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Abstract
In this work, a novel three-dimensional superposition algorithm for photon dose
calculation is presented. The dose calculation is performed as a superposition of
pencil beams, which are modified based on tissue electron densities. The pencil
beams have been derived from Monte Carlo simulations, and are separated into
lateral and depth-directed components. The lateral component is modeled
using exponential functions, which allows accurate modeling of lateral scatter
in heterogeneous tissues. The depth-directed component represents the total
energy deposited on each plane, which is spread out using the lateral scatter
functions. Finally, convolution in the depth direction is applied to account for
tissue interface effects. The method can be used with the previously introduced
multiple-source model for clinical settings. The method was compared against
Monte Carlo simulations in several phantoms including lung- and bone-type
heterogeneities. Comparisons were made for several field sizes for 6 and
18 MV energies. The deviations were generally within (2%, 2 mm) of the field
central axis dmax. Significantly larger deviations (up to 8%) were found only
for the smallest field in the lung slab phantom for 18 MV. The presented method
was found to be accurate in a wide range of conditions making it suitable for
clinical planning purposes.

1. Introduction

Modeling the dose deposition of a therapeutic photon beam in a patient geometry is an
interesting problem, and numerous algorithms have been proposed for this purpose. Monte
Carlo methods have become available for clinical treatment planning due to improvements in
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computation power, transport algorithms and variance reduction techniques (Neuenschwander
et al 1995, Ma et al 1999, Kawrakow 2000, Kawrakow and Fippel 2000). Monte Carlo
methods can be very accurate especially in complex treatment geometries and in the presence
of tissue heterogeneities, but can still be too slow for routine clinical use, especially if high
statistical accuracy is required. Another accurate approach is to solve the coupled photon
and electron transport equations directly in the patient geometry using the finite-element
multigroup discrete ordinates method (Gifford et al 2006, Wareing et al 2007). This method,
however, is presently not available for clinical use.

Other modeling techniques rely on more macroscopic characterizations of therapeutic
radiation beams via the use of radiation kernels (convolution/superposition methods).
Typically, the kernel superposition methods are based either on pencil beams or on point-
spread functions. In pencil-beam superposition, the kernel represents the dose contribution
of a very narrow beam, and the kernels are modulated by the incoming photon fluence to
produce the final dose distribution (Boyer and Mok 1986, Storchi et al 1999, Ulmer et al
2005). In point-spread function superposition, the kernel consists of the dose deposited by
photons whose first interaction is forced to a single point in the phantom. In order to obtain
the dose distribution, the point-spread functions are modulated by the total energy released
per unit mass (TERMA) distribution (Mackie et al 1985, Sharpe and Battista 1993, Miften
et al 2000).

In this work, we present a 3D pencil-beam kernel-based superposition algorithm, which
is a continuation of earlier work by our research group (Ulmer et al 2005). Compared to the
prior work, exponential functions are now used instead of Gaussian functions to model lateral
phantom scatter. This allows for more accurate modeling of the scatter near borders of lateral
heterogeneities. Furthermore, the modeling of electron transport has been revised. Instead
of the earlier method, which was based on the modeling of local electron disequilibrium
with forward and backward electron kernels, build-up is now modeled with a conceptually
simpler convolution kernel model. The resulting algorithm is efficient, and yet produces
dose distributions that are comparable to point-spread-function-based algorithms, such as the
collapsed cone convolution (CCC) model—see section 3 and the results presented by Arnfield
et al (2000). The method has been commercially released as the Anisotropic Analytical
Algorithm (AAA), which has been integrated into the EclipseTM Integrated Treatment Planning
System (Varian Medical Systems Inc., Palo Alto, CA).

This paper describes the methods and principles used in the design of the algorithm, and
gives a detailed and complete description of the theory and assumptions therein. Especially the
heterogeneity correction method, and the build-up and build-down corrections are discussed
in detail. Earlier articles of the current algorithm have focused on the validation results in
clinical settings (Fogliata et al 2006, Van Esch et al 2006) and on the source model and its
adaptation to an individual treatment unit (Tillikainen et al 2007). In this work, the dose
calculations using the presented method are compared to Monte Carlo simulations in phantom
geometries that are representative of realistic situations. Previously, the comparisons have
been performed mostly against experimental measurements, which can sometimes be difficult
to conduct and interpret—especially in heterogeneous phantoms.

2. Methods and materials

First, we discuss the methods and principles used when designing the algorithm. Then we
derive the method of reconstructing pencil beams from lateral and depth-directed components.
Finally, we discuss the necessity of a short-range energy transfer to account for build-up and
build-down effects near the boundaries of tissue heterogeneities.
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2.1. Source model

Accurate characterization of therapeutic photon beams requires the modeling of different
radiation sources in the linear accelerator. Here we use a multiple-source model developed by
the authors (Tillikainen et al 2007). The source model for the open beam consists of a primary
photon source for bremsstrahlung radiation from the target, an extra-focal distributed source
accounting for photons scattered in the accelerator head and an electron contamination source.
The method presented in this work is used to calculate the dose distribution resulting from
all of the components mentioned above. However, the pencil-beam model is best adapted
to a situation where all particles originate from a single point-like source, and hence the
presentation focuses on the primary photon component.

The spectrum and energy fluence of the primary photon radiation vary across the beam,
mainly due to the initial angular distribution of the bremsstrahlung photons and the uneven
attenuation of photons in the flattening filter. The spatially varying primary energy fluence is
denoted by �prim(r), where r is a point on the reference plane. Similarly, the energy fluences
from the extra-focal photon and electron contamination sources are denoted by �ef(r) and
�el(r), respectively. The model presented here is able to account for spectral variations across
the broad beam. We have found that it is crucial for the accurate modeling of the beam shape
and penumbra for various field sizes.

2.2. Diverging coordinate system

The use of a diverging coordinate system is beneficial for manipulating the pencil beams when
the radiation can be assumed to originate from a single point, the target, which is chosen
as the origin 0. We have chosen an orthonormal base such that the positive z-axis passes
through the isocenter (0, 0, dSAD), where dSAD is the distance from the target to the isocenter,
and x- and y-axes are aligned with the respective collimator axes. Then a diverging mapping
M: R

3
+ �→ R

3
+ is defined in the following way:

x �→
(

dSAD

xz

xx,
dSAD

xz

xy,

√
x2

x + x2
y + x2

z

)
:= p, (1)

where R
3
+ is the half-space of R

3 with z > 0, x = (xx, xy, xz) is a vector in the orthogonal
coordinate system and p = (px, py, pz) is a vector in the diverging coordinate system. It
is evident that M maps point on lines that pass through 0 to lines of constants px and py .
Similarly, spherical shells are mapped to constant pz. While this is not the only possible
choice for a diverging mapping, the use of spherical shells makes it easier to avoid bias caused
by oblique kernels, and the definitions of px and py have an intuitive meaning as projections
onto the isocenter plane. In the computer implementation of the method, the discrete points in
the diverging coordinate system are chosen such that the distance between neighboring points
in the grid is equal to �, which is a run-time parameter of the algorithm. The incoming energy
fluence �prim(r) is also discretized into cones, whose intersection with the isocenter plane is
a square with side length �, and the center of the square aligns with the grid points. Thus, it
is assumed that the radiation intensity is constant within the area of each cone or beamlet.

2.3. Monte-Carlo-derived pencil-beam kernels

We denote the pencil-beam kernel function produced by a narrow beam of monoenergetic
photons of energy E, impinging on a semi-infinite perpendicular water phantom, as hE(z, r).
Here z and r represent the distance from the surface and the orthogonal distance from the central
axis, respectively. The kernels hE(z, r) have been obtained from Monte Carlo simulations
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using the DOSRZnrc user code of EGSnrc (Kawrakow 2000). Each monoenergetic kernel hE

has been simulated using ten million particle histories, which results in a statistical standard
uncertainty of about 0.3% in the peak dose region for all energies. However, the exact statistical
standard uncertainty varies slightly for different energies. In order to perform a superposition
of the pencil-beam kernels, they must be re-sampled into the diverging coordinate system via
the mapping M. It is also necessary to compensate for the oblique incidence of the primary
beam with the patient surface.

Given a primary ray β, we first create a poly-energetic pencil-beam kernel hβ,cyl as a
superposition of mono-energetic kernels hE weighted by the spectrum Sβ(E) of beamlet β:

hβ,cyl(z, r) =
∫

hE(z, r)Sβ(E) dE∫
Sβ(E) dE

, (2)

where the subscript ‘cyl’ denotes the cylindrical coordinate system in which the kernel is
defined. It would be possible to directly map hβ,cyl(z, r) into the diverging coordinate system
using M, and determine the position within the pencil beam with an offset from the origin, but
this would introduce bias since area and distance are not invariant on translation in M. The
correct way is to first align the pencil beam hβ,cyl with the ray β using an orthogonal rotation
and translation Rβ and then use the inverse mapping M−1 to find the corresponding position
in the orthogonal coordinate system. Hence, the pencil beam for beamlet β in the diverging
coordinate system is defined as

hβ(p) = hβ,cyl
(
R−1

β (M−1(p))
)|det(J (M))|, (3)

where J is the Jacobian of mapping M evaluated at p; the absolute value of the determinant
accounts for non-uniform volume mapping of the M operator. M−1(p) maps the point p from
a diverging to a cylindrical coordinate system and R−1

β rotates and translates the point back
such that the beamlet is aligned along the field central axis (CAX). It should be noted that the
resulting kernel hβ(p) does not have cylindrical symmetry in the diverging coordinates, and
hence is subscripted with three coordinates p = (px, py, pz).

2.4. Exponential modeling of pencil beams

The method described here assumes that the pencil beam can be separated into depth-directed
and lateral components. The depth-directed component accounts for the total energy deposited
by the pencil beam for each layer pz in the calculation grid (Ulmer et al 2005):

Iβ(pz) = �β

∫ ∫
hβ(t, υ, pz) dt dυ, (4)

where �β is the primary energy fluence for the beamlet β.
Lateral dose deposition is modeled as a sum of N radial exponential functions. Due to lack

of cylindrical symmetry, the modeling is slightly different for each angle θ around the central
axis of the beamlet β. For each depth pz and angle θ , we denote with fβ(θ, λ, pz) the fraction
of energy deposited onto an infinitesimally small angular sector at distance λ from the beamlet
central axis. The division into angular sectors is necessary, since the heterogeneity correction
in the lateral direction is performed by ray tracing along the discrete rays that represent the
collapsed sectors, as we shall later present. fβ is calculated in the following way from the
Monte-Carlo-derived data:

fβ(θ, λ, pz) = λhβ(px + λ cos θ, py + λ sin θ, pz)/Iβ(pz), (5)

where (px, py, pz) are the coordinates of a point p within the beamlet β. The division with
Iβ(pz) is required to normalize the integral of fβ to unity over each calculation plane.
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Given a set of N attenuation coefficients µi , the exponential representation of the lateral
pencil-beam component is of the form

kβ(θ, λ, pz) =
N∑

i=1

ci(θ, pz)
1

µi

e−µiλ, (6)

where the attenuation coefficients µi are the same for all planes to allow efficient computer
implementation. The weight parameters ci(θ, pz) are chosen such that the error between fβ

and kβ is minimized, when they are viewed as functions of λ. The parameter N offers a
speed-quality parameter in the computer implementation of this method: the value N = 6 has
been used throughout this work. The µi parameters have been chosen such that the effective
ranges 1/µi vary from 1 mm to 200 mm with equal logarithmic intervals.

Accurate fitting between Monte-Carlo-simulated data and the parameterized model is
important to be able to create a model that can be used over a wide range of field sizes and
beam modulation techniques. We have used a linear least squares fitting of the following
integral functions:

Fβ(θ, λ, pz) =
∫ λ

t=0
fβ(θ, t, pz) dt, (7)

Kβ(θ, λ, pz) =
∫ λ

t=0
kβ(θ, t, pz) dt. (8)

Thus, the fitting is essentially performed by first multiplying the kernels with the radius λ

in (5) and then performing the integral transform in (7) and (8). To see why these steps
are important, it should be noted that the component values with larger radius are deposited
over larger areas, so multiplication by radius accounts for this increased weight. The integral
transform, on the other hand, assures that the errors in the linear fitting procedure are more
evenly distributed, since it effectively penalizes for consecutive errors of the same sign. The
Fβ function can also be viewed as a circular phantom scatter factor for a beam with radius λ,
if the lack of exact cylindrical symmetry is ignored. This provides intuitive support on the
fact that the accurate modeling of Fβ is important to account for the small-to-large field size
characteristics of the model.

2.5. Superposition of pencil beams

In a homogeneous water-equivalent phantom, the energy Eβ(p) deposited from a pencil-beam
beamlet β into a grid point p is the product of the energy deposited on the calculation plane
(Iβ) and the corresponding lateral scatter kernel (kβ). A factor of 1/λ is also included to
counter-effect the multiplication with λ performed during the fitting process:

Eβ(p) = Iβ(pz)
1

λ
kβ(θ, λ, pz). (9)

To account for non-water-equivalent patient tissue, we use the approximation where each
spatial dimension of the scatter process is scaled locally by the inverse relative electron density
1/ρw defined as

ρw(p) := ρelec(p)
/
ρelec

water, (10)

where ρelec is the local electron density at point p and ρelec
water is the electron density of water.

This is a common approach when accounting for the tissue heterogeneities in kernel-based
models (Ahnesjö and Aspradakis 1999), and has been reported to be more accurate than the
scaling based on mass density (Seco and Evans 2006). If we assume that this approximation
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holds, one still has to take into account the fact that the scattered particles follow different paths
through the medium. In kernel-superposition-based methods, this is often done by combining
all the possible paths into fewer collapsed paths and using the assumption that the effects of
heterogeneity can be corrected along these paths. In the method presented here, this is done by
assuming that the I function and origin-centered rays of the k functions can be independently
scaled. This corresponds to paths, where particles are first assumed to arrive at the destination
spherical shell pz via the centerline of the beamlet and then travel to the destination voxel
along the spherical shell. While this is clearly an approximation, it should be noted that it
only affects the heterogeneity correction. In water, this procedure essentially corresponds to a
lookup from the Monte-Carlo-derived kernel, which produces no additional errors (assuming
that the errors introduced in the fitting of the exponential functions to Monte-Carlo-derived
data are negligible).

To scale the function I, it is thus necessary to account for the effective (radiological)
distance between the pencil-beam entry point and the calculation plane computed as
deff(X) = ∫

X
ρw(p) dp for an arbitrary curve X. When the I function is expressed in terms of

true depth pz instead of effective depth p′
z, it is also necessary to scale by the local electron

density due to the change of variables. Thus, the heterogeneity-corrected depth-directed
component I ′

β is calculated as

I ′
β(pz) = Iβ(p′

z)ρw(pβ), (11)

where pβ is the point on the pencil-beam central axis at depth pz and p′
z is the effective depth

given by deff(Pβ), where Pβ is the path from the pencil-beam entry point to pβ .
The scaling of the lateral scatter kernel is done in a similar fashion, calculating the

radiological path length in a radial manner from the center of the pencil beam. Specifically
for point p, we assume that Cβ(θ, pz) is the curve following {M−1(tpβ + (1 − t)p)}, where
0 � t � 1. Then the heterogeneity-corrected lateral kernel k′

β(θ, λ, pz) is given by

k′
β(θ, λ, pz) = kβ

(
θ,

p′
z

pz

λ′, p′
z

)
ρw(p), (12)

where λ′ is the effective radius computed as λ′ = deff(Cβ(θ, pz)). It is necessary to use the
lateral scatter kernel from the effective depth p′

z, which is why the effective radius is also
scaled by the ratio p′

z/pz that corrects for the diverging coordinate system. An alternative
strategy that may lead to more efficient computer implementation is to perform this scaling to
the fβ function defined in (5) before the exponential fitting is done, which allows performing
the actual deposition using incremental methods.

The heterogeneity-corrected energy distribution from a single beamlet β is then calculated
as

Eβ(p) = I ′
β(pz)

1

λ
k′
β(θ, λ, pz). (13)

In computer implementation, it is necessary to choose a discrete number of angular sectors over
which the superposition is performed. We have used �θ = π/8 or �θ = π/4 corresponding
to 16 and 8 discrete superposition directions depending on the effective range 1/µi in question.
The total energy deposited into a grid point p is then simply an integral of the contributions of
the individual beamlets over the broad beam area:

Etot(p) =
∫ ∫

β ′
Eβ ′(p) dβ ′. (14)
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2.6. Build-up and build-down corrections

The separation of the heterogeneity correction into two components, the depth-directed
component in (11) and lateral scatter component in (12), is clearly an approximation, but it has
the desirable attribute that the pencil-beam kernel is scaled in all dimensions by the reciprocal
of ρw when calculating the dose to a uniform phantom with non-water-equivalent electron
density (ρw �= 1). It also produces results that are equivalent to Monte Carlo simulations
after a sufficient distance from the material interface in slab-like phantoms. However, near the
interfaces, the method as presented above would fail to reproduce the gradual build-up and
build-down effects; instead, the dose would jump abruptly to a new equilibrium level. This is
caused by the fact that the scattered particles originating before the interface are not correctly
taken into account by this method.

The size of the build-up or build-down transition is determined by the mean range of the
scattered particles. Also, the dominant scatter component in a therapeutic radiation beam is
forward directed. Thus to reproduce these effects using a pencil-beam-based model, it is not
sufficient to scale the pencil beam in its entirety by the effective distance, but a method to
account for the forward-directed energy shift is needed.

The technique chosen in this work is to employ a forward build-up convolution kernel to
the energy deposition. The build-up kernel kb is a dual exponential function of the form

kb(d) =
⎧⎨
⎩

∑2

i=1
gi

1

νi

e−νid , when d � 0

0 otherwise,
(15)

where the parameters gi and νi determine the shape of the kernel. Setting
∑

gi = 1 guarantees
the preservation of energy in the convolution process. The free parameters g1, ν1 and ν2 are
chosen such that the build-up effect between vacuum and water is preserved, as explained later
in this section.

The convolution is done with the energy density distribution in terms of the effective
distance in the following way:

Eb(p) =
∫ pz

t=0
Etot(px, py, t)kb(deff)ρw(px, py, t) dt, (16)

where deff is the (signed) effective distance from (px, py, pz) to (px, py, t), and the
multiplication with ρw is due to the change of variables from the effective depth to true
depth. This correction effectively shifts energy deeper, so the original pencil beams would
no longer be accurately reproduced. For example, the original build-up at the surface of the
pencil beam would be further stretched. Hence, it is necessary to pre-compensate for it either
in the original Monte Carlo kernel in (2) or in the I function in (4). For simplicity, we have
chosen the latter approach. The operation to be performed on the I function is the inverse
convolution (deconvolution) with the kernel kb. Otherwise, the calculation of scatter is done
as explained in the previous sections, except that the pre-compensated function Ipre is used
instead of I in (11). Since deconvolution is an inherently unstable operation, we have used a
linear least squares method augmented with the Tikhonov regularization (Tikhonov et al 1995)
to derive the pre-compensated function Ipre. The regularization term is chosen to minimize
the second-order derivative of Ipre with respect to z. The pre-compensated I function is then
calculated as

Ipre = arg min
I ′∈H

(
‖I ′ ⊗ kb − I‖2 + w

∥∥∥∥ d2

dz2
I ′(z)

∥∥∥∥
2
)

, (17)

where ⊗ is the convolution operator, w is a weight factor for the regularization and H is the
space of continuous, doubly differentiable functions.
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The shape of the kernel kb should be chosen such that it accounts for the average forward-
directed scatter. Further insight into this problem can be gained by considering that the initial
build-up in the Monte Carlo pencil beams is caused by a similar interface effect but between
vacuum and water. Thus, we choose parameters g1, ν1 and ν2 such that Ipre does not have any
build-up, i.e. is monotonically decreasing. When kb is applied to the energy distribution, the
initial build-up will be reproduced in a manner similar to any subsequent build-up or build-
down effects at the heterogeneity interfaces. Optimization methods are used for deriving the
free parameters of the kernel.

2.7. Calculation of the energy contribution from extra-focal photons

The energy deposited by the photons originating from the distributed extra-focal photon source
is calculated in a way similar to the primary photons. The energy deposited into a grid point p

from a pencil-beam beamlet β is determined via (9). However, the depth-directed component
Iβ(pz) for the primary photons is replaced with a corresponding component Ief(pz) for the
extra-focal photons calculated via (4). The poly-energetic pencil-beam kernel needed in (4) is
calculated via (2), where Sβ(E) has been replaced by the laterally invariant energy spectrum
for the extra-focal photons Sef(E). Also, the primary energy fluence �β in (4) needs to be
replaced with the extra-focal energy fluence �β,ef(pz), which depends on the depth coordinate
pz. The details on the computation of �β,ef(pz) have been described in Tillikainen et al
(2007). The change to the divergent coordinate system in (3) is calculated only for the central
axis beamlet, and is then applied for all beamlets within the beam area. This process results
in Ief(pz), which does not depend on the lateral position (px, py) within the beam. The fact
that the cylindrical geometry is not exactly valid in the diverging coordinates is ignored for
the extra-focal source for simplicity.

The scatter kernels kβ(θ, λ, pz) derived for the primary photons are also used for the extra-
focal photons. This is clearly an approximation, since the scatter kernel for the extra-focal
photons is different from the primary photon kernal due to lower mean energy. The current
approach is used in order to avoid a second fitting of exponential functions to the Monte-Carlo-
simulated pencil beams. This approximation does not deteriorate the accuracy significantly,
since the contribution from the extra-focal photons is relatively small. The corrections for
tissue heterogeneities are performed in the same way as for the primary photons. The same
kernel kb(d) is used for the build-up and build-down corrections as for the primary photons.
Effectively, the dose deposition for extra-focal photons is performed along rays that originate
from the target. The effects of the distributed source will be taken into account in the energy
fluence component �β,ef(pz).

2.8. Calculation of the electron contamination energy contribution

The energy deposited by the contaminating electrons is calculated in the following manner,
which is simpler than the approach used for primary and extra-focal photons:

Eβ,el(p) = �el(p)ce(pz), (18)

where �el(p) is the energy fluence of the contaminating electrons and ce(pz) is an empirical
curve defining the total energy deposited at each plane pz in a water-equivalent phantom.
The energy fluence �β,el(p) is calculated as a superposition of two components, both of
which are computed as a convolution of the primary energy fluence �prim(p) and a Gaussian
(Tillikainen et al 2007). The curve ce(pz) is determined from the difference between measured
and calculated depth–dose curves for the largest field size (Tillikainen et al 2007). Hence,
the lateral scatter and the build-up and build-down corrections are ignored for the electron
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contamination. This can be done for two reasons: (1) the low-energy electrons have a short
range in water and (2) the scatter processes are effectively modeled via the energy fluence
term �el(p) using the Gaussian convolutions.

2.9. Conversion from energy density to dose

The method presented in previous sections calculates the energy density for each point in the
patient geometry. The energy distribution is then converted to dose distribution by dividing
the energy density by the relative electron density (ρw). This approach produces a better
match to Monte Carlo simulations, where the material deduction has been turned off (scaled
water approach), than using mass density in the conversion. Hence, the dose to a point r is
calculated as

D(r) = Eb,total(M(r))

ρw(r)|det(J (M))|c, (19)

where Eb,total is the total energy density computed as a sum of the primary photon, extra-focal
photon and electron contamination components, J is the Jacobian of M evaluated at r and
c is a calibration factor, which takes care of the unit conversion from J m−3 to Gy MU−1.
The calibration factor c is determined based on the measured machine calibration value
(Gy MU−1) at a reference geometry and the calculated energy density at the same geometry.

2.10. Test phantoms and beams

To test the developed method, we have calculated dose distributions in the following five
test phantoms: (i) a water phantom, (ii) a water phantom with a 10 cm slab of low-density
material (ρw = 0.3) representing lung, (iii) a water phantom with a 5 cm slab of high-density
material (ρw = 1.85) representing bone, (iv) a water phantom with a 10 cm thick block of
low-density material placed 2 cm off the CAX, (v) a water phantom with a 5 cm thick block of
high-density material placed 2 cm off the CAX. See figures 1(a)–(d) for the dimensions of the
test phantoms excluding the simple water phantom. The phantom image sets and treatment
plans were created with the Eclipse TPS.

For the water phantom (i), we have compared depth–dose curves for field sizes
30×30, 50×50, 100×100 and 200×200 mm2 as well as lateral dose profiles at depths 50, 100
and 200 mm for the 200 × 200 mm2 field. For the phantoms (ii) and (iii), we have compared
depth–dose curves for the same field sizes as for the water phantom. For the phantoms (iv)
and (v), we have analyzed lateral dose profiles for a 200 × 200 mm2 field at two depths from
the phantom surface. Depths of 100 and 160 mm were used for phantom (iv), and 75 and
110 mm for phantom (v). A source-to-phantom distance of 1000 mm was used for all field
sizes and phantoms.

The source model used in the calculations was the multiple-source model developed by
the authors (Tillikainen et al 2007), but since modeling of the primary beam was the main goal
of this study, all sources except the primary source were disabled. The primary photon phase
space was obtained by configuring the Varian Golden Beam data measurements for 6 and
18 MV beams using the optimization procedure described by the authors (Tillikainen
et al 2007). The Varian Golden Beam Data is a measurement data set provided by Varian
Medical Systems Inc. to be used with commissioning and configuration of Varian Clinac
21EX accelerators. After the source model was constructed, the weights of the electron
contamination source and extra-focal source were set to zero, leaving only the primary radiation
component.



3830 L Tillikainen et al

Lung

Water

(a)

ρw = 0.3

ρw = 1.0

ρw = 1.0

15
cm

10
cm

5 
cm Water

Bone

(b)

ρw = 1.0

ρw = 1.0

ρw = 1.85

20
cm

5
cm

5
cm

Lung

Water

(c)

ρw = 0.3

ρw = 1.0

15
cm

10
cm

5
c
m

2 cm

d1 = 10 cm

d2 = 16 cm

Water

Bone

(d)

ρw = 1.0

ρw = 1.0

ρw = 1.85

20
cm

5
cm

5
cm

2 cm

d1 = 7.5 cm

d2 = 11 cm

Figure 1. An illustration of four (out of five) test phantoms used in the study: (a) water phantom
with a 15 cm lung equivalent slab insert, (b) water phantom with a 5 cm bone equivalent slab insert,
(c) water phantom with a 10 cm lung equivalent block insert, 2 cm away from the central axis,
and (d) water phantom with a 5 cm bone equivalent block insert, 2 cm away from the central axis.
The material names are only suggestive, since the algorithm only uses the relative electron density
(ρw) information.

2.11. Reference dose calculations using VMC++

The primary aim of the study was to create an algorithm that produces results comparable
to Monte Carlo simulations. Hence, the developed method was compared against VMC++
(Kawrakow and Fippel 2000), a fast and accurate Monte Carlo code. The VMC++ plans
were run until 0.5% statistical standard uncertainty in the voxels with dose larger than 50%
of dmax was reached. The dose distribution was not smoothed after the calculation. We
used the following parameters for the simulation: grid size = 0.5 cm, ECUT = 0.500 MeV
(electron/positron minimum transport energy) and PCUT = 0.05 MeV (photon minimum
transport energy). The particle sampling for the VMC++ calculation was performed as
described in Tillikainen and Siljamäki (2008) for the primary photon source.

The described 3D pencil-beam superposition algorithm relies on electron densities derived
from CT values, and does not have access to the detailed 3D physical structure (material
composition) of the phantom or patient. We have therefore chosen to perform the VMC++
calculations with material deduction turned off, using the scaled water approach. As the kernels
of the algorithm have also been pre-calculated with Monte Carlo (albeit with the DOSRZnrc
user code of EGSnrc), there is a correlation between the calculations of the presented algorithm
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Figure 2. Calculated ‘AAA’ and MC-simulated ‘VMC’ depth–dose curves and lateral dose profiles
in the water phantom for 6 MV and 18 MV beams. The field size in mm is indicated after letter
‘FS’ in the figure label and the profile depth in mm after symbol ‘D’. (a) Depth–dose curves for
6 MV, (b) profiles for 6 MV, (c) depth–dose curves for 18 MV and (d) profiles for 18 MV.

and VMC++. Because of this, the comparison will primarily point out possible deviations
resulting from the approximations and simplifications made within the presented algorithm.

To investigate the effect of the above-mentioned scaling approximation on the VMC++
calculations, a number of fields setups in the lung and bone slab phantoms were re-calculated
with material deduction turned on and using the dose-to-medium reporting technique. Dose
to medium is expected to correspond better with the true physical dose than dose to water
(Siebers et al 2000, Liu et al 2002). The magnitude of the bias was found to be less than 4%
in the cortical bone (ρw = 1.85) and less than 2% in the lung (ρw = 0.3) for both the 6 and
18 MV photon beams, respectively.

When comparing the presented algorithm to experimental measurements, apart from
possible measurement uncertainties (effective point of measurement, detector noise and
positioning), one also has to bear in mind that in most cases, ionization chamber readings
are converted to dose to water instead of dose to medium, introducing deviations of the same
order of magnitude from the true physical dose as reported above. Another important factor
affecting the uncertainty of the patient dose calculation is the accuracy of the source modeling.
This issue has been studied extensively in the earlier work by the authors (Tillikainen et al
2007). In this work, the same source model was utilized both in the presented algorithm and
in VMC++. Despite these uncertainties, the agreement with experimental values has been
found to be within clinical acceptance in a large set of cases including solid water and cork
phantoms (Fogliata et al 2006, Van Esch et al 2006, Sterpin et al 2007).
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Figure 3. Calculated ‘AAA’ and MC-simulated ‘VMC’ depth–dose curves in the lung slab phantom
for the 6 MV beam. (a) Field size 30 × 30 mm2, (b) 50 × 50 mm2, (c) 100 × 100 mm2 and (d)
200 × 200 mm2.

3. Results

In this section, we compare dose calculations using the presented method with VMC++ Monte
Carlo simulations in the test phantoms described in section 2.10. The dose distributions have
been normalized to 100% at CAX dmax for each field size.

3.1. Water phantom

The depth–dose curves and lateral dose profiles calculated with the presented method and
VMC++ in the water phantom are shown in figures 2(a)–(d) for 6 and 18 MV beams. There is
generally a good agreement between the two calculation methods. For 6 MV, the deviations
are within (0.5%, 2 mm) for each studied field size. For 18 MV, the deviations are within
(0.5%, 2 mm) for the field sizes 50 × 50, . . . , 200 × 200 mm2, and go up to (1%, 2 mm) for
the smallest 30 × 30 mm2 field.

3.2. Lung slab phantom

The comparison of depth–dose curves in the lung slab phantom is presented in figures 3(a)–(d)
for the 6 MV beam and in figures 4(a)–(d) for the 18 MV beam. For 6 MV, the agreement
is best for the 30 × 30 mm2 field, where the deviations are in the order of 1% of the field
CAX dmax. For larger field sizes, the presented method starts to underestimate the dose inside
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Figure 4. Calculated ‘AAA’ and MC-simulated ‘VMC’ depth–dose curves in the lung slab phantom
for the 18 MV beam. (a) Field size 30 × 30 mm2, (b) 50 × 50 mm2, (c) 100 × 100 mm2 and (d)
200 × 200 mm2.

the lung and overestimate the dose in the region after the lung insert. The discrepancies are
largest for the 200 × 200 mm2 field, where they reach about 3% of field CAX dmax within the
lung insert and about 2% after the insert. In the region before the lung insert, the deviations are
small (within about 1%) for all field sizes. For 18 MV, in contrast to 6 MV, the deviations
are largest for the 30 × 30 mm2 field reaching about 8% inside the lung insert. However, for
the larger field sizes, the dose underestimation in the lung becomes significantly smaller, and is
less severe than for the 6 MV beam. For larger field sizes, the presented method overestimates
the dose after the lung insert by about 1%. Again, the dose before the lung slab is well
predicted with the presented method.

3.3. Bone slab phantom

The comparison of depth–dose curves in the bone slab phantom is presented in figures 5(a)–(d)
for the 6 MV beam and in figures 6(a)–(d) for the 18 MV beam. For 6 MV, the presented
method accurately accounts for larger attenuation inside the bone-equivalent material, since
the deviations inside the bone insert are in the order of 1% of field CAX dmax. However,
the interface effects are slightly overestimated for each field size, which results in about 2%
deviations near the boundary of the heterogeneity. In the regions before and after the bone
insert, the deviations are within 1% for each field size. For 18 MV, the deviations are within
about 1% of the field CAX dmax for all field sizes in figures 6(a)–(d).
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Figure 5. Calculated ‘AAA’ and MC-simulated ‘VMC’ depth–dose curves in the bone slab
phantom for the 6 MV beam. (a) Field size 30 × 30 mm2, (b) 50 × 50 mm2, (c) 100 × 100 mm2

and (d) 200 × 200 mm2.

3.4. Lung and bone block phantoms

The comparison of the lateral dose profiles at two different depths in the lung block phantom
are shown in figures 7(a)–(d) for the 6 and 18 MV beams. The presented method accurately
models the lateral material interface for both energies. The largest discrepancies occur for
the profile measured at 160 mm for the 6 MV beam in figure 7(b), where an overestimation
of about 2% is visible in the region below the lung insert. The results are similar for the
bone block phantom shown in figures 8(a)–(d), where the deviations between the methods are
mostly within (2%, 2 mm). The largest deviations occur under the bone insert for the 6 MV
beam in figure 8(b), where the presented method underestimates the dose by about 2%.

4. Discussion

As presented in section 3, there is generally a good agreement between the calculations
utilizing the presented method and Monte Carlo simulations in different kinds of heterogeneous
phantoms. Most of the observed discrepancies were within (2%, 2 mm), where the dose
difference is specified with respect to the field CAX dmax. Considerably larger deviations
were found only in the central axis depth dose of the smallest field size (30 × 30 mm2)

in the lung slab phantom for the 18 MV beam. In that case, discrepancies in the order
of 8% were observed inside the lung insert (ρw = 0.3), and considerable discrepancies
extended over a few-centimeter region in the low-density material. However, discrepancies of
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Figure 6. Calculated ‘AAA’ and MC-simulated ‘VMC’ depth–dose curves in the bone slab
phantom for the 18 MV beam. (a) Field size 30 × 30 mm2, (b) 50 × 50 mm2, (c) 100 × 100 mm2

and (d) 200 × 200 mm2.

comparable magnitude (∼5%) have also been reported for the CCC superposition model in
similar situations (for a 50 × 50 mm2 field instead of the 30 × 30 mm2 field used in this work)
(Arnfield et al 2000). In the case of high beam energy and small field size, there is a severe loss
of electronic equilibrium on the central axis, which is difficult to model with rectilinear kernel
scaling approaches. In reality, the electron and photon scatter does not follow the rectilinear
paths assumed in those models. The electronic disequilibrium on the field central axis in the
low-density material becomes larger as the field size decreases and the beam energy increases.
For small field sizes, there are more electrons traveling away from the corresponding volume
element on the central axis than toward it. This is caused by missing scatter from the material
outside the geometrical field boundaries, where part of the electrons from the central axis is
transported. For the same field size, the electron disequilibrium effect increases as a function
of beam energy, since the corresponding electron range increases as well.

The presented method does not tend to underestimate the re-build-up effect on the
subsequent lung–water interface like other convolution/superposition models, but the effect
is typically overestimated (see e.g. figure 3), especially for larger field sizes. This difference
in the algorithm behavior is most likely due to the build-up kernel correction method used
in the presented method, which is not used in other superposition/convolution algorithms.
The build-up kernel has been designed such that the build-up between vacuum and water
is correctly reproduced. However, the build-up effect between lung and water is probably
smaller than the effect between vacuum and water due to a smaller density difference, which
could explain the observed overestimation in the re-build-up region.
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Figure 7. Calculated ‘AAA’ and MC-simulated ‘VMC’ dose profiles in the lung block phantom
for 6 and 18 MV beams. (a) 6 MV, depth 100 mm; (b) 6 MV, depth 160 mm; (c) 18 MV, depth
100 mm and (d) 18 MV, depth 160 mm.

In the case of the bone-type heterogeneity (ρw = 1.85), the discrepancies between the
presented method and MC simulations are in the order of (2%, 2 mm). For a 6 MV beam,
the presented method overestimates the dose systematically about 1% inside the high-density
material. For 18 MV in the bone slab phantom, the results are similar than for 6 MV, except
that the discrepancies near the border of the heterogeneity are smaller. However, when
compared to true physical doses, the bias (up to 4%) caused by the scaling approach used in
VMC++ calculations should be taken into account. As demonstrated in figures 7 and 8, the
developed method models lateral heterogeneities (both water–lung and water–bone interfaces)
with excellent accuracy. The scaling process applied to the lateral scatter kernels is important
for obtaining good accuracy in these cases.

When compared to previously published experimental verification of the presented method
(Van Esch et al 2006), some agreements and some disagreements were found. In the work
of Van Esch et al (2006), the current method was compared to the ionization chamber and
film measurements in several homogeneous and heterogeneous phantoms. The lateral profile
comparisons in the phantom with the cork insert are in good agreement with the results in
the lung block phantom shown in figure 7. Also the depth–dose comparisons in the lung slab
phantom for 18 MV in figure 4 are consistent with the earlier findings, if the normalization to
the field CAX dmax used in this work is taken into account in the comparison. However, the
corresponding depth–dose comparisons for 6 MV show a significantly better agreement with
the MC simulations in this work than the comparisons to ionization chamber measurements
presented by Van Esch et al (2006). This apparent contradiction can be explained by the fact
that the ionization chamber itself can cause significant dose perturbations (6, . . . , 12%) at the
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Figure 8. Calculated ‘AAA’ and MC-simulated ‘VMC’ dose profiles in the bone block phantom
for 6 and 18 MV beams. (a) 6 MV, depth 75 mm; (b) 6 MV, depth 110 mm; (c) 18 MV, depth
75 mm and (d) 18 MV, depth 110 mm.

point of measurement in the case of electronic disequilibrium (Ding et al 2007). These kinds
of perturbations occur especially for a small field size in low-density media.

If an even better calculation accuracy in heterogeneous geometries is required, a method
based on first principles—rather than macroscopic characterizations—should be applied.
However, these methods have their own challenges when applied to clinical planning, including
the modeling of the phase space, computation time and statistical noise (in the case of Monte
Carlo). The calculation time of the presented method could be further improved in the future
by adopting a multi-resolution approach, i.e. by performing the lateral scatter operation on a
subsampled electron density image for components of a different range (1/µi) and combining
the results at the end. The fitting of the exponential functions to the MC data in (7) and
(8) is currently performed on-line during the dose calculation. Hence, further speed-up
could possibly be achieved by pre-calculating the coefficients ci(θ, pz) in (6), since they are
independent of the patient data. However, the coefficients would have to be calculated for each
exponential component, angular sector, radiological depth and beamlet, which would result
in a database with a size of ∼50 MB, depending on the selected grid spacing for the beamlets
and the radiological depth.

5. Conclusions

In this work, a three-dimensional pencil-beam kernel superposition method for photon dose
calculation was presented. The developed method is conceptually simple, and results in
accurate dose distributions in a wide range of conditions. The largest limitations were detected
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in a lung-equivalent slab phantom in the case of a small field size and large beam energy. This
should be recognized as a limitation of the presented method. However, large photon energies
(�15 MV) should normally not be used for conformal lung cancer treatments due to inferior
target coverage compared to smaller photon energies (Wang et al 2002). The bias caused by
the scaling approximation to the Monte Carlo simulation (up to 4% in cortical bone) should
be taken into account when comparing the presented calculation results to true physical doses.

The running time of the computer implementation of the method is about 10 s for a
40 × 40 mm2 field and about 60 s for a 400 × 400 mm2 field (on a dual-core Intel Xeon 5160
platform with 8 GB of memory and two processors). This makes the presented algorithm
suitable for routine clinical planning even if multiple re-calculations are needed.
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