a narrow set of essential improvement items (“burning issues”)
even though there often are many more potential topic areas and possible future needs
(Hinkin et al. 2007). The key is to be able to recognize those problem areas, which are
really caused by some local impediments (e.g., lack of resources, inappropriate tools),
and the more fundamental ones with possibly enterprise-wide strategic significance.

In general, research and improvement in this kind of industrial environments is
typically characterized and constrained by many practical factors (Kettunen 2000;
Börjesson 2006; Lassenius 2006; Suikki 2007):
• There has to be an appropriate alignment and balance with the business objectives

and the research objectives.
• The research work should be integrated to the business operations in order not to

hinder the daily software production work.
• The relevant expertise is not necessarily evenly spread and available in the

organization.
• New improvement changes must typically be aligned with the existing

organizational process assets and legacy systems and tools.
• The life-cycle phase of the products under development drives the needs for

improvements over time.
• In large organizations there are usually many stakeholders, each with possibly

varying needs and priorities. Furthermore, the needs and priorities could be subject
to change over time.

• It is not unusual that restructurings and other organizational factors affect the
research and improvement plans even radically during the course of the execution
– in particular if the time period spans over several years.

In all, this kind of an industrial environment brings both opportunities and

obstacles to conduct successful research. The relevance of the selected research

55

problems is usually straightforward to verify, and the research can be kept aligned
with the current needs of the business environment. On the other hand, there might be
practical problems to achieve high quality (rigor) of the research work. The research
methods must be selected and adjusted accordingly.

3.3 Research Process

The research work is embedded into the organizational process development and
improvement activities (Sect. 3.3.1). The cyclic research process comprises a
longitudinal sequence of phases and steps conducted over several years (Sect. 3.3.2).

3.3.1 Interconnections
Like stated in Sect. 1.2, this research work focuses on product development process
improvement problems in a case organization (Sect. 3.2.2). The main driver is to help
the organization in its daily work following the philosophy of action research
(Heikkinen and Jyrkämä 1999).

The research process joins the organizational software development and
improvement activities. The research cycle augments the organizational improvement
cycle, which is typically focused on short-term project-specific issues. The aim of the
longer-term research cycle having a more generic focus is to support the
organizational activities by extending the organizational knowledge base (learning).
The external research publications and this compendium are ultimately targeted to
increase the academic body of knowledge, which is in general one external source of
organizational SPI references.

This is what can be called professional researcher-centered approach (Routio
2007). In this approach the researcher is assumed to be an (insider) domain expert
capable of identifying and understanding the key problems of the affected
practitioners, but the researcher is expected to conduct the actual studies mostly
independently. The resulting improvement plans should then take into account also
the organizational constraints about what can be changed in practice.

There are also some ethnographic research aspects in here. With respect to
organizational learning, this approach could be characterized in a way as problem-
based learning (Delaney et al. 2003).

3.3.2 Realization
This thesis work comprises six distinct research steps reported in the research papers
I-VI, see pp. vii. We have repeated the action research cycle, but for each iteration
have opened up new successive research viewpoints and propositions in order to gain
deeper understanding and shaping of the research problem like depicted in Fig. 11.
The research questions 1-3 (Sect. 1.2) phase the research. In particular, the starting
point is no specific a priori theory, but the concepts emerge during the research
(Eisenhardt 1989). However, a key is to reconstruct and reflect the organizational
history (Kiviniemi 1999).

56

Overview:
Project problems / uncertainties

Prior knowledge,
preliminary understanding

Viewpoint:
Managing information
uncertainty

Viewpoint:
Managing and avoiding
different project problems
with software process
models

Viewpoint:
Extending software
project team agility

Deeper
understanding
of software
production
agility in large-scale
NPD

Viewpoint:
Cost-based justification of
agile software development

Viewpoint:
Responding to different
project problems with
agile software process models

Fig. 11. Spiral model of the thesis research following Routio (2007)

In addition, while advancing, we have gradually shifted the hierarchical level (see
Fig. 1) from the initial team level towards more organizational issues following the
research goals (i-iii) stated in Sect. 1.2. This bottom-up progressing emerges from the
increasing knowledge in the research spiral (Fig. 11).

Fig. 12 depicts the overall research flow. The research phases link the research
steps focusing on the consequent research questions (c.f., Fig. 11). Altogether they
seek to answer the research problem by addressing the identified research needs and
knowledge gaps summarized in Table 12.

With respect to the general Action Research methodology (Sect. 3.1), the research
steps can be regarded as iterations. The resulting artefacts are described in Ch. 4
(Table 20).

57

FRAMING
• practical experiences
• early insights
• prior research (literature)

Research
Question Setting

Conducting
Step I

Conducting
Step II

Conducting
Step III

• research step design
• execution
• reporting (Research Paper)
• next steps planning

FOCUSING
• Step I-III results incorporated.

Research
Question Setting

Conducting
Step IV

Conducting
Step V

ELABORATING
• Step IV-V results incorporated.

Research
Question Setting

Conducting
Step VI

ANALYSIS AND CONCLUSIONS
• All results incorporated.
• cross-phase inferences
• overall implications
• summary reporting

Research
Question 1

References:
• NPD
• Software Engineering
• related disciplines

This
COMPENDIUM

• cross-step conclusions
• research problem shaping

References:
• flexibility, agility in R&D
• agile software methods

References:
• Agile software

development
• Agile adoption

Research
Question 2

Research
Question 3

Fig. 12. Main research flow

58

Overall, this research work does not formally join to any particular larger research
program. The case organization has a permanent SPI group, and the author has been a
full-time member of it. The research activity has been an integral part of that ongoing
daily work. However, some of the publications have been reported in the ITEA-
AGILE program (ITEA-AGILE 2007a).

Taking into account the overall industrial case environment (Sect. 3.2), this kind of
an investigation begins hardly ever from scratch in a large organization with a long
history. For example in this case the author has gained prior knowledge and
experiences already in another business unit in the case organization (Kettunen 2000).
The initial ideas of this research stream really originate from the early 2000s
(Kettunen 2001).

Furthermore, this investigation is partially open-ended. More work (iterations)
could possibly have been done for each one of the phases and individual research
steps. The path chosen here is context-dependent relative to the organizational
environment, following a prominent research thread at the time of the investigation.
That is what pragmatic action research is in essence (Heikkinen and Jyrkämä 1999).
Consequently, this thesis concludes the work up to the point scoped in Sect. 1.3. The
impacts of these choices are considered in Sect. 5.3.4.

The author has subsequently continued the agility-oriented research elsewhere
(Kettunen 2009; Kettunen and Laanti 2008). We discuss this further work in Sect. 6.2.

3.4 Research Scrutiny and Evaluation Criteria

This kind of research-in-industry work is subject to the commonly underlined rigor-
relevance dilemma (Glass 1994). That is, we should focus the research effort on
relevant questions from the organizational business point of view, but also conduct
scientifically valid and reliable research work from the academic point of view. There
should be a win-win setup (Benbasat and Zmud 1999; Hinkin et al. 2007).

Hevner et al. (2004) suggest certain general guidelines for good design-scientific
information systems research. Table 14 shows how we attempt to satisfy them in this
research work.

Table 14. Guidelines for design-scientific information systems research

Guidelines (Hevner et al. 2004) Addressing in This Research
Design-science research must produce a
viable artifact.

The aim is to include empirical sections in every research
paper for the practitioners. The resulting research papers I-
IV present actionable artifacts (worksheets), which can
readily be deployed in daily software production projects.
The modeling propositions in the research papers V and
VI remain more tentative, requiring some further
refinements, but their feasibility is nevertheless
demonstrated with practical industrial examples.

The purpose is to develop solutions to
important and relevant business
problems (research relevance).

The research questions are extracted from the daily
operational work of the software production in the host
organization. Hence, they stem from the “burning” issues
for the practitioners, and should consequently be relevant
from the business point of view.

59

Guidelines (Hevner et al. 2004) Addressing in This Research
The utility, quality, and efficacy of the
artifacts must be rigorously
demonstrated.

Descriptive evaluation methods (scenarios) are used
tentatively.

The research must produce clear and
verifiable contributions (artifacts,
foundations and/or methodologies).

All the research papers I-VI make practice-oriented
propositions.

The construction and evaluation methods
of the artifacts applied must be rigorous
(research rigor).

The practical propositions are grounded to the relevant
research literature surveyed in the research papers.

The artifact solution is created by
utilizing the available means while
satisfying the laws in the problem
environment.

The research work is closely connected to the
organizational environment.

The results must be presented effectively
for both technology-oriented as well as
management-oriented audiences.

The research work is published in peer-reviewed journals
and conference proceedings. Some company-internal
presentations of the publications are organized for the
more practitioner-oriented audience.

The Reflective Practitioner mode of research (reflection-in-action) entails certain

inherent threats (Heiskanen and Newman 1997):
• The researcher should pay attention to the unique situation at hand.
• The researcher must avoid getting too “native”.
• All informants should be treated equally.
• The practitioners may have stakes in the process, thus biasing the neutrality.
• The research reporting should take into account the breadth of observations, and

data recording scrutiny.

This thesis research work is prone to the risk of the researcher getting too “native”
due to the author being a full-time employee of the company rather than an
independent external academic researcher. However, this risk is lessened by the
organizational position in the separate SPI organization not directly responsible for
the daily project operations of the software production.

The quality of the empirical observations is a valid concern here because of the
limited data size and mostly qualitative type. This is why a broad range of prior
literature is surveyed extensively including some most recent (2008) publications in
Ch. 2. That is in general recommended to compensate the limited number of cases in
typical theory-building studies (Eisenhardt 1989).

Descriptive evaluation methods are in general not recommended as the sole
method of evaluation of design-scientific artifacts, if other methods are feasible
(Hevner et al. 2004). We must therefore pay special attention to the following (van
Aken 2004):
• What can be learnt from this experience for other context (generalization)?
• On which observations and which logical reasoning are the recommendations

based (justification)?

Benbasat and Zmud (1999) stress that relevant (IS) research should be interesting,
applicable, current, and reported in an accessible way:
• Does the research address problems that are of concern to the professionals?

60

• Does the research produce the knowledge and offer prescriptions that can be
utilized by practitioners?

• Does the research focus on current technologies and business issues?
• Are the research articles understandable (even enjoyable) to the professionals?

In general, there is no universal agreement on the criteria of successful action

research (Huttunen, Kakkori and Heikkinen 1999). In particular, normal validity and
reliability tests may not be most appropriate. The pragmatic evaluation viewpoint is to
consider how much the research really helped the organization to improve its
working.

We evaluate our research results and inferences against these criteria and
recommendations in Ch. 5. The successfulness of the entire research work can then be
judged.

61

4 Results

This section presents the main results and findings of the individual research papers I-
VI (pp. vii). The items are grouped and combined here according to the research
questions 1-3 set in Sect. 1.2. The presentation follows the logical flow of the research
stream illustrated in Fig. 12. Each subsection (4.1, 4.2, 4.3) begins with a rationale.
This bridging integrates the sections together into a chain of cross-section result steps
and consequent needs for the subsequent research steps like overviewed in Sect. 1.4.

To begin with, the problem space of large-scale NPD embedded software projects
is examined (Sect. 4.1). Typical problem and uncertainty factors are recognized by
developing systematic means to characterize the contextual project problem space.
Next, the problem space is examined by developing certain recognized key problem
areas in more detail. Some practical constructs for this are proposed.

Following that line of thinking suggests considering agile solutions for typical
software project team problems (Sect. 4.2). This experimentation allows realizing
how and when agile software development can be realized efficiently at the software
team level.

The team-level agility is then developed towards larger-scale organizational
capabilities by integrating agile software project teams into NPD enterprise context
(Sect. 4.3). This connection makes it possible to draw wider conclusions about the
main research problem of the thesis.

Finally, Sect. 4.4 summarizes the research steps, tabularizing the developed
artefacts and the resulting findings. It then integrates the results together, making it
possible to answer the main research problem of the thesis.

4.1 Typical Problems of Large-Scale NPD Software Projects

Industrial non-trivial software projects tend to face many types of problems
throughout the project life-cycle. Some problems stem from the project external
environment and may be beyond direct control, while additional problems may be
endogenous.

An important first step is therefore to be able to recognize such context-specific
uncertainties and problem sources (Sect. 4.1.1). Once recognized and analyzed, it is
possible to look for alternative solutions to the current and anticipated future project
problem areas (Sect. 4.1.2, 4.1.3). By focusing on the particular context-specific
uncertainty and problem areas, the project manager can conduct and steer the project
rationally with appropriate means, even under considerable trouble conditions beyond
her immediate control.

It is not in the scope of this thesis work to investigate each software development
problem area in detail. Instead, the idea is to take a macro-level look, and thereby
cover a wider range of essential NPD project uncertainty and problem classes. This
scoping and focusing allows linking the possibilities offered by agile software
development models to the wider NPD context.

62

4.1.1 Project Problems / Uncertainties
The purpose of Research Paper I (“Troubleshooting Large-Scale New Product
Development Embedded Software Projects”) is to address the following specific
questions:
• How to recognize the typical problems of large-scale NPD embedded software

projects?
• How to assess the feasibility and achievability (“health”) of such projects?

This paper proposes focused aids for identifying and evaluating the typical NPD
problem factors. The investigation is first grounded to the existing literature of well-
known software project failure factors observed in various industrial and academic
environments over the years. Over the years there have been published many such
typical software project problem factor classifications (Boehm 1991; Brooks 1995;
Brown et al. 2000; Curtis et al. 1988; Fairley and Willshire 2003; May et al. 1998;
McConnell 1996; McConnell 1998; Ropponen and Lyytinen 2000; Royce 1998;
Schmidt et al. 2001; Smith 2001).

This study focuses on the specific problem areas of embedded software
development projects. For that purpose it is important to understand the contextual
factors and interdependencies between the actual software engineering and other
related functions.

Many problems and uncertainties stem from the software project external reasons
and dependencies. It is furthermore important to realize the dynamics involved – i.e.,
how often and radically each source may change (turbulence), and how predictable
the changes could be. That depends typically on many contextual factors in non-trivial
and often interdependent ways (cause-effect relationships). Each embedded software
team is then one element in a complex network thus facing both internal and external
turbulence factors stemming in particular from the following:
• product/project portfolio management (concurrent product programs)
• product systems engineering (product evolution)

Based on the above general characterization of the overall problem space, this

paper proposes a tool called ‘Project Problem Profiler’ for recognizing and evaluating
software project problem factors in a systematic and comprehensive way. The Profiler
is basically a database of typical problem factors and their likely impacts. It is based
on the literature survey coupled with certain practical industrial experiences.

Table 15 illustrates the overall structure of the resulting Profiler matrix7. The
matrix has two main parts (indicated by the thick vertical separator line).

7 A tool implementation is available in http://old-www.cwi.nl/events/2006/profes/program.html

63

Table 15. Project Problem Profiler structure excerpt (Research Paper I)

Characteristic
Project Problems,
Risk Factors

Categori-
zation
(Nominal)

Typical
NPD
Embedded
SW

Typical
IMPACT

Project
STATUS

Project
INDEX

Program/Project
Management

Ineffective project
management

Company - Critical x1 y1

Inadequate planning
and task identification

Project - Moderate x2 y2

Inter-component or
inter-group
dependencies

Project NPD
special
concern!

Major x3 y3

Personnel
Management

cont.

The left-hand side part of the matrix is basically a constant directory of typical

software project problem factors, with a special emphasis on NPD embedded software
projects. The rightmost part of the matrix is variable. It consists of the following two
fields:
• Project STATUS:

− This value is the current evaluation of the project status with respect to the
problem items (No problem / Minor issue / Concern / Serious!). This field is
intended to be filled in by the user.

• Project INDEX:
− The project’s profile is indicated as a numeric value for each problem item. It is

calculated based on the fields Typical IMPACT and Project STATUS. This index
can be used to plot graphical profiles of the current project situation (illustrated
in Research Paper I).

For the Typical NPD Embedded SW field the matrix highlights the following six

NPD special concerns (c.f., Table 15):
• new market with uncertain needs
• developing wrong software functions (functions that are not needed or are wrongly

specified)
• unrealistic schedules, budgets (time and budget estimated incorrectly)
• inter-component or inter-group dependencies
• real-time performance shortfalls
• straining computer science capabilities (lacking technical solutions and computing

power)

We have conducted some empirical case study experiments with the Profiler. The

experiments were done by asking the case project (quality) managers to evaluate their
project problem situation by using the Profiler matrix. The figures in Table 16 shows

64

a summary of the findings indicating the number of actual problem items detected
(see Research Paper I for the case details).

Table 16. NPD project problem profiling case studies (Research Paper I)

Project
Case

Field, Scope Approach /
Principles# of
Problem Items
flagged
(out of 23)

of Problem
Items assessed
as ‘Serious!’

of ‘NPD
special
concern’ items
(out of 6)

1 Terminal software
platform subsystem,
new features;
Project ending.

8 2 2

2 Network element
software, completely
new product;
Project completed.

17 5 6

In these cases concerning typical NPD-related problems 5 common problem items

(out of 23) were identified. For confidentiality reasons the actual problem profile
values cannot be shown here, though.

The general conclusions of these case studies were that the Profiler matrix captured
critical problem areas of the case study NPD projects. None of the project cases
identified any such significant problems that were not covered by the matrix.
However, it is not possible to say, if the matrix approach highlighted such problem
areas which had not yet been seen by the project manager.

4.1.2 Managing Information Uncertainty
The explorative study of the overall NPD software development problem space
described in Sect. 4.1.1 suggests that many of such problem sources are essentially
about information and knowledge management (‘NPD special concern’ in Table 15).
The embedded software teams must acquire and combine information from various
internal and external sources. Each source of information may introduce uncertainties
in terms of completeness, maturity and volatility.

Following that line of thinking, Research Paper II (“Managing Embedded Software
Project Team Knowledge”) addresses the following questions to investigate
systematic methods for capturing and managing embedded software project team
knowledge / information:
• What are the key sources of information for the embedded software project team in

such environments?
• What kind of information is needed from those different sources?
• When is each piece of information needed relative to the product life-cycle?

To begin with, it is important to take a holistic view of the overall knowledge space
of the product development project environment. We can start characterizing the
knowledge base and information streams of an embedded software project team by

65

modeling the software development process workflow. One of the key points is to
take the system and hardware engineering interdependencies into account.

The software development team must have a general understanding of the related
systems and hardware engineering processes for instance to be able to deal with the
hardware/software interface specifications. Ideally, there is a mutual codesign
network with intense knowledge sharing between all the related disciplines. This is
particularly important with concurrent engineering in turbulent environments with
uncertain, incomplete and volatile design information.

This information flow and knowledge sharing modeling can be further developed
to address the software project team outputs in particular for the other related project
teams and subsequent projects (e.g., future product releases). Typically in large,
established organizations much accumulated knowledge is encoded explicitly, but –
notably – also implicitly in the various structures, processes, routines, and different
tools. Often in practice some design knowledge remains outside the formal
documentation (e.g., private notes) and even undocumented. Interpersonal networks
are then important for sharing tacit knowledge. New personal experiences and skills
(organizational knowledge assets) have also been accumulated in the project team.

Research Paper II proposes two constructs to address the information flow and
knowledge sharing problems discussed above. These methods have been developed
based on empirical experiences in industrial embedded software production for
telecommunications network equipment.

The first Proposition helps identifying and consequently providing the necessary
knowledge of the project team. It is essentially a systematic matrix of key software
development knowledge areas following the modeling ideas.

Fig. 13 is an outline excerpt of this table. Each process area is accompanied by a
set of questions concerning the related knowledge elements. The basic idea is to
answer the questions from the viewpoint of each member of the project team.

Overall this method is most useful during the early phases of the project. Project
staffing and teaming can be more systematically knowledge-based. It can also be
utilized more generally for organizational process improvement purposes by
identifying possible gaps in competencies, incomplete information assets, and other
imperfect process areas.

66

NOTE:
The following is a list of software product development process areas based on ISO/IEC 15504 Reference Model.
The accompanying questions (in italics) are supposed to help identifying the practical information needs on those areas.
Each member of the project team should know those things from their point of view.

P. Kettunen
(PM)

N.N.
(Designer)

Customer-Supplier Process Cat (CUS):
Acquisition
Supply

Who are our customers (external and internal)?
Requirements Elicitation

What do the customers really want from us?
Who is responsible for the elicitation of the customer requirements?

Operation

Engineering Process Cat (ENG):
System Requirements Analysis and Design

Where do I get my system requirements?
How do I know the software architecture (and system design)?

Software Requirements Analysis
Which items (documents) comprise my software requirements package?
How are the requirements managed (changes)?

Software Design
What design methods and tools do I use?
How do I change the component / subsystem external interfaces?
Where can I find the hardware data sheets (if any)?

Software Construction
What compilers etc. tools do I use?
What implementation rules do I have to obey (e.g., coding standards)?

Software Integration
What kind of integration and testing should I do?

Software Testing
Where do I get the target test hardware?

System Integration and Testing
How do I interface with the SW integration and system I&V?

System and Software Maintenance
What software platform dependencies do I have to follow?

Support Process Cat (SUP):
Documentation

How do I manage (e.g., version) my documents?

For each question, answer considering the actual needs of that person:
- n/a: No need to know.
- YES: Need to know. WHEN is the knowledge needed then?

Fig. 13. Embedded software project knowledge planning template (Research Paper II)

The second Proposition helps using the knowledge during the software project life-
cycle by eliminating or at least reducing communication gaps and missing
information flows. It is based on well-known ideas of responsibility charts for project
planning in general by defining the key producers and consumers of the key
information and mapping them together as a chart.

Fig. 14 illustrates such a project knowledge sharing chart. With this tabular method
it is possible to visualize the knowledge item dependencies of each member of the
project team.

Software Project Internal Software Project External
Knowledge Items \ Actors P. Kettunen (PM) N.N. (Designer) (System Specifier) (Hardware Manager) (Quality Manager)
Previous projects history User n/a n/a n/a Provider
Software Specification A Author Reader n/a n/a n/a
System Specification B Reader n/a Responsible Contributor n/a
Hardware Data Sheet n/a Reader Reviewer Responsible n/a
ASIC hardware behaviour n/a User n/a Provider n/a
Standard Operating Procedure Reader Reader n/a n/a Responsible
User's Guide n/a Author n/a Reviewer Reviewer
Test process experience Provider User n/a n/a n/a

Fig. 14. Embedded software project knowledge sharing chart (Research Paper II)

67

We have used certain real-life historical records to assess the proposed constructs
and methods retrospectively in order to evaluate how the ideas could tackle similar
situations in the future. Table 17 summarizes that inferencing (see Research Paper II
for details). It suggests that the propositions could probably have helped to avoid
many of those problems at least within this particular NPD context.

Table 17. History data based evaluation of the propositions (Research Paper II)

Case

Problem Observations Construct Reflections

1 • underspecified system requirements
• lack of hardware behavior knowledge

• Proposition 2
• Proposition 1

2 • unclear, changing requirements
• architectural complexities
• testing
• multisite organizations,

communication

• Proposition 2
• (Proposition 2)
• (see Research Paper II)
• Proposition 2

3 • project scoping
• product release planning

• Proposition 1
• NONE!

Overall, this investigation points to the following fundamental knowledge-related

factors affecting NPD embedded software production and possibly causing major
problems unless taken comprehensively into account even at a software team level:
• overall knowledge-intensiveness, including tacit knowledge and implicit assets
• team-level perspective (e.g. how well a project team masters the relevant

knowledge, project team experience)
• people factors (e.g., skills, experience, interpersonal networking)
• organizational interdependencies (e.g., multiproject, product management)
• competitive environment changes (market and technology)

4.1.3 Tactics for Selecting the Software Process Model
The constructive exploration of the NPD software development problem space
presented in Sect. 4.1.1 and 4.1.2 suggests that there is a need for systematic and
holistic means to manage project uncertainties and different sources of potential
problems. A major part of such a framework and a macro-level solution area of
software project management is the choice of the overall project life-cycle model.
This calls for systematic comparisons of different life-cycle model alternatives.

Research Paper III (“How to Steer an Embedded Software Project: Tactics for
Selecting the Software Process Model”) addresses this question with the following
specific setting:
• How can the project manager avoid typical project problems by selecting an

appropriate software process model, based on the project situational factors?

Many research investigations and software engineering guidebooks compare and
contrast different software process models. Those different investigations use various
different comparison viewpoints, such as suitability for different development types
(size, criticality, and project’s priorities), efficacy of managing different software

68

risks (uncertainty), and the level of prescription vs. situational adaptation. In addition,
there are various multidimensional classification approaches (like “home ground”
profiles).

In Research Paper III we propose a quasi-formal comparison based on distilling
features of different project problem factors. We have composed a comparison matrix
of well-known software process models with typical project problem issues like
explored in Sect. 4.1.1 and 4.1.2 as the comparison points. Table 18 shows the
structure.

Table 18. Software process model comparison / selection matrix structure (Research Paper III)

 Software Process Model
Project problem, risk, failure factor How does this process model prevent that

particular problem from happening, or helps
mitigating it (in the context of large embedded
software projects)?

The matrix includes the following software development process models:

Waterfall, Incremental development, Spiral model, Rational Unified Process (RUP),
FDD, ASD, and XP. The idea is to cover a wide range of models, both traditional and
modern ones. In contrast, there is an extreme case of ad hoc “hacking”.

As the comparison points the matrix covers some 50 problem items (rows) grouped
according to the project life cycle: project initiation, execution, completion. Fig. 15
illustrates the layout of the matrix (top left-hand corner; see Research Paper III for the
complete matrix).

Software Process Models
Plan/Specification-driven Models Evolutionary Models

Project Problems, Failure Factors Waterfall (serial development) Incremental development models Spiral model (risk-driven iteration)
Project Initiation:
Unclear project objectives (lack of a project
mission)

Waterfall model does not tackle
especially this problem. You should stay
on the specification phase, until your
project objectives are clarified.

Can start working on the known
increments, and clarify the rest later.
Note! May arise other problems later, if
project is not well defined or if the
definition changes much later. Rule of
thumb is: 80% of the requirements
should be known in the beginning. Make
a project priority chart, and plan the
increments accordingly. Sometimes the
priorities must be changed during the
project.

…

Overplanning / underplanning (e.g., "glass
case" plan)

If you can do the planning reasonably
well up-front, there is less overhead
than with the iterative / incremental
models. However, in the case of major
uncertainties it is difficult to plan the
project fully in advance. You must really
proceed with the development to
understand it better for realistic
planning.

… …

Lack of resources (people) … … …

Fig. 15. Software process model comparison / selection matrix excerpt (Research Paper III)

69

The matrix includes in addition a key point section of each process model’s home
ground, drawbacks, and typical pitfalls. Table 19 is the outline of that part.

Table 19. Software process model selection matrix structure (cont) (Research Paper III)

 Software process model

Home ground Most applicable project environment(s) – “sweet spot”
Consequences, Side-
effects, Drawbacks:

Scope Coverage of the model (project life-cycle activities)
Nature Methodological characteristics
Advantages Key benefits
Constraints Limitations and disadvantages, prerequisites
Cautions! Significant risks and pitfalls
Notes Miscellaneous remarks
EMBEDDED SYSTEMS Particular considerations for embedded software projects

Research Paper III presents some industrial problem-based descriptive case studies

to demonstrate the feasibility of the comparison matrix in practical settings. They
illustrate how the matrix can be used to address typical project problem scenarios –
such as incomplete product requirements.

The outcome of this comparison is not any particular process model
recommendation, but the idea is that the project manager can use the matrix to support
his/her own selection of the particular process model. The matrix contains distilled
advice about the selected process models in a concise form.

This comparison study highlights how the focal points and underlying assumptions
of different software development process models vary. Notably no one process
model is optimal in all problem situations, whilst for certain problem areas several
feasible choices could be possible. On the other hand, a mismatch often leads to
ineffective project steering and could even create additional problems.

4.2 Agile Solutions for Typical Software Project Team Problems

The cross-step conclusions in Sect. 4.1 suggest that agile software product
development could potentially be a beneficial solution for many typical problems of
embedded software projects, in particular:
• product requirements volatility and uncertainties (features)
• tight project schedules (time-to-market)
• extensive and rich knowledge / information sharing needs (communication)

Following the problem-driven software process model comparisons discussed in
Sect. 4.1.3, it is thus logical to investigate further agile software development models
and how they address different project problems (Sect. 4.2.1). It is in particular
important to see how the focus areas of different agile software process models match
with the practical NPD project problem areas (Sect. 4.1.1-4.1.2).

70

When agile software development models tackle the relevant project problem
issues, it is in addition important to understand their overall effects in the NPD value-
creation network. Cost factoring is therefore a key consideration for justifying their
applicability and benefits (Sect. 4.2.2).

4.2.1 Responding to Problems with Agile Software Process Models
Research Paper IV continues the investigation of software process models as project
problem solvers discussed in Sect. 4.1.3 (Research Paper III) by focusing more on
agile software development models. The research question is thus as follows:
• How do different agile software process models respond to different project

problems faced in turbulent environments (if at all)?

The following agile software development models are included: XP, Scrum, FDD,
and ASD. Although RUP is generally not advocated as a pure agile software process
model, it is possible to use it in a lightweight way, and we include that as well here.
The purpose of this investigation is not to be an all-encompassing study of every
agile-oriented development model but more like an overview exploration.

The composition of the comparison matrix is similar to the one in Fig. 18
(Research Paper III). The order of the process models (columns) in our matrix follows
Boehm’s (2002) spectrum. Fig. 16 illustrates it.

Since all agile methodologies advocate at least some of the same common
principles (Sect. 2.3), we have included one column into our matrix reflecting, how
each project problem could in general be tackled (see column “Related AGILE
PRINCIPLES” in Fig. 16). However, this reflection is basically for reference
purposes only, since those agile principles have been formulated in a very general
way. Notably current agile software process models do not explicitly address
embedded software development.

Software Process Models

Project Problems, Failure Factors Related AGILE PRINCIPLES RUP (Rational Unified Process) FDD (Feature-Driven Development)
Project Initiation:
Unclear project objectives (lack of a project
mission)

4. Business people and developers must work
together daily throughout the project.

The Inception phase produces the
project's Vision document defining the
objectives (scope and constraints). The
phase completes with a Lifecycle
Objective (LCO) milestone, which
criteria include a stakeholder agreement
on the scope and the main requirements
(features).

FDD does not cover the project initiation
phase nor the customer requirements
elicitation. However, a part of the
Domain (Object) Model development is
to understand, what the system is
supposed to do. The model and the
Features List are recommended to be
agreed with the customers
(stakeholders). With FDD, staged
delivery is often recommended, thus the
known/specified features can be
made/shipped first.

Overplanning / underplanning (e.g., "glass
case" plan)

10. Simplicity - the art of maximizing the
amount of work not done - is essential.

There are two types of plans: a coarse-
grained Phase Plan, and a more
detailed Iteration Plan (for the current
iteration). Excessive planning beyond
the current horizon is not favored. The
plans have evolving levels of detail.
Generally, no work should be done
outside the iteration plans.

…

Lack of resources (people) 5. Build projects around motivated individuals.
Give them the environment and support they
need, and trust them to get the job done.

… …

Fig. 16. Agile software process model comparison matrix excerpt (Research Paper IV)

71

Research Paper IV presents some descriptive case studies to test the feasibility of
the comparison matrix in practical problem situations. They illustrate how different
agile software development models address certain typical product development
scenarios requiring agile capabilities.

The comparison matrix suggests that many typical problem areas tend to be
addressed by all the agile models: e.g., over/under-planning and unstable (volatile)
requirements, continuous requirements changes. On the other hand, there are certain
project problem areas that none of the selected agile software process models tackle
especially well, such as lack of resources (people). Overall, the matrix approach
points out how the problem space focus of agile methods is to some extent distinct
from the problem space of traditional software process models examined in Research
Paper III (Sect. 4.1.3).

One of the case examples in Research Paper IV (Case #3) indicates in addition that
at least in larger projects following one particular method (XP) strictly as defined can
be very challenging. None of the analyzed models are free from at least some limiting
constraints.

As a conclusion, this systematic comparative study suggests that although agile
software development models address many critical NPD project problems, the
benefits are not self-evident and not necessarily realizable without some investments
and trade-offs. This line of reasoning leads to the next research question to conduct
systemic cost/benefit analysis of agile software development capabilities.

4.2.2 Cost-Based Justification of Agile Software Development
In Sect. 4.2.1, many possibilities for solving typical software project problems with
agile software development models are recognized. However, it is not enough to
provide effective solutions, but they must also be efficient to realize in practice. Cost
factors (software engineering economics) are therefore important additional
considerations of agile software development. In particular in many modern global
business environments productivity and cost-effectiveness factors are often key
considerations.

Agility cost factors have been investigated specifically in conjunction with
manufacturing and supply chains (Sect. 2.2.3). This insight leads to the question of
their suitability for software development in Research Paper V:
• Are general agile cost models applicable to software development?

Considering product development value streaming in terms of the following
general equation (Eq. 1), agility strives to increase the quality and service factors by
meeting the current customer requirements by being flexible to customer demands
and market changes. Furthermore, the cost and lead time factors can potentially be
decreased by improving the overall productivity of the product development
workflows (lean). A key feature of the agile software methods is that they attempt to
keep the cost of fast design iterations low, thus striving for increasing the numerator
and decreasing the denominator factors in Eq. 1 simultaneously.

LeadTimeCost
ServiceQualityVALUE

∗
∗

=
(1)

72

In general, agility requires investments. Agile response capabilities entail the

following cost factors:
1. Building the reaction capabilities (e.g., software product platforms) in advance

anticipating future changes
2. Utilizing those capabilities to rapidly implement the responses to the actually

realized changes

Heikkilä and Holmström (2005) present a general cost model of an Efficiency

Frontier. The point is that, up to the efficiency frontier, there is room for improving
both the agility and cost-effectiveness of the current production system. Investments
in agility could pay off in the future as the company is able to sustain profitability
under changing conditions.

Research Paper V examines those generic modeling ideas with a descriptive case
study example. The example illustrates that it is possible to quantify the costs and
benefits of agile NPD software development, with exact questions to assess when
preparing investments.

The case is about new product variants development, which is typically done with
concurrent engineering of the new hardware and the embedded software functionality
(Fig. 17, see Research Paper V for more details). A less-agile product development
organization is not prepared for such emergent new variant needs, and consequently
reacts to the customer needs as they come (Fig. 17(a)). This causes time-to-market
delays, leading to poor responsiveness as well as lower productivity. In contrast, in a
more agile organization, the need for different product variants is proactively
anticipated from the beginning (Fig. 17(b)). A larger initial investment to proaction
pays off in the long run due to the resulting better responsiveness and shorter time-to-
market. However, this depends on the future business cases over time (ROI).

(a) Less agile (b) More agile

Time

Cumulative
Cost

a2

a1

New customer need
actualized.

Reaction

Time

Cumulative
Cost

b3
b2
b1

New customer needs
actualized.

Proaction Reaction

Fig. 17. Agility cost modeling example case (Research Paper V)

Research Paper V concludes that certain agile manufacturing / supply chain cost
models can be successfully applied also in software development. This is because
many agile manufacturing concepts have essentially been applied in some form in
agile software development (e.g., lean thinking).

73

However, in large-scale software development the cost model of agility should
incorporate the business model of the company (unit) as well (like the product variant
offering in the case example above). A larger NPD organization should compose a
value stream map of the whole product creation network, where the embedded
software production function is one element of the NPD value stream. In large
product development projects the net change cost (e.g., of swapping product features)
often increases non-linearly during the development, as it is not just one team
affected, but there are typically many interdependent teams. This is also influenced by
product architectural choices (e.g., product line platforms). In general, each
irreversible decision made during the product creation limits the future flexibility, and
commits to certain costs.

4.3 Agile Software Project Teams within NPD Enterprise Context

The results and findings presented in Sect. 4.2.1 suggest that agile software
development models address many key concerns of typical NPD embedded software
projects. In addition the economic factors of agile software development are
manageable like investigated in Sect. 4.2.2.

However, the findings also reveal the fact that complete realization of many of
those potentially beneficial solutions at the software team level depends on the
surrounding organizational environment and the integration between the software
team(s) and the rest of the NPD value network. This insight leads to the next research
need to investigate how agile software teams can work effectively in the larger
organizational system context in order to contribute positively to the total
performance of the NPD organization.

Research Paper VI addresses those issues of integrating agile software
development teams into larger scale organization environment. Specifically, it sets the
following questions:
• How does software project agility relate to NPD enterprise agility?
• What are the implications for SPI?

The research approach is to build a software project team agility extension
framework by connecting agile software product development projects explicitly into
the NPD enterprise context. The starting point is therefore an individual team and its
agility related key interfaces (business customers / markets, organizational resourcing
and governance).

The next logical step is to put the model of an individual software team into the
larger organizational context considering the NPD and enterprise layers together with
the competitive (business/technology) environment of the organization. Notably the
project team may not have direct connections to the business customer(s), and there
are typically other organizational stakeholders. Furthermore, the software project
team may have additional interdependencies both internally (e.g., with the hardware
development projects) and externally (e.g., subcontractors). The problem is, then, how
the teams can nevertheless be agile.

Fig. 18 illustrates those considerations with the Scrum method. The basic process
model has to be connected with the rest of the NPD organization (linking the inflows

74

and outflows indicated by the dangling arrows in Fig. 18). This may introduce
additional contextual interdependencies for example to process the interim increment
releases.

PREGAME DEVELOPMENT POSTGAME

Planning
Product
backlog

High-level
Design/
Architecture

Standards
Conventions
Technology
Resources
Architecture

Priorities Estimates

Sprint
backlog

SPRINT

New
increment

Integration

System
testing

Final
release

Documen-
tation

Fig. 18. Organizational extensions with Scrum (Research Paper VI)

The key is thus to understand and agree on the interfaces and constraining factors
between the project team and the rest of the NPD organization. Some of the major
considerations are then for example the following:
• What are the customer interface and the distance between the customer(s) and the

project team?
• Who makes the business decisions about the product features, and the development

schedule and resources (governance)?
• What is the required level of project progress visibility (e.g., milestones)?

Depending on the sources and level of uncertainties, different levels of flexibilities
are required for achieving agility. Agile software teams must therefore have
appropriate latitudes in the organizational context in multiple steering dimensions like
depicted in Fig. 19. The more business (market) and technology uncertainty there is,
the more flexible the product concept and development approaches should be to
accommodate the volatility and changes. However, the project complexity and
organizational constraints limit the choices.

Technical Uncertainty

Business Uncertainty

Project Constraints
(size, dependencies, people, etc.)

More exploration,
developmental
flexibility needed.

More product
flexibility needed.

More
organizational,
managerial
flexibility needed.

Fig. 19. Project agility dimensions (Research Paper VI)

75

Combining the enterprise model with the software project agility steering model
(Fig. 19) produces a synthesis view of the overall NPD enterprise agility. The agility
of the NPD organization is the aggregate of the product development projects. The
NPD function as a whole exploits its agility by combining the different projects. For
example, there may be multiple concurrent release projects each developing new
features for the same product based on both known (reactive) and anticipated
(proactive) market needs.

Finally, at the enterprise level the entire NPD organization is just one part of the
agility capabilities considering the whole space of business competence (c.f., Fig. 2).
For instance different marketing strategies may choose to leverage the NPD
capabilities in different ways over time for achieving firm external agility (e.g.,
selecting the current and new product features to release).

Research Paper VI evaluates this modeling approach with a descriptive case in
industrial NPD. The key success point is to realize the positioning and the external
connections of the software development projects in the enterprise NPD value stream.
An agile organization realizes the sources and nature of project uncertainty (Fig. 19),
and takes proactive measures accordingly. The software project’s external
connections are then managed systematically (Fig. 18).

The main conclusion of the findings in Research Paper VI is that NPD company-
specific strategic choices influence profoundly the agility of the related software
projects (for example the way they interface with the customers). This may then put
totally different requirements for the different product development projects within
the company. The agility of the individual software projects should not be developed
in isolation. The project teams can then realize their positioning in the NPD
organization and in its value network, and what business effects they are expected to
bring at the enterprise (business unit) level. At the project team level the specific
uncertainties and organizational constraints guide then the appropriate choices for
situational, flexible software project management tactics.

4.4 Synthesis

The research steps presented in Sect. 4.1-4.3 form a consecutive research thread
summarized in Sect. 4.4.1. Each step addressed certain specific aspects of the main
research problem, and opened up next research cycles. Altogether, the combined and
integrated results answer the overall research problem of the thesis (Sect. 4.4.2).

4.4.1 Research Cycles
Following the research questions (Sect. 1.2), Table 20 is a concise summary of the
research cycles included in this thesis. The development artefacts described in detail
in Sect. 4.1-4.3 and originally in the corresponding research papers (pp. vii) are
tabularized here.

Table 20. Summary of the research cycles

Research Cycle
(Paper)

Topics Artefacts

76

Research Cycle
(Paper)

Topics Artefacts

What are the typical problems of large-scale NPD embedded software projects? (Sect. 4.1)
I “Troubleshooting large-
scale New Product
Development embedded
software projects”

Project problems / uncertainties:
How to recognize the typical problems of
large-scale NPD embedded software
projects?

Problem/uncertainty
profiling matrix

II “Managing embedded
software project team
knowledge”

Managing information uncertainty:
What are the key sources of information
for the embedded software project team in
such environments? What kind of
information is needed from those different
sources? When is each piece of
information needed relative to the
product life-cycle?

Systematic methods for
capturing and managing
embedded software project
team knowledge /
information

III “How to steer an
embedded software
project: tactics for
selecting the software
process model”

Managing and avoiding different project
problems with software process models:
How can the project manager avoid
typical project problems by selecting an
appropriate software process model,
based on the project situational factors?

Process model
comparison/selection matrix

What problems and goals does agile software development address? (Sect. 4.2)
IV “How to steer an
embedded software
project: tactics for
selecting agile software
process models”

Responding to different project problems
with agile software process models:
How do different agile software process
models respond to different project
problems faced in turbulent environments
(if at all)?

Agile software process
model comparison/selection
matrix

V “Cost Modeling Agile
Software Development”

Cost-based evaluation and justification of
agile software development:
Are general agile cost models applicable
to software development?

Interdisciplinary application
of agility cost theory
considering NPD reaction
and proaction capabilities
(value creation effects vs.
investments)

How can typical large-scale NPD problems be tackled with agile software development
methods? (Sect. 4.3)
VI “Extending Software
Project Agility with New
Product Development
Enterprise Agility”

Extending software project team agility
within larger scale organization context:
How does software project agility relate
to NPD enterprise agility? What are the
implications for SPI?

Software agility extension
framework taking into
account contextual drivers,
interdependencies, and
enabling factors

4.4.2 Compound Results
Altogether this stepwise research and the results and findings presented in Sect. 4.1-
4.3 and summarized in Sect. 4.4.1 provide progressively deeper understanding of
software production agility in large-scale NPD environments like depicted in Fig. 11.
As a conclusion, the results and findings of this research work can be aggregated as
follows:
• In large-scale NPD organizations, the typical problems of embedded software

projects stem in general on multiple different dimensions from both the external

77

competitive environment (business and technology uncertainties) as well as
organization internal reasons (e.g., multiproject interdependencies) (Sect. 4.1).

• Agile software development models address many of those key problem areas, and
the associated software engineering economic relationships are in principle
manageable (Sect. 4.2).

• However, in large NPD organizations it is in general not enough to pursuit agility
at the individual software team level alone, but the surrounding organizational
context has to be taken into account in order to integrate such project teams
effectively for gaining comprehensive, enterprise-level performance benefits of
agile software product development (Sect. 4.3). In large organizations there are
often complex interdependencies between different projects, teams, and functions.

Following the main research flow in Fig. 12, based on this new knowledge it is

possible to answer the main research problem of the thesis about how agile software
development can be utilized in large-scale NPD context:
• To begin with, it is essential to understand the nature of the key project problem

areas (e.g., uncertainty, productivity) and the intended purpose and coverage of the
suggested solutions offered by agile software development models. Often there is a
range of apparently different goals and problem issues, but the respective success
factors and root causes may actually lead to the same focal sources. If they map
clearly to the specific areas covered and emphasized by the agile software
development models, there are potentially immediate advantages. This perspective
is studied in detail in Research Paper IV (Sect. 4.2.1).

• However, it is not obvious how the (agile) software product development
capabilities relate to the NPD performance, and finally to the business
performance. Research Paper V (Sect. 4.2.2) shows that there are certain
possibilities to capture such effects with known modeling techniques. The key
intrinsic characteristics of software production (Sect. 2.1.3) should nevertheless be
taken into account.

• It is important to see how the agile development in software production joins the
overall NPD process improvement and even more general organizational
development. The agility of the individual software projects should not be
developed in isolation (Research Paper VI, Sect. 4.3). The relevant goals, problems
and potential solutions should be analyzed in a holistic way taken into account the
environment of the organization (team, unit). The project teams can then realize
their positioning in the NPD organization and in its value network, and what
business effects they are expected to bring at the enterprise (business unit) level.
Often the NPD front-end, product creation, and also possibly also technology
development activities are iterated even concurrently in large, complex projects
facing different levels of uncertainties in different product areas and life-cycle
phases. At the project team level the specific uncertainties and organizational
constraints guide then the appropriate choices for situational, flexible software
project management tactics.

78

5 Discussion

Having presented the research results in Ch. 4 answering the research questions, this
section elaborates the addressing of the research problem (Sect. 5.1). Moreover, the
research can now be compared against the related literature (Sect. 5.2), and also
evaluated considering the overall research quality (Sect. 5.3). Based on the results, the
insights make it furthermore possible to suggest implications in Sect. 5.4.

5.1 Answering the Research Problem and Goals

In order to elaborate the answer to the research problem (Sect. 4.4), the question can
be viewed from two different perspectives:
1. Problem-based: The problem-based perspective emerges from first sensing and

understanding the software development (project) contextual problem and
uncertainty space (Research Question 1, Sect. 4.1). Such a problem profile can then
be analyzed with respect to the specific solutions addressed by agile software
development models (Research Question 2, Sect. 4.2). Not all software product
development problem areas are covered equally by different agile software process
models (Sect. 4.2.1). If a distinct correspondence is found, the selected agile
solutions could be worth applying – subject to cost assessment (Sect. 4.2.2). This is
often path-dependent. Finally, when the agile solutions are found to be suitable and
feasible at the software team level, it should be ensured that they fit into the
organizational context (Research Question 3, Sect. 4.3). This may require
additional measures and extensions, which may in turn call for reassessing the cost
factors, and even reconsidering the feasibility of the solutions. The consequent
NPD performance effects and ultimately the firm business value gains should be
considered.

2. Effects-based: The effects-based perspective begins in contrast with the potential
benefits provided by agile software development teams, and how those benefits can
be exploited for the overall NPD performance (Research Question 3, Sect. 4.3).
The starting point is thus an outside-in view of agile software development teams.
For instance, if the product development time-to-market goals are the key
performance drivers in the NPD organization, the software development teams can
be assessed from that particular point of view. It is then possible to realize how
agile software development solutions (Research Question 2, Sect. 4.2) could
support that goal. Consequently, it is also important to make it sure that the teams
are in practice capable of achieving such results by providing the necessary
enabling conditions and removing any possible impediments in the organization
context (Research Question 1, Sect. 4.1).

Notably the research workflow of this thesis has followed the former view (i.e.,

top-down). However, it is possible to see it also the other way around (the latter view)
by unwinding the research cycle depicted in Fig. 11. Moreover, the research papers I-
VI can be positioned inside-out starting from the software team scope, and expanding

79

towards the larger-scale NPD organization scope. Another viewpoint is to take on
outside-in lens by approaching the individual software teams from the NPD
organization scope. These two views are also reflected in Fig. 1.

Concluding, the answers and contributions altogether strive for satisfying the
general goals (i-iii) stated in Sect. 1.2 for this research effort by chartering and
conceptualizing the project problem space, and examining situational project
management with the software process model perspective – focusing on agile
software development models specifically (i). Furthermore, agile software
development teams have been put into the larger organizational context and analyzed
considering overall NPD objectives and value-chain relationships (ii). In addition, this
impact analysis leads to certain recommendations presented in Sect. 5.4 (iii).

5.2 Comparing and Contrasting Related Work

Over the years, the prior investigations have recognized general NPD success factors
(Table 25) on the other hand, and typical risks of software projects on the other hand
(Table 2). Many special concerns of embedded software development have also been
known for a long time. Different NPD and software process models have been
compared in general terms, including flexibility (Table 26, Table 3).

In contrast, this thesis research combines and elaborates that knowledge by
approaching software development projects from a wider, systems-thinking
perspective in the NPD context. Based on this large-scale organizational view, the
findings discover that the most critical product development project management
problems stem from not so much within the single project itself, but from the
technical and organizational connections and interdependencies over time (Sect.
4.1.1).

Due to those contextual and situational factors, the embedded software project
teams face many external, often uncontrollable sources of uncertainties (e.g., volatile
new product requirements, unstable target hardware interfaces), and various
interdisciplinary heterogeneous knowledge spaces (Sect. 4.1.2). Under such
circumstances a major part of successful project steering tactics is to use appropriate
software process models to manage the driving criticalities, and moreover to avoid
further problems caused by inappropriate process models (Sect. 4.1.3).

However, less is known about newer, flexible models of software and product
development in such dynamic, uncertain environments. This is where agile software
development models address distinct needs (Sect. 2.3.2.2, Table 8). What has been
missing or has been considerably less-systematically covered is their integration with
larger-scale NPD processes and their interplay in the organizational context.

This thesis recognizes and addresses that cross-functional, interdisciplinary
research gap. There are currently incompleteness and even confusion with the
concepts, definitions, and terminology of agility as related to software development
(Sect. 2.3.1). Consequently, there are no standardized, comparable measurements
(Table 5, Table 9). This research work clarifies the conceptual base and different
definitions used not only in software development but within the larger NPD context
including other interrelated business competence areas and disciplines (Table 4).

80

This examination makes it possible to position the current agile software
development models in the larger systems context in NPD organizations. Their
focusing and scope can then be understood in particular regarding their often implicit
but strong working assumptions and coverages (Sect. 4.2.1). Furthermore, this more
rigorous conceptualization allows more formal reasoning about their benefits and
associated costs (Sect. 4.2.2).

Currently many industrial organizations are considering agile software
development in their NPD functions (Table 28). In larger organizations this leads to
the issues of integrating and scaling up the software team-level developments with the
rest of the product development and operations (Table 29). However, there are no
widely-agreed frameworks for such agile adoption, and many organizations have
devised various proprietary approaches (Table 30).

This thesis acknowledges that much of such organizational development is
inherently context-specific due to the different strategic goals, competitive
environments, and historical paths of the organizations. Nevertheless, we also argue
that despite the firm-specific characteristics there are many common higher-level
patterns that can be abstracted and therefore adopted in different organizations. For
instance the external interconnections of embedded software project teams are often
basically similar in apparently different NPD environments (Sect. 4.3).

Related to the overall conceptualization of agility and agile software development
discussed above, such abstractions are currently not widely recognized in the NPD
software production. This thesis work advances that line of progressing.

5.3 Evaluation

Like stated in the research design (Sect. 3.4), it is important to scrutinize the research
work both in terms of the industrial relevance (Sect. 5.3.1) as well as scientific
validity and rigor (Sect. 5.3.2). This evaluation makes it also possible to reason about
the generalizability of the results (Sect. 5.3.3), taking into account the specific
constraints and limitations imposed by the organizational environment of this thesis
work (Sect. 5.3.4).

5.3.1 Relevance
The research relevance is of particular importance in this kind of an industrial
research effort (Benbasat and Zmud 1999). It is important to convince that the
research question is significant for the organization(s) and/or theory, and to
demonstrate that the existing research either does not address the research question at
all, or does so inadequately (Eisenhardt and Graebner 2007). Moreover, the
(management) research should be innovative, challenging established theories even
counterintuitively (Bartunek et al. 2006).

The real world organizational drivers and interests for the research problem of this
thesis are described in Sect. 3.2. That justifies the topical relevance of the research in
the case organization context. Furthermore, agile software development is of
considerable topical relevance in the industry in more general; see for example
(Schwaber 2005; Gottesman and Takas 2007). There are also many recognized open

81

avenues for further academic research in this field (Dingsøyr et al. 2008; Dybå and
Dingsøyr 2008).

The theoretical background and prior research are reviewed in Ch. 2. The
consequent research needs are summarized in Sect. 2.4. In particular, the cross-
functional synthesis of general-purpose NPD research and agile software product
development models is inadequately covered, suggesting open research questions.

Stemming from the practical industrial context, this research work has consciously
strived for addressing “real world” problems suggesting usable pragmatic solutions
propositions and inferences. Consequently, there are also many relevant practical
implications as discussed in Sect. 5.4.2.

The interdisciplinary, explorative approach of the research is not necessarily totally
groundbreaking, but it is nevertheless a fresh – if not counterintuitive – choice, not
often taken in the existing research literature of the field. This research path has
certainly opened up many possibilities for further relevant work like outlined in Sect.
6.2.

5.3.2 Rigor and Validity
The overall research work plan is first appraised (5.3.2.1). The research realization is
then evaluated against scientific soundness (5.3.2.2) and methodological fitness
criteria (5.3.2.3). Finally, the presentation of the research papers and this summary
altogether is judged (5.3.2.4).

5.3.2.1 Design Rationale
This research work is constructive with some supporting empirical evidence like
described in Ch. 4. Eisenhardt and Graebner set the following general criteria for
sound empirical research (Eisenhardt and Graebner 2007):
• Begins with strong grounding in related literature.
• Identifies a research gap.
• Proposes research questions that address the gap.

The related literature is reviewed extensively in Ch. 2. Based on that, the research

and knowledge gaps are highlighted in Sect. 2.4. This leads to the research problem
and the research questions stated in Sect. 1.2.

Eisenhardt and Graebner (2007) require furthermore a justification of why the
research problem is better addressed by theory-building rather than theory-testing.
Like discussed in Sect. 3.2, the starting point and contextual drivers for this research
work originated at the software team level. The primary aims have been in pragmatic
proposition-building for real-life SPI problems. Moreover, since the field of software
product development in general and agile software development models in particular
is mostly in a nascent state, possibly applicable theories are still merely emerging.
Therefore, this research thread is closer to theory-building than theory-testing.

5.3.2.2 Soundness
Dybå and Dingsøyr (2008) have composed a rigorous overall qualification criterion
while surveying published empirical research of agile software development. Table 21
assesses this thesis research work against that criterion.

82

Table 21. Evaluating the soundness of the research work

Criteria (Dybå and Dingsøyr 2008) Addressing in This Research
Is the paper based on research (or is it merely a
“lessons learned” report based on expert
opinion)?

Although the research work is grounded to
industrial practice, the guiding ambition has been
to follow sound academic research conduct from
the beginning – subject to practical time and
resource constraints, though. The research steps
are published in peer-reviewed journals and
conference proceedings rather than in less-formal
practitioner magazines.

Is there a clear statement of the aims of the
research?

The aims of the research are defined in Sect. 1.2.
There are both academic research objectives as
well as practical industrial goals.

Is there an adequate description of the context in
which the research was carried out?

The context of the research work is described in
Sect. 3.2, presenting the industrial case
environment.

Was the research design appropriate to address
the aims of the research?

According to Eisenhardt and Graebner inductive
theory-building research using cases answers
particularly well research questions that addresses
“how” and “why” in unexplored research areas
(Eisenhardt and Graebner 2007).

Was the recruitment strategy appropriate to the
aims of the research?

The selection of the participants and cases has
been limited by the organizational constraints of
the research environment. The descriptive cases –
although limited in number and scope – are
expected to be representative in this particular
industrial context, however.

Was there a control group with which to compare
treatments?

There was none. The usefulness of the
propositions remains thus mostly for further
studies. In general, the relative empirical
importance of the proposed constructs is not a
primary concern in theory-building research.

Was the data collected in a way that addressed
the research issue?

The data collection procedures have been
described in the individual Research Papers (Ch.
4). All in all, the empirical data used is limited to
certain descriptive cases (see Sect. 5.3.4).

Was the data analysis sufficiently rigorous? The data analysis procedures have been described
in the individual Research Papers (Ch. 4). Due to
the descriptive nature of the supporting data, the
rigor is not considered to be a serious threat for
this thesis research (see Sect. 5.3.4).

Has the relationship between researcher and
participants been considered to an adequate
degree?

The relationship is defined in Sect. 3.2.2. This
consideration is taken into account like described
in Sect. 3.4.

Is there a clear statement of findings? The findings are presented in detail by the
separate Research Papers. Ch. 4 summarizes the
key items.

Is the study of value for research or practice? Like stated in Sect. 3.2, this research effort is by
nature practice-oriented due to its industrial
context. However, there is a deliberate ambition
to conduct the work in a scientifically rigorous
manner. Arguably, not all the publications are in
top-tier research forums, though. The ultimate
value of the study remains to be seen (Barley
2006).

83

Table 21 indicates that the weakest areas of this research work are in the empirical
data collection and analysis. However, the role of empirical data is not critical in this
research process due to the exploratory nature of the research in a nascent field with
not much prior established theory.

5.3.2.3 Methodological Fit
Edmondson and McManus (2007) define ‘methodological fit’ as a coherent alignment
between the research question, related prior research, research design, and the
contribution aims of the new research. They suggest an overall framework for
selecting appropriate research methods based on the maturity level of the research
area (at the time of the study) like presented in Table 22. Inconsistencies (“misfits”)
are likely to lead to difficulties and less compelling results.

Table 22. Methodologically fit new research designs (after (Edmondson and McManus 2007))

State of Prior
Research

TYPICAL New Research Design COMMON Flaws,
Threats with Evidence

MATURE • focused research questions
• relying on existing constructs and theories
• quantitative data, statistical data analysis
• SUPPORTED THEORY

• “reinventing” obvious and
well-known findings

• qualitative evidence used
unevenly

INTERMEDIATE • proposed relationships between old and new
constructs

• some new constructs
• both qualitative and quantitative data

(hybrid)
• PROVISIONAL THEORY

• lack of supporting
qualitative data for
convincing new constructs

• quantitative data missed for
even preliminary
hypothesis testing

NASCENT • inquiry about an interesting phenomenon
• new constructs
• qualitative data, initially open-ended
• SUGGESTIVE THEORY

• quantitative data used with
uncertain relationships on
the unknown phenomenon

• “fishing expeditions” with
qualitative data

Table 23 evaluates this thesis research work against the general recommendations

given in Table 22. Notably the scale for the state of the prior research is a continuum,
merely suggesting the broadbrush archetype.

Table 23. Evaluating the methodological fitness of this research design

Research Step / Question
(Paper)
(Ch. 4)

State of Prior
Research
(Sect. 2.4)

Methodological FIT

1. What are the typical problems of large-scale NPD embedded software projects?
I “Troubleshooting large-scale
New Product Development
embedded software projects”

MATURE • mostly recombining and rejoining prior
constructs and findings

• some quantitative evidence for
demonstrating the proposed artefacts

84

Research Step / Question
(Paper)
(Ch. 4)

State of Prior
Research
(Sect. 2.4)

Methodological FIT

II “Managing embedded
software project team
knowledge”

INTERMEDIATE • primarily relying on existing theories
• some new constructs proposed, linked to

well-known ones
• some retrospective (qualitative) evidence for

demonstrating the efficacy of the proposed
new constructs

III “How to steer an embedded
software project: tactics for
selecting the software process
model”

INTERMEDIATE • combining existing models with a new lens
• no new theory-building, some new

constructs
• no quantitative evidence
• some descriptive evidence for provisional

demonstration of the proposed constructs

2. How can agile software development benefit?
IV “How to steer an embedded
software project: tactics for
selecting agile software
process models”

INTERMEDIATE
to
NASCENT

• Like III.

V “Cost Modeling Agile
Software Development”

NASCENT • applying existing theories from a different
discipline

• some provisional quantitative data used for
illustrative purposes (scenarios)

3. How to realize agile software development in large-scale NPD context?
VI “Extending Software
Project Agility with New
Product Development
Enterprise Agility”

NASCENT • expanding existing constructs
• new contextual viewpoints
• some provisional qualitative data for

demonstrating the enhanced constructs and
viewpoints

Contrasting to the general guidelines in Table 22, the evaluation in Table 23

suggests that there are no major methodological flaws in the research design of this
thesis work. Notably case studies are advocated in general for explanatory and
illustrative purposes when the boundaries between the phenomenon under study and
the real-life context are not clear (Yin 1994). Edmondson and McManus (2007)
propose an iterative research design model (including developing the research
question) in particular for nascent research areas. This has essentially been the
situation with the present research problem.

One area requiring further strengthening in this research is the uneven empirical
evidence, in particular lack of quantitative data for statistical analysis. However, like
underlined in Table 22, premature utilization of quantitative data for drawing firm
conclusions can be a threat in nascent research areas. The emphasis of this research
work has so far been in provisional understanding of the phenomenon.

5.3.2.4 Presentation
The presentation of empirical research should be understandable and even enjoyable
to the professionals (Benbasat and Zmud 1999). Eisenhardt and Graebner (2007)
instruct to rationalize the format of the theory-building presentation with the
following guidelines:

85

• developing the emergent theory in sections, each supported by empirical evidence
• demonstrating each part of the theory by evidence (from at least some of the cases)
• complementing the selective story descriptions with rich presentation of evidence
• summarizing the evidence for each theoretical construct
• visual theory summary

In this compendium, following the research path illustrated in Fig. 11, the findings

are presented in consequent research steps in Ch. 4. Each step (Research Paper)
presents certain supporting evidence accordingly, demonstrating the propositions and
constructs with (descriptive) cases. However, because of the limited availability of
current empirical data, the case evidence is not extensively tabulated. This limits also
the theoretical argumentation of the constructs (see Sect. 5.3.4). Nevertheless, Fig. 12
presents some visual summarizing of the overall concept building and positioning.

5.3.3 Generalization
Stemming from the industrial context of the research environment described in Sect.
3.2, the generalization of the results and inferences of this research work are
constrained by the following two major factors:
• The research work has been conducted in one particular product line scope within

this one particular company. Because of the large size and diversity of the
particular case organization, the results of this research cannot be argued to be fully
representative even in this one particular organization.

• limited empirical data even within this particular local scope

However, recent studies by for example Börjesson (2006) and Suikki (2007)
suggest that the research problem setting and the findings are not extraordinary at
least within this field of industry. This suggests that the key results and inferences of
this thesis research are more generally applicable at least to some extent.

Considering the limited empirical data availability in this research, there is an issue
of how the theory can generalize if the cases are not representative (Eisenhardt and
Graebner 2007). In general, theory building from multiple cases produces more
generalizable and testable theory than single-case research (Yin 1994). However, like
defined in Sect. 1.2, the overarching goal of this research is to propose new
framework constructs for systematic understanding, and not to attempt to build
comprehensive, testable theories due to the nascent nature of the research field. The
lack of extensive, multiple-case study data is therefore not considered to be a serious
threat in the present state of this research work. Indeed, generalizability is not
necessarily limited by single-case designs (Flyvbjerg 2006; Lee and Baskerville
2003).

5.3.4 Limitations
In this thesis research work, the biggest obstacle has been to collect sufficient
empirical evidence for evaluating the propositions. Having more independent
empirical evidence (both quantitative and qualitative) would strengthen the individual
cases. This remains largely tentative, suggesting future studies (Sect. 6.2). However,
in general, inductive theory-building research using case studies does not address well

86

the questions of “how often” and “how many”, nor the questions about the relative
empirical importance of the proposed constructs (Eisenhardt and Graebner 2007).

Overall, it is important to understand that all the topics investigated in these
particular research steps are major research areas as such. For example, knowledge
management (Sect. 4.1.2) has become ever more significant due to the growing
complexity of many software-intensive products as well as more complex
organizational setups (e.g., distributed development, outsourcing). The individual
constructs and propositions presented in Sect. 4.1-4.3 are thus not necessarily
comprehensive solutions to all those specific areas, and more alternatives could
possibly have been explored – like discussed in the respective research papers.
However, for the purposes of this thesis research, their key value is in the synthesis
(Sect. 4.4) with respect to the main research problem.

Virtually in any industrial organization environment in practice, the need of
collecting rigorous validation data over a longer period of time tends to require some
balancing due to limited resourcing. The key is then to make this clear for all the
parties (researchers and practitioners), and to assess the research findings accordingly
(Lee and Baskerville 2003).

Another practical constraint of this research realization is that the action research
has mostly been limited to planning the improvements and giving recommendations,
but not much implementing the practical changes. That is, the author has been acting
more like a professional normative researcher than an intercepting change agent. This
is by and large due to the non-managerial role of the author during the research
period, i.e., the author has been working merely in a participatory observer role
making recommendations but not really controlling the organizational course of the
actions (Järvinen 2004). Consequently, the proposed constructs and inferences are
mostly conceptual and the validation remains partially speculative. However, by and
large the research goals (Sect. 1.2) are attained, although the longer-term impacts and
effects in the case organization remain to be confirmed.

The validation is also limited to a single case organization context (Sect. 3.2). Like
scoped in Sect. 1.3, this thesis work does not specifically intent to provide substantial
evidence of how beneficial agile software development can be or how exactly it can
be implemented (deployed) in large-scale organizations. Moreover, the purpose of the
research was not to benchmark different companies. However, public research
literature suggests similar results in other comparable organizations (e.g., (Börjesson
2006)).

Conclusively, the research scoping leaves many potentially significant areas open
for further investigations. For instance collaboration and interactions between people
in teams (team dynamics) are frequently underlined as some of the key factors in agile
software development. Also many large-scale organization social elements (e.g., self-
organization, culture changes) remain for further study (Sect. 6.2). The research
thread approaches to that direction, but the present research questions do not cover
those areas.

Finally, an overarching difficulty with this kind of a multi-issue research journey is
in maintaining a consistent progressive research thread over the years. However, such
narrow, situational and context-based emergence of research questions is intrinsic
with action research in general (Susman and Evered 1978). Furthermore, changes and

87

even organizational jolts in the industrial case environment have had to be taken into
consideration during this long-lasting research period.

5.4 Inferences and Implications

This thesis research has progressed towards getting deeper understanding of the
problems and prospective solutions of agile software development in industrial real-
life settings. The results and findings as aggregated in Sect. 4.4.2 imply
multidisciplinary concerns both for the academic inquiry (Sect. 5.4.1) and in
particular for the practitioners in industrial NPD organizations (Sect. 5.4.2). While the
propositions and constructs built in this thesis are mostly provisional, a set of
practice-oriented recommendations can be suggested.

5.4.1 Theoretical Inferences
For rational inferring, it is important to first understand the positioning of agile
software development in the overall NPD problem space (Sect. 5.4.1.1). This makes it
possible to see the potential impacts (Sect. 5.4.1.2), and target the organizational
changes (Sect. 5.4.1.3).

5.4.1.1 Positioning Agile Software Development
Conceptually, this thesis maintains the following overall standpoint with agile
software development in NPD context:
• Software projects have certain stated and possibly also implicit objectives

(organizational goal space).
• In practice, there are typically many problems and obstacles hindering or even

preventing the projects from reaching those goals (situational problem space).
• On the other hand, there is a range of potential solution alternatives for solving or

mitigating the problems (solution space). Different solutions (e.g., process models)
support achieving different project goals. There are some known solutions /
remedies for most of practical project problems.

• Agile software development is a subset of this space. Agile software development
models advance a subset of the goal-settings in certain project environments,
providing solutions for a subset of the problems while avoiding some problems.

Moreover, it is fundamental to understand how software project management in

NPD – and indeed the whole mode of operation – should dynamically be adjusted
according to the level of uncertainties and changes of the organizational environment
(Collyer 2008; Crawford and Pollack 2004; De Meyer et al. 2002). The appropriate
choice of flexible project management tactics depends much on the level of
uncertainties. Agile software development models address much of the most uncertain
side (Nerur and Balijepally 2007).

Agile software development can thus be seen as one contributing element of the
overall capabilities of the flexible NPD functions of the company (c.f., Fig. 6). In this
respect, it can be regarded as a strategic option.

88

5.4.1.2 Effects of Agile Software Development
The externally visible strategic agility of the company is a total effect of all the agile
capabilities. Consequently, the NPD organization can express agility externally even
without using agile software development models internally.

Taking a holistic view of the entire NPD value-creation network and the company
performance entails integrating the company strategy goals, the software production
system, and the resulting performance effects. The following theory-building
questions should then be considered:
• What are the business goals and the operational performance targets of the NPD

company, what are their interrelationships?
• How does the software production system support them?
• What are the key contributing elements of the software production system, and

what are their effects? In particular, what is the impact of agile software
development on each of them?

It is not obvious how much for instance the overall NPD productivity can be

improved with agile software development models. For example Mäkelä (2008)
studies the question of how the management of the software process and that of
general product development operations interact to effect software product
development performance, and subsequently firm performance, and how the firm
strategy and dynamic capabilities – including agile software development – influence
this. They suggest that the performance relations are indirect. Nevertheless, even
coarse-grained analytical reasoning, such as for example with the Value-Price-Cost
(VPC) framework, can provide valuable insights about the main directions of the
improvements (Hoopes et al. 2003). Vehtari (2006) investigates in a similar vein, how
manufacturing capabilities and performance change in different phases of business
life cycles, and how manufacturing could provide competitive advantages.

Concluding, in theory, agile software development should thus be seen as one
moderator in the total value-creation network of the NPD company. The effects
should consequently be modelled from the global systems perspective, rather than just
in the micro-context of isolated project teams.

5.4.1.3 NPD Organizational Development
Many companies are nowadays contemplating agile software development and its
potential benefits in particular for time-to-market and productivity gains (Schwaber
2005). A strategic fit should be gained between the overall business goals, software
product development goals, and the operations of the software production system
(Heikkilä and Ketokivi 2005). The software product development competence can
then be viewed from strategic, organizational, and technological points of view. In
high-velocity competitive environments the key strategic organizational elements are
frequent environment scanning and consequent adaptation (Brown and Eisenhardt
1998). The same traits should be mapped down to the agile software development
projects (Nerur and Balijepally 2007).

Agility can thus be considered as a strategic capability, i.e. what Johnson et al.
(2006) define as “adequacy and suitability of the resources and competences of an
organization for it to survive and prosper”. Agile software development can then be

89

considered from two different strategic points of view within NPD organization
context (c.f., Fig. 6):
• Competition-driven view: required agility of the software production function

(outside-in)
• Resource view: software production agility as an enabling capability (inside-out)

The former depends much on the business network (both competitors and partners)
of the company (Oosterhout et al. 2006). The latter view includes the dynamic
capability of reconfiguring the software development resources in new ways, and
using time as a source of competitive advantages (Santalainen 2005). Notably NPD is
a first-order dynamic capability, but it is possible to deal with changes without
explicit dynamic capabilities (‘ad hoc problem-solving’) (Winter 2003). Investments
to dynamic capabilities may not even pay off in some cases unless the environment
drives frequent changes.

The agile software development capabilities spread over multiple dimensions in the
organizational context. Hence, agile capability development should be considered in
different mutually interdependent dimensions, in particular:
• people / organization (management)
• technology / product (software)
• process (engineering)

Current agile software development models alone cannot necessarily provide
effective external agility in otherwise non-agile organization context. This implies
that software engineering may not be the primary area of concern in all cases in
particular in larger organization business competence. Other typical key development
areas are strategy development, marketing and organizational design (OD), and
competence development (HRD). There are then theoretical linkages to other
reference disciplines, such as information systems (IT), production and operations
management, organization theory (OT), and also general business management (e.g.,
financing and accounting) (Nambisan 2003; Nerur and Balijepally 2007).

Considering the total space of agile realization in (large) organizations,
interestingly, agile software development models address to some extent both
traditional structural and process areas as well as more intangible people (HR)
development and cultural elements. However, they are mostly silent about (large-
scale) organizational development aspects (e.g., organizational learning, extended
enterprise). For instance Dehoff and Loehr (2007) emphasize the role of the less-
visible organizational and cultural bases.

5.4.2 Managerial Implications
By combining the results and findings of the research work (Sect. 4.4.2) and the
theoretical implications discussed in Sect. 5.4.1, we infer the following practice-
oriented recommendations. They relate to strategic (Sect. 5.4.2.1), tactical (Sect.
5.4.2.2), and operational (Sect. 5.4.2.3) concerns of the software production.

90

5.4.2.1 Strategic Goal-Orientation
In all, the NPD company should first make clear strategic choices about how much
agility (e.g., in terms of responsiveness) and on which areas it strives for (for example
considering the product variety). Such decisions concern not just the R&D strategy
but also the business and marketing strategies (Tyrväinen et al. 2004).

When agility is recognized to be a critical success factor (CSF), the strategic
impacts should be analyzed throughout the organization. Contextual assessments with
appropriate measurements, taking into account the competitive environment
situational factors (agility drivers), could be devised to guide this (c.f., Table 5 and
Table 9). This may then put totally different requirements for the different product
development projects within the company.

5.4.2.2 Agile Capability Development
To begin with, it is important to understand the key strategic goals (e.g., productivity),
and the intents and coverage of the suggested solutions (software construction, project
management, organizational factors) offered by agile software development models
(Sect. 2.3.2.2). If and when agile software development is deemed to be the
appropriate solution considering the context-specific problems and goals of the
organization (unit), strategic agile capability development can be approached from
multiple different points of view. While bottom-up emergence from the individual
software teams can create the foundations, larger organizations typically need in
addition more top-down cross-functional coordination, enabling supports, and
executive sponsorship to succeed profoundly.

Agile software development capabilities could become strategic assets for
sustainable competitive advantages. The capability development strategy should
support it (Lecklin 2002). Indeed, for example Näsi and Neilimo (2006) underline that
systems thinking is the key to strategic business competence development.

5.4.2.3 Complementary Organizational Improvements
Expanding the team-level perspective of this research work (Sect. 4.3), other
(organizational) improvement approaches such as CMMi or Lean Thinking could be
combined with agile software development models to address those larger-scale
organizational areas, which are beyond the scope of current the software models (c.f.,
Table 30). However, care should be taken not to pursuit divergent or even conflicting
goals (Ngwenyama and Nielsen 2003; Paulk 1996). The key is to understand the goals
on the one hand, and the underlying assumptions and means on the other hand.
Different approaches may use different means towards the same ends. The cost
factors may differ significantly (ROI).

On the whole, the performance dimensions may span the entire business
competence space of the organization such as along the outcome lines of the Baldrige
framework (Baldrige 2008). Ultimately all the improvements – agile or otherwise –
should be goal-oriented and aligned with the strategic vision of the company.

91

6 Conclusions

This final section brings together the entire research work of the thesis. It concludes
this compendium while bringing up some potential avenues for future work.

The contributions of the thesis (Sect. 6.1) build on the results and findings of the
individual research papers presented in Ch. 4. Following the research design in Fig.
11, several ideas of future research have emerged during this thesis research process.
These are outlined in Sect. 6.2.

6.1 Key Contributions

Like illustrated in Fig. 11, the overarching aim of this research work is to develop
deeper understanding of agile software product development advantages and
limitations in large-scale NPD organization environments. The main contribution of
this thesis is such a holistic, capability-oriented realization of what agile software
development entails in large-scale NPD context. Coupled with the organizational
business and NPD process competence, agile software product development models
can – within supporting organizational and environmental conditions – provide
competitive benefits in particular in turbulent business environments.

This understanding builds on the stepwise research and development summarized
in Table 24. The research steps contribute to this overall knowledge by introducing
new constructs and propositions emerging from the selected embedded software team
improvement viewpoints.

Table 24. Research contributions by research steps

Research Step / Question
(Paper)

CONTRIBUTIONS

1. What are the typical problems of large-scale NPD embedded software projects?
I “Troubleshooting large-scale
New Product Development
embedded software projects”

Project problems / uncertainties:
• problem/uncertainty profiling matrix

II “Managing embedded
software project team
knowledge”

Managing information uncertainty:
• systematic methods for capturing and managing embedded

software project team knowledge / information
III “How to steer an embedded
software project: tactics for
selecting the software process
model”

Managing and avoiding different project problems with software
process models:
• process model comparison/selection matrix

2. What problems and goals does agile software development address?
IV “How to steer an embedded
software project: tactics for
selecting agile software
process models”

Responding to different project problems with agile software process
models:
• agile software process model comparison/selection matrix

V “Cost Modeling Agile
Software Development”

Cost-based evaluation and justification of agile software
development:
• interdisciplinary application of agility cost theory

92

Research Step / Question
(Paper)

CONTRIBUTIONS

3. How can typical large-scale NPD problems be tackled with agile software development
methods?
VI “Extending Software
Project Agility with New
Product Development
Enterprise Agility”

Extending software project team agility within larger scale
organization context:
• software agility extension framework

In large-scale NPD environments, there are typically a host of different

uncertainties and consequently potential project problems (Research Question 1). The
key to comprehensive agility-based improvement is then to realize the competitive
drivers and critical improvement needs of the entire NPD value network, and how
agile software development teams contribute in it (Research Question 2). Beneficial
agile software development requires a holistic view considering not only the
embedded software engineering function, but the entire product development value-
creation chain within the overall business model of the organization. In particular in
large organizations, software production cannot necessarily be improved effectively
within the software development function and software engineering discipline alone
(Research Question 3).

The essential contribution of this thesis work is the overall synthesis of those
research cycles (Table 24), putting agile software development into wider
organizational context (Sect. 4.4.2). This inferring includes disentangling the current
agile software method assumptions, focus areas, and scoping. They have considerable
limitations and incomplete coverage for large-scale NPD environments. However,
their benefits in terms of flexibility and software product development value creation
are achievable by understanding and consequently complementing them with other
(software) process improvements (SPI) and organizational development (OD)
approaches.

Scaling up agile software development is currently an active research topic in
general, and this thesis contributes to that from the NPD perspective, although the
starting point is at the software team level. The novelty here is to be able to step out
and see above the organizational “box”, and thus realize how the external outcomes of
the integrated software development teams contribute to the NPD offerings and
responses of the organization. It is important to realize how agility affects at the
different organizational levels (Fig. 1). This is fundamentally about how agility in
software production can support the NPD and ultimately the business strategy of the
firm.

A methodological contribution of this research is the holistic conceptual framing
and partitioning of the problem space of software development agility in the NPD
context. In such a complex interdisciplinary problem domain, one of the key research
issues is to capture the essential research questions, and to understand their
interrelationships in the context. This discovery is a contribution, too, indicating that
comprehensive understanding and consequent agility-based improvements in large-
scale NPD requires complementary, spanning viewpoints. With this respect, the
research thread and consequent inferring (Sect. 5.1) can be considered as emergent
provisional theory-building. In alignment, the background review part of the thesis

93

has provided provisional clarification of the currently confusing terminology and
incomplete conceptualization of agility in NPD and software production (Sect. 2.2).

Concluding, one can contemplate whether the overall contribution of this thesis
makes a striking difference in the research field or not (Barley 2006). This remains
mostly for further studies to determine, but for instance Mäkelä (2008) emphasizes
that the combination of software production and new product development in general
is a fresh viewpoint, opening up new research avenues.

6.2 Future Research

Like noted in Sect. 3.3.2, more work could have been done with most of the research
steps. There are several specific further work areas recognized during the research
studies. The Research Papers I-VI discuss them in detail. In addition, notably, the
excluded areas of this research effort set in Sect. 1.3 (e.g., cultural and human
resource aspects) are potential areas for fruitful further research.

All in all, this exploratory thesis research work has brought up perhaps more
further questions than definite answers. Consequently, it opens up new research
avenues, and sets pointers for future research. The following outlines certain key
ideas for further work:
1. Considering NPD improvement in general and agile adoption in particular, the

following elements are important to understand: drivers, goals and needs, and
means. Also the enablers and potential impediments are concerns for implementing
the changes (deployment). While there are no universal answers to all these major
questions, we hypothesize that there are common characteristics facing many NPD
software development organizations in particular within the same competitive
environments. Therefore, a profiling model including a database of for example
typical impediments like surveyed in Table 29 could be composed in order to guide
(although not prescribe) the improvement work (Sect. 2.3.3).

2. Like discussed in Sect. 2.2.2, agility is not unique to software development. In fact,
many of the origins and principles can be traced to manufacturing developments in
the early 1990s (Preiss 2005). This leads to an idea of investigating more
systematically the similarities and differences of software production and agile
manufacturing in order to understand the possibilities for cross-functional learning
(Gunasekaran 1998; Gore 2008). Can strategic software production capabilities be
treated like manufacturing capabilities (Vehtari 2006)? Moreover, does the
inherent flexibility of software enable even more strategic agility since there are
fewer constraints than with physical manufacturing systems? We have tentatively
addressed this research avenue elsewhere (Kettunen 2009).

3. Supply chain agility is currently an active research area (Christopher 2000;
Hofman and Cecere 2005; Zsifkovits and Engelhardt-Nowitzki 2007; Naylor et al.
1999). There are new flexibility requirements faced in many markets (Collin 2003;
Collin and Lorenzin 2006; Kaipia 2007). The trend is towards more holistic
approaching of entire demand-supply networks and total value-chain management.
The question is then how all this recent development relates – if at all – to software
production. Furthermore, how do the software product development functions link
to the total demand-supply network of a NPD company, even crossing internal

94

(site) and external company boundaries? New modeling approaches are needed
here (Agarwal et al. 2007). Indeed, there are some propositions to explicate
software supply chains (Oberhauser and Schmidt 2007; Underseth 2007).

Finally, there is a general problem with the lack of common definitions of agile

software development concepts – and NPD agility in more general. This leads to
misconceptions and even confusion in practice, and makes scientific work
troublesome for instance due to lack of common comparable metrics. It is important
to realize this for example when reviewing the related literature. There is even some
skepticism about the whole concept of distinguishingly ‘agile’ software development
(post-agilism); see for example (Ågerfalk and Fitzgerald 2006; Levine 2005;
Northover et al. 2007).

This thesis advocates the scientific approach followed in Sect. 2.2, i.e., that one
must first define the concept rigorously in relation to the existing literature, and only
after then judge the uniqueness and the need for specific new terms (Näsi and Neilimo
2006). This in turn makes it possible to define valid comparable performance metrics,
for instance.

Having defined the concepts and terminology in a rigorous way, it is possible to
link agile software development and agility in general into the larger context. In
particular, business competence is the key macroconcept here. Strategic systems
thinking is then an inherent trait – including the underlying management principles
and assumptions.

■

95

References

Abrahamsson, P., 2002. The Role of Commitment in Software Process Improvement.

Dissertation, University of Oulu, Finland.
Abrahamsson, P., 2006. Pealing the hype into pieces: What do we really know about agile in

research & practice? In: Bi-annual OO-days, Tampere University of Technology, Finland
http://www.cs.tut.fi/tapahtumat/olio2006/abrahamsson.pdf (accessed 20.11.2007)

Abrahamsson, P., 2007. Speeding up embedded software development. ITEA Innovation
Report

Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J., 2002. Agile software development
methods – Review and analysis. http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf

Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J., 2003. New directions on agile
methods: a comparative analysis. In: Proc. 25th International Conference on Software
Engineering (ICSE), pp. 244-254.

Adeleye, E.O., Yusuf, Y.Y., 2006. Towards agile manufacturing: models of competition and
performance outcomes. International Journal of Agile Systems and Management 1(1), 93-
110.

Agarwal, A., Shankar, R., Tiwari, M.K., 2007. Modeling agility of supply chain. Industrial
Marketing Management 36, 443-457.

Agile DOI, 2005. http://pmdoi.org/ (accessed 28.3.2008)
Agile Manifesto, 2001. http://www.agilemanifesto.org/ (accessed 13.11.2007)
Aken, van J.E., 2004. Management Research Based on the Paradigm of the Design Sciences:

The Quest for Field-Tested and Grounded Technological Rules. Journal of Management
Studies 41(2), 219-246.

Akgün, A.E., Lynn, G.S., Byrne, J.C., 2004. Taking the guesswork out of new product
development: how successful high-tech companies get the way. Journal of Business Strategy
25(4), 41-46.

Ambler, S.W., 1998. Process Patterns: Building Large-Scale Systems Using Object
Technology. Cambridge University Press

Ambler, S.W., 2007. Agile Software Development: Definition.
http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm (accessed
21.11.2007)

Ambler, S.W., Kroll, P., 2007. Lean development governance. White paper, IBM/Rational
Ancona, D.G., Caldwell, D., 1990. Improving the Performance of New Product Teams.

Research � Technology Management 33(2), 25-29.
Anderson, D.J., 2004. Agile Management for Software Engineering. Prentice Hall, Upper

Saddle River, NJ, USA.
Anderson, D.M., 1997. Agile Product Development for Mass Customization. Irwin

Professional Publishing, Chicago, IL, USA.
Ante, S.E., 2007. Back From the Dead. Business Week, June 25, 48-56.
Aoyama, M., 1998a. Agile Software Process and Its Experience. In: Proceedings of the 20th

International Conference on Software Engineering, pp. 3-12.
Aoyama, M., 1998b. Web-Based Agile Software Development. IEEE Software 15(6), 56-65.
Aramand, M., 2006. Developing Dynamic Design Capabilities in Software Product

Development Companies. Dissertation, Tampere University of Technology, Finland.
Aramand, M., 2008. Software products and services are high tech? New product development

strategy for software products and services. Technovation 28(3),154-160.
ARTEMIS, 2006. Strategic Research Agenda: Design Methods & Tools.

96

Atkinson, R., 1999. Project management: cost, time and quality, two best guesses and a
phenomenon, its time to accept other success criteria. International Journal of Project
Management 17(6), 337-442.

Atkinson, R., Crawford, L., Ward, S., 2006. Fundamental uncertainties in projects and the
scope of project management. International Journal of Project Management 24, 687-698.

Atkinson, S.R., Moffat, J., 2005. The Agile Organization.
http://www.dodccrp.org/files/Atkinson_Agile.pdf (accessed 15.11.2007)

Atwater, J.B., Pittman, P., 2008. We Want To Be TOYOTA: Understanding why the Toyota
production system is successful. APICS magazine (March/April), 32-35.

Augier, M., Teece, D.J., 2007. Perspectives on Research and Development: Organizing and
Managing Innovation in a (Global) Knowledge-Based Economy. In: Knowledge Creation
and Management: New Challenges for Managers (Eds. Ichijo, K., Nonaka, I.). Oxford
University Press.

Avison, D., Lau, F., Myers, M., Nielsen, P.A., 1999. Action Research. Communications of the
ACM 42(1), 94-97.

Aydin, M.N., Harmsen, F., Slooten van K., Stegwee, R.A., 2005. On the Adaptation of an Agile
Information Systems Development Method. Journal of Database Management 16(4), 24-40.

Baldrige, 2008. Criteria for Performance Excellence.
http://www.baldrige.nist.gov/Business_Criteria.htm (accessed 13.2.2008)

Barczak, G., 1995. New product strategy, structure, process, and performance in the
telecommunications industry. Journal of Product Innovation Management, 12(3), 224-234.

Barley, S.R., 2006. When I Write My Masterpiece: Thoughts on What Makes a Paper
Interesting. Academy of Management Journal 49(1), 16-20.

Bartunek, J.M., Rynes, S.L., Ireland, R.D., 2006. What Makes Management Research
Interesting, and Why does It Matter? Academy of Management Journal 49(1), 9-15.

Baskerville, R., Balasubramaniam, R., Levine, L., Pries-Heje, J., 2006. High-Speed Software
Development Practices: What Works, What Doesn't. IEEE ITProfessional 8(4), 29-36.

Benbasat, I., Zmud, R.W., 1999. Empirical Research in Information Systems: The Practice of
Relevance. MIS Quarterly 23(1), 3-16.

Benefield, G., 2008. Rolling Out Agile at a Large Enterprise. In: Proc. Hawaii International
Conference on Software Systems (HICSS), pp. 461

Benko, C., McFarlan, F.W., 2003. Connecting the Dots: Aligning Projects with Objectives in
Unpredictable Times. Harvard Business School Press.

Boehm, B., 1991. Software Risk Management: Principles and Practices. IEEE Software 8(1),
32-41.

Boehm, B., 2002. Get Ready for Agile Methods, with Care. IEEE Computer 35(1), 64-69.
Boehm, B., 2005. Software Process Disruptors, Opportunity Areas, and Strategies. USC-CSE-

2005-500
Boehm, B., Turner, R., 2004. Balancing Agility and Discipline – A Guide for the Perplexed.

Addison-Wesley, Boston, MA, USA.
Boehm, B., Turner, R., 2005. Management Challenges to Implementing Agile Processes in

Traditional Development Organizations. IEEE Software 14(5), 30-39.
Bosch, T., 2007. Medical Software Development – Going Agile. Medical Device & Diagnostic

Industry (October), pp. 42-47.
Breu, K., Hemingway, C.J., Strathern, M., Bridger, D., 2001. Workforce agility: the new

employee strategy for the knowledge economy. Journal of Information Technology 17, 21-
31.

Brooks, F.P. Jr., 1995. The Mythical Man-Month: Essays on Software Engineering (20th
Anniversary Edition). Addison-Wesley

Brown, S.L., Eisenhardt, K.M., 1995. Product Development: Past Research, Present Findings,
and Future Directions. Academy of Management Review 20(2), 343-378.

97

Brown, S.L., Eisenhardt, K.M., 1998. Competing on the Edge: Strategy as Structured Chaos.
Harvard Business School Press

Brown, W.J., McCormick III, H.W., Thomas, S.W., 2000. AntiPatterns in Project Management.
New York, NY, USA: John Wiley & Sons.

Büchel, B., 2007. Knowledge Creation and Transfer: From Teams to Whole Organization. In:
Knowledge Creation and Management: New Challenges for Managers (Eds. Ichijo, K.,
Nonaka, I.). Oxford University Press.

Börjesson, A., 2006. Making software process improvement happen. Dissertation, IT
University of Gothenburg, Sweden.

Capgemini, 2007. Four Out of Ten CIOs at Multi-Billion Euro Enterprises Believe Their IT
Function Cannot Deliver Enough Agility in an Environment of Accelerating Business
Change. Press release,
http://www.capgemini.com/m/en/n/pdf_CIO_Survey_2007.pdf (accessed 16.11.2007)

Caswell, N.S., Nigam, A., 2005. Agility = Change + Coordination. Proc. 7th IEEE International
Conference on E-Commerce Technology Workshops (CECW), pp. 131-139.

Ceschi, M., Sillitti, A., Succi, G., De Panfilis, S., 2005. Project Management in Plan-Based and
Agile Companies. IEEE Software 22(3), 21-27.

Chakravarthy, B., 1997. A New Strategy Framework for Coping with Turbulence. Sloan
Management Review 38(2) (Winter), 69-82.

Charette, R.N., 1996. Large-scale project management is risk management. IEEE Software
13(4), 110-117.

Chillarege, R., 2002. The Marriage of Business Dynamics and Software Engineering. IEEE
Software 19(6), 43-49.

Chow, T., Cao, D.-B., 2008. A survey study of critical success factors in agile software
projects. Journal of Systems and Software 81(6), 961-971.

Christensen, C.M., Kaufman, S.P., Shih, W.C., 2008. Innovation Killers: How Financial Tools
Destroy Your Capacity to Do New Things. Harvard Business Review 86(1), 98-105.

Christopher, M., 2000. The Agile Supply Chain – Competing in Volatile Markets. Industrial
Marketing Management 29, 37-44.

Cockburn, A., 2002. Agile Software Development. Addison-Wesley / Pearson
Cockburn, A., 2007. What Engineering Has in Common With Manufacturing and Why It

Matters. CrossTalk 20(4), 4-7.
Cognizant, 2006. Best Practices In Global Agile Development For Product Innovation. White

paper, http://www.cognizant.com
Cohan, P.S., Unger, B., 2006. Sources of Advantage. Business Strategy Review (Spring), 9-14.
Cohen, D., Lindvall, M., Costa, P., 2004. An Introduction to Agile Methods. Advances in

Computers 62, 1-66.
Collin, J., 2003. Selecting the Right Supply Chain for a Customer in Project Business – An

Action Research Study in the Mobile Communications Infrastructure Industry. Dissertation,
Helsinki University of Technology, Finland.

Collin, J., Lorenzin, D., 2006. Plan for supply chain agility at Nokia: Lessons from mobile
infrastructure industry. Int’l Journal of Physical Distribution and Logistics Management
36(6), 418-430.

Collyer, S., 2008. Project management approaches for dynamic environments. International
Journal of Project Management (in press)

Conboy, K., Fitzgerald, B., 2004. Toward a conceptual framework for agile methods: a study of
agility in different disciplines. In: Proc. ACM workshop on Interdisciplinary software
engineering research (WISER), pp. 37-44.

Cooper, R.G., 2006. Formula for Success in New Product Development. MM, 18-
http://www.stage-gate.com/downloads/working_papers/wp_23.pdf

Cooper, R.G., Kleinschmidt, E.J., 1996. Winning businesses in product development: The
critical success factors. Research • Technology Management 39(4), 18-29.

98

Cooper, R.G., Kleinschmidt, E.J., 2007. “Winning businesses in product development: The
critical success factors” Revisited. Research • Technology Management 50(3), 60-61.

Coplien, J.O., 2007. Seven Subtle Stumbling Blocks of Agile. Expo-C,
Coplien, J.O., Harrison, N.B., 2004. Organizational Patterns of Agile Software Development.

Prentice Hall
Crawford, D.P., Mason, P., Melenovsky, M., Turner, V., Waxman, J., 2003. Enabling Business

Agility: Hewlett-Packard’s Adaptive Enterprise Strategy. White paper, IDC
Crawford, L., Pollack, J., 2004. Hard and soft projects: a framework for analysis. International

Journal of Project Management 22, 645–653.
Curtis, B., Krasner, H., Iscoe, N., 1988. A Field Study of the Software Design Process for

Large Systems. Communications of the ACM 31(11), 1268-1287.
Dagnino, A., 2001. Coordination of Hardware Manufacturing and Software Development

Lifecycles for Integrated Systems Development. In: Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, pp. 1850-1855.

Dagnino, A., 2002. An Evolutionary Lifecycle Model with Agile Practices for Software
Development at ABB. In: Proc. 8th Int’l Conf. Engineering of Complex Computer Systems
(ICECCS), pp. 215-223.

Dagnino, A., Smiley, K., Srikanth, H., Antón, A., Williams, L., 2004. Experiences in Applying
Agile Software Development Practices in New Product Development. International
Association of Science and Technology for Development (IASTED) Software Engineering
and Applications (SEA)

Davis, C.R., 2002. Calculated Risk: A Framework for Evaluating Product Development. MIT
Sloan Management Review 43(4) (Summer), 71-77.

Day, G.S., 1994. The Capabilities of Market-Driven Organizations. Journal of Marketing 58,
37-52.

De Meyer, A., Loch, C.H., Pich, M.T., 2002. Managing Project Uncertainty: From Variation to
Chaos. MIT Sloan Management Review 43(2) (Winter), 60-67.

Dehoff, K., Loehr, J., 2007. Innovation Agility. strategy+business 47 (Summer)
Delaney, J.D., Mitchell, G.G., Delaney, S., 2003. Software Engineering Meets Problem-Based

Learning. The Engineers Journal 57(6).
Deloitte, 2007. Innovation Benchmark Study
Dingsøyr, T., Dybå, T., Abrahamsson, P., 2008. A Preliminary Roadmap For Research On

Agile Software Development Research. In: Proc. Agile Conference, pp. 83-96.
Dove, R., 1997. The Meaning of Life & The Meaning of Agility.

http://www.parshift.com/Essays/essay001.htm
Dove, R., 2004. Enterprise agility – What is it and what fuels it?

http://www.parshift.com/Essays/essay065.htm
Dove, R., Hartman, S., Benson, S., 1996. An Agile Enterprise Reference Model.

http://www.parshift.com/docs/aermodA0.htm
Doz, Y.L., Kosonen, M., 2008. Fast Strategy: How Strategic Agility Will Help You Stay Ahead

of the Game. Pearson Education Ltd.
DSDM, 2003. DSDM and Process Improvement. White paper, DSDM Consortium
DSDM, 2004. Organization Suitability Risk List. White paper, DSDM Consortium
Dutton, J.L., McCabe, R.S., 2006. Agile/Lean Development and CMMI. In: SEPG
Dybå, T., Dingsøyr, T., 2008. Empirical Studies of Agile Software Development: A Systematic

Review. Information and Software Technology 50(9-10), 833-859.
Edmondson, A.C., McManus, S.E., 2007. Methodological Fit in Management Field Research.

Academy of Management Review 32(4), 1155-1179.
Eisenhardt, K.M., 1989. Building Theories from Case Study Research. Academy of

Management Review 14(4), 532-550.
Eisenhardt, K.M., Brown, S.L., 1998. Time Pacing: Competing in Markets That Won’t Stand

Still. Harvard Business Review 76(2), 59-69.

99

Eisenhardt, K.M., Graebner, M.E., 2007. Theory Building from Cases: Opportunities and
Challenges. Academy of Management Journal 50(1), 25-32.

Eisenhardt, K.M., Jeffrey, M.A., 2000. Dynamic Capabilities: What are they? Strategic
Management Journal 21, 1105-1121.

Eisenhardt, K.M., Tabrizi, B.N., 1995. Accelerating Adaptive Processes: Product Innovation in
the Global Computer Industry. Administrative Science Quarterly 30, 84-110.

Ernst, H., 2002. Success factors of new product development: a review of the empirical
literature. Int. Journal of Management Reviews 4(1), 1-40.

Fairley, R.E., Willshire, M.J., 2003. Why the Vasa Sank: 10 Problems and Some Antidotes for
Software Projects. IEEE Software 20(2), 18-25.

Ferrarini, E.M., 2008. Getting Technology Agility Right. Inside BTM (February), 16-18.
Fitzgerald, B., Hartnett, G., Conboy, K., 2006. Customising agile methods to software practices

at Intel Shannon. European Journal of Information Systems 15, 200-213.
Fitzgerald, B., Russo, N., O’Kane, T., 2003. Software Development Method Tailoring at

Motorola. Communications of the ACM 46(4), 64-70.
Flyvbjerg, B., 2006. Five Misunderstandings About Case-Study Research. Qualitative Inquiry

12(2), 219-245.
Fugetta, A., 2000. Software Process: A Roadmap. In: Proceedings of the Conference on The

Future of Software Engineering (ICSE), 27-34.
Gilb, T., 1988. Principles of Software Engineering Management. Addison-Wesley
Gilb, T., 2006. Fundamental Principles of Evolutionary Project Management.

http://www.gilb.com/community/tiki-list_file_gallery.php?galleryId=15
Glass, R.L., 1994. The Software-Research Crisis. IEEE Software 11(6), 42-47.
Glass, R.L., 2004. Matching Methodology to Problem Domain. Communications of the ACM

47(5), 19-21.
Glass, R.L., Ramesh, V., Vessey, I., 2004. An Analysis of Research in Computing Disciplines.

Communications of the ACM 47 (6), 89-94.
Glazer, H., Dalton, J., Anderson, D., Konrad, M., Shrum, S., 2008. CMMI or Agile: Why Not

Embrace Both! Technical Note 2008-TN-003, CMU Software Engineering Institute.
Goldman, S.L., Nagel, R.N., Preiss, K., 1995. Agile competitors and virtual organizations:

strategies for enriching the customer. Van Nostrand Reinhold, New York, NY, USA.
Gore, A., 2008. Exploring the competitive advantage through ERP systems: From

implementation to applications in agile networks. Dissertation, University of Oulu, Finland.
Gottesman, E., Takas, A., 2007. Agile is Here to Stay … Now What? Agile Journal

(December).
Gould, P., 1997. What is agility? IEE Manufacturing Engineer 76(1), 28-31.
Graaf, B., Lormans, M., Toetenel, H., 2003. Embedded Software Engineering: The State of the

Practice. IEEE Software 20(6), 61-69.
Greene, B., 2004. Agile Methods Applied to Embedded Firmware Development. In: Proc.

Agile Development Conference (ADG), pp. 71-77.
Guckenheimer, S., Perez, J.J., 2006. Software Engineering with Microsoft Visual Studio Team

System. Addison-Wesley
Gunasekaran, A., 1998. Agile manufacturing: enablers and an implementation framework.

International Journal of Production Research 36(5), 1223-1247.
Gunasekaran, A., Yusuf, Y.Y., 2002. Agile manufacturing: a taxonomy of strategic and

technological imperatives. International Journal of Production Research 40(6), 1357-1385.
Haeckel, S.H., 1999. Adaptive Enterprise: Creating and Leading Sense-And-Respond

Organizations. Harvard Business School Press.
Hansson, C., Dittrich, Y., Gustafsson, B., Zarnak, S., 2006. How agile are industrial software

development practices? Journal of Systems and Software 79(9), 1295-1311.
Hartmann, D., Dymond, R., 2006. Appropriate Agile Measurement: Using Metrics and

Diagnostics to Deliver Business Value. In: Proc. Agile Conference, pp. 126-131.

100

Heikkilä, J., 2002. From supply to demand chain management: efficiency and customer
satisfaction. Journal of Operations Management 20, 747-767.

Heikkilä, J., Holmström, J., 2005. Agility and cost efficiency in supply chain management:
mutually exclusive or mutually reinforcing objectives? In: Proc. ICAM, pp. 7-11.

Heikkilä, J., Ketokivi, M., 2005. Tuotanto murroksessa: strategisen johtamisen uusi haaste.
Talentum, Helsinki, Finland (in Finnish).

Heikkinen, H.L.T., Jyrkämä, J., 1999. Mitä on toimintatutkimus? In: Heikkinen, H.L.T.,
Huttunen, R., Moilanen, P. (Eds.). Siinä tutkija missa tekijä: Toimintatutkimuksen perusteita
ja näköaloja. Atena, Finland (in Finnish)

Heiskanen, A., Newman, M., 1997. Bridging the gap between information systems research and
practice: the reflective practitioner as a researcher. In: Proceedings of the eighteenth
international conference on Information systems (ICIS), 121-131.

Henderson-Sellers, B., Serour, M.K., 2005. Creating a Dual-Agility Method: The Value of
Method Engineering. Journal of Database Management 16(4), 1-23.

Henzinger, T.A., Sifakis, J., 2006. The Embedded Systems Design Challenge. In: Proc. 14th
International Symposium on Formal Methods (FM), pp. 1-15.

Hevner, A.R., March, S.T., Jinsoo, P., Ram, S., 2004. Design Science in Information Systems
Research. MIS Quarterly 28(1), 75-105.

Hietala, J., Kontio, J., Jokinen, J.-P., Pyysiainen, J., 2004. Challenges of software product
companies: results of a national survey in Finland. In: Proc. 10th Int’l Symp. Software
Metrics (METRICS), pp. 232-243.

Highsmith, J., 2002. Agile Software Development Ecosystems. Addison-Wesley / Pearson
Highsmith, J., 2004. Agile Project Management: Creating Innovative Products. Addison-

Wesley / Pearson, Boston, MA, USA.
Highsmith, J., 2005. Agile for the enterprise: From agile teams to agile organizations.

http://www.cutter.com/project/fulltext/reports/2005/01/index.html
Highsmith, J., 2007. Agile Transitions, Part 1.

http://www.cutter.com/project/fulltext/advisor/2007/apm071108.html
Highsmith, J., Cockburn, A., 2001. Agile Software Development: The Business of Innovation.

IEEE Computer 34(9), 120-127.
Highsmith, J., Wysocki, K., 2006. How Agile Are Organizations Today? Cutter Agile Project

Management Executive Report 7(12).
Hinkin, T., Holtom, B.C., Klag, M., 2007. Collaborative Research: Developing Mutually

Beneficial Relationships Between Researchers and Organizations. Organizational Dynamics
36(1), 105-118.

Hoda, R., Noble, J., Marshall, S., 2008. A for Agile: Issues with Awareness and Adoption. In:
Proceedings of the Research-In-Progress Track at Agile Conf.

Hofman, D., Cecere, L., 2005. The Agile Supply Chain. Supply Chain Management Review
9(8), 18-19.

Holmberg, L., Mathiassen, L., 2001. Survival Patterns in Fast-Moving Software Organizations.
IEEE Software 18(6), 51-55.

Hoopes, D.G., Madsen, T.L., Walker, G., 2003. Guest Editor’s Introduction to the Special
Issue: Why Is There a Resource-Based View? Toward a Theory of Competitive
Heterogeneity. Strategic Management Journal 24(10), 889-902.

Hoque, F., Sambamurthy, V., Zmud, R., Trainer, T., Wilson, C., 2008. BTM Capability
Investment Mix. Inside BTM (February), 20-21.

HP, 2003. Meeting the agility challenge: Increasing the time, range, and ease of implementing
change. 5981-8004EN

HP, 2005. Measuring and benchmarking the agility of your business. White paper, 4AA0-
1790ENW
http://www.gbg.expo-c.se/JamesOCoplienMonday234.htm

101

Humphrey, W.S., Over, J.W., Konrad, M.C., Peterson, W.C., 2007. Future Directions in
Process Improvement. CrossTalk 20(2), 17-22.

Huttunen, R., Kakkori, L., Heikkinen, H.L.T., 1999. Toiminta, tutkimus ja totuus. In:
Heikkinen, H.L.T., Huttunen, R., Moilanen, P. (Eds.), 1999. Siinä tutkija missa tekijä:
Toimintatutkimuksen perusteita ja näköaloja. Atena, Finland (in Finnish)

Iansiti, M., 1995. Shooting the Rapids: Managing Product Development in Turbulent
Environments. California Management Review 38(1) (Fall), 37-58.

IEEE, 2007. Draft Recommended Practice for the Customer-Supplier Relationship in Agile
Software Projects. P1648/D5

Irani, Z., Love P.E.D., 2002. Developing a frame of reference for ex-ante IT/IS investment
evaluation. European Journal of Information Systems 11, 74-82.

Ismail, H.S., Snowden, S.P., Poolton, J., Reid, I.R., Arokiam. I.C., 2006. Agile manufacturing
framework and practice. International Journal of Agile Systems and Management 1(1), 11-
28.

ITEA, 2004. Technology Roadmap for Software-Intensive Systems (2nd Ed.)
ITEA-AGILE, 2007a. http://www.agile-itea.org/public/publications.php (accessed 6.8.2007)
ITEA-AGILE, 2007b. Project Results (October 2007).
ITID, 2008. Product Development Capabilities (FY2007 Edition). White Paper, iTiD

Consulting Ltd.
Itkonen, J., Rautiainen, K., Lassenius, C., 2005. Towards Understanding Quality Assurance in

Agile Software Development. In: Proc. ICAM, pp. 201-207.
James, T., 2005. Stepping back from lean. IEE Manufacturing Engineer 84(1), 16-21.
Jankovic, A.D., 2005. Business Research Projects. Thomson Learning, London, England.
Johnson, G., Scholes, K., Whittington, R., 2006. Exploring Corporate Strategy: Text and Cases

(7th Enhanced Media Ed.), Pearson Education Ltd
Judy, K.H., Krumins-Beens, I., 2007. Using Agile Practices to Spark Innovation in a Small to

Medium Sized Business. In: Proc. HICSS, pp. 275b
Järvinen, P., 2004. On research methods. Opinpajan kirja, Tampere, Finland.
Kahn, K.B., Franzak, F., Griffin, A., Kohn, S., Miller, C.W., 2003. Editorial: Identification and

Consideration of Emerging Research Questions. Journal of Product Innovation Management
20, 193-201.

Kaipia, R., 2007. Supply chain coordination – Studies on planning and information sharing
mechanisms. Dissertation, Helsinki University of Technology, Finland.

Kane, D., Ornburn, S., 2002. Agile Development: Weed or Wildflower? CrossTalk 15(10), 30.
Kanter, R.M., 2008. Transforming Giants. Harvard Business Review 86(1), 43-52.
Karlström, D., Runeson, P., 2005. Combining Agile Methods with Stage-Gate Project

Management. IEEE Software 22(3), 43-49.
Karlström, D., Runeson, P., 2006. Integrating agile software development into stage-gate

managed product development. Empirical Software Engineering 11, 203-225.
Katayama, H., Bennett, D., 1999. Agility, adaptability and leanness: A comparison of concepts

and a study of practice. International Journal of Production Economics 60-61, 43-51.
Kauppinen, T.J., 1999. Navigoiva johtaminen. Otava, Helsinki, Finland (in Finnish).
Keaveney, S., Conboy, K., 2006. Cost Estimation in Agile Development Projects. In: Proc. 14th

European Conf. Information Systems (ECIS).
Kettunen, P., 2000. Software Requirements Engineering for an Embedded System

Development. Licentiate Thesis, Helsinki University of Technology, Finland.
Kettunen, P., 2001. Towards Rapid Development of Embedded Telecommunications System

Software Products. Working paper (unpublished), Helsinki University of Technology,
Finland.

Kettunen, P., 2009. Adopting Key Lessons from Agile Manufacturing to Agile Software
Product Development – A Comparative Study. Technovation 29, 408-422.

102

Kettunen, P., Laanti, M., 2008. Combining Agile Software Projects and Large-scale
Organizational Agility. Software Process: Improvement and Practice 13(2), 183-193.

Khan, A., Balbo, S., 2005. Agile versus Heavyweight Web Development: An Australian
Survey.
http://ausweb.scu.edu.au/aw05/papers/edited/khan/paper.html (accessed 27.12.2007)

Kidd, P.T., 1997. Agile Enterprise Strategy: A Next Generation Manufacturing Concept. IEEE
Kirby, J., 2005. Toward a Theory of High Performance. Harvard Business Review 83(7/8), 30-

39.
Kirjavainen, P., Laakso-Manninen, R., 2001. Strategisen osaamisen johtaminen: Yrityksen tieto

ja osaaminen kilpailuedun lähteeksi. Edita, Helsinki, Finland (in Finnish).
Kivelä, M., 2007. Dynamic Capabilities in Small Software Firms. Dissertation, Helsinki School

of Economics, Finland.
Kiviniemi, K., 1999. Toimintatutkimus yhteisöllisenä prosessina. In: Heikkinen, H.L.T.,

Huttunen, R., Moilanen, P. (Eds.). Siinä tutkija missa tekijä: Toimintatutkimuksen perusteita
ja näköaloja. Atena, Finland (in Finnish)

Koskela, L., Howell, G., 2002. The Underlying Theory of Project Management is Obsolote. In:
Proc. PMI Research Conference, pp. 293-302.

Kotler, P., 1994. Marketing Management: Analysis, Planning, Implementation, and Control (8th
Ed.). Prentice-Hall

Kotler, P., Armstrong, G., Saunders, J., Wong, V., 1996. Principles of Marketing: The
European Edition. Prentice Hall Europe

Krisnan, V., Ulrich, K.T., 2001. Product Development Decisions: A Review of the Literature.
Management Science 47(1), 1-21.

Kujala, S., 2007. IHTE-1800: Scientific research methods in human-centered technology –
Introduction. Tampere University of Technology, Finland.
http://www.cs.tut.fi/~kujala/tutkimusmenetelma/Materiaali/Introduction.pdf (accessed
11.10.2009)

Kähkönen, T., 2004. Agile methods for large organizations – building communities of practice.
In: Proc. Agile Development Conf. (ADC), pp. 2-10.

Laanti, M., 2008. Implementing Program Model with Agile Principles in a Large Software
Development Organization. In: Proc. Annual IEEE International Computer Software and
Applications Conference, pp. 1385-1387.

Lappo, P., Andrew, H.C.T., 2004. Assessing Agility. In: Proc. Extreme Programming and Agile
Processes in Software Engineering (LNCS 3092), pp. 331-338.

Larman, C., 2004. Agile and Iterative Development: A Manager’s Guide. Addison-Wesley /
Pearson

Larman, C., Basili, V.R., 2003. Iterative and Incremental Development: A Brief History. IEEE
Computer 36(6), 47-56.

Lassenius, C., 2006. Software Development Control Panels: Concepts, a Toolset and
Experiences. Dissertation, Helsinki University of Technology, Finland.

Lecklin, O., 2002. Laatu yrityksen menestystekijänä. Kauppakaari, Helsinki, Finland (in
Finnish).

Lee, A., Baskerville, R., 2003. Generalising generalsibility in information systems research.
Information Systems Research 14, 221-243.

Leffingwell, D., 2007. Scaling Software Agility: Best Practices for Large Enterprises. Addison-
Wesley.

Leishman, T., 2001. Extreme Methodologies for an Extreme World. CrossTalk 14(6), 15-18.
Leppälä, K., Kääriäinen, J., Takalo, J., Savolainen, P., 2005. Challenging global competition:

tune up your product development. http://www.vtt.fi/inf/pdf/workingpapers/2005/W34.pdf
Levine, L., 2005. Reflections on Software Agility and Agile Methods: Challenges, Dilemmas,

and the Way Ahead. CMU Software Engineering Institute
Levinson, M., 2004. How to Build an Agile IT Department. CIO Magazine (10 September)

103

Liker, J.K., 2004. The Toyota Way: 14 Management Principles from the World’s Greatest
Manufacturer. McGraw-Hill, New York, NY, USA.

Lin, C.-H., Chiu, H., Chu, P.-Y., 2006. Agility index in the supply chain. Int. J. Production
Economics 100, 285-299.

Lindstedt, P., Burenius, J., 2003. The Value Model: How to Master Product Development and
Create Unrivalled Customer Value. Nimba AB, Sweden.

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., May, J.,
Kähkönen, T., 2004. Agile software development in large organizations. IEEE Computer
37(12), 26-34.

Little, T., 2005. Context-adaptive agility: managing complexity and uncertainty. IEEE Software
22(3), 28-35.

Liu, X., Sun, Y., Kane, G., Kyoya, Y., Noguchi, K., 2006. Business-Oriented Software Process
Improvement Based on CMM using QFD. Software Process: Improvement and Practice 11,
573-589.

Lovén, E., 2006. New Technology Initiatives from Within and Outside of a Company Express
Different Agility Abilities. International Journal of Agile Manufacturing 9(1), 109-113.

Lyytinen, K., Rose, G.M., 2004. How Agile is Agile Enough? Towards A Theory of Agility in
Software Development. Sprouts: Working Papers in Information Environments, Systems
and Organizations 4(4), 169-192.

Lyytinen, K., Rose, G.M., 2006. Information system development agility as organizational
learning. European Journal of Information Systems 15, 183-199.

MacCormack, A., 2001. Product Development Practices That Work: How Internet Companies
Build Software. MIT Sloan Management Review 42(2) (Winter), 75-84.

MacCormack, A., Verganti, R., 2003. Managing Sources of Uncertainty: Matching Process and
Context in Software Development. Journal of Product Innovation Management 20, 217-232.

MacCormack, A., Verganti, R., Iansiti, M., 2001. Developing Products on “Internet Time”: The
Anatomy of a Flexible Development Process. Management Science 47(1), 133-150.

Manhart, P., Schneider, K., 2004. Breaking the Ice for Agile Development of Embedded
Software: An Industry Experience Report. In: Proc. 26th Int’l Conf. Software Engineering
(ICSE), pp. 378-386.

Mar, K., 2006a. An Enterprise Strategy for Introducing Agile. White paper,
http://danube.com/whitepapers/enterprise-strategy

Mar, K., 2006b. Impediments to Enterprise Agile. White paper,
http://danube.com/whitepaper/impediments-enterprise

Mascitelli, R., 2006. The Lean Product Development Guidebook: Everything Your Design
Team Needs to Improve Efficiency and Slash Time to Market. Technology Perspectives

Mathiassen, L., Vainio, A.M., 2007. Dynamic Capabilities in Small Software Firms: A Sense-
and-Response Approach. IEEE Trans. Engineering Management 54(3), 522-538.

McConnell, S., 1996. Rapid Development: Taming Wild Software Schedules. Microsoft Press,
Redmond

McConnell, S., 1998. Software Project Survival Guide. Microsoft Press, Redmond
McGrath, M.E., 2004. Next Generation Product Development: How to Increase Productivity,

Cut Costs, and Reduce Cycle Times. McGraw-Hill
McGrath, R.G., MacMillan, I.C., 1995. Discovery-Driven Planning. Harvard Business Review

73(4), 44-54.
McInerney, P., Maurer, F., 2005. UCD in Agile Projects: Dream Team or Odd Couple? ACM

Interactions, 12(6), 19-23.
McMahon, P., 2002. Integrating Systems and Software Engineering: What Can Large

Organizations Learn From Small Start-Ups? CrossTalk 15(10), 22-25.
McMahon, P., 2005. Extending agile methods: a distributed project and organizational

improvement perspective. CrossTalk 18(5), 16-19.
Mikkonen, T., Pruuden, P., 2001. Flexibility as a design driver. IEEE Computer 34(11), 52-56.

104

Mingers, J., 2001. Combining IS Research Methods: Towards a Pluralist Methodology.
Information Systems Research 12(3), 240-259.

Mintzberg, H., 2007. Opinion: Productivity Is Killing American Enterprise. Harvard Business
Review 85(7/8), 25-25.

Mirakaj, D., 2008. The Building Blocks of Agility. Inside BTM (February), 8-10.
Moløkken-Østvold, K., Jørgensen, M., 2005. A Comparison of Software Project Overruns –

Flexible versus Sequential Development Models. IEEE Trans. Software Engineering 31(9),
754-766.

Morgan, J.M, Liker, J.K., 2006. The Toyota Product Development System: Integrating People,
Processes, and Technology. Productivity Press

Myers, M.D., 2007. Qualitative Research in Information Systems.
http://www.qual.auckland.ac.nz/index.htm (accessed 7.8.2007)

Mäkelä, M., 2008. Essays on Software Product Development. A Strategic Management
Viewpoint. Dissertation, Helsinki School of Economics, Finland

Männistö, T., 2000. A Conceptual Modelling Approach to Product Families and their
Evolution. Dissertation, Helsinki University of Technology, Finland.

Naik, B., Chakravarty, A.K., 1992. Strategic acquisition of new manufacturing technology: a
review and research framework. Int. J. Prod. Res. 30(7), 1575-1601.

Nakano, M., 2007. Corporate Finance: Intangible Assets’ Effect on Stakeholders’ Value. In:
Knowledge Creation and Management: New Challenges for Managers (Eds. Ichijo, K.,
Nonaka, I.). Oxford University Press

Nambisan, S., 2003. Information Systems as a Reference Discipline for New Product
Development. MIS Quarterly 27(1), pp. 1-18.

Nambisan, S., Wilemon, D., 2000. Software Development and New Product Development:
Potentials for Cross-Domain Knowledge Sharing. IEEE Trans. Engineering Management 47
(2), 211-220.

Narasimhan, R., Swink, M., Kim, S.W., 2006. Disentangling leanness and agility: An empirical
investigation. Journal of Operations Management 24(5), 440-457.

Naylor, J.B., Naim, M.M., Berry, D., 1999. Leagility: Integrating the lean and agile
manufacturing paradigms in the total supply chain. International Journal of Production
Economics 62, 107-118.

Nerur, S., Balijepally, V., 2007. Theoretical Reflections on Agile Software Development
Methodologies. Communications of the ACM 50(3), 79-83.

Nerur, S., Mahapatra, R., Mangalaraj, G., 2005. Challenges of migrating to agile
methodologies. Communications of the ACM 48(5), 73-78.

Ngwenyama, O., Nielsen, P.A., 2003. Competing Values in Software Process Improvement: An
Assumption Analysis of CMM From an Organizational Culture Perspective. IEEE Trans.
Engineering Management 50(1), 100-112.

Nidiffer, K.E., Dolan, D., 2005. Evolving Distributed Project Management. IEEE Software
22(5), 63-72.

Nies, Z., 2008. Continuous Quality – Shortening the Development and Test Feedback Loop
Beyond Continuous Build. Agile Journal (June).

Nobelius, D., 2004. Towards the sixth generation of R&D management. International Journal
of Project Management 22(5), 369-375.

Nobelius, D., Trygg, L., 2002. Stop chasing the Front End process – management of the early
phases in product development projects. International Journal of Project Management 20(5),
331-340.

Northover, M., Northover, A., Gruner, S., Gruner, S., Kourie, D.G., Boake, A., 2007. Agile
Software Development: A Contemporary Philosophical Perspective. In: Proc. SAICSIT, pp.
106-115.

Näsi, J., Neilimo, K., 2006. Mitä on liiketoimintaosaaminen? WSOYpro, Helsinki, Finland (in
Finnish).

105

Oberhauser, R., Schmidt, R., 2007. Improving the Integration of the Software Supply Chain via
the Semantic Web. In: Proc. International Conference on Software Engineering Advances
(ICSEA), pp. 79-79.

Oiva, A., 2007. Strategy-focused capability management model and organizational strategic
readiness. Dissertation, University of Oulu, Finland.

Ojala, P., 2006. Implementing a value-based approach to software assessment and
improvement. Dissertation, University of Oulu, Finland.

Oosterhout, van M., Waarts, E., Hillegersberg, van J., 2006. Change factors requiring agility
and implications for IT. European Journal of Information Systems 15, 132-145.

Overby, E., Bharadwaj, A., Sambamurthy, V., 2006. Enterprise agility and the enabling role of
information technology. European Journal of Information Systems 15, 120-131.

Paulk, M.C., 1996. Effective CMM-Based Process Improvement. CMU
Pavlou, P.A., El Sawy, O.A., 2006. From IT Leveraging Competence to Competitive

Advantage in Turbulent Environments: The Case of New Product Development.
Information Systems Research 17(3), 198-227.

Pettit, R., 2006. An “Agile Maturity Model?” Agile Journal,
http://www.agilejournal.com/content/view/52/

Phillips, M., 2008. CMMI with Agile, Lean, Six Sigma, and Everything Else.
http://sei.cmu.edu/news-at-sei/columns/2008/01/ (accessed 19.2.2009)

Pikkarainen, M., 2008. Towards a Framework for Improving Software Development Process
Mediated with CMMI Goals and Agile Practices. Dissertation, University of Oulu, Finland.

Pikkarainen, M., Mäntyniemi, A., 2006. An Approach for Using CMMI in Agile Software
Development Assessments: Experiences from Three Case Studies. In: Proc. SPICE Conf.

PMBOK, 2004. A Guide to the Project Management Body of Knowledge. http://www.pmi.org
Poppendieck, M., Poppendieck, T., 2004. Lean Software Development: An Agile Toolkit.

Addison-Wesley / Pearson: Upper Saddle River, NJ, USA.
Porter, M.E., 1993. Strategia kilpailutilanteessa: toimialojen ja kilpailijoiden

analysointitekniikat. Rastor: Helsinki, Finland (in Finnish).
Preiss, K., 2005. Agility – the origins, the vision and the reality. In: Proc. Int’l Conf. Agility

(ICAM), pp. 13-21.
Prewitt, E., 2004. The Agile 100 Honoree Survey. CIO Magazine (15 August)
Pyhäjärvi, M., 2006. Going Agile at F-Secure. In: Bi-annual OO-days, Tampere University of

Technology, Finland
http://www.cs.tut.fi/tapahtumat/olio2006/pyhajarvi.pdf

Qumer, A., Henderson-Sellers, B., 2008. A framework to support the evaluation, adoption and
improvement of agile methods in practice. Journal of Systems and Software 81, 1899-1919.

Raafat, F., 2002. A comprehensive bibliography on justification of advanced manufacturing
systems. International Journal of Production Economics 79(3), 197-208.

Raelin, J.A., 1997. Action Learning and Action Science: Are They Different? Organizational
Dynamics 26(1) (Summer), 21-33.

Raivio, T., Syrjänen, M., Halonen, M., 2006. Tekes elektroniikan moottorina: Tekesin
elektroniikka-alan ohjelmatoiminnan arviointi. Tekes, Finland (in Finnish).

Ramesh, B., Cao, L., Mohan, K., Xu, P., 2006. Can Distributed Software Development Be
Agile? Communications of the ACM 49(10), 41-46.

Ramos, C., Gravendeel, E., 2008. Top 9 Challenges of Adopting Scrum. Agile Journal
(August).

Rauscher, T.G., Smith, P.G., 1995. Time-Driven Development of Software in Manufactured
Goods. Journal of Product Innovation Management 12, 186-199.

Rautiainen, K., Lassenius, C., Nihtilä, J.. Sulonen, R., 1999. Key Issues in New Product
Development Controllability Improvement – Lessons Learned from European High-Tech
Industries. In: Proc. Portland International Conference on Management of Engineering and
Technology, Technology and Innovation Management (PICMET). 1, pp. 177.

106

Raynor, M.E., Leroux, X., 2004. Strategic Flexibility in R&D. Research • Technology
Management 47(3), 27-32.

Ronkainen, J., Abrahamsson, P., 2003. Software development under stringent hardware
constraints: Do agile methods have a chance? In: Proc. 4th Int’l Conf. Extreme Programming
and Agile Processes in Software Engineering, pp. 73-79.

Ropponen, J., Lyytinen, K., 2000. Components of Software Development Risk: How to
Address Them? A Project Manager Survey. IEEE Trans. Software Engineering 26(2), 98-
111.

Routio, P., 2007. Arteology, the science of products and professions.
http://www2.uiah.fi/projects/metodi/e00.htm (accessed 2.8.2007)

Royce, W., 1998. Software Project Management. Addison-Wesley
Royce, W., 2005. Successful software management style: Steering and balance. IEEE Software

22(5), 40-47.
Salem, S.R., 2001. New product development balanced scorecard. In: Proceedings of Change

Management and the New Industrial Revolution, pp. 110-112
Salo, O., 2007. Enabling Software Process Improvement in Agile Software Development

Teams and Organizations. Dissertation, University of Oulu, Finland.
Salo, O., Abrahamsson, P., 2008. Agile methods in European embedded software development

organizations: a survey study of Extreme Programming and Scrum. IET Software 2(1), 58-
64.

Sanchez, R., 1995. Strategic Flexibility in Product Competition. Strategic Management Journal
16, 135-159.

Sanchez, R., Mahoney, J.T., 1996. Modularity, Flexibility, and Knowledge Management in
Product and Organization Design. Strategic Management Journal 17 (Winter), 63-76.

Santalainen, T., 2005. Strateginen ajattelu. Talentum, Helsinki, Finland (in Finnish).
SAS-050, 2006. Exploring New Command and Control Concepts and Capabilities.

http://www.dodccrp.org/files/SAS-050%20Final%20Report.pdf (accessed 14.11.2007)
Schein, E.H., 1999. The Corporate Culture Survival Guide – Sense and Nonsense about Culture

Change. Jossey-Bass
Schuh, P., 2005. Integrating Agile Development in the Real World. Charles River Media, Inc.
Schmidt, R., Lyytinen, K., Keil, M., Cule, P., 2001. Identifying Software Project Risks: An

International Delphi Study. Journal of Management Information Systems 17(4) (Spring), 5-
36.

Schoonenderwoert, van N., 2007. The Four Change Initiatives of Agile Adoption. In: Deep
Agile Seminar, MIT

Schoonenderwoert, van N., 2008. The Four Pillars of Agile Adoption. Agile Journal (June).
Schwaber, C., 2005.Corporate IT Leads The Second Wave Of Agile Adoption. Forrester

Research, Inc.
Schwaber, C., 2007. The Truth About Agile Processes. Forrester Research, Inc.
Schwaber, K., 2001. Will the real agile processes please stand up?

http://www.cutter.com/project/ fulltext/reports/2001/08/index.html
Schön, D.A., 1983. The Reflective Practitioner: How Professionals Think in Action. Ashgate

Publishing, England.
Scinta, J., 2008. Industrial Research Institute’s R&D Trends Forecast for 2008. Research •

Technology Management 51(1), 19-23.
Sharifi, H., Zhang, Z., 1999. A methodology for achieving agility in manufacturing

organisations: An introduction. International Journal of Production Economics 62, 7-22.
Shum, P., Lin G., 2007. A world class new product development best practices model.

International Journal of Production Research 45(7), 1609-1629.
Sidky, A., 2007. A Structured Approach to Adopting Agile Practices: The Agile Adoption

Framework. Dissertation, Virginia Tech, USA.

107

Sifakis, J., 2007. Embedded Systems: Research Challenges and Work Directions. ARTEMIS
Annual Conference.
http://www.artemis-office.org/DotNetNuke/Portals/0/Conference%202007/
AC_J.SIFAKIS.pdf

Skaistis, B., 2006. A Four-Step Plan for Measuring Enterprise IT Agility.
http://esj.com/enterprise/article.aspx?EditorialsID=2135 (accessed 15.11.2007)

Skowronski, V., 2004. Do Agile Methods Marginalize Problem Solvers? IEEE Computer
37(10), 118-120.

Smith, J.M., 2001. Troubled IT Projects – prevention and turnaround. IEE
Smith, P.G., 2007. Flexible Product Development: Building Agility for Changing Markets.

Jossey-Bass.
Smith, P.G., 2008. Change: Embrace It, Don’t Deny It. Research � Technology Management

51(4), 34-40.
Smith, P.G., Reinertsen, D.G., 1998. Developing Products in Half the Time: New Rules, New

Tools. John Wiley & Sons.
Sobek II, D.K., Liker, J.K., Ward, A.C., 1998. Another Look at How Toyota Integrates Product

Development. Harvard Business Review 76(4), 36-49.
Solingen, van R., 2002. Integrating Software Engineering Technologies for Embedded Systems

Development. In: Proc. PROFES, pp. 466-474.
Sommerville, I., 2001. Software Engineering (6th Ed.), Addison-Wesley.
Souder, W.E., Moenaert, R.K., 1992. Integrating Marketing and R&D Project Personnel within

Innovation Projects: An Information Uncertainty Model. Journal of Management Studies
29(4), 485-512.

Subramaniam, V., Hunt, A., 2006. Practices of an Agile Developer – Working in the Real
World. The Pragmatic Bookshelf, USA.

Suikki, R., 2007. Changing business environment – effects of continuous innovations and
disruptive technologies. Dissertation, University of Oulu, Finland.

Susman, G.I., Evered, R.D., 1978. An Assessment of the Scientific Merits of Action Research.
Administrative Science Quartely 23, 582-603.

Sutherland, J., 2001. Inventing and Reinventing SCRUM in Five Companies.
http://www.agilealliance.org/system/article/file/888/file.pdf (accessed 16.2.2009)

Sutherland, J., Viktorov, A., Blount, J., Puntikov, N., 2007. Distributed Scrum: Agile Project
Management with Outsourced Development Teams. In: Proc. HICSS, pp. 274a

Syed-Abdullah, S., Holcombe, M., Gheorge, M., 2006. The Impact of an Agile Methodology
on the Well Being of Development Teams. Empirical Software Engineering 11, 143-167.

Tabaka, J., 2007. 11 Ways Agile Adoptions Fail.
StickyMinds.com Column, (6/4/2007).

Tabaka, J., Martens, R., 2008. Leaning IT: Applying the Principle of “Pull” to Scale Agile
Teams. White paper, Rally

Takeuchi, H., Nonaka, I., 1986. The new new product development game. Harvard Business
Review 64(1), 137-146.

Tanskanen, M., 2008. Organizing of Faster Release Cycle – Software Development Aspect.
Master’s thesis, Helsinki University of Technology, Finland.

Taramaa, J., Khurana, M., Kuvaja, P., Lehtonen, J., Oivo, M., Seppänen, V., 1998. Product-
based software process improvement for embedded systems. In: Proc. 24th Euromicro Conf.
(2), pp. 905-912.

Tate, K., 2006. Sustainable Software Development – An Agile Perspective. Addison-Wesley
TEKES, 2006. Liito – Innovative Business Competence and Management 2006-2010.

http://akseli.tekes.fi/opencms/opencms/OhjelmaPortaali/ohjelmat/Luotsi/en/etusivu.html
Thomke, S., Reinertsen, D., 1998. Agile Product Development: Managing Development

Flexibility in Uncertain Environments. California Management Review 41(1) (Fall), 8-30.

108

TNO/IDATE, 2005. Software intensive systems in the future, Final report.
http://www.itea2.org/attachments/150/ITEA_SIS_in__the_future__Final_Report.pdf

Treacy, M., Wiersema, F., 1995. The Discipline of Market Leaders: Choose Your Customers,
Narrow Your Focus, Dominate Your Market. Addison-Wesley.

Trott, P., 2005. Innovation Management and New Product Development. Pearson Education,
England.

Tsourveloudis, N., Valavanis, K., Gracanin, D., Matijasevic, M., 1999. On the Measurement of
Agility in Manufacturing Systems. In: European Symposium on Intelligent Techniques
(ESIT).
http://www.erudit.de/erudit/events/esit99/12607_p.pdf

Turk, D., France, R., Rumpe, B., 2002. Limitations of Agile Software Processes. In: Proc. XP,
pp. 43-46.

Turk, D., France, R., Rumpe, B., 2005. Assumptions Underlying Agile Software-Development
Processes. Journal of Database Management 16(4), 62-87.

Turkulainen, V., 2008. Managing Cross-functional Interdependencies – The Contingent Value
of Integration. Dissertation, Helsinki University of Technology, Finland.

Tuormaa, J., 2009. Autoteollisuuden kriisi ei vielä iske tuotekehitykseen. Tekniikka & Talous
49(4), 24 (in Finnish).

Turner, R., 2007. Toward Agile Systems Engineering Processes. CrossTalk 20(4), 11-15.
Turner, R., Boehm, B., 2003. People Factors in Software Management: Lessons From

Comparing Agile and Plan-Driven Methods. CrossTalk 16(12), 4-8.
Tyrväinen, P., Varsta, J., Seppänen, V., 2004. Toimialakehitys ohjelmistoteollisuuden

vauhdittajana: Uutta liiketoimintaa lähialoilta. Tekes, Finland (in Finnish).
Ulrich, K.T., Eppinger, S.D., 2000. Product Design and Development. McGraw-Hill.
Underseth, M., 2007. Optimizing the Embedded Software Supply Chain. ESE Magazine /

Application Software Development 15.8, 48.
Upton, D.M., 1994. The Management of Manufacturing Flexibility. California Management

Review 36(2), 72-89.
Vainio, A.M., Tuunanen, T., Abrahamsson, P., 2005. Developing Software Products for Mobile

Markets: Need for Rethinking Development Models and Practices. In: Proceedings of the
38th Annual Hawaii International Conference on System Sciences (HICSS), pp. 189b-189b.

Vanhanen, J., Jartti, J., Kähkönen, T., 2003. Practical Experiences of Agility in the Telecom
Industry. In: Proc. 4th Int’l Conf. Extreme Programming and Agile Processes in Software
Engineering, pp. 279-287.

Vázquez-Bustelo, D., Avella, L., 2006. Agile manufacturing: Industrial case studies in Spain.
Technovation 26, 1147-1161.

Vehtari, S., 2006. The Dynamics Involved with Manufacturing Capabilities Towards a
Competitive Advantage. Dissertation, Helsinki University of Technology, Finland.

Verganti, R., 1999. Planned Flexibility: Linking Anticipation and Reaction in Product
Development Projects. Journal of Product Innovation Management 16, 363-376.

Version One, 2008. 3rd Annual “State of Agile Development” Survey.
http://www.versionone.com/agilesurvey/

Vilkki, K., 2007. Experience with the use Agile Methods in Systems Development. In:
EuroSPI, Keynote

Vodde, B., 2006. Nokia Networks and Agile Development.
http://www.odd-e.com/articles/2006/nokia_agile.pdf (accessed 17.11.2006)

Vodde, B., 2007. Stories from the Flexible Company.
http://www.odd-e.com/articles/2007/JAOO_flex_company.pdf (accessed 31.12.2007)

VTT, 2008. Mobile-D. http://agile.vtt.fi/mobiled.html (accessed 22.9.2008)
Välimäki, A., Kääriäinen, J., 2008. Patterns for Distributed Scrum – a Case Study. In:

Enterprise Interoperability III, pp. 85-97.

109

Wallin, C., Ekdahl, F., Larsson, S., 2002. Integrating Business and Software Development
Models. IEEE Software 19(6), 28-33.

Wang, C.L., Ahmed, P.K., 2007. Dynamic capabilities: A review and research agenda.
International Journal of Management Reviews 9(1), 31-51.

Ward, A.C., 2007. Lean Product and Process Development. The Lean Enterprise Institute:
Cambridge, MA, USA.

Wheelwright, S.C., Clark, K.B., 1992. Revolutionizing Product Development: Quantum Leaps
in Speed, Efficiency, and Quality. The Free Press.

Wils, A., Van Baelen, S., Holvoet, T., De Vlaminck, K., 2006. Agility in the avionics software
world. In: Proc. 7th Int’l Conf. Extreme Programming and Agile Processes in Software
Engineering (XP), pp. 123-132.

Wind, J., Mahajan, V., 1997. Issues and Opportunities in New Product Development: An
Introduction to the Special Issue. Journal of Marketing Research XXXIV, 1-12.

Winter, S.G., 2003. Understanding Dynamic Capabilities. Strategic Management Journal
24(10), 991-995.

Worley, C.G., Lawler, E.E., 2006. Designing Organizations That Are Built to Change. MIT
Sloan Management Review 48(1) (Fall), 19-23.

Yin, R.K., 1994. Case study research: design and methods. Sage: Thousand Oaks, CA, USA.
Yoffie, D.B., Cusumano, M.A., 1999. Building a Company on Internet Time: Lessons from

Netscape. California Management Review 41(3), 8-28.
Yourdon, E., 2002. Managing High-Intensity Internet Projects. Prentice Hall: Upper Saddle

River, NJ.
Yusuf, Y.Y., Sarhadi, M., Gunasekaran, A., 1999. Agile manufacturing: The drivers, concepts

and attributes. International Journal of Production Economics 62, 33-43.
Zsifkovits, H.E., Engelhardt-Nowitzki, C., 2007. An Analysis of Frameworks for Measuring

Supply Chain Agility. In: Proc. ICAM, pp. 87-95.
Ågerfalk, P.J., Fitzgerald, B., 2006. Flexible and Distributed Software Processes: Old Petunias

in New Bowls? Communications of the ACM 49(10), 27-34.

110

Appendix

Table 25. Representative NPD success/failure factor findings (alphabetical order)

Publication Influencing Factors Success Criteria
(Akgün, Lynn
and Byrne 2004)

POSITIVE:
• clear, stable, and supported project visioning

based on understanding the customer needs and
goals

• executive management support
• process profiency (execution, tracking)
• teamwork (unified goal, joint responsibility,

knowledge sharing, experienced people)
• documentation systems (rich and efficient

information processing)
• communication (balanced formal and informal)
• project deadline setting (ambitious yet doable)

meeting (or exceeding)
project cost, profit, technical
and market expectations

(Ancona and
Caldwell 1990)

POSITIVE:
• efficient product development team external

interactions in the organizational context
(boundary management): coordination,
information sharing

speeding up the product
development process

(Atwater and
Pittman 2008)

POSITIVE:
• parallel developmentof new alternative design

options with fall-back solutions

risk reduction, shorter
release cycle-times

(Barczak 1995) POSITIVE:
• right mix of NPD strategy, organization,

process
• fit between the firm NPD strategic goals and

the capabilities (skills, resources)
• functional R&D teams (for new-to-market

products)
• cross-functional project teams
• product champions
• market activities (idea generation, screening)

NPD performance:
• % of sales spent on R&D
• % of profits and sales

accounted for products
introduced within the last
5 years

• perceived profit, sales
and market share goals

• overall satisfaction with
firms’ NPD efforts

(Brown and
Eisenhardt 1995)

• R&D management: commitment, control
• project lead: vision, power, skills
• project team: composition, work allocation,

team process
• customers: involvement
• suppliers: involvement
• process performance (leadtime, productivity)
• product effectiveness (fit with market needs,

firm capabilities)

financial performance
(profits, revenues, market
share)

111

Publication Influencing Factors Success Criteria
(Cohan and
Unger 2006)

POSITIVE:
• entrepreneurial leadership (hiring and

motivating people with both technical and
business skills)

• open technology (using the fastest and most
effective sources to satisfy the customer needs)

• boundary-free product development (cross-
functional teams, rapid prototyping, fast
feedback)

• disciplined resource allocation (systematic
analysis, terminating projects that are unlikely
to succeed)

more profitable, faster
growth, better stock market
performance than the peer
competitors

(Cooper and
Kleinschmidt
1996, 2007)

POSITIVE:
1. a high-quality new product process
2. a defined new product strategy for the business

unit
3. adequate resources of people and money
4. R&D spending for new product development
5. high-quality new product teams
6. senior management commitment
7. an innovative climate and culture
8. the use of cross-functional project teams
9. senior management accountability

Profitability: How profitable
the business’s total new
product efforts are (e.g., the
profitability vs.
competitors)?

Impact that the total new
product efforts have on the
business (percentages of
sales by new products,
impact of new products on
sales and profits)

(Cooper 2006) POSITIVE:
• holistic (effective cross-functional teams)
• lean, scalable and adaptive process
• customer focused
• heavy front-end homework before development

begins
• metrics, accountable teams, profit/loss reporting

for continuous learning
• spiral development (loops with users

throughout development)
• focus and portfolio management

Productivity: output (new
product sales, profits) vs.
input (research and
development, NPD costs and
time)

(Dehoff and
Loehr 2007)

POSITIVE:
• setting “stretch” new product goals

New-to-world product
introductions

(Ernst 2002) POSITIVE:
• NPD process (formal or informal): quality of

the planning before beginning the actual
development (preparatory work); continuous
evaluation of the projects; all process steps
aligned with the market requirements; customer
integration (possibly);

• Organization: dedicated project organization,
people specifically assigned to the NPD team,
cross-functional project teams with
interfunctional communication and co-
operation, strong project leader, substantial
autonomy for the NPD team, team having the
responsibility for the whole NPD process

• Senior management recognition of the value of
new products: e.g., resource allocation

• Organizational culture and NPD strategy:
champions, strategic framework, long-term
thrust

Following the surveyed
publications;

Advocates profitability as
the ultimate success
measure.

112

Publication Influencing Factors Success Criteria
(ITID 2008) POSITIVE:

• appropriate resource allocation following the
product development plan

• effective, tailored software design
methodologies

• viewpoint analysis of product functionality
allocation, specification for different disciplines

• clear and comprehensive evaluation (testing)
• key project elements planned up-front
• prompt processing of critical risks and

problems
• project management with necessary authorities

until the finish
NEGATIVE:
• product (hardware) development started

without the software developers participating
• product schedule set without clear software

requirements
• software requirements not clearly allocated
• software development started without sufficient

requirements or concept design
• ignorance in upstream processes
• organizational boundaries (“bureaucracy”)

between functional departments

product functionality,
quality, cost, resources and
development lead time
achieved as expected (or
exceeded)

(Kotler et al.
1996)

POSITIVE:
• a unique superior product (new features, high

quality) offering clearly better value
• well-defined product concept considering the

target market and value-offering benefits (prior
to actual development)

• New product meets the market needs better than
the existing ones.

• market attractiveness
• technological and marketing synergy
• quality of execution in all stages
• effective organizational structures for new

product innovation and realization
• top management commitment to new products

(e.g., resource allocation)
• investment in people (hiring, development)
• open and rich information/knowledge sharing

across the organization
• entrepreneurial company culture (“climate”)
NEGATIVE:
• market size overestimated
• new product not clearly better than the ones

already available in the marketplace
• incorrect market positioning, pricing
• higher than budgeted product development cost
• unexpected competitor responses

meeting target returns on
investment

113

Publication Influencing Factors Success Criteria
(Liker 2004) POSITIVE:

• cross-functional product development teams
with strong, visionary leaders (Chief Engineer)

• co-location with visual management tools (“war
room”)

• concurrent engineering of product designs and
production (manufacturing) processes

achieving “stretch” new
product goals, product
creation cycle-time
acceleration

(Rauscher and
Smith 1995)

POSITIVE:
• resourcing for software growth
• knowledge spread (application domain and

software engineering management)
• sound software engineering economics

(scheduling)
• appropriate progress measures (# of

components completed vs. LOC)
• hardware/software codevelopment (no “silos”)
• early user feedback (prototyping)
• effective reviewing throughout the development
• understanding the project objectives and scope
• flexible design (independent modules)
• change cost trade-offs (hardware vs. software)
NEGATIVE:
• incomplete integration of software engineering

functions with the other disciplines
• accumulating (late) changes to software (vs.

hardware; poor time-money-features trade-offs)
• underestimated learning curves (new personnel)

time-to-market (embedded
software development time
acceleration)

(Trott 2005) NEGATIVE:
• The product offers nothing new or no improved performance.
• inadequate budget to develop ideas or market the product
• poor market research, positioning, misunderstanding consumer needs
• lack of top management support
• Did not involve customer.
• exceptional factors such as government decision
• market too small, either forecasting error with sales of insufficient demand
• poor match with company capabilities
• inadequate support from channel (supply chain)
• Competitive response was strong and competitors were able to move quickly to

face the challenge of the new product.
• internal organizational problems, often associated with poor communication
• poor return on investment forcing company to abandon project
• unexpected changes in consumer tastes/fashion

(Yoffie and
Cusumano 1999)

POSITIVE:
• clear business vision driving the new product releases
• managerial experience in organizational scaling
• leveraging external resources to complement in-house capabilities
NEGATIVE:
• underestimating the time needed to change the customer behavior
• revolutionary business strategies stretching the technological capabilities
• lack of long-term systematic strategy planning
• short-sighted partnership relations management

114

Table 26. Representative approaches to flexible NPD (chronological order)

Publication Approaches Potential Benefits
 Costs and Problems
(Takeuchi and
Nonaka 1986)

PROCESS:
• built-in instability (broad goals with

considerable freedom to realize)
• overlapping development phases

(rhythms and synchronization)
ORGANIZATION:
• self-organizing project teams

(autonomy, self-transcendence,
cross-functional fertilization)

• “subtle” control (enough controls to
prevent instability while not
impairing creativity)

• “multilearning” (new information
across multiple levels and functions)

• organizational transfer of learning
(to new projects and other units)

Enable a fast and flexible dynamic
process for new development when
combined; Support organizational
transformations.

Requires an appropriate mind-setting
and organizational culture of shared
responsibility of the outcomes. An
intensive process may be more difficult
to manage. Finding the right rhythms
for the different development cycles
may be complicated.

(Eisenhardt and
Tabrizi 1995)

PROCESS:
• multiple design iterations allowing

adjustments
• extensive testing providing early

feedback
• frequent milestones for assessing the

progress and current circumstances
• powerful project leader maintaining

a disciplining vision
ORGANIZATION:
• multifunctional teams

experiential strategy supporting quick
learning and understanding the
uncertainties, guiding vision;

Need to really understand the project
uncertainties. Avoid “chaotic”
processes while allowing adaptation.
Organizational processes must be
aligned.

(Iansiti 1995) PROCESS:
• overlapping product concept

development and implementation
(iterative)

• system-focused

Need to really understand the project
uncertainties. Avoid “chaotic”
processes while allowing adaptation.
Organizational processes must be
aligned.
Requires new skills, management
processes and engineering
methodologies.

(Sanchez 1995) ORGANIZATION:
• resource flexibility
• coordination flexibility
• modular organizations
PROCESS:
• IT tools for rapid designing, testing,

and prototyping with efficient
market information acquisition and
knowledge sharing (even inter-
organizational)

• modular product designs
(standardized interfaces)

• concurrent product creation

real-time exploitation of technological
and market opportunities, dynamic
efficiency in (re)deploying resources,
diversification through competence
leveraging (networking), flexibility in
strategic decision making (options);
achievement of dynamic balance in
turbulent environments
Need to identify and acquire necessary
flexible resources. Requires non-
traditional coordination mechanisms,
organization structures, and even new
mind-setting.

(Sanchez and
Mahoney 1996)

ORGANIZATION:
• modular organizations based on

modular product architectures

Allows concurrent and possibly
networked development of loosely
coupled components; enhanced
architectural learning

115

Publication Approaches Potential Benefits
 Costs and Problems

• embedded coordination structures

Requires early standardized component
interfaces.

(Eisenhardt and
Brown 1998)

PROCESS:
• Time Pacing: setting the right

(natural) rhythms for change (e.g.,
product releases) and synchronizing
those rhythms both with external
influences and with the internal
capabilities

staying aligned with the markets and
technology developments, even
influencing the pace of the
competition;
Need to be proactive. Must avoid too
frequent changes (overreaction).

(Smith and
Reinertsen 1998)

PROCESS:
• incremental innovation

earlier and more reliable feedback from
customers and technology, shorter
planning horizon and lower technical
complexity; earlier profits
increased cost of making more
(interim) releases, overloading the
upstream channel and even customers;
avoidance of making radical
technology breakthroughs

(Thomke and
Reinertsen 1998)

PROCESS:
• management processes to increase

flexibility: progressive product
concept and requirements locking
(piecewise commitment), alternative
designs (set-based), rapid systematic
tradeoff decisions, considering
design interdependencies while
organizing the work

• product architecture solutions:
modularity, isolating volatility, low
coupling

TECHNOLOGY:
• adopting inherently flexible

technologies allowing low cost
design iterations

Requires new skills, management
processes and engineering
methodologies.

Investing in flexibility on the areas
where it is most beneficial (economic
trade-off).

(Verganti 1999) PROCESS:
• anticipation capabilities: systemic

project learning, teamworking and
communication, proaction (e.g.,
early prototyping)

• reaction capabilities: flexible
resources and design technologies,
intense communication for
accelerated problem solving,
overlapping activities, redundancies
(alternative designs), flexible
product technologies and modular
architectures

Planned flexibility, i.e., the
combination of the anticipation and
reaction, makes it possible to postpone
design decisions about critical
uncertainties in a managed way.
The early phase of the product
development must be capable of
anticipating the critical uncertainties
and preparing the reaction capabilities
accordingly. The realization of such
capabilities may require radically new
competence, organizational routines,
technology, and even culture.

(Nobelius and
Trygg 2002)

PROCESS:
• adaptation of the front-end activities

according to the project-specific
needs and circumstances

• different alternative Front End
“routes”

Focusing and prioritizing the activities
on the current most important ones
taking into account the overall
(company) situation.
Requires careful assessment of the
situational factors. Skilled Front End
teams expected. There may be a risk of
neclecting important activities.

116

Publication Approaches Potential Benefits
 Costs and Problems
(McGrath 2004) ORGANIZATION:

• integrated enterprise-wide
product/project/resource
management

• large, complex product development
programs managed as many small
(independent yet synchronized)
projects

• collaborative product development
PROCESS:
• networked (cross-functional, virtual)

project teams
• self-organizing
TECHNOLOGY:
• IT-based knowledge sharing and

real-time collaboration

Enables dynamic (real-time) allocation
and control of the projects/products and
resources based on current needs and
competences. Promotes efficient and
effective knowledge sharing across
functions and disciplines.
Requires enterprise-level holistic
thinking (culture) and efficient
supporting infrastructure (Design Chain
Management System).

(Morgan and
Liker 2006)

PROCESS:
• set-based design approach during

the front-end phase (concurrent)
• standardized (lower-level) activities

and skill sets

Exploring prospective design
alternatives early prior to committing to
the solution. Standardization enables
efficient higher-level flexibility (e.g.,
staff allocation).
Managing the (concurrent) set-based
exploration requires firm leading for
converging and conflict resolution
(Chief Engineer); Standardization
should be based on thorough
understanding of what can really be
standardized and when it is best to
deviate from / revise the standards.

(Dehoff and
Loehr 2007)

PROCESS:
• rapid product release cycle

Provides faster market feedback about
new products thus reducing the need
for accurate long-range forecasting.
Accelerates innovation.
Requires comprehensive understanding
of the market dynamics. The product
development chain must be prepared to
leverage the fast feedback.

(Christensen,
Kaufman and
Shih 2008)

ORGANIZATION:
• financial tools for justifying long-

term investments to build future
competitive capabilities (e.g., with
new disruptive technologies)

• new strategy processes integrating
uncertainty management and
financial performance (e.g.,
discovery-driven planning)

Future competitive capabilities are
available when the current capabilities
become obsolete (even disruptively).
Hard to predict future needs in
turbulent environments with rapid
changes; Short-term business goals
may lead to underinvestments to new
capability options. May require
completely revisiting the current
company strategy assumptions.

(Smith 2008) • anticipating changes based on
continuous customer monitoring

• uncertainty-driven specification
• encapsulating change-prone product

components (with modularity)
• experimentation
• exploration of the design space (set-

based design)

Accommodating change by reducing
the cost of making changes throughout
the product development process.
Enhancing the ability to change, thus
encouraging new product innovation.

117

Publication Approaches Potential Benefits
 Costs and Problems

• strong (small, co-located) eams
• deferred commitments (last

responsible moment decisions)
• rolling-wave planning, loose-tight

planning
• intrinsic risk management
• reconfigurable high-level processes

(with standardized lower-level)

Allowing more flexibility introduces
some costs (monetary or otherwise),
making it necessary to be able to
identify and anticipate the projects and
product areas of most likely changes.
There may contradicting organizational
goals (e.g., co-located teams vs.
outsourcing).

Table 27. Definitions of agility (chronological order)

Publication Definition / Characterization
(Goldman et al.
1995)

Comprehensive response to the business challenges of profiting from rapidly
changing, continually fragmenting, global markets for high-quality, high-
performance, customer-configured goods and services;
Processes that support the creation, production, and distribution of goods and
services be centered on the customer-perceived value of products

(Gould 1997) Ability of an enterprise to thrive in an environment of rapid and unpredictable
change

(Gunasekaran
1998)

Capability to survive and prosper in a competitive environment of continuous and
unpredictable change by reacting quickly and effectively to changing markets,
driven by customer-designed products and services

(Katayama and
Bennett 1999)

Cope with demand volatility by allowing changes to be made in an economically
viable and timely manner; Abilities for meeting widely varied customer
requirements in terms of price, specification, quality, quantity and delivery

(Sharifi and
Zhang 1999)

Ability to cope with unexpected changes, to survive unprecedented threats of
business environment, and to take advantage of changes as opportunities

(Tsourveloudis
et al. 1999)

Ability of an enterprise to operate profitably in a rapidly changing and continuously
fragmenting global market environment by producing high-quality, high-
performance, customer-configured goods and services

(Yusuf et al.
1999)

Successful exploration of competitive bases (speed, flexibility, innovation
proactivity, quality and profitability) through the integration of reconfigurable
resources and best practices in a knowledge-rich environment to provide customer-
driven products and services in a fast changing market environments

(Christopher
2000)

Ability of an organization to respond rapidly to changes in demand, both in terms
of volume and variety; A business-wide capability that embraces organizational
structures, information systems, logistics processes, and mindsets

(Vanhanen,
Jartti and
Kähkönen 2003)

Ability to adapt to changing situations appropriately, quickly and effectively; Early
noticing of relevant changes, prompt and effective action planning and reorientation
accordingly

(Conboy and
Fitzgerald 2004)

Continual readiness of an entity to rapidly or inherently, proactively or reactively,
embrace change, through high quality, simplistic, economical components and
relationships with its environment

(Dove 2004) Ability of an organization to adapt proficiently (thrive) in a continuously changing,
unpredictable business environment; Characteristic quality of nimbleness, ability to
remain viable in a changing environment; Proficiency at change; Having a
controlled response ability to deal effectively with things that are beyond control –
whether internal or external, whether opportunity or necessity;

(Caswell and
Nigam 2005)

Ability to smooth and dexterous performance in response to the unexpected

(Adeleye and
Yusuf 2006)

Systematic response to pressures imposed by the highest levels of market instability
and product complexity; Simultaneous emphasis on a wide range of competitive
capabilities

118

Publication Definition / Characterization
(Ismail et al.
2006)

Ability to respond to, and create new windows of opportunity in a turbulent market
environment driven by individual (bespoke) customer requirements cost effectively
and rapidly

(Lovén 2006) Ability of a system to adapt itself to rapid and unexpected changes that are good
(SAS-050 2006) Ability to be robust (maintaining effectiveness), flexible (employing multiple ways

of succeeding), responsive (reacting to changes in a timely way), innovative,
resilient (recovering from perturbations), and adaptive (changing work processes
and the organization); Characterized by quickness, lightness, ease of movement,
nimble;

(Baldrige 2008) Capacity for rapid change and flexibility; Ability to adapt quickly, flexibly, and
effectively to changing requirements (depending on the nature of the organization’s
strategy and markets);

Table 28. Empirical evidence of applying agile software development (chronological order)

Publication Method(s) Results, Findings
 Application Area

(Aoyama
1998a)

Agile Software Process (ASP):
• time-boxed incremental delivery,

iterative design
• concurrent distributed

development
• people-centered modular process

architecture (macroprocesses /
microprocesses) with network-
centric just-in-time information
management

• faster development cycle-times
• increased flexibility to plan changes
• higher quality
• higher productivity
• smoother work-load balancing

large-scale telecommunication
software systems

(Dagnino 2002)

Agile Development in Evolutionary
Prototyping Technique (ADEPT):
• incorporating selected practices

from XP, Scrum, and DSDM
methods

• incremental and iterative
development model

• emergent plans and design
• feature-driven
• intense customer involvement

In large organizations with established
“traditional” development models, there
may be small-team projects with
evolutionary requirements and volatile
technology, favoring agile development
practices.

Technology development of “alpha”
systems for new industrial products

(Vanhanen,
Jartti and
Kähkönen 2003)

XP and other typical agile practices • The most widely adopted practice is the
measuring of progress by working
software code.

• low adaptation of agile testing practices

Telecommunication software
product development projects in a
large company

119

Publication Method(s) Results, Findings
 Application Area

 (possibly due to lack of education)
• A technically competent project

manager (understanding the product
architecture design) is a success factor.

• Skilled, stable project teams can
successfully work on tacit knowledge.

• Focusing on working software (frequent
delivery and instant customer feedback)
increases the developer satisfaction.

• Methodology (XP) not fully and
systematically adopted. Process patterns
could help.

(Dagnino et al.
2004)

Evolutionary with agile practices
(ADEPT) vs. “traditional”
incremental (IDM)

• degreased documentation time
• increased customer satisfaction
• ability to incorporate (late) requirements

changes with smaller impacts
• ability to deliver business value earlier

and added value more often
• higher risk awareness and proactive risk

management reducing the impacts

Technology development projects in
an industrial NPD organization
(product prototypes)

(Lindvall et al.
2004)

XP applied • more flexibility and speed in
implementing change requests (agility)

• improvements in customer satisfaction,
product quality, productivity, cost

• increased developer satisfaction
• Even safety-critical software can be

developed with agile methods.
• Agile methods and practices could

influence and be combined with other
(traditional) software process
approaches (hybrid).

Pilot projects in large industrial
organizations

(Khan and
Balbo 2005)

XP, FDD, Scrum
vs. “heavyweight” methodologies

• decrease in costs
• increase in quality
• shorter delivery schedule
• inherently user-centric design
• long-term maintenance improved by

acceptance test suites
• For high-level development (large

complex systems with multiple
organizations) more in favor of
“heavyweight” methodologies.
Customer collaboration is the key
advantage of agile development models.

Web systems development (low,
medium, high level categories)

(Fitzgerald
Hartnett and
Conboy 2006)

XP and Scrum combined • increase in quality (reduced defect
density)

• delivery ahead of schedule
• better developer motivation
• Certain XP, Scrum practices were not

used following conscious project-
specific considerations. The
complementary combination of the XP
and Scrum practices is applicable.

Industrial network processor
microcode software development

120

Publication Method(s) Results, Findings
 Application Area

(Karlström and
Runeson 2006)

XP
with traditional gate-based NPD
management models

• The product quality increases, the
schedule shortens, and the software
developers have better controllability.

• The intense communication and
collaboration of agile development
models clarify the customer needs,
highlight the problems early, and thus
help reducing the project risks.

• The interfaces between the agile teams
and the surrounding organization and
other (non-agile) teams must be clearly
defined (mapping the documents and
other software artefacts with the
governance and quality models,
synchronizing the timing differences). A
clearly defined customer interface (role)
is a key success factor.

• The line-management may have to
rethink its attitudes towards software
project control (e.g., change
management, confronting problems
early, micro/macro planning needs).

• All and all it is feasible and beneficial to
combine and augment agile software
development with a gate-based
management model.

Embedded software development for
industrial systems

(Keaveney and
Conboy 2006)

various • Frequent, short iterations makes it
possible to begin with coarse-grained
initial estimates, which are
incrementally made more accurate.

• experience-based expert estimation
preferred to formal estimation models

• fixed-price project budgets applicable
with some agreed variable dimension

• Weak customer/user relationships, lack
of past project data, and overreliance to
personal memories may make accurate
estimation more difficult.

Cost estimation practices in agile
software projects (case study of four
different industrial organizations)

(Syed-Abdullah
et al. 2006)

XP
vs. design-based methodology

• Agile teams experience a higher level of
well-being (anxiety, depression,
enthusiasm) compared to the design-
based teams in unpredictable projects:
Ability to proceed with only partial
requirements, frequent testing and
feedback, pair programming, constant
communication and other teamwork-
supporting practices contribute.

• The number of XP practices adopted is
associated with a higher level of work
related well-being experienced.

Projects of different levels of
stability (student projects with
external industrial clients)

(Vodde 2006) Scrum (primarily) • People mostly (very) satisfied with the

121

Publication Method(s) Results, Findings
 Application Area

Telecommunications systems agile
software product development
piloting in a large company
environment (projects ranging from
small to very large ones)

new agile, iterative development mode.
• Only a minority would like to return to

the old way of working.
• A majority see agile, iterative

development (very) important in the
future.

(Wils et al.
2006)

XP practices application aimed for
shortening the development cycle
times and coping with changing
requirements:
• software development phase
• target hardware embedding phase
• final product certification phase

• Certain general agile principles must be
refined: The software creates value only
when certified in the final product
operation context; Much information
must be documented explicitly with
formal traceability.

• The basic software development phase
can utilize all agile practices.

• The hardware embedding phase
introduces additional constraints for
coordinating the different functions.

• Agile practices are not especially
beneficial in the formal certification
phase, and some practices (e.g.,
refactoring) may be even
counterproductive.

Mission-critical avionics software
development (embedded) with
regulatory certification requirements

(Abrahamsson
2007)

New agile method development
trials

• significant cost-savings
• high employee satisfaction
• higher quality (less defects)
Critical success factors (for embedded
software development):
• appropriate adaptation of the methods

and practices
• fit-for-purpose tools

various industrial (embedded)
systems and products

(Judy and
Krumins-Beens
2007)

Scrum/XP practices • enhanced organizational innovation
(knowledge creation) with agile
software development practices new product concept creation

(Sutherland et
al. 2007)

Scrum (applied for distributed and
outsourced teams)

• high productivity (comparable to
collocated teams)

• higher quality
Critical success factors (for distribution and
outsourcing):
• set of teams integrated (Integrated

Scrum)
• shared global build repository
• common tracking and reporting tool
• daily meetings (geographic

transparency)
• highly skilled outsourced teams

large complex library data
management system (platform)
development

(Chow and Cao
2008)

XP and Scrum mostly Critical success factors (in terms of quality,
scope, time, cost):

122

Publication Method(s) Results, Findings
 Application Area

a survey of some 100 projects • correct delivery strategy (regular, most
important features first)

• proper use of agile software engineering
techniques (e.g., integration testing)

• strong team capability (competence,
motivation, knowledgeable managers
with adaptive management style,
technical training)

(Laanti 2008) Scrum scaled up • better visibility and continuous steering
with hierarchical backlogs

• increased productivity and quality
perceived by the developers

very large, complex product
development (multiprograms)

(Qumer and
Henderson-
Sellers 2008)

Agile Product-Enhancement Process
(APEP):
• agile (iterative) practices for the

front-end phase (new features)
• traditional (incremental)

production phase

• Agile practices in new feature
development enhance quick and
adaptable delivery of business value.

• Agile team accountability improves
productivity, but requires a different
mindset than in the traditional culture.

• An executable model (prototype)
facilitates smooth transition to the
formal software production phase.

large, complex product development

(Salo and
Abrahamsson
2008)

XP and Scrum • XP practices applied more often than
Scrum (54% vs. 27%)

• ~90% of the respondents using XP
practices considers them useful (vs. 77%
using Scrum practices).

• not all practices applied systematically
(e.g., TDD in only 18% cases)

a survey of some 35 industrial
projects applying (or considering)
agile methods for embedded
software development

(Tabaka and
Martens 2008)

Scrum (scaled up) • faster delivery (4.5 times)
• fewer defects (11%) large-scale software product

development (programs)
(Välimäki and
Kääriäinen
2008)

Scrum (distributed) • clearer visibility of the project status
• better management of product features
• improved team communication
• stronger commitment to the project

goals

automation systems development

(Version One
2008)

Scrum (primarily), Scrum/XP hybrid • increased productivity
• accelerated time-to-market
• reduced software defects
• reduced costs

a global survey of various software
organizations using agile software
methods

Table 29. Typical barriers and impediments of agile software development (chronological
order)

Publication Factors
(Aoyama 1998a) • May require fundamental rethinking of the entire software development

function in the organization including management techniques.
• Necessitates efficient tooling to support for instance timely information

sharing in particular in dispersed environments.
• May require years (even a decade) to nurture (in large organizations).

123

Publication Factors
(Constantine 2001) • Relies on highly skilled, disciplined, and motivated developers.

• Requires exceptionally good management and leadership skills.
• Iterative development with small increments may not applicable with every

product/project type.
• scaling tightly coordinated teamwork
• integrating advanced user-interface design techniques requiring complex

modeling (UCD)
(Chillarege 2002) • predictability

• scalability, distributed development
• multiproduct integration

(Turk, France and
Rumpe 2002)

• distributed (even) global software development (face-to-face communication
vs. documentation)

• subcontracted (outsourced) software development (fixed contracts)
• building reusable and generalized solutions
• managing large development teams (management-in-the-large)
• managing large software products (complexity and size requiring systematic

architectural design, possibly not feasible to implement in increments, long-
lasting maintenance needs)

• developing safety-critical software (formal quality control)
(Wallin, Ekdahl,
and Larsson 2002)

• mismatches between organizational business decision models and technical
software development life-cycle models (timing and necessary information
for decision-making points)

(DSDM 2003) • existing organizational culture (resistance to change)
• organizational hierarchy (restrictive management practices)
• current roles and responsibilities incompatible with new or changed ones
• existing process enforcement mechanisms
• outside influences and restrictions (e.g., external customer requiring other

ways of working)
(Ronkainen and
Abrahamsson
2003)

EMBEDDED SOFTWARE DEVELOPMENT:
• system architectural performance requirements, refactoring risks (e.g., timing

subtleties)
• gradually more rigidity and documented formalism needs
• complex (and possibly expensive) target test environments
• various different cross-functional stakeholder expectations and coordination

(Vanhanen, Jartti
and Kähkönen
2003)

• lack of knowledge about new agile practices (difficult to deploy without
relevant education and experience)

• ad hoc (emergent) adoption neglecting some key practices
• difficulties in implementing fully new methodologies in large organizations

(Glass 2004) • large projects requiring more formalities than smaller ones
• application domain differences (e.g., business applications vs. engineering

systems)
• differences in project/product criticality levels
• project innovation-level variation (unprecedented)

(Kähkönen 2004) • multiteam collaboration and coordination (in large organizations)
(Lindvall et al.
2004)

• integrating agile software development with existing organizational process
definitions and quality systems (e.g., Change Control Boards)

• interfacing agile software teams with dependent (non-agile) teams
• Agile software development models may require cultural changes in large

established organizations with traditionally defined operating models and
structures.

(Skowronski 2004) • Agile software development models may not support well research-oriented
(analytic) problem-solving development tasks.

• People-centric work practices may not suit to all individuals.

124

Publication Factors
(Boehm and
Turner 2005)

• integrating agile and “traditional” software development teams following
different life-cycle models (in large organizations)

• up-front planning, milestone, and predictability requirements of the
“traditional” governance models (vs. experimentation and exploration of agile
process models)

• formal requirements engineering and systems engineering needs
• new progress measurement models (activities and cost vs. business value)
• collocation and other intensive communication needs of agile teams
• new skill needs of software developers and team leaders, project manager

roles
• legacy systems development and maintenance
• external maturity and quality systems assessments

(Ceschi et al. 2005) • lack of general understanding of agile software development (superficial
knowledge)

• company internal inertia and customer resistance to adopt totally new
concepts

• large geographically separated teams
(Henderson-Sellers
and Serour 2005)

• lack of practitioner participation in selecting and adapting the project’s
method (method ownership)

(Highsmith 2005) ORGANIZATION:
• governance models not aligned with agile software development teams

(Itkonen et al.
2005)

PROCESS (QA):
• Quality Assurance (QA) activities possibly seen unnecessary and

unproductive
• testing time limited by time-boxing
• complete (formal) specifications not necessarily available for testing
• independent testers with specific testing skills not necessarily used
• relying heavily on automated tests, developers concentrating on constructive

QA
• few QA practices on the iteration time horizon, hardly any on the release time

horizon in the current agile software development models
(Karlström and
Runeson 2005)

• market-driven (even global) product development and evolution
considerations

• supporting the customer interface role at different levels and areas in large
organizations (marketing, product management, program management, etc.)

• changing ongoing development projects under daily delivery time pressures
(Khan and Balbo
2005)

• risks of low planning, lack of project structure
• complexity of large-scale high-level development

(McInerney and
Maurer 2005)

• incorporating UCD expertise (e.g., hi-fi prototyping, usability testing)

125

Publication Factors
(Nerur et al. 2005) ORGANIZATION:

• culture and mindsets (e.g., decision-making, information filtering,
negotiations)

• management style (from command-and-control to leading-and-collaboration)
• organizational forms (supporting co-operative self-organization)
• customer relationships (commitment, trust, proximity, knowledge-sharing)
• knowledge management (tacit)
• effective teamworking (trust-based social co-operation)
• competence and skill levels (above “average”)
• reward systems (teamwork result-orientation)
PROCESS:
• life-cycle model supporting iterative feature-driven development (people-

centric vs. process-centric)
• appropriate method selection (no unified approach)
• managing large-scale projects
TECHNOLOGY:
• tools and techniques supporting rapid change cycles and tacit knowledge
• training new software development skills (e.g., refactoring)

(Turk, France and
Rumpe 2005)

ORGANIZATION:
• distributed development environments
• subcontracting (fixed contracts)
• large teams
PROCESS:
• building reusable artifacts (generalized solutions)
• safety-critical software
• large, complex software

(Schuh 2005) ORGANIZATION:
• large distributed project teams
• imposed waterfall-style planning, control, progress measurements
• unavailability of collaborative customers (representative)
• “pretending” to be agile (either because of masquerading or misconceptions)
• not willing to invest in learning and deploying new practices, tools (e.g., test

automation)
PROCESS:
• imposed (heavyweight) processes, tools
• fixed project cost and scope
• legacy input documentation
• not really understanding (or ignoring) the underlying premises and goals
PEOPLE:
• some individuals not willing to change their ways of working
• not establishing a communicative (talkative), collaborative team culture

(Cognizant 2006) • global distributed (offshore) development
• projects with a tight budget and schedule (cost control)
• projects that require a high level of process adherence (e.g., regulations)
• products in the mature phase of their life-cycles (stable requirements)

(Fitzgerald,
Hartnett and
Conboy 2006)

• finding a suitable context-specific palette between different general-purpose
agile methods and practices (method engineering)

• complementing the selected method(s) according to the project-specific needs
(e.g., documentation requirements)

• taking into account the product technology specialties (e.g., target hardware
manufacturing in case of embedded software development)

(Hansson et al.
2006)

• External customers mandate a certain development process model to be
followed.

126

Publication Factors
(Karlström and
Runeson 2006)

• rigid organizational milestone management models (e.g., Stage Gate)
• conflicting organizational governance and engineering attitudes and

expectations
• lack of management support for introducing new methodologies

(Mar 2006b) PEOPLE:
• overly specialized (restricting) skill-sets
• lack of ownership (result-orientation) in teams
• dysfunctional teams with specialists (e.g., architects)
• senior management not clearly supporting agile development
PROCESS:
• no single customer can be identified (barriers between the business functions

and the product development, many different stakeholders).
• management mandates to combine agile software development with

(incompatible) traditional models and practices (e.g., reporting)
• incomplete realization of key practices and roles (e.g., Scrum Master)
TECHNOLOGY:
• weak SCM and software build systems
• neglecting QA issues
• ineffective tools, organizational mandatory tool selection
ORGANIZATION:
• friction between different interdependent teams (large organization)
• lack of understanding of governing agile software development (e.g., metrics)
• cultural incompatibilities (e.g., fixed job roles, reward systems)

(Pyhäjärvi 2006) • coordinating multiple component teams in product line development set-ups
• long-term planning of multiple (concurrent) releases of multiple products of a

product line
• leaving room for free-form innovation in a timeboxed cyclic development

mode
(Ramesh et al.
2006)

• communication need vs. communication impedance
• fixed vs. evolving quality requirements
• people vs. process-oriented control
• formal vs. informal agreements
• lack of team cohesion

(Syed-Abdullah et
al. 2006)

• Learning a new methodology during the project may increase the (initial)
anxiety level.

(Tate 2006) • lack of understanding of what is valuable to the customers and why
• lack of understanding of the economics of the markets
• conflicting multiproject and product portfolio management
• Teams don’t pay attention to their software development process.

(Bosch 2007) • regulatory requirements (medical devices)
• waterfall-based organizational tradition

(Highsmith 2007) • applying an incoherent subset of mutually enforcing agile practices
(Nerur and
Balijepally 2007)

• organizational fostering: learning, teamwork, self-organization, empowerment

(Sutherland et al.
2007)

• large, distributed, outsourced teams developing complex systems (e.g.,
synchronizing the work, effective communication)

(Vodde 2006,
2007)

• lack of resources for supporting all projects adopting new agile development
models

• Some (legacy) tools do not support well agile iterative development.
• Certain existing company-wide metrics may give wrong indicators with agile

development models (e.g., progress and performance measurements).
(Wils et al. 2006) • software project external constraints (e.g., regulatory standards) and

dependencies (e.g., target hardware development)

127

Publication Factors
(Abrahamsson
2007)

• certification requirements
• hardware dependencies
• cultural barriers
• lack of fit-for-purpose tools

(Coplien 2007) • not really understanding the problems that agile software development
addresses

• neglecting necessary planning
• overhead of overly granular unit testing
• procedural testing as a design tool, leading to hierarchical procedural designs
• overemphasis on customer-centricity (vs. task- and context-centricity)
• narrow focusing on a single customer (instead of planning many customers /

larger markets)
• ignoring larger-scale adaptation capabilities

(Gottesman and
Takas 2007)

• lack of executive support and lead for organizational change management
• immature company culture, geographical diversity
• inadequate enterprise-level tools and infrastructure
• integrating large-scale organizational functions (e.g., governance, quality

management) with agile software development functions
• dependencies with non-agile third parties

(IEEE 2007) PROCESS:
• not responding appropriately to customer priorities and needs
• production-level quality code not being demonstrated / delivered on a regular

basis
• supplier not communicating with the customer frequently
• lack of reflection and process improvement
• limited (or no) commitment to automating tasks to improve productivity and

agility
• too much documentation or heavyweight processes
ORGANIZATION:
• lack of commitment to meeting promised deadlines
• unwillingness of the customer to share decision-making power with the

supplier in the matter of negotiating the builds/iterations
• The customer cannot identify relevant stakeholders, who actively participate.
• isolating the onsite customer representative from his or her normal social

circle
• lack of group cohesion
• lack of trust in the relationship
• Both customer and supplier fail to take responsibility for failures as well as

successes.
(Judy and
Krumins-Beens
2007)

• relating agile teams to the larger organization (bottom-up agile
implementation)

• removing impediments arising from outside the software development team
(Leffingwell 2007) PROCESS:

• apparent impediments of the software development methods (small team size,
customer integration, collocation, emerging architecture design, informal
requirements analysis and documented specifications, culture and physical
environment)

ORGANIZATION:
• process and project management organizations
• existing formalized policies and procedures
• corporate culture
• fixed schedule, fixed functionality mandates
• friction between developer departments and user/customer proxy teams
• people organized by discipline rather than product line
• high degree of distribution

128

Publication Factors
(Sidky 2007) ORGANIZATION:

• Adopting agile software development does not add value (inappropriate need
for agility).

• lack of executive support (buy-in to change to agile software development)
• lack of sufficient funding for the adoption
PROCESS:
• mission/safety-critical software products

(Schoonenderwoert
2007;
Schoonenderwoert
2008)

ORGANIZATION:
• interconnecting agile software development teams with the rest of the

organization (e.g., understanding the production rate of the agile teams)
• shifting from the team level up to enterprise-level agility (e.g., lean portfolio

management)
(Schwaber 2007) • organizing large projects and complex product architectures

• functional / matrix / project organization conflicts (even “silos”)
• diverse skill requirements of the developers (more generalists than specialists)
• self-management of teams, new roles of project managers
• new software development tool requirements (e.g., fast builds, frequent

testing)
• possibly changes needed outside the actual software development function
• lack of buy-in from team members, business customers, line management, or

other key stakeholders
• large-scale organizational change efforts (“Agile transformation”)

(Tabaka 2007) • lack of full stakeholder involvement and consensus (including multiple
business customers)

• lack of true team self-management authority and decision-making power
• weak organizational culture for continuous learning (e.g., ignoring

roadblocks)
(Turner 2007) • traditional hardware-oriented systems engineering processes and mindsets

(lack of codevelopment)
(Vilkki 2007) • contradicting needs and assumptions in organizational process development

(common standardized processes vs. team level tailored processes)
• lack of human factors considerations (e.g., innovation)

(Aramand 2008) • not necessarily producing competitive products for the overall marketplace
(average customers vs. lead customers)

• lack of support for adaptation to the market trends (reviewing similar
products)

(Dybå and
Dingsøyr 2008)

• complex organizations
• complicated integration on agile software teams with the surrounding

organization
• risk of insufficient software architectural design work

(Glazer et al. 2008) • weak organizational change management capabilities
• (perceived) conflicting organizational process improvement goals and

stakeholder interests
• mismatching audit requirements

(Hoda, Noble and
Marshall 2008)

• lack of customer buy-in (awareness)

(Laanti 2008) • integrating team-level work (synchronizing requirements and architectural
decisions) with the higher levels (product programs)

• assigning product owners (in large organizations)
• conflicting interests in short- and long-term organizational planning (e.g.,

resource allocations)
(Nies 2008) • accelerating the verification and validation feedback loops (test automation)
(Phillips 2008) • treating agile software development as a ‘one-size-fits-all’ organizational

improvement approach

129

Publication Factors
(Qumer and
Henderson-Sellers
2008)

• full agile transition may take several years (in large organizations)
• strategic alignment of business and agility goals (integrating large-scale

organizational governance)
(Ramos and
Gravendeel 2008)

• weak feedback loops (organizational learning)
• lack of trust
• addressing wrong problems (unclear goals)
• weak Product Owners (Scrum)
• failure to adapt the basic methods according to the situational and

organizational needs
• failure to change the rest of the organization to accommodate agile software

teams (enablers)
(Tabaka and
Martens 2008)

• lack of business collaboration (product owners)
• organizational change barriers (e.g., testing responsibilities)
• weak value feedback loops (e.g., product ownerships)
• lack of infrastructure investments (e.g., increasing real-time visibility)
• incomplete integration with the other parts of the organization (flow rates)

(Välimäki and
Kääriäinen 2008)

• overcoming/reducing communication problems
• enforcing tool-supported global common processes
• knowledge-sharing (transfer) between different sites
• ensuring common project visibility (shared view)

(Version One
2008)

• ability to change organizational culture
• general resistance to change
• personnel with the necessary Agile experience

Table 30. Agility improvement / transition approaches (chronological order)

Publication Field, Scope Approach / Principles
(Upton 1994) Manufacturing

(flexibility)
• dimensions (what needs to change and adapt)
• time horizon (operational-tactical-strategic)
• elements (range, uniformity, mobility)

(Goldman et al.
1995)

Manufacturing /
Organizational
design

• enriching the customer
• cooperating to enhance competitiveness
• mastering change and uncertainty
• leveraging people and information

(Kotler 1994;
Kotler et al. 1996)

Marketing
(management)

• market-oriented total-company value-delivery system
(strategic network) aimed at profitable customer-
satisfaction

130

Publication Field, Scope Approach / Principles
(Paulk 1996) Software process,

organization
Building organizational capabilities by effective SPI:
• understanding the business context of SPI
• both managerial and technical skills involved in SPI
• working relationship with the customer / end-user

(open communication, integrity, customer
expectations)

• converging “as is” and “should be” processes
• balancing design-intensive creativity and disciplined

work
• keeping the processes “simple” in rapidly changing

environments
• using incremental or evolutionary life cycle models

(risk management)
• empowering the most crucial asset: people
• internal commitment process
• developing skills (in particular management training)
• management sponsorship and (top-down) coordination

for SPI activities
(Dove et al.1996;
Dove 2004)

Enterprise • knowledge management
• value propositioning
• response ability (system response architecture, change

management, culture of reactive and proactive change
proficiency)

(Dove 1997) Enterprise • business continuation requirements (profitability,
adaptability)

• transformation strategies (e.g., TQM)
• operating strategies (e.g., leanness)

(Haeckel 1999) Organizational
design

• sensing and responding to external signals (open
system)

• organizational context (purpose and governing
principles, adaptive structure)

• coordination of capabilities (commitment management)
(Kauppinen 1999) Enterprise • vision-based strategic development and management of

agility capabilities
• integrating strategic, operational, and team levels

(Sharifi and Zhang
1999)

Manufacturing Total-company agility conceptual model and development
methodology:
• agility drivers
• agility needs (strategic intent to become agile)
• agile capabilities, enablers/providers for

responsiveness, competency, flexibility, speed
• change effects at different levels (current operations,

strategy goal changes, new business strategy)
(Holmberg and
Mathiassen 2001)

Software process,
organization

• agile SPI

(Kirjavainen and
Laakso-Manninen
2001)

Organizational
design, human
resource
management

Strategic Competence Management:
• knowledge management
• intellectual capital management,
• competence-based strategic management,
• learning organization

(Leishman 2001) Software process • adopting appropriate methodologies based on how
“extreme” (rapid, uncertain) the projects really are

• accompanying CMM with agile methods
(Atkinson 2002) Organizational

design (military)
• self-synchronization
• shared situation awareness

131

Publication Field, Scope Approach / Principles
(Chillarege 2002) Software process

(business)
Process management:
• adoptation following the product life-cycle stage
• component development of larger, mature products

(Gunasekaran and
Yusuf 2002)

Manufacturing • strategic planning and objectives (virtual enterprise,
alliances, core competencies)

• market focus (range of markets, products range)
• flexible technologies
• flexible people

(Benko and
McFarlan 2003)

Organizational
design (business)

Organizational traits development:
• effective collaboration (value networks, ‘ecosystem’)
• outside-in view (relationships)
• responsiveness, coordination and options (continuous

selective sense and respond, alignment)
• efficient intra-enterprise operation (enabler)

(DSDM 2003) Software process • DSDM incremental development process applied to
introducing and/or improving the DSDM software
development process itself

(HP 2003) IT, business
processes

1. Profile, prioritize, and plan agility improvements.
2. Architect and build an adaptive enterprise that enables
business agility.
3. Manage and measure agility results.

(Anderson 2004) Software process,
organization

• Theory of Constraints
• Agile Maturity Model (“The Learning Organization

Maturity Model”)
(Coplien and
Harrison 2004)

Software process,
organization

• situational patterns

(EDUCAUSE
2004)

IT organization
(institutional)

• flexible staffing and funding models
• collaborative, shared development of IT (possibly

Open Source)
• flexible IT architectures (allowing cross-functional

application integration)
• smaller IT projects delivering benefits quickly
• rapid new solution deployment (measured in weeks

rather than years)
• Agile transition is most often incremental (rather than

in one radical step), remaking the IT organization.
(Kähkönen 2004) Software process,

organization
• facilitated collaborative cross-team workshops

(Communities of Practice)
(Lappo and
Andrew 2004)

Software process,
organization

• quantifiable benefit/cost assessment of implementing
agility (value-stream mapping)

(Levinson 2004) IT organization • close collaboration between the business people (users)
and the developers

• training agile staff
• building an agile architecture
• agile software development methodologies, selected

according to the project-specific needs and constraints
• selecting agile vendors
• budgeting for agility (business’s total technology costs,

internal profit-loss dynamics, cost transparency)
(Liker 2004) Enterprise Lean Thinking applied to product development:

• product development process value streaming
• long-term continuous improvement
• total-quality culture, starting from the top management

132

Publication Field, Scope Approach / Principles
(Poppendieck and
Poppendieck 2004;
Ward 2007)

Software process,
organization

Lean Thinking applied to software production:
• eliminating “wastes” (e.g., unnecessary waiting)

(Prewitt 2004) IT organization • a company-wide standard software base
• central control and accountability for IT costs
• repeatable processes for project management
• a flexible software architecture
• a standardized development platform
• a fluid balance of payroll employees, contract

employees, and outside consultants and outsourcers
• a flat organizational hierarchy
• flexible, short-term provider contracts
• flexible, quickly deployable teams (such as SWAT)
• an optimal balance of flexible versus fixed IT operating

costs
(Aydin et al. 2005) Software process,

organization
Agile method adaptation (DSDM):
• forms: static (prescribed tailoring, conceptual) vs.

dynamic (during the project, empirical process
innovation)

• perspectives: engineering vs. socio-organizational
• taking into account the project characteristics and

situational context factors (Extended Suitability and
Risk List)

• possibly also modifying the project context (preventive
and corrective management measures for enabling the
suitability of the method)

• coaches
(Boehm 2005) Software process,

organization
• hybrid agile and plan-driven methods
• value-based software engineering (VBSE)

(Schuh 2005) Software process,
organization

• making the project environment amenable to agile
software teams

• gradually adopting individual practices (vs. immediate
full method transition), even personally

• dynamically discontinuing unsuitable methods and
rejecting unnecessary practices

• tackling the hardest project problems first (vs. the
easiest ones)

• keeping a “low profile” with new agile teams (initially)
(Henderson-Sellers
and Serour 2005)

Software process,
organization

• method engineering (both project-level and
organizational) based on configurable method
fragments (OPF)

• incremental adoption with “small-win” pilot projects
• continuous method evolution supporting organizational

maturity growth and environmental changes
(Levine 2005) Software process,

organization
• agile software development as a part of larger

organizational transformations
• multidisciplinary (e.g., organizational development,

knowledge management, information systems)
(Nerur, Mahapatra
and Mangalaraj
2005)

Software process,
organization

• management and organization (e.g., management style,
organizational culture)

• people (customer relationships, competences, teaming)
• process (e.g., selecting appropriate people-centric agile

methods, scaling large projects)
• technology (tools and techniques, new skills)

133

Publication Field, Scope Approach / Principles
(Royce 2005) Software process Balancing ranges:

• scope management (user needs vs. design assets)
• process control (creativity vs. rigor)
• progress tracking (experimentation vs. production)
• quality control (abstract vs. tangible, testing)

(Börjesson 2006) NPD software
process, organization

• Change Agents

(Dutton and
McCabe 2006)

Software (systems)
process

Agile / Lean CMMI:
• CMMI model mapping to agile/lean development

practices with a valuation approach
• Disciplined Agility

(Fitzgerald,
Hartnett and
Conboy 2006)

Software process • XP and Scrum combined by using a subset of selected
practices (rather than a full method)

• bottom-up (“grassroots”) adoption strategy
• CMM used in parallel (top-down approach).

(Hansson et al.
2006)

Software process • realizing how much agile-oriented practices are already
used (albeit informally) in the organization

• combining agile and “traditional” practices
(Ismail et al. 2006) Manufacturing Agility Road Map (strategy-driven):

• turbulence assessment
• agility focus selection (product, process, people,

operation, organization)
• Agility Capability Indicators
• agility tools

(Lovén 2006) NPD software
process, organization

• acquiring new technology competence outside (vs. in-
house development)

• rapid process change (vs. incremental improvement)
• rapid partnership formation (facilitated by external

consultants)
(Lyytinen and
Rose 2006)

Organization • ISD process innovation (including agile methods)
• different types and needs of agility (exploration and

exploitation)
(Oosterhout et al.
2006)

Enterprise, IT Business Agility:
• business networks
• change factors requiring agility (external and internal)
• Gap analysis: required vs. current agility (difficulty to

cope with the required business change)
• IT as an enabler (or disabler) of agility

(Overby,
Bharadwaj and
Sambamurthy
2006)

Enterprise IT capability as an enabler:
• ability to sense IT-based environmental changes
• IT-enabled responses
• knowledge and processes reach and richness (Digital

Options)
(Pikkarainen 2008;
Pikkarainen and
Mäntyniemi 2006)

Software process,
organization

CMMI applied for agile software development:
• finding suitable agile practices
• understanding the connections between agile software

models (practices) and organizational CMMI goals
(Tate 2006) Software process • continual refinement of the product and project

practices
• a working product at all times
• continual investment in and emphasis on design
• valuing defect prevention over defect detection

134

Publication Field, Scope Approach / Principles
(Vázquez-Bustelo
and Avella 2006)

Manufacturing • human resources
• value chain integration
• concurrent engineering
• advanced technologies
• knowledge management

(Vehtari 2006) Manufacturing • dynamic manufacturing capabilities
• How do the manufacturing capabilities support the

product strategy over the life-cycle?
(Vodde 2006,
2007)

NPD software
process

• project-specific emergence, no centralized control
• no company-wide unified agile methodology enforced
• organizational support and “coaching”, sharing of

experiences and lessons learned (communities)
(Ambler and Kroll
2007)

IT organization,
software process

Lean principles applied to software development
governance:
• mission and principles (e.g., business-driven project

porfolio and pipeline management)
• organization (HR policies, stakeholder involvement)
• development processes (iterative, risk-driven;

situational adaptation and continuous improvement)
• measurement (real-time project monitoring of value

delivered, quality, and cost)
• roles and responsibilities (self-organizing teams with

appropriate software architecture allocations)
• policies and standards (leveraging flexible, reusable,

high-value corporate assets)
(Bosch 2007) Software process,

organization
• commitment to organizational change (e.g.,

overcoming waterfall-based process tradition)
• focused and dedicated resources (teams) for

establishing the new/changed development model
• enough time for settling the model (min. 6 months)
• adapting existing organizational assets (e.g., quality

standards) when appropriate and useful
• educating all organizational stakeholders for the

new/changed mode of operation
(Capgemini 2007) IT, business

processes
• investing in improving the capabilities of the IT staff
• improving processes that bring business and IT

together
• embracing a service-oriented business culture

(Dehoff and Loehr
2007)

NPD organizational
design

• total focus on the customer value across the product
development organization

• investing in long-term competence development
(people, in particular Chief Engineers)

• aligning and coordinating all product development
projects/programs for achieving common value goals

• emphasizing knowledge processes (creation, learning)
• results-driven risk management

(Gottesman and
Takas 2007)

NPD organizational
design

• enterprise-level (lean) transformation view (vs. team-
level focus)

(Highsmith 2007) Software process,
organization
development

Agile Transition (key areas):
• agile vision (including expected benefits)
• organizational roll-out strategy
• agile method/practice selection strategy
• (methodology) support strategy
• integration strategy
• software development environments

135

Publication Field, Scope Approach / Principles
(IEEE 2007) Software process • customer-developer interfaces (external or internal):

collaboration and communication, contracts,
requirements, planning, iterative lifecycle,
documentation, testing, delivery;

• indicators of ineffective application of agile practices
(Judy and
Krumins-Beens
2007)

Organization
development
(knowledge
management,
innovation)

• bottom-up adoption extended gradually towards the
larger product development organization (innovation
management, knowledge-creating company)

• Software Product Development Manifesto (guiding
principles based on core-agile values)

(Leffingwell 2007) Software process,
software engineering
management

• Define/Build/Test component teams
• two levels of planning and tracking
• mastering the iteration
• smaller, more frequent releases
• concurrent testing
• continuous integration
• regular reflection and adaptation

(Oiva 2007) Organization
development
(strategic agility)

• strategy-focused capability management model
• P-CMM extended

(Salo 2007) Software teams,
organization

• SPI process

(Sidky 2007) Software projects,
organization

Agile Adoption Framework:
• Agile Measurement Index
• 4-Stage Process for Agile Adoption:

1. Identification of discontinuing factors
2. Project-level assessment
3. Organizational readiness assessment
4. Reconciliation

• Agile Coach
• pre/post-adoption assessments

(Smith 2007) Organizational
design (NPD)

• top-down and bottom-up changes combined
• iterative organizational change
• situational selection of new method (tool)

implementation order and grouping
• ambitious yet realizable change goals
• demonstrating visible success early (e.g., pilots)

(Turner 2007) Organizational
software process
development

• “agile-friendly” organizational process assets in other
disciplines supporting software development

(Vilkki 2007) Organizational
software process
development (large-
scale)

• organizational level definition of common concepts,
principles, and organization interfaces

• team (project) level selection of local implementation
tactics and practices

• emphasis on interactions, people
(Worley and
Lawler 2006)

Organizational
design

• investing in talented people proficient at change
• learning-oriented reward systems supporting changes
• flexible, reconfigurable organization structures with

wide exposure to external environment inputs
• decentralized decision-making with extensive

information sharing and visibility
• shared leadership

136

Publication Field, Scope Approach / Principles
(Miers 2007) Organizational

process development
Business Process Management:
• developing a spectrum of process capabilities ranging

adaptation (flexibility) and standardization (efficiency)
• empowering people (knowledge workers) to adjust the

processes based on actual situations
• continuous, long-term process improvement culture
• Business Process Maturity Model

(Aramand 2008) NPD software
process

• Dynamic Design Capabilities: adaptive to changes in
markets/needs and creative in superior value delivery
for sustainable competitive advantage

• involvement of lead users/customers
• review of similar product designs
• changing, modifying and combining software

development techniques and methods during the new
product development based on learning

(Doz and Kosonen
2008)

Enterprise • current state analysis (momentum vs. stagnation/crisis)
• strategic goal analysis (repositioning vs. reaffirming)
• environment analysis (nature and speed of change)
• holistic, systematic capability development
• sequencing of complementary capabilities

(Glazer et al. 2008) Organizational
process development
(large-scale)

• utilizing the CMMI framework model for overall
organizational deployment and continous improvement

(Kanter 2008) Organizational
design (large-scale,
even global)

• common shared company values
• open-ended standardization allowing quick but

coherent local decision-making
• governance system based on empowerment (guidance)

(Laanti 2008) Software projects,
organization (large-
scale)

• scaling up Scrum-based software development with
program management structures and hierarchical
backlogs (including practical tool support)

Agile Policy:
• agreement on organization-wide principles and criteria

for implementing the proprietary program management
model based on the Agile Manifesto values

(Mäkelä 2008) Organizational
software process
development

• strategy-driven software process selection (strategy-
first approach)

• software engineering capabilities
• absorptive capacity
• social capital and integration mechanisms

(Phillips 2008) Organizational
software process
development

• combining agile software methods with other quality
and improvement models (e.g., CMMI)

(Qumer and
Henderson-Sellers
2008)

Software process,
organization

Agile Software Solution Framework:
• selective adoption of agile software development

processes and practices based on their business value
• method engineering for composing situational process

models consisting of agile process fragments
Agile Adoption and Improvement Model:
• Level 1: speed, flexibility, responsiveness
• Level 2: communication-oriented (collaborative)
• Level 3: executable artifacts (minimal documentation)
• Level 4: people-oriented
• Level 5: learning (organization)
• Level 6: lean production, keeping agile

137

Publication Field, Scope Approach / Principles
(Schoonenderwoert
2008)

Software projects,
organization

• combining agile software development teams with
organizational Lean Thinking (e.g., work flow
management)

(Salo and
Abrahamsson
2008)

Software projects • likely that embedded software development requires
context-specific adaptations of current general-purpose
agile method practices (XP, Scrum)

(Tabaka and
Martens 2008)

Software projects,
organization (large-
scale)

Enterprise Agile Adoption:
• scaling from (pilot) teams to programs with cross-team,

cross-program steering and synchronization practices
and tools (“whole program” view)

• applying Lean principles (pull, flow)
• selecting and perfecting agile practices while scaling

up (innovation)
(Tanskanen 2008) Software

projects/programs,
organization (large-
scale)

• constructing a new, hybrid process model for a faster
release cycle based on known R&D problems,
suggested solutions, and selected agile method
practices (XP, Scrum)

ISBN 978-952-248-113-9
ISBN 978-952-248-114-6 (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)

