Publication P2

Ville Karavirta, Ari Korhonen, Lauri Malmi, and Kimmo Stalnacke. 2004. MatrixPro —
A tool for on-the-fly demonstration of data structures and algorithms. In: Ari Korhonen
(editor). Proceedings of the Third Program Visualization Workshop (PVW 2004).
University of Warwick, Coventry, UK. 1-2 July 2004. Coventry, UK. University of
Warwick, Department of Computer Science. Research Report CS-RR-407. Pages 26-33.
ISBN 0-902683-74-8.

© 2004 by authors



26 Third Program Visualization Workshop

MatrixPro — A Tool for On-The-Fly Demonstration of Data
Structures and Algorithms

Ville Karavirta, Ari Korhonen, Lauri Malmi, and Kimmo Stalnacke
Helsinki University of Technology
Department of Computer Science and Engineering
Finland

{vkaravir, archie, lma, kstalnac}@cs.hut.fi

Abstract

In this paper, we introduce a new tool, MatrixPro, intended for illustrating algorithms
in action. One can produce algorithm animations in terms of direct manipulation of the
library data structures, the process we call visual algorithm simulation. The user does
not need to code anything to build animations. Instead, he or she can graphically invoke
ready-made operations available in the library data structures to simulate the working of
real algorithms. Since the system understands the semantics of the operations, teachers
can demonstrate the execution of algorithms on-the-fly with different input sets, or work
with ”what-if” questions students ask in lectures. Such an approach lowers considerably
the step to adopt algorithm visualization for regular lecture practice.

1 Introduction

A wide range of visualization systems has been developed to demonstrate various computer
science core topics in the past decade. The major problem, for example, in teaching data
structures and algorithms has been the difficulty of capturing the dynamic nature of the
material. A proper tool for classroom demonstration would provide an ideal way to teach these
kinds of concepts. Such a tool would support custom input data sets (Brown, 1988), provide
multiple views of the same data structure possibly with different levels of abstraction (Hansen
et al., 2000; Stern et al., 1999), include execution history (Hung and Rodger, 2000), and
allow flexible execution control (Boroni et al., 1996; Ro8ling and Freisleben, 2002; Stasko
et al., 1993). However, even though there exist many very sophisticated tools to visualize
and animate these topics, the systems do not support, in general, easy on-the-fly usage. The
illustrative material is typically very laborious to create. Or, the material must be prepared
beforehand — at least to some extent. Thus, very few systems support the demonstration
on-the-fly.

In this paper, we describe how to apply wisual algorithm simulation (Korhonen, 2003)
to aid the development of illustrative material for a data structures and algorithms course.
Visual algorithm simulation is a generalization of algorithm animation in the sense that it
allows real interaction between the user and the underlying data structures. The user is not
only able to watch an animation with different input sets but he or she can also change the
same data structures the algorithm modifies during the animation process. Actually, the user
is able to simulate the algorithm step by step if required. The simulation consists of the very
same changes in the data structures as any implemented algorithm would do. Moreover, we
extend the scope of direct manipulation (see, e.g., Dance (Stasko, 1991) or Animal (R68ling,
2000)) in which the user can change the visualization on the screen: in visual algorithm
simulation these changes are delivered to the underlying data structures that are updated as
well. Thus, there is always an actual implementation for each data structure involved in the
simulation process and the corresponding visualization appears automatically on the screen
after the structure is changed by the algorithm or the user. In the rest of the paper, we use,
for simplicity, the term algorithm simulation instead of visual algorithm simulation.

Previously, we have employed the concept of algorithm simulation in our TRAKLA?2 sys-
tem (Korhonen and Malmi, 2000; Korhonen et al., 2003) that delivers algorithm simulation
ezercises. The system can give immediate feedback on learners’ performance by evaluating the



Third Program Visualization Workshop 27

correctness of the algorithm simulation. The simulation concept allows the system to compare
the user made simulation sequence with the sequence generated by an actual algorithm. In
addition, the system can create a model solution as an animation for each individual exercise
by executing the algorithm. Similar to this, we have developed an application that allows
the instructor to use the same framework for illustrating several concepts in algorithmics.
The new tool, called MatrixPro, is even more powerful because we do not have to settle for
simulating the ready-made exercises and follow the strict algorithm involved, but we can also
allow the instructor to interact with any data structure already implemented in our library.
Moreover, the simulation may also follow an algorithm that has not been implemented yet.

MatrixPro is based on the Matrix algorithm simulation application framework (Korhonen
and Malmi, 2002; Korhonen et al., 2002, 2001). The framework provides the basic visualization
and animation functionalities that are employed in this application. MatrixPro allows an easy
usage of these functionalities through the graphical user interface that is designed to support
lecture use and easy demonstration requirements. The motivation is to build a general purpose
tool that requires no prior preparation at all to illustrate several algorithms and data structures
regularly taught in computer science classes.

The rest of the paper is organized as follows. We start by introducing some basic concepts
of algorithm simulation in Section 2. In Section 3 we describe the MatrixPro tool that we
have built to test our ideas in practice. Finally, Section 4 concludes the discussion and reports
some preliminary evaluation results and our future development ideas.

2 Algorithm Simulation

In algorithm simulation, the user manipulates graphical objects according to the modifications
allowed for the underlying structure (like an array or a binary tree) in question and creates
a sequence of simulation steps. These steps include basic variable assignments, reference
manipulation, and operation invocations such as insertions and deletions.

In automatic algorithm animation, the user may watch the display in which the changes
in each data structure representation are based on the execution of a predefined algorithm.
Thus, it is the algorithm that modifies the data structure in similar steps as above, and the
visualizations representing the structure are generated automatically. In Matrix framework,
both of these methods to create animation sequences are supported and the system allows
them to be combined seamlessly.

From the user point of view, algorithm simulation allows operations on a number of visual
concepts. These include representations for arrays, linked lists, binary trees, common trees,
and graphs. A data structure, such as a heap, can be visualized using several visual concepts
like the binary tree or the array representation. Each visual concept may have several layouts,
which control its visual appearance in detail. Moreover, the basic visual concepts can be nested
to arbitrary complexity in order to generate more complex structures like adjacency lists or
B-trees. The first one can be seen as a composite of an array and a number of lists, and the
second one as a composite of a tree that has arrays in its nodes.

One of the key issues in algorithm simulation is that the user works on the conceptual
level instead of the code level. The simulation environment automatically creates conceptual
displays for data structures and allows the user to view and interact with the structures on
different abstraction levels. Moreover, the actual underlying data structures are completely
separated from their visual representations, and therefore one data structure can have different
visual appearances. For example, a heap can be visualized either as an array or a binary tree,
but the user can still invoke heap operations using both representations, even simultaneously.

In order to aid students to understand better the hierarchy of different concepts, we have
introduced two separate groups of structures, Fundamental Data Types (FDT) and Concep-
tual Data Types (CDT). FDT structures behave like skeletons of data structures without any
semantic information on the data stored in them (e.g., lists, trees, and graphs). The struc-



28 Third Program Visualization Workshop

ture is changed by performing primitive operations such as renaming keys or by reference
manipulation. CDT structures are implementations for abstract data types, and they typi-
cally retain more constraints and are changed only by operation invocations that change the
structure in terms of predefined rules. For example, Binary Search Tree (BST) is a structure
that maintains the specific order of the keys stored in it.

An example of an algorithm simulation operation is represented in Figure 1. The example
shows a simple operation of inserting one key into a binary search tree. In the operation, the
user drags the key M from the Table of Keys and drops it on the BST (see Figure 1a). The
system automatically calls the insert-routine of the underlying implementation of the BST,
inserts the key to its correct position, and updates the visualization (see Figure 1b). The
result is a valid binary search tree and its representation on the screen.

9> b @@

ST

wo mEEE

i Einary Search Tree

Figure 1: Algorithm simulation example. (a) The user drags the key M from the Table of
Keys and drops it on the binary search tree. (b) The key is inserted into the binary search
tree.

3 System

MatrixPro is a tool for instructors to create algorithm animations in terms of algorithm
simulation. The animations can be prepared prior to the lecture or on-the-fly during the
lecture in order to demonstrate different algorithms and data structures at hand. The tool
allows the instructor to ask, for example, what-if type of questions in a lecture situation, and
thus make the lecture more interactive. Moreover, there is an option to introduce exercises
for students (Korhonen et al., 2003). The details of these, however, are left out of the scope
of this paper.

3.1 User Interface Objects

The main view of the program consists of a menubar, toolbar, and the area of the visualizations
as depicted in Figure 2.

The menubar and the toolbar share the main functionality incorporated into the
GUI. The menubar has the traditional File, Edit, and Options menus together with the special
purpose Animator menu. There are also two other menus, Structures and Content menus, that
are used to construct and insert library data structures on the screen, and to solve algorithm
simulation exercises, respectively. The toolbar is an essential user interface component which



Third Program Visualization Workshop 29

7 - PVWdemo -MatrixProvil
Structures Options Animator Content

Wil

Step ho/10 Go\

Animation speed

— e
Set begin LF\
Set end @ Red-Black Tree

Insert break

Remove break

 Disioin steps (begin) <))
Join steps (begin) |
Clad & E-“«H'%l o g {slelelsleP
ok Wil S

i Bode labeling

penane
Delete

New representation

Qpen iy

et edge

Figure 2: The MatrixPro main window. The user is currently dragging the key F to the
Red-Black Tree.

enables users to handle the created animations. Through the toolbar the user can modify
the animation easily by adjusting the animation speed, renaming representations, adding
and removing breaks in an animation sequence, or changing the granularity of the animation
sequence (join/disjoin steps). In addition, the toolbar contains functions for undoing and
redoing operations as well as saving and opening animations.

Both — the toolbar and the menubar — contain the operational interface of the system called
the animator. All built-in structures are implemented in a way that each update operation,
such as a method invocation that changes the structure, is stored step by step in an additional
queue and can be revoked later on. This technique allows the animator to rewind the queue
of steps and replay the sequence. Naturally, the steps can also be invoked and revoked one at
a time.

The area of visualizations contains the visual entities that the user can interact with
in terms of algorithm simulation. Each visual entity is composed of at most four different
types of interactive components. A hierarchy refers to a set of nodes connected with binary
relations, and a node can hold a key. A key can be a primitive or some more complex structure.
If the key is a primitive, it has no internal structure that could be examined further. If the
key is some more complex structure, it is treated recursively as a hierarchy.

All these four entities can be moved around the display. The simulation consists of drag and
drop operations which can be carried out by picking up the source entity and moving it onto
the target entity. However, only the end point of a reference (binary relation) moves. Each
single operation performs the proper action for the corresponding underlying data structure
the entity is representing. An action is proper if the underlying data structure object accepts
the change (e.g., change of a key value in a node or change of a reference target).

A collection of hierarchies can be combined into a single window. Within a window it
is possible to move entities from one hierarchy to another as described above. By using the
GUI clipboard functionality, entities can also be moved between windows. In addition, the
GUI provides functionality for manipulating hierarchies such as opening a (sub)hierarchy in
other window, disposing of a hierarchy, minimizing or hiding an entity or some part of it,
(re)naming or resizing an entity, changing the orientation of a hierarchy (flip, rotate), and
changing the representation (concept or layout) for a hierarchy.



30 Third Program Visualization Workshop

3.2 Features

On-the-fly usage. One of the most important features is the ability to use the system on-
the-fly basis. MatrixPro offers an easy way to create algorithm animations by either applying
the automatic animation of CDT structures or by simulating an algorithm by hand. All
the ready-made CDT structures can be animated on-the-fly by invoking operations on them.
Moreover, the user can freely modify the data structures also as an FDT by making primitive
changes.

The system aids the algorithm simulation process by making it easy to invoke operations
for structures also from the toolbar. By implementing a simple interface any method of the
underlying structure can have a corresponding interface functionality (e.g., push button) that
appears both in the toolbar and in the pop-up menu of the structure. For example, for AVL
trees the automatic balancing after insertion can be turned off and the rotations simulated
by push buttons when appropriate during the simulation process.

In addition, the nodes in a structure can be automatically labelled, i.e., a unique number
appears beside each node. With this feature turned on, one can explicitly refer to a node
while explaining or asking something. This is useful especially in a lecture situation as the
instructor can ask questions concerning the view.

Customized animations. The system supports customization of animation in two ways.
First, the user can build animations with custom input data sets by simply dragging elements
from one structure, e.g. an array, to another structure. Even the whole array can be inserted
into another structure, in which case the items are inserted in consecutive order to the target,
if it supports the insertion operation. Second, the system allows controlling the granularity of
the visualized execution history, i.e., how large steps are shown when browsing the animation
sequence. For example, primitive FDT modifications usually correspond to a couple of micro
steps that form a single animator step. CDT operations, however, may consist of many
animator steps. Thus, a number of animator steps can be combined to a macro step that is
performed with a single GUI operation. In general, one animator step can have any number
of nested steps.

Storing and Retrieving Animations. Although the automatically created animations
may serve as visualizations to illustrate an algorithm without any modifications, some in-
structors certainly want to customize and save examples for later use. The underlying data
structures can be saved and loaded as serialized Java objects. Thus, the corresponding anima-
tions can be recreated from this file format. Moreover, the animations can also be exported
in Scalable Vector Graphics (SVG) format. The generated SVG animations also include a
control panel that enables to move the animation backward and forward in a similar way as
in MatrixPro itself.

In some cases teachers need to prepare simple figures of data structure, e.g., to illustrate
textual material. Of course, general purpose drawing tools and formats can be applied, but
they lack the ability to automate the process of creating data structure representations by
directly executing the corresponding algorithms that produce the result. For example, the
TrXdrawmacros can be considered to be such a format that the user or a tool can produce.
However, creating a complex conceptual visualization (for example, a red-black tree with
dozens of nodes and edges or even a directed graph) is a very time consuming process without
a tool that can be automated (i.e., programmed) to produce valid displays. With MatrixPro
this process can be easily automated and the produced visualizations can be exported directly
in TEXdraw format to be included in K TEXdocuments.

Finally, we note that data structures can also be loaded from and saved into ASCII files
which is practical, for example, for graphs, because the adjacency list representation is easy
to write using any text editor. However, in this case, only the FDT information is stored.

Figure 3 summarizes the working process when preparing examples.

Customizable user-interface. The user interface can be customized to fit the needs of



Third Program Visualization Workshop 31

Algorithm @

manipulates through
GUI

modifies

Load Algorithm Animation

Export
Data Structure Visualization Picture Format

Algorithm Simulation

Figure 3: The process of creating algorithm animations in terms of algorithm simulation.

various users as the initial set of toolbar objects can easily be modified.

In addition, by modifying the configuration file, the contents of the menubar and pop-up
menu can be changed. For example, the default font, font size, and background color can be
set. Moreover, the default representation (layout) for each data structure can be changed.

Library. MatrixPro includes a library of data structures, which the user can operate on.

4 Conclusions

Algorithm animation has been an active research topic since the early 1980’s and a multitude
of visualization systems has been developed during this time. However, there has been no
breakthrough in the field so that visualization systems would have become standard tools for
instructors. One of the key reasons for this has been that creating animations is too laborious.
Simply, installing the systems, learning to use them, and finally preparing examples take much
more time than, for example, simple drawing on a whiteboard.

In this paper, we have introduced a system, MatrixPro, which overcomes the preparation
barrier by applying algorithm simulation and a simple user interface. The power of algorithm
simulation is based on the following issues. First, data structures are presented and manip-
ulated on a conceptual level, which gives the teacher an opportunity to concentrate on the
key concepts and principles of the algorithm. No coding is needed to create dynamic exam-
ples of algorithms. In addition, code level details which complicate student’s learning process
are totally suppressed. All this supports students’ learning process and helps them to build
viable mental models about the topics at hand. Moreover, the classification of structures to
fundamental data types, conceptual data types and abstract data types helps them to better
understand the hierarchies among different structures. Actually, most text books do not sup-
port this since they classify algorithms solely on the application point of view, i.e., to basic
structures, sorting, searching and graph algorithms.

Second, algorithm simulation is a far more powerful interaction method than that allowed
by simple drawing tools. In algorithm simulation, the system interprets the simulation oper-
ations in the appropriate context. One can perform either simple low level operations such
as assigning a new key value to a node or changing a reference, or higher level operations
on abstract data types. Because no coding is required, it is straightforward to demonstrate
on-the-fly what happens for a structure when operations are performed on it. This allows
easy exploration of the general behavior of the algorithm with different sets of input values.
Moreover, the teacher (or a student) can easily ask what-if type questions and get an immedi-
ate response from the system. Finally, algorithm simulation allows creation of exercises with
automatic feedback. We have prepared an extensive set of such exercises in a system called
TRAKLA?2 (Korhonen et al., 2003) and these exercises are also available in MatrixPro.

Because generation of examples remains a natural task for teachers, MatrixPro supports
tuning the presentation output and dynamics in many ways. The resulting ready animations
or figures can be stored in formats which apply well to publishing them on papers or web
pages. This is an important practical point of view, and neglecting it would diminish the



32 Third Program Visualization Workshop

advantages of using any visualization system considerably.

Our own experience from the system has been very positive. For example, demonstrating
complicated dictionaries such as red-black trees or B-trees, has previously been very clumsy
using drawing tools. With MatrixPro it is easy to show the basic principles and describe the
general behavior of a data structure in a very obvious way. Based on these experiences we
believe the approach demonstrated in the MatrixPro tool is the direction that finally breaks
the barrier of using algorithm visualization tools widely.

However, there are still many possibilities for improvement. First, although we already
cover the most important dictionaries, we need to widen the current selection of priority
queues, sorting methods and graph algorithms as well as other application fields. Second,
some sort of history view showing several steps simultaneously is needed to make it easier
to visually compare the states of the structure. Third, in many cases, especially with graph
algorithms, it is important to allow free positioning mode for the user to create visually
appealing examples.

Finally, we note that an obvious barrier remains: it is hard or impossible to transfer
pictures or animations from one visualization system to another. People prefer to use different
systems and these should not stay isolated from each other. Thus, we should be able to
continue processing of an existing animation in a system that better supports the features
we require. However, this is an issue that should be discussed on a wider forum among the
developers of the visualization systems.

References

Christopher M. Boroni, Torlief J. Eneboe, Frances W. Goosey, Jason A. Ross, and Rockford J.
Ross. Dancing with Dynalab. In 27th SIGCSE Technical Symposium on Computer Science
Education, pages 135-139. ACM, 1996.

Marc H. Brown. Algorithm Animation. MIT Press, Cambridge, Massachussets, 1988.

Steven R. Hansen, N. Hari Narayanan, and Dan Schrimpsher. Helping learners visualize and
comprehend algorithms. Interactive Multimedia Electronic Journal of Computer-Enhanced
Learning, 2(1), May 2000.

Ted Hung and Susan H. Rodger. Increasing visualization and interaction in the automata
theory course. In The proceedings of the 81st ACM SIGCSE Technical Symposium on
Computer Science Education, pages 6-10, Austin, Texas, USA, 2000. ACM.

Ari Korhonen. Visual Algorithm Simulation. Doctoral thesis, Helsinki University of Technol-
ogy, 2003.

Ari Korhonen and Lauri Malmi. Algorithm simulation with automatic assessment. In Pro-
ceedings of The 5th Annual SIGCSE/SIGCUE Conference on Innovation and Technology
in Computer Science Education, pages 160-163, Helsinki, Finland, 2000. ACM.

Ari Korhonen and Lauri Malmi. Matrix — Concept animation and algorithm simulation
system. In Proceedings of the Working Conference on Advanced Visual Interfaces, pages
109-114, Trento, Italy, May 2002. ACM.

Ari Korhonen, Lauri Malmi, Jussi Nikander, and Panu Silvasti. Algorithm simulation — a
novel way to specify algorithm animations. In Mordechai Ben-Ari, editor, Proceedings
of the Second Program Visualization Workshop, pages 28-36, HorstrupCentret, Denmark,
June 2002.

Ari Korhonen, Lauri Malmi, and Panu Silvasti. TRAKLA2: a framework for automatically
assessed visual algorithm simulation exercises. In Proceedings of Kolin Kolistelut / Koli



Third Program Visualization Workshop 33

Calling — Third Annual Baltic Conference on Computer Science Education, pages 48-56,
Joensuu, Finland, 2003.

Ari Korhonen, Jussi Nikander, Riku Saikkonen, and Petri Tenhunen. Matrix — algorithm
simulation and animation tool. http://www.cs.hut.fi/Research/Matrix/, Nov 2001.

Guido Ro8ling. The ANIMAL algorithm animation tool. In Proceedings of the 5th Annual
SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science Educa-
tion, ITiCSE’00, pages 3740, Helsinki, Finland, 2000. ACM.

Guido Roflling and Bernd Freisleben. ANIMAL: A system for supporting multiple roles in
algorithm animation. Journal of Visual Languages and Computing, 13(3):341-354, 2002.

John Stasko, Albert Badre, and Clayton Lewis. Do algorithm animations assist learning? An
empirical study and analysis. In Proceedings of the INTERCHI’98 Conference on Human
Factors on Computing Systems, pages 61-66, Amsterdam, Netherlands, 1993. ACM.

John T. Stasko. Using direct manipulation to build algorithm animations by demonstration.
In Proceedings of Conference on Human Factors and Computing Systems, pages 307-314,
New Orleans, Louisiana, USA, 1991. ACM, New York.

Linda Stern, Harald Sgndergaard, and Lee Naish. A strategy for managing content complexity
in algorithm animation. In Proceedings of the 4th annual SIGCSE/SIGCUE on Innovation
and technology in computer science education, ITiCSE’99, pages 127-130, Kracow, Poland,
1999. ACM Press. ISBN 1-58113-087-2.



