
TKK Dissertations in Media Technology
Espoo 2009 TKK-ME-D-2

MOBILE THREE-DIMENSIONAL CITY MAPS

Antti Nurminen

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

TKK Dissertations in Media Technology
Espoo 2009 TKK-ME-D-2

MOBILE THREE-DIMENSIONAL CITY MAPS

Antti Nurminen

Dissertation for the degree of Doctor of Science in Technology to be presented
with due permission of the Department of Media Technology, for public ex-
amination and debate in Lecture Hall E at Helsinki University of Technology
(Espoo, Finland) on the 10th of December, 2009, at 12 noon.

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Media Technology

Teknillinen korkeakoulu
Informaatio- ja luonnontieteiden tiedekunta
Mediatekniikan laitos

Distribution:
Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Media Technology
P.O.Box 5400
FIN-02015 TKK
Finland
Tel. +358-9-451 2870
Fax. +358-9-451 5253
http://media.tkk.fi/

Available in PDF format at http://lib.tkk.fi/Diss/2009/9789522481931/

c© Antti Nurminen

ISBN 978-952-248-192-4 (print)
ISBN 978-952-248-193-1 (online)
ISSN 1797-7096 (print)
ISSN 1797-710X (online)

Redfina
Espoo 2009

ABSTRACT

Author Antti Nurminen
Title Mobile Three-Dimensional City Maps

Maps are visual representations of environments and the objects within,
depicting their spatial relations. They are mainly used in navigation, where
they act as external information sources, supporting observation and de-
cision making processes. Map design, or the art-science of cartography,
has led to simplification of the environment, where the naturally three-
dimensional environment has been abstracted to a two-dimensional repre-
sentation, populated with simple geometrical shapes and symbols. However,
abstract representation requires a map reading ability.

Modern technology has reached the level where maps can be expressed
in digital form, having selectable, scalable, browsable and updatable con-
tent. Maps may no longer even be limited to two dimensions, nor to an
abstract form. When a real world based virtual environment is created, a 3D
map is born. Given a realistic representation, would the user no longer need
to interpret the map, and be able to navigate in an inherently intuitive man-
ner? To answer this question, one needs a mobile test platform. But can a
3D map, a resource hungry real virtual environment, exist on such resource
limited devices?

This dissertation approaches the technical challenges posed by mobile
3D maps in a constructive manner, identifying the problems, developing so-
lutions and providing answers by creating a functional system. The case
focuses on urban environments. First, optimization methods for rendering
large, static 3D city models are researched and a solution provided by com-
bining visibility culling, level-of-detail management and out-of-core render-
ing, suited for mobile 3D maps. Then, the potential of mobile networking
is addressed, developing efficient and scalable methods for progressive con-
tent downloading and dynamic entity management. Finally, a 3D navigation
interface is developed for mobile devices, and the research validated with
measurements and field experiments.

It is found that near realistic mobile 3D city maps can exist in current
mobile phones, and the rendering rates are excellent in 3D hardware enabled
devices. Such 3D maps can also be transferred and rendered on-the-fly suf-
ficiently fast for navigation use over cellular networks. Real world entities
such as pedestrians or public transportation can be tracked and presented
in a scalable manner. Mobile 3D maps are useful for navigation, but their
usability depends highly on interaction methods – the potentially intuitive
representation does not imply, for example, faster navigation than with a
professional 2D street map. In addition, the physical interface limits the
usability.

UDC 004.92, 004.5, 528.9
Keywords computer graphics, virtual environments, 3D maps,

mobile computing, mobile networks

MOBILE THREE-DIMENSIONAL CITY MAPS i

ii MOBILE THREE-DIMENSIONAL CITY MAPS

TIIVISTELMÄ

Tekijä Antti Nurminen
Työn nimi Mobiilit Kolmiulotteiset Kaupunkikartat

Kartat ovat ympäristöjen ja ympäristön kohteiden visuaalisia esitysmuo-
toja, korostaen näiden tilallisia suhteita. Karttoja käytetään yleisimmin navi-
goinnissa, jossa ne toimivat ulkoisina tietolähteinä havainnoinnin ja päätök-
senteon apuna. Kartografia on vienyt karttojen kehitystä yksinkertaistettuun
suuntaan, jossa luonnollisesti kolmiulotteinen maailma on abstrahoitu kak-
siulotteiseksi esitykseksi, jonka kohteita kuvataan geometrisillä muodoilla
ja symboleilla. Abstrakti esitysmuoto vaatii kuitenkin kartanlukutaitoa.

Nykytekniikalla kartat voidaan kuvata digitaalisesti, käyttäen valittavis-
sa olevaa, skaalautuvaa, selattavaa ja päivitettävää sisältöä. Kartat eivät enää
välttämättä ole rajoittuneita vain kahteen ulottuvuuteen, tai abstraktiin es-
itysmuotoon. Kun luodaan todelliseen maailmaan perustuva virtuaaliym-
päristö, syntyy 3D-kartta. Jos esitysmuoto olisi realistinen, tarvitsisiko käyt-
täjän enää tulkita karttaa, ja voisiko navigointi muuttua luontevammak-
si? Tähän kysymykseen vastaaminen vaatii mobiilin testausalustan. Mutta
voiko 3D-kartan, resursseja vaativan virtuaaliympäristön, toteuttaa resurs-
seiltaan rajallisille mobiililaitteille?

Tämä väitöskirja lähestyy 3D-karttoihin liittyviä teknisiä haasteita kon-
struktiivisesti, identifioiden ongelmat, kehittäen ratkaisut ja vastaamalla
esitettyyn kysymykseen toiminnallisella järjestelmällä. Työssä keskitytään
kaupunkiympäristöihin. Aluksi tutkitaan laajojen 3D-kaupunkimallien ku-
vanmuodostuksen optimointimenetelmiä ja haetaan ratkaisumalli yhdis-
tämällä näkyvyystarkasteluihin, yksityiskohtien hallintaan ja grafiikkay-
timille liian laajojen mallien käsittelyyn keskittyviä algoritmeja so-
vitettuna mobiileille 3D-kartoille. Seuraavaksi tutkitaan mobiilien tieto-
verkkojen mahdollistamaa potentiaalia, kehittäen tehokkaita ja skaalau-
tuvia menetelmiä progressiiviselle kartta-aineiston siirtämiselle ja dy-
naamisten olioiden hallinnalle. Lopuksi mobiililaitteille kehitetään 3D-
navigointikäyttöliittymä, ja tehty tutkimus validoidaan mittauksin ja kent-
täkokein.

Tuloksena osoitetaan lähes realististen 3D-kaupunkikarttojen toimi-
van nykyisillä kännyköillä, ja 3D-laitetuella saavutetaan erinomainen pi-
irtonopeus. Kännykkäverkot ovat myös riittäviä 3D-karttasisällön siir-
tämiseen käytön aikana. Todellisen maailman kohteita, kuten jalankulki-
joita tai julkista liikennettä, voidaan seurata ja esittää skaalautuvasti. Mo-
biilit 3D-kartat soveltuvat navigointiin, mutta käytettävyys riippuu inter-
aktiomenetelmistä – potentiaalisesti intuitiivinen esitysmuoto ei välttämät-
tä johda 2D-tiekarttaa nopeampaan navigointiin. Lisäksi laitteiden fyysinen
käyttöliittymä rajoittaa käytettävyyttä.

UDC 004.92, 004.5, 528.9
Avainsanat tietokonegrafiikka, virtuaaliympäristöt, 3D-kartat,

mobiili tietotekniikka, mobiilit tietoverkot

MOBILE THREE-DIMENSIONAL CITY MAPS iii

iv MOBILE THREE-DIMENSIONAL CITY MAPS

PREFACE

The main research leading to the present thesis was performed in the
m-LOMA EU InterregIIIA project in the Laboratory of Industrial Infor-
mation Technology (INIT) of Helsinki University of Technology, Finland
(TKK). Research has continued within the FP6 IST EU project Roboswarm
in the Laboratory of Telecommunications and Multimedia Software (TML)
of TKK, and within the SA and FP7 IST EU projects 3DWIKI and Hy-
drosys in Helsinki Institute for Information Technology HIIT (of TKK and
University of Helsinki).

I am in gratitude to professor Juha Tuominen of INIT laboratory for pro-
viding quite a number of interesting projects and challenges during the many
years I worked under him. Great thanks goes also to professor Tapio Takala,
my supervisor, for long cooperation, support and mentoring in computer
graphics.

The work on the m-LOMA project has been a group effort of a large
number of very competent programmers and cognitive scientists. My role
has been one of primus motor, providing impetus and resources throughout
the development, initializing the work, setting up the goals, designing the
system and the algorithms, and pushing the research forward over a span
of several years with talented programmers and designers. Over 20 persons
have contributed to the development, including the lead programmer Ville
Helin who created most of the m-LOMA code base, and Nikolaj Tatti and
Matti Lehtonen, continuing Ville’s work. Ilpo Ruotsalainen implemented
the m-LOMA networking system, Heikki Vuolteenaho ported the platform
to Symbian, Antti Kantee oversaw critical parts of the core development,
Mikko Rasa created lightweight widgets and a public transportation simu-
lator, and Petteri Torvinen created our 3D city model. I am in gratitude to
all my developers. Antti Oulasvirta provided valuable insight to cognitive
aspects while I worked on issues related to user interaction, setting up two
major field experiments. Jouni Pekkanen introduced ideas throughout the
process, up to the last second and beyond.

Thanks also to my pre-examiners, Dr. Kari Pulli and Prof. Rudolph P.
Darken for constructive criticism and support. Special thanks goes to Kari
for having the strenght of going through every single letter in the thesis draft,
contributing to both major and minor issues.

The most important support for my efforts has come from my family;
my wife Niina, my daughter Unna, and our cat Piippu. I need to thank my
parents Veli and Leena as well, for evoking interest in sciences when I was
young, and for the drive for constantly looking up for new things, be it in
nature or in technology.

Otaniemi, Espoo, 20th November 2009

Antti Nurminen

MOBILE THREE-DIMENSIONAL CITY MAPS v

vi MOBILE THREE-DIMENSIONAL CITY MAPS

CONTENTS

Abstract i

Tiivistelmä iii

Preface v

Contents vii

List of Publications ix

List of Abbreviations xi

1 Introduction 1
1.1 Terminology . 2
1.2 Historical perspectives . 5
1.3 Hypothesis and motivation for the research 9
1.4 Goals and research questions 10
1.5 Research approach and methodology 11
1.6 Summary of research and contributions 12
1.7 Organization of the thesis 12

2 Enabling Technologies 13
2.1 3D Model formats for urban environments 13
2.2 Mobile 3D interfaces and mobile devices 14
2.3 Mobile networking . 16

3 Electronic Mobile Guides and 3D Maps 17
3.1 Early work . 17
3.2 Mobile 3D map interfaces appear 18
3.3 Textured 3D maps . 20
3.4 Annotations and tracking 23
3.5 Commercial products . 24
3.6 Comparisons and discussion 25

4 A static mobile 3D Map 27
4.1 Concepts . 27
4.2 Culling techniques for static scenes 29
4.3 Level-of-detail methods . 33
4.4 Out-of-core algorithms for 3D rendering 33
4.5 A 3D map engine for urban environments 34
4.6 Results . 41

5 Networking and Dynamic Entities 47
5.1 Internet in mobile environments 47
5.2 Lightweight, efficient mobile communications 49
5.3 Networked delivery of 3D content 51

MOBILE THREE-DIMENSIONAL CITY MAPS vii

5.4 Location-based information 53
5.5 Dynamic entity management 53
5.6 A scalable networking system for dynamic mobile 3D maps 56

6 Towards a Mobile 3D Map User Interface 59
6.1 Navigation . 59
6.2 Controlling navigation: maneuvering 61
6.3 A 3D navigation field experiment with explicit controls . . . 62
6.4 Improving navigation interaction 64
6.5 A 3D navigation field experiment with improved controls . . 66
6.6 Validation and veridicality 67
6.7 Open issues . 70

7 Conclusions and Future 73

8 Summary of Publications and Contributions of the Author 75

Bibliography 77

viii MOBILE THREE-DIMENSIONAL CITY MAPS

LIST OF PUBLICATIONS

This thesis summarizes the following articles and publications, referred to
as [P1]–[P5]:

[P1] A. Nurminen. m-LOMA - a Mobile 3D City Map. In Proceedings of
the eleventh international conference on 3D web technology (Web3D
’06), pp. 7–18, Columbia, Maryland, USA, 2006.

[P2] A. Nurminen. Mobile, Hardware-Accelerated Urban 3D Maps in 3G
Networks. In Proceedings of the twelft international conference on
3D web technology (Web3D ’07), pp. 7–16, Perugia, Italy, 2007.

[P3] A. Nurminen. Managing dynamic entities in mobile, urban virtual
environments. Journal of WSCG, 16(1–3), 2008.

[P4] A. Nurminen and A. Oulasvirta. Designing Interactions for Naviga-
tion in 3D Mobile Maps. In Map-Based Mobile Services (L.Meng,
A.Zipf and S.Winter, eds.), Springer, 2008, ISBN 978-3-540-37109-
0.

[P5] A. Nurminen. Mobile 3D City Maps. IEEE Computer Graphics &

Applications, 28(4), pp. 20–31, 2008.

MOBILE THREE-DIMENSIONAL CITY MAPS ix

x MOBILE THREE-DIMENSIONAL CITY MAPS

LIST OF ABBREVIATIONS

3D Three-Dimensional
AOI Area of Interest
CAD Computer Aided Design
COLLADA Collaborative Digital Asset format
CPU Central Processing Unit
EDGE Enhanced Data rates for GSM Evolution
FOV Field of View
fps Frames Per Second
FPS First Person Shooter
FTP File Transfer Protocol
GeoVE Geographical Virtual Environment
GIS Geographic Information System
GML Geographic Markup Language
GPS Global Positioning System
GPRS General Radio Packet System
GPU Graphics Processing Unit
HSDPA High-Speed Downlink Packet Access
HTTP Hyper Text Transfer Protocol
HVS Hardly Visible Set
J2ME Java 2 Platform, Micro Edition
LOD Level of Detail
M3G Mobile 3D Graphics Format
MTU Maximum Transfer Unit
NVE Networked Virtual Environment
OpenGL ES Open Graphics Library for Embedded Systems
P2P Peer-to-Peer
PC Personal Computer
PDA Personal Digital Assistant
PDU Protocol Data Unit
SOAP Simple Object Access Protocol (deprecated)
SSH Secure Shell
TBV Temporary Bounding Volume
TCP Transmission Control Protocol
UDP User Datagram Protocol
UMPC Ultra-Mobile Personal Computer
UMTS Universal Mobile Telecommunication System
VE Virtual Environment
WLAN (Wi-Fi) Wireless Local Area Network
VRML Virtual Reality Markup Language
VRTP Virtual Reality Transport Protocol
X3D Extensible 3D Format
XML Extensible Markup Language

MOBILE THREE-DIMENSIONAL CITY MAPS xi

xii MOBILE THREE-DIMENSIONAL CITY MAPS

1 INTRODUCTION

It is necessary to follow the most recent researches because
of changes in the world over time – Claudius Ptolemy, 150CE.

In the 1990’s, both researchers and the public experienced an era of
virtual reality hype, a phenomenon that thrived within the concept of a cy-
berspace, a networked digital space. This virtual environment (VE), limited
only by physics and rules programmed for it, would encompass its users
immersively. It would be represented as a real-time rendered, realistic 3D
world, where users were depicted by avatars, moving within it and com-
municating to each other with real world metaphors - walking and talking.
These schemes originated from science fiction with novels such as William
Gibson’s Neuromancer and Neil Stephenson’s Snow Crash.

With the advances in 3D graphics technology and connectivity provided
by the blooming Internet, researchers around the world were trying their best
to make these visions happen, quickly establishing virtual reality (VR), or
shared virtual environments as a branch of science. In these developments,
the Internet itself was to become a cyberspace with 3D browsing capabil-
ities. Several companies, such as Blaxxun, were created to manifest the
visions commercially. In order to replicate the real world with a virtual one,
several projects took place where entire cities were 3D modeled. However,
despite the high expectations, the web did not become three-dimensional,
nor did any applications emerge, except 3D games, which became a major
industry.

There is another field of research related to virtual reality, which hasn’t
encountered so much of hype, namely cartography. When a virtual environ-
ment represents the real world, it can be understood as a three-dimensional
map. By the end of the 1990’s, technology had advanced to a level where
mobile devices with graphical interfaces, such as personal digital assistants
(PDAs), became available. Researchers saw the possibilities of running the
new virtual cities in those devices, supposing that as any map, a mobile real
virtual environment would be most useful during travel, in the field. How-
ever, these first experiments faced severe technical obstacles, placing the
hopes of better performance on future mobile hardware.

The present thesis addresses computer graphics and interaction related
issues in mobile 3D maps. The main goal is to break the technological bar-
rier encountered in the first mobile 3D map studies, and then to proceed to-
wards the other possibilities offered by wireless networking and positioning
technologies, including on demand progressive content downloading and
scalable near-real time tracking of dynamic entities. While a mobile 3D
map will not offer an immersive experiment, many of the challenges are
similar to shared VEs. Despite the emphasis on 3D graphics and network-
ing optimizations, we assert the background in the more general context of
cartography.

MOBILE THREE-DIMENSIONAL CITY MAPS 1

1.1 Terminology

To ensure a coherent and unambiguous use of terminology within the thesis,
we define a few central terms.

3D Maps
The term “3D map” is not well defined in literature, and may invoke various
ideas depending on the audience’s background. Within this thesis, we use
the following definition for a 3D map (extended from publication P4):

A 3D map is a two- or three-dimensional visualization of a
three-dimensional representation of a physical environment,
emphasizing the three-dimensional characteristics of this en-
vironment, intended for navigational purposes.

This definition involves a two-stage process, separating the internal repre-
sentation (map data) from its actualization (rendering). It assumes a physi-
cal 3D model (or hologram), or a single projection onto a 2D surface such
as a screen. An immersive, stereo projected visualization can be special
case. It does not concern the implementation of a 3D representation, but the
three-dimensionality implies a capability to define geometric primitives in a
non-restricted three-dimensional space. For example, if the system can only
represent a height map, where no surface can exist over any other surface,
we do not consider the representation to be truly three-dimensional. A 3D
representation can also be obtained and held in the mind of an artist.

The method of rendering a 3D map is not defined. It could be drawn or
formed by an artist. The definition differentiates a 3D map from an arbitrary
virtual environment by the requirement of representing a physical space.

The definition sets a perceptual measure for conveying a three-
dimensional appearance, which may be difficult to operationalize in quanti-
tative terms, but is deemed necessary by the author to avoid extreme cases,
such as projections that flatten the three-dimensional map data with brute
force, for example by omitting one coordinate axis.

Finally, a 3D map is mainly intended for navigational purposes. This
is an extension to the definition given in publication P4, in order to sepa-
rate a 3D map from the term GeoVirtual Environment (GeoVE), which is
an application neutral term for 3D models based on the real world, often
encountered in the context of geographical information systems (GIS). This
definition does not imply that a 3D map could not be used for other purposes
than navigation, nor that a 3D model could not be used as a map; it merely
indicates a primary design goal, or a use case. Figure 1.1 presents a mi-
nor tourist attraction, a miniature model of the center of Cambridge, U.K.,
which could be claimed to be a 3D map, when used for navigation.

A 3D map may have additional properties, which can be used as at-
tributes to further specify a 3D map system and its characteristics (see table
1.1, extended from publication 4). Our case involves an electronic, naviga-
ble, interactive, realistic, real-time rendered, dynamic and mobile urban 3D
map. Furthermore, in the current context of computerized navigation assis-
tants, a “mobile 3D map” is expected to be at least electronic, navigable,

2 MOBILE THREE-DIMENSIONAL CITY MAPS

Figure 1.1: A miniature of the city center of Cambridge, U.K., with tac-
tile navigation-assisting information for the blind (such as the you-are-here
marker). This minor tourist attraction could also be described as a plain,
static, urban immobile 3D map.

interactive and real-time rendered, running on a PDA or smart phone1.
There are other related systems, which may claim to be 3D maps,

but where the representation of the environment is restricted or has no
3D components at all. For example, car navigation systems commonly
support perspective 2D projection, which creates an illusion of three-
dimensionality through the perspective view, while the actual data is purely
two-dimensional. Similarly, some early graphical computer games with 3D
appearance exist, where the environment is rendered in a three-dimensional
manner, but the representation is based on rules or procedures. For example,
the environments for the game Doom were collections of “sectors”, defined
by the surrounding vectors (“sidedefs”), accompanied by attributes such as
a floor height, ceiling height, light level, a floor texture and a ceiling texture.
Doom and other similar systems, where objects cannot occupy space on top
of each other, have been described as being based on “2.5D engines”. Visu-
ally, these environments can however convey the likeness of a 3D space.

Mobile systems are expected to be physically small, to fit in the pocket,
and independent of external power sources. In this sense, a device embedded
permanently in a car is therefore not considered mobile.

Virtual environments and mixed reality
Milgram and Kishino have defined mixed reality (MR) as a “subclass of
virtual reality technologies that involve merging of real and virtual worlds”
[100]. In their terminology, real environments, for example the world di-
rectly viewed by eyes, and completely immersive virtual reality environ-
ments, experienced through computer graphics systems, constitute two ex-
tremes of a virtuality continuum (see figure 1.2). When computer generated
entities are graphically represented within a real view, the view becomes
augmented reality (AR). Similarly, when real world entities are represented

1We define smart phones broadly as mobile phones providing a platform for developing and
running applications.

MOBILE THREE-DIMENSIONAL CITY MAPS 3

Attribute Explanation
Ideal, photo-realistic The data set and its visualization exactly match the real world; a

single image is indistinguishable from a photograph.
Realistic Map data is visualized in a realistic manner, in an attempt to ap-

proach the ideal representation. Typically, this involves sampling
the real environment by digitization.

Plain Omits surface details. Surfaces typically single-colored.
Off-line rendered Visualization is performed prior to use (paintings, animations ...).
On-line/real-time
rendered

Visualization is performed on-the-fly instead of displaying pre-
rendered animation sequences or images.

Remotely rendered Rendering is performed in a server, from where the resulting im-
ages are transmitted to the map application.

Locally rendered Rendering performed by the device running the map application.
Fixed-view Provides a single fixed view to the environment.
Navigable Allows a user to control the point of view.
Passive A navigable, real-time rendered 3D map, essentially a 3D viewer,

which does not offer navigation-assisting features or content
queries.

Interactive A navigable, real-time rendered 3D map, responding to users’
queries and providing navigation-assisting features.

Static Map contents remain essentially static during use. Does not relate
to the type of rendering, or navigability.

Dynamic Contains dynamic content and time dependent elements other than
the virtual camera, such as positions of near real-time tracked users,
public transportation, simulations and annotation updates.

Electronic Emphasizes the computerized means in producing the 3D view in-
stead of a drawing or painting.

Urban/outdoor/indoor Description of the represented environment.
Mobile Lightweight map, which does not require external power sources.
Transportable A bulky map, too large to fit in a pocket. If electronic, runs solely

on external power supply during operation. Can be embedded in a
vehicle.

Immersive A large stereo projection system, with separate views for each eye
to achieve an illusion of being immersed in the environment.

Table 1.1: Possible attributes for a 3D map.

within a virtual environment (VE), this becomes augmented virtuality (AV).

Figure 1.2: Milgram and Kishino’s Virtuality Continuum ranges from the
real world to completely artificial environments [100].

Milgram and Kishino also foresee that “as technology progresses, it
may eventually become less straightforward to perceive whether the primary
world being experienced is in fact predominantly "real" or predominantly
"virtual"”. Both augmented reality and augmented virtuality technologies
then fall within the general framework of mixed reality. 3D maps, repre-
senting real worlds, and potentially real world entities such as people and
vehicles, therefore would belong to near middle of the virtuality continuum.
However, as the subject of research in this thesis involves solely computer
graphics generated imagery, our 3D maps can be more accurately described

4 MOBILE THREE-DIMENSIONAL CITY MAPS

as augmented virtuality – virtual environments portraying real entities.

Streaming
In the context of networked data transmission, one often encounters the
term streaming, usually understood as a way to process or utilize incom-
plete or partial data immediately as received. However, in some interpre-
tations, streamed data is expected to be time dependent, for example in
movies or music, where it is essential to present the samples in a proper
(timestamp-based) order, and with an appropriate frequency. With 3D data
transmissions, time dependency is not critical, unless the data includes ani-
mated sequences. To avoid possible confusion, we avoid the term streaming
and refer simply to data transmission, or progressive data transmission, to
emphasize the capability to process and utilize incomplete data.

Interactivity
When authors deal with resource sparse computerized systems, one of the
most interesting qualities is interactivity. In graphical systems, this is often
expressed in update rates, such as frames per second (fps). Sometimes, this
is described only subjectively, such as “The rendering performance was just
sufficient in order to navigate in models” (from [139]). Literature provides
several sometimes conflicting interpretations of the observed interactivity.
Airey provided the following observations while working on increasing the
update rates for building walkthroughs, describing the rendering speed as
updates per second (ups) [7]:

• At one update per second or less, the system is painful to use. It is
necessary to use an auxiliary two-dimensional floor-plan display, or
map view, to navigate.
• As the update rate increases from one ups to around twenty ups, inter-

activity appears to increase rapidly (superlinearly) before leveling off.
At around six ups, the virtual building illusion begins to work. It is
possible to navigate with only the three-dimensional display or scene
view.

As for interactivity, we apply this observation throughout this thesis – we
assume that reaching 6fps provides interactivity, and rates exceeding 20fps
no longer provide a significant improvement in user experience.

1.2 Historical perspectives

Throughout the human history, there has been a need for conveying spatial
information. Representations of the environment have been sung in songs,
told in stories, and visualized as paintings, engravings and drawings already
in the ancient world, possibly even pre-dating any written language. This
would be the case if the wall painting of Çatal Höyük, which has been car-
bon dated to 6100–6300BCE, actually depicted about 80 buildings and a
mountain in the background (see figure 1.3) [97, 96]. Maps on clay tablets

MOBILE THREE-DIMENSIONAL CITY MAPS 5

have survived from Mesopotamia2, and on papyri from Egypt3. The high-
est peak of ancient knowledge in cartography and geography was Claudius
Ptolemy’s publication Geōgraphikē Hyphēgēsis, “A Guide for Drawing a
World Map”, or Geography in short, in about 150CE [129, 17]. In Geog-
raphy, Ptolemy integrated his predecessors’ works and accumulated map
data of the time in a coherent manner, adding his own disciplined thinking
in eight separate volumes. With Geography, Ptolemy shaped the course of
cartography for the next 1500 years.

Figure 1.3: A candidate for the first known map, the wall painting of Çatal
Höyük, from ca. 6200BCE (upper), and a clarifying drawing (lower).

Ptolemy defined two terms, geography and chorography. Geography,
or world cartography referred to an “imitation through drawing of the entire
known part of the world together with the things that are, broadly speaking,
connected with it” [17], requiring skills in mathematics, such as spherical
trigonometry. Chorography, or regional cartography, on the other hand,
concerned regional and selective matters, with emphasis on detail and real-
ism: “it should be the task of chorography to present together even the most
minute features” ... ”chorography deals above all with the qualities rather
than the quantities of the things that it sets down; it attends everywhere to
likeness, and not so much to proportional placements” [17]. Ptolemy stated
that, in contrast to geography, the work on chorography requires mainly
skills on arts.

Geography was a definite publication of principles and practices of car-
tography, including the use of latitude and longitude to define global posi-
tions, notes on the dynamic nature of the world causing a constant need for
updating map data, and discussion on the scaling problem and levels of de-

2The oldest known Mesopotamian map is the Gasur Map, c. 2300BCE
3The oldest known Egyptian map is the Turin Papyrus, c.1160BCE.

6 MOBILE THREE-DIMENSIONAL CITY MAPS

tail, where the map designer must consider the purpose of the map and the
size of the medium in regards of the type and amount of detail that should
be presented. It is not certain that Geography contained drawn maps. How-
ever, regarding the representation of map data, the possible renderings were
not of such importance, nor the accuracy of data, but the method of storing
the spatial information. In Geography, the known world, the oikouménē,
was described in textual form. Coastlines, long rivers and some mountain
ranges were represented as curvilinear objects formed by connecting points
of given coordinates, and cities, small islands, mountains and mouths of
minor rivers as labels, named point-like objects. The bulk of Geography
consists of these coordinate lists, which bear resemblance to current digital
map formats. This textual encoding with global coordinates made it possi-
ble to create suitable maps on any projection or scale based on a common
data set without losing detail or introducing cumulative errors, which would
emerge from successive manual copying of drawn maps.

Our definition of a realistic 3D map follows Ptolemy’s separation of
data and its visualization: first, map data is obtained (or a representation
formed in an artist’s mind), including the minute details according to the
chorographic principle (and including all three dimensions). Then, the rep-
resentation is rendered, conveying the likeness of the environment.

The problem of medium and scale is well presented by examples from
the Roman Empire, which depended much on spatial knowledge, surveying
the known world and creating accurate maps [143, 83, 160]. Of the city
maps, the most remarkable was Forma Urbis Romae, a city map depicting
private and public buildings, including shops, streets and staircases, empha-
sizing important buildings by a larger size. The gargantuan map, 18x13m in
size (to the scale of 1:240), was engraved on 151 slabs of marble between
203–211CE and attached to a wall. Only 10–15% of the map has survived
in over 1000 fragments [83]. Romans also possessed drawn world maps,
of which one nearly complete example exists, the manuscript copy called
Tabula Peutingeriana (“Peutinger Table”), which is constructed on a single
roll of parchment, 34cm wide, and 6.82m long, portraying the entire Roman
road network [87]. While Forma Urbis Romae is an extreme case regarding
the map material and size, arbitrary sized media was not available in gen-
eral, and mapmakers had to cope with commonly available mediums, such
as papyri or parchment scrolls. For a world map, the shape did not afford a
spatially accurate representation. In order to create a map covering a large
area (85.000km of roads [143]), the map designer had to use the available
medium as efficiently as possible. Consequently, in the Peutinger Table,
most countries and land masses are greatly distorted (see Fig. 1.4). As the
purpose of the map was to record the topology of the Roman road network,
spatial accuracy could be compromised, while the true purpose was well
served; the lengths of the roads were accurately registered. Cities, other
features and services were represented by symbols, while for main cities,
special iconic decoration was applied, all well suited to the term itineraria
picta (itineraries with figures), as described by Vegetius [160]. This term
also includes a clue towards the true Roman mobile guides used by com-
mon travelers. The itinerari, itineraries, were simply lists of destinations
along a route [137].

MOBILE THREE-DIMENSIONAL CITY MAPS 7

Figure 1.4: Fitting map data to given medium. The Peutinger Table covered
the entire Roman road network on a single scroll of parchment.

During Middle Ages, cartography degraded, as did all sciences. In the
so-called tripartite, or T-O maps, Ptolemy’s North-up convention had been
forgotten, and replaced by East-up convention, placing Jerusalem in the cen-
ter of the world. Interest in maps, navigation and geography in general
awakened in the 15th century, in the Age of Discovery, boosted by the in-
troduction of movable-type printing in 1450 by Gutenberg. Ptolemy’s Ge-
ography was considered the definite work on geography, and a multitude of
Ptolemian maps were published during this era4. In the 17th century, map-
making as an art form was at its peak, and maps were published in grandeur
manner. For example, the Toonneel der Steden van de Vereenighde Neder-
landen by Joan Blaeu in 1649–1651 contained over 200 exquisitely detailed
town plans of the Netherlands in bird’s-eye-view. Figure 1.5 presents one
of these cities, the city of Arnhem. The realistic style is here in its extreme,
where individual buildings have been painfully reproduced with as real –
and three-dimensional – appearance as possible. Atlases5, collections of
maps, were heavy, bulky and expensive tomes, impractical to carry around.
Subsequently, simpler, smaller and more affordable maps were produced for
the commoners and travelers “to fit the pocket” [31].

In the 18th century, the emphasis of art in cartography gave way to a
more scientific approach, as measurement technologies advanced and maps
became increasingly accurate. However, it was not possible to establish a
single, holistic representation of the environment. For example, the first ac-
curate, triangulation based survey of an entire country, France, took place
between 1718–1789 in many stages, but already in 1802 it was noticed that
military needs require a different map, and another major survey was per-
formed 1817–1880 [31]. In addition to Ptolemy’s note on the dynamic na-
ture of the world, this reflects the different needs of different users.

The modern ages have brought about technology to perform accurate
spatial measurements, and digital tools to produce and present maps. This

4“Ptolemian” maps are often recognized by wind figures surrounding the map; however,
such figures were not part of Ptolemy’s map data. Ptolemy merely used wind names for depict-
ing directions, which later evolved to the familiar compass rose shape.

5The term “Atlas” was first used by Mercator as the title for his world map collection pub-
lished in 1585–1595 (Atlas, Sive Cosmographicae Meditationes de Fabrica Mundi et Fabricati
Figura).

8 MOBILE THREE-DIMENSIONAL CITY MAPS

Figure 1.5: An early 3D city map, the city of Arnhem from Theater of Cities,
1652, by Joan Blaeu. (left) The entire map. (right) A close-up revealing the
details.

new technology has already bloomed in the web, with a number of different
map services, where maps are no longer bound to a static scale, but are ren-
dered on the fly, containing various user selectable layers, presenting routes
and location-based content. Furthermore, these map-based services have
now become available to mobile devices as well [98]. Market analysts fore-
see exponential growth in the market, estimating 28 million GPS-equipped
smart phone navigation software subscribers by the year 2012 in Europe,
and 15 million in North America [74].

Several notions from Ptolemy still apply in the modern world, and fur-
ther analogies can be registered. Ptolemy’s use of a global coordinate sys-
tem and textual storage for map data for producing different maps is valid,
reflected in the modern digital map formats. Ptolemy even anticipated the
dynamic nature of the map data. With electronic maps, this data could be
updated on the fly. Brought further, maps could contain dynamic compo-
nents, moving objects, which could be tracked and represented in near real
time. The affordability of the medium provides an analogy between elec-
tronic maps and papyri, parchment or paper maps: the medium still poses
limitations. While the Peutinger Table suffered from fixed height of the
medium, mobile devices suffer from limited resources as well, be it screen
size, memory, CPU or GPU speed, etc. The grandeur map tomes of the 17th
century needed to be ported to mobile versions for travelers, with a tighter
selection of content and scale. Similar porting has been done with modern
electronic 2D navigation assistants. In an electronic 3D map, not just the
coordinates but the appearance as well is described in digital form. Given
a certain minimum amount of resources, porting a virtual environment to a
mobile platform should be possible. However, the challenge involves further
issues than mere scale and content selection.

1.3 Hypothesis and motivation for the research

Early maps were populated with intuitive figures, but abstraction has in-
creased towards the modern age. Replacing figurative representation with
an abstract one has been a compromise: the “easy accessibility” of figures

MOBILE THREE-DIMENSIONAL CITY MAPS 9

has given way to the compact symbols, and the skill requirements for map
reading have increased. Abstract maps need to be annotated with a legend,
explaining the various visual conventions being used [143]. Throughout the
last 400 years, pictorial maps have persisted as a niché, usually represent-
ing the environment in three dimensions, an artistic rendering of the actual
view. Despite the trend towards abstraction, traveler maps still contain pic-
torial components.

The advances in technology have made it possible to render maps in real
time in mobile devices. While the commercially available map-based ser-
vices mostly follow the traditional cartographic conventions, technology has
matured to the level, where elaborate and computationally more complex
systems could be devised. In this thesis, we challenge the level of abstrac-
tion in maps. Could a map become more intuitive, if it had more figurative
components? What if the figurative representation were brought to its ex-
treme, where a map represented the reality as it is, three-dimensionally, in-
cluding all the visual detail? Would it no longer need interpretation at all? In
Ptolemian terminology, such a system would belong to the field of chorogra-
phy, depicting localized surroundings with “even the most minute features”,
and “attending to likeness”. A key element separating this map from older
3D maps, such as the Dutch paintings from the 17th century, would be the
interactivity (navigability) – the ability to freely move the viewpoint to any
suitable position and orientation at will, providing the most suitable view
for the task at hand.

In the beginning of the 21st century, first attempts at creating realistic
3D maps were made. Despite severe technical obstacles (very low render-
ing rates or lack of detail), positive observations were made that are well
aligned with Ptolemy’s chorographic principles (see Section 3.6). The ini-
tial hypothesis of intuitivity of realistic 3D maps seems to have support, and
following this direction appears well motivated.

The main challenge for the present research is the fact that previous at-
tempts at implementing realistic, mobile 3D maps faced technical obstacles,
which were left unsolved. Either the level of detail or rendering speed was
not sufficient to claim these systems to be navigable, realistic 3D maps. We
believe that the problem of rendering a large 3D model can be mapped to
one of rendering only the small subset of the model that contributes to the
current view. This will involve transforming the model onto a data structure
that allows fast on-the-fly selection of visible content with suitable level-
of-detail. This would separate us from the traditional global removal of
detail,where the entire map data set is scaled down to fit a given medium.

The use case of these early systems was one of a pedestrian, such as a
tourist, navigating in an urban environment. Therefore, this will also be our
scenario. Chapter 2 discusses related systems more closely.

1.4 Goals and research questions

This thesis aims at researching how far mobile 3D maps can go in terms
of rendering realistic, progressively downloaded 3D models with dynamic
content, and as a navigation aid for pedestrians. This can be divided to four
subgoals, each addressing a separate research question.

10 MOBILE THREE-DIMENSIONAL CITY MAPS

The first subgoal is to identify the essential optimization methods for
representing and rendering a static, realistic 3D model with minimal re-
sources, suited for mobile devices. The fundamental research question is:
Can realistic urban 3D environments be rendered in current mobile devices
at interactive rates? Technically, the goal is to achieve interactive rendering
rates for an urban environment consisting of at least a hundred buildings
with a 10–20cm façade surface detail, increasing both the scale and detail
over an order of magnitude compared to the first urban 3D map running
on mobile phones, Nokia’s TellMaris Guide (see Section 3.3). The sys-
tem is considered successful if 6fps is reached, and fluent to use if 20fps is
reached. The system is also required to run on existing mobile phones, with-
out hardware and with only a few MB of memory. The research question is
addressed in publications P1 and P2. P2 also provides results on the effect
of 3D graphics hardware.

The second subgoal in this thesis is to research 3D model download
over wireless cellular networks. The motivation is in allowing truly mobile
use, where environments can be downloaded when needed. The research
question is: Can realistic 3D city maps be downloaded on the fly to mobile
devices with sufficient speed for common navigation tasks, without hinder-
ing interactive use? The technical goal is to be able to download and render
a textured urban scene in less than 30 seconds in 3G networks. This question
is addressed in publication P2.

The third subgoal is in designing dynamic environments, in search of
optimal transmission and representation of temporary or dynamic informa-
tion, including moving entities. The research question is: Can a mobile 3D
city map support dynamic content transmission and representation in near-
real-time in scalable manner? This is addressed in publications P3 and P5.

The last subgoal addresses the 3D user interface. The research question
is: Is a realistic mobile 3D map interface inherently intuitive? 3D interfaces
are developed in publication P4.

The focus of the research is in computer graphics generated imagery
and 3D user interfaces depicting real environments and entities, a field that
belongs to augmented virtuality. Therefore, this research does not cover
nor address augmented reality or multimodal systems, nor does it attempt to
make contributions to electronic 2D maps.

1.5 Research approach and methodology

The research questions defined in the previous section are deliberately set up
in a simple and understandable manner, to allow interpretation, discussion
and development. They will be answered constructively. First, hypothe-
ses are issued. Then, a 3D map system is designed and implemented. The
success of the platform is evaluated both quantitatively and qualitatively.
Quantitative analysis is mainly applied to technical issues such as measur-
ing rendering or networking speed with given technical constraints. How-
ever, we foresee several design issues – many of which are included in our
research goals – that can only be verified by users. We consider the abil-
ity to perform focused navigation experiments in the field one of the main
practical goals for the system. We intend to perform a sufficient amount of

MOBILE THREE-DIMENSIONAL CITY MAPS 11

tests to receive a reasonable, although not quantitative, amount of validation
feedback. Setting up field experiments for definitive, quantitative answers to
all our design issues would involve several person years of further research;
this will be a future task.

Our development approach will not limit the system artificially. For
example, it is not required to run the system within a web browser, or use
web servers or the HTTP protocol for content delivery and dynamic entity
management. Neither are possible 3D programming interfaces limited to
any higher level model viewing libraries, which would prohibit the use of
efficient optimization schemes. However, it is required that the presented
algorithms are implementable on common mobile devices, such as PDAs
running WindowsMobile or smart phones running Symbian.

1.6 Summary of research and contributions

The main contributions of the research are the following:

• Analysis and selection of computer graphics optimization methods
that are suitable for mobile devices
• 3D model quality requirements for optimizable, geometrically

lightweight but graphically rich 3D urban models
• A new perceptually based method for selecting the lowest level-of-

detail of a texture (the dominant color)
• Demonstration of efficient and scalable out-of-core rendering of large

and detailed city models in mobile devices
• Analysis and design of a networking solution for progressive down-

loading of 3D city models, utilizing the out-of-core rendering scheme
• Demonstration of networked progressive 3D city model download

over cellular networks in mobile devices at speeds sufficient for navi-
gation, without hindering interaction
• A novel visibility algorithm for rendering and managing dynamic en-

tities in a scalable and efficient manner, supporting networked virtual
environments and augmented reality in mobile devices
• A visibility inheritance based scheme for annotation culling
• A definition of 3D maps with potential specifying attributes
• A maneuvering classification depending on the level of available nav-

igation freedom and user control
• User studies and field experiments as methodology for validating

computer graphics algorithms and 3D model design
• Methodology for progressive development of 3D navigation user in-

terfaces based on data gathered from field experiments

1.7 Organization of the thesis

The thesis is based on five publications, addressing the goals and research
questions set for the thesis. First, related systems are discussed. Then, the
thesis discusses the rendering of static 3D models, 3D model transmission
with scalable management of dynamic entities, and, finally, 3D user inter-
faces.

12 MOBILE THREE-DIMENSIONAL CITY MAPS

2 ENABLING TECHNOLOGIES

Technologically, mobile 3D maps are very close to virtual environments.
The interest in virtual environments was at its peak in the 1990’s, at the era
of virtual hype. With the emergence of consumer level graphics hardware,
3D games and Internet, many envisioned the future as a place where the
physical world would be embraced by the digital realm. This enthusiasm
led to the development of 3D file formats suited for virtual environments
intended for use in the web, modeling projects where entire cities were re-
created as 3D models, but not to any significant applications except games.
The possibility of using the 3D models as mobile maps was still hindered
by resource limitations of mobile hardware and lack of 3D programming
interfaces for mobile platforms.

In the following, related technologies and systems are presented to pro-
vide a view to the problem field.

2.1 3D Model formats for urban environments

Virtual urban environments are created with 3D modeling software, al-
though attempts to automatize the modeling process have been made
[29, 140]. In more optimized environments, for example those intended
for real time viewing, such as 3D games, the model format depends heav-
ily on the properties of the underlying 3D engine and its space subdivision
strategy [6]. Procedural modeling applies rules to construct models on the
fly [118, 165].

To unify the heterogeneous and incompatible model formats, 3D mod-
eling community has worked long for model standardization. Despite sig-
nificant efforts, no single monolithic or extensible standard that would en-
compass all imaginable 3D visualization related features and that would fa-
cilitate every possible 3D modeling case has emerged, nor accepted as de
facto format for representing virtual urban environments. Currently, there
are several competing and potential standards, all applicable to the present
case. Most of the available formats describe geometry as boundary repre-
sentations (B-reps), and organize it in a scene graph, an acyclic directed
graph. Surface detail (appearance) is supported from direct color samples
(textures) to more complex procedural methods (shaders).

While the various 3D model standards share many properties, they have
been created for slightly different purposes. Table 2.1 presents the main de-
sign goals of four common model formats. Both VRML and its modern
successor, X3D, are intended for interactive use in networked environments
as a final delivery mechanism, and include features for predefined anima-
tions, camera placement, etc. Despite the intention to use on a networked
environment, VRML does not include a binary encoding nor a serialization
scheme for efficient progressive transmissions. The X3D specification de-
fines a compressed binary format [32, 75].

CityGML is based on the more abstract Geography Markup Language,
GML3. It focuses on relations and semantics of various urban features, sup-

MOBILE THREE-DIMENSIONAL CITY MAPS 13

Format Design goal
VRML97 “The Virtual Reality Modeling Language (VRML) is a file format for

describing interactive 3D objects and worlds. VRML is designed to
be used on the Internet, intranets, and local client systems. VRML is
also intended to be a universal interchange format for integrated 3D
graphics and multimedia.”[73]

X3D “A standard that defines a royalty-free run-time system and delivery
mechanism for real-time 3D content and applications running on a
network.”[32]

CityGML “A common information model for the representation of 3D urban ob-
jects... realised as an open data model and XML-based format for the
storage and exchange of virtual 3D city models.” [82]

COLLADA “COLLADA is a COLLAborative Design Activity that defines an XML-
based schema to enable 3D authoring applications to freely exchange
digital assets without loss of information, enabling multiple software
packages to be combined into extremely powerful tool chains.” “We
assume that most interactive applications will use COLLADA in the
production pipeline, but not as a final delivery mechanism. For exam-
ple, most games will use proprietary, size-optimized, streaming-friendly
binary files. ”[13]

M3G “The file format is provided as a compact and standardised way of pop-
ulating a scene graph ... that complements the Mobile 3D Graphics API
(M3G).” “Several applications were identified for the Mobile 3D Graph-
ics API, including games, map visualization, user interfaces, animated
messages, product visualization, and screen savers.” [1]

Table 2.1: 3D file format design goals

porting topological structures, making it useful for routing and data mining
[82]. It is defined as an information model for storage and exchange of 3D
city models.

COLLADA defines 3D assets, which can be utilized as content in ap-
plication development, but is not a final delivery mechanism. In contrast to
VRML and X3D, it is not intended for direct 3D viewing, but to be incor-
porated into production pipelines, where the final delivery format may be
proprietary, suited and optimized for the particular case. X3D, CityGML
and COLLADA are all based on XML structuring and markup conventions.

The M3G file format is a binary scene graph intended for use within
mobile devices with the JSR-184 rendering interface, and includes support
for serialization [131, 130].

Even though some of the formats are intended for direct viewing, such
as VRML or X3D, it is not uncommon for developers to add more features
to facilitate this in practice. For example, Marvie and Bouatouch devel-
oped VRML support for visibility relationships in urban environments [95],
while Mulloni et al. split an X3D indoor model to parts and viewed them
with manually constructed visibility lists [103]. Reddy et al. created sup-
port for multi-resolution data for VRML for visualization of large terrain
databases with their TerraVision II viewer [135]. None of the discussed for-
mats directly support these features.

2.2 Mobile 3D interfaces and mobile devices

The development of mobile 3D applications was long hindered by the lack
of efficient mobile platforms, but even more by the lack of 3D rendering

14 MOBILE THREE-DIMENSIONAL CITY MAPS

interfaces. The PocketCortona VRML viewing library by ParallelGraph-
ics, using a proprietary software rasterizer, was available in October 2000 to
PDA devices running WindowsCE [117]. In addition, in early 2000’s there
were other proprietary solutions by Fathammer1 (the X-Forge environ-
ment), XenGames, Synergenix (the Mophun), HI Corporation (the Mas-
cot Capsule) and In-Fusio (ExEn) for a variety of platforms [168, 131, 130].

The first standardized 3D rendering interface, the OpenGL ES 1.0 [22],
saw light in August 2003. OpenGL ES, like OpenGL, is a low level ras-
terization API for native C/C++ programming languages. The OpenGL ES
1.0 is defined in two profiles, the Common-Lite and the Common. While
the Common profile supports floating point arithmetics, the Common-Lite is
a fixed-point profile “for extremely limited environments” [131], “to allow
portable application behavior for applications written strictly to the mini-
mum behavior” [22]. The OpenGL ES 1.X family is currently being super-
seded by OpenGL ES 2.0, which implements the Common profile only, and
includes support for programmable vertex and pixel shading [104].

The first OpenGL ES implementations were software rasterizers, such as
Gerbera by Hybrid Graphics2 supporting WindowsCE and Symbian plat-
forms. However, OpenGL ES was soon to be found natively in many mobile
devices such as the Nokia 6630 (running Symbian S60), although without
3D hardware. Dell’s Axim X50v PDA, running WindowsCE, was one of the
first mobile devices with hardware support for OpenGL ES in Spring 2005.
However, despite the VGA screen resolution (640x480) and its wealth of
features, it only supported the OpenGL ES Common-Lite profile. Nokia’s
N93 smart phone, entering the market in Summer 2006, was one of the first
mobile devices to support OpenGL ES 1.1 Common profile. The 3D hard-
ware in these first generation mobile 3D devices is based on the PowerVR
technology by Imagination Technologies. Most mobile device manufactur-
ers nowadays offer OpenGL ES hardware enabled models, and the market
is expanding. Recently, Apple’s iPhone has become very popular, offering
also a touch screen.

To provide an efficient 3D graphics API for the Java 2 Platform, Micro
Edition (“J2ME”), the JSR-184 (M3G) was defined in parallel with OpenGL
ES. M3G provides a direct support for the M3G scene graph format, which
is part of the specification. M3G provides an interface to the underlying
scene graph rendering engine, and an immediate mode, which should be
compatible with OpenGL ES [131, 130]. JSR-184 is currently being super-
seded by JSR-297 (M3G 2.0), supporting programmable shaders [3].

The mobile J2ME 3D APIs are designed to support OpenGL ES (the
M3D scene graph must be renderable with OpenGL ES functionality), but
are in principle independent of the implementation of the underlying ras-
terization interface. Anyone implementing a JSR-184 is free to provide its
own low-level OpenGL ES compatible rasterizer. However, in the pres-
ence of a 3D hardware accelerator, the manufacturer is most likely to pro-
vide a standardized rasterization API, such as OpenGL ES, and the use of
a proprietary solution would not be able to benefit from the hardware. For
example, Superscape’s implementation of JSR-184, the Swerve ES client,

1Fathammer is now part of Telcogames.
2Hybrid Graphics is now part of NVidia Corporation.

MOBILE THREE-DIMENSIONAL CITY MAPS 15

utilizes OpenGL ES for hardware rendering but a proprietary rasterizer for
optimized software rendering [52].

Most mobile phone and PDA manufacturers, including Nokia, SonyEr-
icsson, Motorola, Samsung, Dell, AMD, NVidia, Intel, Texas Instruments
and IBM are members of the Khronos Group, supporting OpenGL ES.
The most notable industrial body not participating in Khronos Group is Mi-
crosoft, which supports its proprietary Direct3D Mobile. M3G is being
developed within the Java Community Process.

2.3 Mobile networking

Mobile networks provide data connections over cellular networks, where
each radio cell is served by a base station. The implementation of the phys-
ical layer (the communication network) is invisible to an application devel-
oper utilizing the Internet Protocol Suite [28, 125]. Figure 2.1 presents the
four Internet protocol layers, where a developer can venture with the higher
level protocols, such as HTTP [19, 60], FTP [128] or SSH [166] of the
Application Layer, or create proprietary application protocols directly over
TCP [126] or UDP [127] of the Transport Layer.

The communication layer of cellular networks can utilize several avail-
able technologies, such as General Packet Radio System (GPRS), its update
Enhanced Data rates for GSM Evolution (EDGE), or the more modern Uni-
versal Mobile Telecommunication System (UMTS) and its enhancements
such as High-Speed Downlink Packet Access (HSDPA). The GPRS/EDGE
belong to the “2G” family of cell technologies, and UMTS/HSDPA to “3G”
technologies. EDGE and HSDPA are also called “2.5G” and “3.5G”, respec-
tively. While the maximum downlink speeds of the recent HSDPA instal-
lations reach 3.6Mbit/s, the characteristics of the connections vary greatly
depending on the network load, connection quality and the capabilities of
the mobile phones. Cellular network characteristics have been examined in
publications P2 and P5.

Figure 2.1: The Internet protocol stack. A developer can utilize existing
higher level protocols, or create custom protocols using TCP and UDP.

16 MOBILE THREE-DIMENSIONAL CITY MAPS

3 ELECTRONIC MOBILE GUIDES AND 3D MAPS

This section provides a look into a selection of mobile guide projects and
products, with emphasis on implementations applying 3D visualizations.
The author of this thesis was involved with two of the projects discussed in
this section, namely TellMaris and Between in the role of a project manager,
responsible of technical issues and system design at TKK. These projects,
especially TellMaris, had a significant influence on the work resulting in this
thesis.

3.1 Early work

The evolution of pocket digital assistants with graphical user interfaces in
the later half of the 1990s signaled an increasing interest in the possibil-
ities of digital mobile guides. Original research on context-aware mobile
computing applications had already taken place at Xerox PARC with the
PARCTAB prototype [138]. Influenced by this and other related work of the
time, such as the InfoPad project [90], Abowd et al. launched the Cyber-
Guide project [5] (1997, Georgia Institute of Technology). CyberGuide was
the first real attempt on creating a functional mobile guide based on location
and context, supporting maps, information access, positioning and commu-
nications, both outdoors and indoors (see Figure 3.1 for CyberGuide’s user
interface).

Figure 3.1: The user interface of the first mobile guide, CyberGuide, already
provided a map interface and textual location-based information (from [5]).

CyberGuide was followed by a number of projects with varying ap-
proaches. GUIDE by Cheverst et al. (2000, University of Lancaster) was a
web browser -based navigation system for tourists utilizing a Fujitsu Team-
Pad 7600, a tablet PC with a gray-scale transreflective screen with a WLAN

MOBILE THREE-DIMENSIONAL CITY MAPS 17

(Wi-Fi) connection, for the city of Lancaster [38]. GUIDE featured infor-
mation retrieval, navigation of the city using a map, creating and following
a tour, and messaging via text messages. LoL@ by Pospichil et al. (2002,
Forschungszentrum Telekommunikation Wien) was also a web browser -
based tourist guide, splitting application logic between clients and a server
[124]. The clients (terminals) ran simple applets, while servers were trusted
with more demanding computations (coordinate transformations, routing,
map preparation, media streaming). The maps of LoL@ were generated at
server side, providing two scales, an overview map and a detail map, “to
overcome the limitations of the small display” [124]. LoL@ used HTTP
and XML for communications, omitting SOAP due to the foreseen high
protocol overhead, referring to the work of another mobile guide, CRUM-
PET [155, 123]. The LoL@ developers implemented the terminal on top of
a web browser “to minimize the memory footprint of the application” [124].
The system only ran on laptops.

3.2 Mobile 3D map interfaces appear

Baus, Krüger and Wahlster (2001-2002, University of Saarbrücken) de-
veloped an indoor and outdoor navigation system, REAL, where the research
focus was on providing visualizations and guidance suited for varying tech-
nical and cognitive resources [15, 16]. The indoor system utilized a hand-
held computer, which received content via infrared links, while the outdoor
system was based on a notebook computer and a “clip-on” wearable dis-
play by MicroOptical. REAL trusted a single centralized server to produce
all presentations on the fly, including selection and preparation of content,
based on the available client side resources. The hybrid system was stated to
“provide way descriptions that are consistent over different output media”.
The outdoor map visualization was sketch-like, with navigational instruc-
tions given by arrows supported by spoken directions (see Figure 3.2). The
indoor 3D representations (images), again rendered at server side, are pre-
sented in Figure 3.3.

Figure 3.2: Map visualizations of the outdoor REAL system for a wearable
“clip-on” display (from [16]). The size of the position marker depends on
positioning accuracy, and the view scale on user’s speed.

Krüger et al. developed the REAL system further to the BPN (BMW
Personal Navigator) [85] (2004). The system continued to address issues of

18 MOBILE THREE-DIMENSIONAL CITY MAPS

Figure 3.3: 3D visualizations of the REAL system for a “clip-on” display
(left) and a PDA (right) (from [16]). Both visualizations were rendered at
server side and sent to the client.

varying situations and capabilities, from desktop PCs to cars and pedestri-
ans. This time, the system included client side rendered 3D graphics using
the ParallelGraphics Cortona VRML browser, which was “selected from
several 3D engines”. The rendering was performed in three passes: 1. A
bottom layer with a pre-rendered map (a texture) 2. 3D landmarks and 3.
Meta-graphical elements such as arrows and markers. The device, an HP
iPAQ 54001 was reported to load a scene of five untextured landmark build-
ings (appr. 50 triangles each) and 8 1024x1024 ground map textures in 10
seconds, and render it with an average rate of 5fps (see Figure 3.4). The
buildings were accompanied by bitmap icons (14kB each). A larger model
of 700 triangles with an uncompressed size of 85KB took 60s to load, and
was rendered at 2–4fps, but “frame dropouts” increased when markers were
included in the view. Increasing the number of landmarks and adding a more
complex speech grammar for the system’s speech recognition system soon
led to problems with insufficient memory.

Figure 3.4: 3D visualizations of the BMW Personal Navigator for pedestri-
ans (from [85]).

1The HP iPAQ 5400 contains at least 64MB of SDRAM memory and runs an Intel XScale
processor at 400Mhz [50].

MOBILE THREE-DIMENSIONAL CITY MAPS 19

3.3 Textured 3D maps

3D City Info
Probably the first real attempt at creating a realistic mobile 3D map was
the 3D City Info by Rakkolainen et al. (University of Tampere) in 2001
[133]. The mobile system utilized a 3D VRML model of a city center cre-
ated earlier for a PC platform [8]. The model was simplified to some 5100
polygons, containing 120kB of geometry and 5MB of textures. With textur-
ing, the models looked “highly realistic”. The project used an HP Jornada
548 as the rendering client2. The frame rate with a Cortona CR VRML
browser was one frame every 8 seconds (0.125fps), with severe problems of
running Java 2. The authors expected these problems to “be removed gradu-
ally, as hardware improves”. The related field experiments were performed
with static web pages on a PDA. Later, further experiments were performed
with a laptop version, with subjects in a car due to the heavy equipment
[157, 158]. Some of the authors, such as T. Vainio, have continued research
on mobile navigation and 3D maps, but without experiments on functional
PDA platforms [156].

The TellMaris Suite
The EU funded TellMaris project (2001-2003) focused on boat tourists, who
would utilize laptop-based 3D maps on the sea, and mobile 3D maps within
harbor cities. The project created several 3D map prototypes with different
approaches.

Sintef’s TellMaris OnBoard Sintef (Norway) built a TellMaris OnBoard
application using Java 3D [72] facilitating 3D navigation and information
search, applying aerial photographs as ground textures [86]. The informa-
tion search component contained weather information. The interface pro-
vided a large 3D view and a smaller 2D view (“sail view” and “top view”).
The software ran on laptops and desktop PCs.

Nokia’s TellMaris Guide Nokia developed a TellMaris Guide (TG), a
mobile 3D city guide that run on a Nokia Communicator 92103 using a
proprietary NokiaGL rasterizer, similar to OpenGL v1.3, but with limitations
[24]. TG’s user interface was designed by Katri Laakso (of Nokia) and
implemented by Gerard Bosch (of Nokia) based on a textured model by
Pavel Syssoev (of TKK). The system utilized a simple regular subdivision
scheme, where the 3D city model was split to a regular grid of 100x100m
cells using macro scripts in the modeling software, 3D Max, and where each
cell was associated with an aggregated texture [24]. The system was able to
run at a few frames per second using texture resolutions of 128x128 per cell
(texel sizes of 1–2m), rendering the nearest 9 cells4. The system utilized
the modeling software’s native binary format, the .3DS format for (local)
model storage, avoiding for example X3D, where “XML encoding would

2An HP Jornada 548 has 32MB of RAM and a 133Mhz 32-bit Hitachi SH 3 processor [49]
3Nokia 9210 has a 32bit ARM9 with 2MB user memory and 8MB execution memory [24]
4On an emulator, the TG achieved 10–11fps [24]

20 MOBILE THREE-DIMENSIONAL CITY MAPS

have lead to a huge increase in the size of our model” [24]. Figure 3.5
presents the Nokia TG view.

Figure 3.5: Nokia’s TellMaris Guide (screen shot from an emulator).

Fraunhofer IGD’s TellMaris Guide Arne Schilling from Fraunhofer
IGD developed a version of the TellMaris Guide for PDAs using the Pock-
etCortona VRML library with Java. The authors report that “The rendering
performance was just sufficient in order to navigate in models with approx.
0,4 square kilometers, comprised of a terrain with 20 m resolution, a block
model and textured buildings” [139]. The platform was a HP iPAQ H3870
with a 266 Mhz processor. The textured buildings were the same as used
in Nokia’s TG, but rendering did not apply the cell-based space subdivision
scheme. Further development or porting to newer platforms was hindered
by discontinuity of support for the version of Java the IGD team had been
using [139].

The authors observed the following limitations, which need to be con-
sidered when developing 3D maps [139]:

• “The rendering capabilities depend on the amount of memory and the
chipset... it is expected that the rendering capability will grow very
fast in the future as it did on PCs and laptops in the past.”

• “The network bandwidth is one of the bottlenecks... UMTS will in-
crease the transfer rates significantly” ... “Specialized compression
techniques can reduce the amount of 3D data [48] which enables the
transmission of 3D models combined with videos and other multime-
dia content.”

• “The small screen size and the restricted interaction possibilities re-
quire new metaphors for exploring and navigating in 3D maps. The
Graphical User Interface has to concentrate on the most relevant in-
formation allowing for these technical restrictions.”

TKK’s Mobile 3D Archipelago The last implementation of the TellMaris
family of 3D maps was TKK’s Mobile 3D Archipelago, a 3D map suited
for archipelago areas. It was implemented with OpenGL, where a topo-
graphic data set (appr. 235MB of text files) was processed and optimized
for 3D rendering, attaining the original granularity, yielding appr. 14MB

MOBILE THREE-DIMENSIONAL CITY MAPS 21

of binary files, including textures. The system featured land categorization-
based template ground textures and static location-based information. The
case area covered 3500km2, and was divided to a regular grid consisting
of 1x1km2 cells. Location-based information and features, including sea
marks and buildings, were rendered with billboards5 using a single aggre-
gate texture. The first version was ported to a PDA in Spring 2003, applying
Hybrid Graphics’ Gerbera rasterizer, which later became the first official
OpenGL ES implementation [67]. The final version was implemented by
the February 2004, but reported rather late, in 2007 [113]. On a Dell Axim
X30 PDA with 624MHz XScale processor and 64MB of memory, the map
ran over 10fps, using 10MB of memory (visualizing a 3x3km2 area using 9
textures of 256x256 pixels each that roughly matched the original map data
accuracy). On a Dell M60 laptop with NVidia Quadro FX Go700 graph-
ics hardware, the map ran over 200fps at 1024x768 screen resolution, using
32MB of memory. Figure 3.6 presents the mobile version on a Fujitsu-
Siemens PocketLoox, where it ran at 5–8fps6. The data was stored locally.
No individually textured buildings were included in the system.

Figure 3.6: TKK’s Mobile 3D Archipelago.

Fraunhofer-IGD’s Mobile 3D Viewer
Blechschmied, Etz and Haist (Fraunhofer Institut Graphische Datenverar-
beitung) presented a mobile 3D city viewer based on the JSR-184 rendering
API on a Nokia 6630 in 2005 [21]. The system suffered from a 2-3 minute
initialization time with local content, rendering speed of less than 1 fps, a
limitation to only a two or three low resolution textured buildings, and fre-
quent crashes.

5Billboards are images of objects that always face the viewer. See section 4.3.
6The PocketLoox has a 400Mhz XScale processor and 64MB of memory.

22 MOBILE THREE-DIMENSIONAL CITY MAPS

LAMP3D
In 2005, Burigat and Chittaro (University of Udine) presented LAMP3D,
“a system for the location-aware presentation of VRML content on mobile
devices” [35]. LAMP3D utilized the Pocket Cortona browser for viewing
VRML content, and featured information delivery and GPS support. All
information was stored locally. The authors were inspired by research by
Marvie and Bouatouch [95], binding the viewpoint close to the ground
and rendering only the buildings that are visible. They used an existing
city model, which was simplified both in geometry and texture resolution
to increase the frame rates from 1–2fps to a maximum of 4–5fps. Details
of the model, the textures, or how visibility information was determined,
were not provided. The device used was a Compaq iPAQ h39707. They
conclude that “computational limitations of current mobile devices do not
allow for a sophisticated use of 3D graphics and a trade off must be reached
between performance and quality of the representation”. Figure 3.7 presents
the LAMP3D interface.

3.4 Annotations and tracking

GeoNotes
Most mobile guide research projects have focused on navigation, where the
environment is visualized with maps, providing services for tourists with the
information pull paradigm: users ask the system What is...? and the system
retrieves the information. Similarly, positioning is used to place the user on
a spatial context, and to aid in navigation. GeoNotes (Swedish Institute of
Computer Science), started in the summer of 2000, had the goal of using
positioning information for social enhancement of the environment, where
users pushed information to it as annotations using the global coordinates
(latitude and longitude), and retrieved it by providing a position and a radius.
The Wherewhoo database was independent of the client. The system applied
social recommendation and collaborative techniques.

Between
The Between project (2001-2003; TKK/HIIT) developed, among other
things, a radar-based egocentric interface to the vicinity of the user. The
InfoRadar system was suited both indoors and outdoors, applying GPS po-
sitioning outdoors and WLAN positioning indoors8 [134]. The radar inter-
face was a bidirectional interface to the environment, where users were able
to place annotations, or read annotations placed by others. The annotations
included text and pictures. Users’ paths were also presented on the display
(see Figure 3.7).

7iPAQ h3900 series PDAs feature an Intel XScale processor running at at 400MHz, and
64MB of memory or more [51].

8InfoRadar’s indoor positioning services were implemented using Ekahau Corporation’s
WLAN positioning product.

MOBILE THREE-DIMENSIONAL CITY MAPS 23

Figure 3.7: 3D and 2D interfaces to the environment: (left) LAMP3D and
(right) InfoRadar.

3.5 Commercial products

Navitime (2007) is one of the most complete navigation systems up to date,
claiming a “total navigation support” [11]. It is suited for walking, driv-
ing, riding trains, buses, taxis and airplanes. The guidance includes maps,
itineraries, voice prompts, progress bars etc. It even includes a 3D interface,
which was designed to remedy the situations of being lost, for example after
exiting a train station. The authors state that “we need faster mobile phone
networks and more comprehensive 3D data to make the 3D interface more
usable for massive everyday use”. The system is reported to use the V3D
format, which compresses texture data “for small screen sizes” and sup-
ports shared textures. Further technical details are not provided. Figure 3.8
presents the Navitime 3D interface.

Figure 3.8: The 3D interface of Navitime [11].

24 MOBILE THREE-DIMENSIONAL CITY MAPS

Google Earth has been recently launched for the iPhone and iPod touch
platforms, providing a limited version of the desktop Google Earth. Google
views Google Earth as a browser, where the browsing paradigm has been
reversed. Instead of browsing the Web where spatial information can be
found, one browses the Earth, onto which the Web provides content [76].
The mobile version does not currently support 3D buildings. The ground is
textured using aerial photos.

3.6 Comparisons and discussion

Table 3.1 presents selected properties of the projects’ attempts at running
3D city maps on mobile devices. Direct comparison is difficult due to the
varying cases and approaches. However, most of the projects have applied
the Pocket Cortona VRML viewing library in a straightforward manner. The
high quality model of 3D City Info clearly fails to reach interactive frame
rates. LAMP3D’s restriction to ground level and use of (possibly manually
assigned) visibility lists can be argued to provide a clear increase in frame
rates. Unfortunately, no model statistics from LAMP3D has been published.
BPN did not include textured buildings. The model geometry and texture
limitations of TellMaris Guide (TG) together with a simple grid-based sub-
division and nearest neighbor cell rendering scheme allow a device with rel-
atively little computing power to reach near interactive rates. The TG frame
rates could not be verified, as only results from an emulator were available.
The subjective observation by the author of this thesis on the system was
that it yielded a few fps, being nearly interactive.

Prototype 3DCityInfo TG BPN BPN LAMP3D F-IGD 3D
Year 2001 2003 2004 2004 2005 2005
Device Jornada 548 Nokia 9210 iPAQ 5400 iPAQ 5400 iPAQ h3970 Nokia 6630
3D API Cortona NokiaGL Cortona Cortona Cortona JSR-184
Format VRML 3DS VRML VRML VRML M3G
Space sub. Scene graph Grid+NN Scene graph Scene graph (manual?)PVS Scene graph
Triangles 5100 >1000 250 700 (?) >1000
Textures 5MB 19x(128x128) 5 x 14kB

icon,
ground tex.

21 x 14kB
icon,
ground tex.

(?) >1000 3x(64x64)

Start (?) (?) 10s 60s (?) >2min
fps 0.125 a few 5 2–4 4–5 <1

Table 3.1: Properties of locally rendered 3D city map prototypes. The build-
ings of BPN were not textured, but were marked by an icon.

Of the presented prototypes, only Fraunhofer IGD’s 3D viewer claims
networked model downloading (as supported by the M3G format). The BPN
features online annotations, but only for local replay. TG provided locally
stored points of interest and a 3D arrow pointing at a goal, but no rout-
ing. BPN provided server side routing and speech recognition. LAMP3D
featured local information retrieval. Most of the prototypes featured GPS
support.

While none of the research projects reached a “full-featured” state (such
as the recent, commercial Navitime), it was not their primary goal. Those
with emphasis on 3D maps were interested in the possibilities offered by
such a representation. For example, 3D City Info defined its goal as a ques-
tion, “Would 3D graphics add value to mobile navigation and service brows-

MOBILE THREE-DIMENSIONAL CITY MAPS 25

ing?”, hypothesizing that “3D interactive environments are an intuitive and
user-friendly way to view location-based information”. Despite their fail-
ure of reaching interactive frame rates, their experiments with still images
on PDAs were encouraging: “More likely they [subjects] also recognized
their own position and the landmarks from the photo-realistic model than
from the map. The visual similarity with the reality helped them to find
the places in real life” [133]. In a succeeding study, which was performed
in a car and a laptop with interaction, Vainio and Kotala found that “the
three-dimensional model illustrates motion and changing the location more
clearly than two-dimensional map alone. The visual similarities with reality
support the participants to find the places or landmarks from the real city
environments when a user is moving from one place to another.” [157].

On the technical obstacles, Rakkolainen et al. focused on model size:
“The major problem with even medium detailed city models is their big size,
which affects both the rendering speed and the download time.” “The major
bottleneck is the data transfer... The download time could be shortened with
many optimizations, e.g., by providing a model with no textures, but then
the visual quality is partially lost. Level of details improves the rendering
speed but does not affect the download time.” [133]. On rendering issues,
the authors refer to various progressive level-of-detail techniques, such as
Hoppe’s Progressive Meshes [70], and mention that “model simplification,
geometry smoothing or other techniques could be used”. They also look for-
ward to X3D, the follow-up of VRML, and its players, which they consider
to be “particularly suitable for mobile devices” (the research of this thesis
cannot support this claim). Burigat and Chittaro had an existing model,
but that ran only at 1–2fps, so they “simplified some of the most complex
objects, removing unneeded geometries and deleting some elements of the
representation”, and “lowered the resolution of textures and, wherever possi-
ble, substituted unnecessary ones with the use of the VRML Material node”
to reach their maximum 4–5fps [35]. They also limited the viewpoint to
ground level and utilized ground level visibilities to some extent.

From the field experiments performed with TellMaris Guide [84], sev-
eral positive results were recorded even though the experiments were per-
formed with a laptop: “Users’ attitudes towards the prototype were very
positive and three fourths of them would like to use this kind of service
rather than 2D paper maps and guidebooks.” “Users were able to recognize
real world objects from the 3D model and use these landmarks as naviga-
tional aids.” Many users also reported that the 3D map was “more fun” to
use. The authors did not take all positive feedback as granted, assuming that
“there was certainly a novelty factor involved”. There was also feedback on
the model quality: “Some users claimed that non-textured buildings were
hard to distinguish from each other, but textured buildings, especially one
white house, were considered easy to recognize.” Furthermore, “According
to the users the 3D model should be more detailed and realistic and the tar-
get [in navigation tasks] should be highlighted in it”. Finally, the authors
hypothesize that “The more realistic the visualization, the more demanding
it is in terms of technical resources. But the resulting realism also enables
the user to recognize objects from the rendering in the real world, which is
a distinct advantage over all other means of presentation.”

26 MOBILE THREE-DIMENSIONAL CITY MAPS

4 A STATIC MOBILE 3D MAP

This section describes computer graphics optimization approaches to ren-
dering large, static scenes. In such a scene, the viewpoint can be moved
around, but the objects remain stationary. Furthermore, a large scene does
not fit in the graphics subsystem. In the end of the section, the solutions for
a 3D engine suited for navigating in urban environments are presented, elab-
orated from publication P1. The rendering speed results with 3D hardware
enabled mobile devices are from publication P2.

4.1 Concepts

Output sensitivity
Consider rendering a very large and detailed scene, such as an entire city,
and the screen of a mobile device. Despite the complexity of the scene and
the computations that take place during rendering, the end result is placed
onto that relatively small screen. With a reasonable field-of-view (FOV),
most buildings lie off the screen. Of those that are in view, only a part of the
façades are visible, as roughly half are behind the buildings, and many are
occluded by nearby buildings, for most camera angles. Finally, if the scene
is projected with the perspective transform, the buildings far away contribute
very little to the scene in screen space. A small building on the other end
of the city might contribute even less than a pixel to our low resolution
frame buffer. The same would apply to any small detail sufficiently far from
the camera. Would it then be appropriate to cull these almost undetectable
details away? Would it be appropriate to represent the remaining objects
with a level of detail that matches their size on the screen? Now, if our scene
would consist only of such a description, wouldn’t we be able to render it
even with the tiniest of computational resources?

The situation described above, where rendering speed is dependent on
the size of the output, rather than the input, is known as being output sen-
sitive. In practice, the update rate would depend on the number of visible
objects and their level of detail – but in the extreme case, on the number of
pixels in the frame buffer. Sudarsky and Gotsman provide a definition for
output sensitivity [149]:

A visibility algorithm is called output sensitive if its runtime per frame
(excluding any initializations) is O(n+ f (N)), where N is the number of
primitives in the entire model, n is the number of visible primitives and
f (N) � N. f (N) is the (inevitable) overhead imposed by the model.

Visibility culling
Reaching an output sensitive situation requires an efficient algorithm to cull
away all parts of the scene that do not contribute to the current view. Figure
4.1 presents an intuitive view to the basic methods, namely frustum culling,
where objects lying outside the current view frustum are culled; back-face
culling, where surfaces pointing away from the virtual camera are culled;

MOBILE THREE-DIMENSIONAL CITY MAPS 27

occlusion culling, where objects or surfaces that are occluded by other ob-
jects closer to the virtual camera are culled; and in contribution culling,
those objects whose contribution to the image is insignificant.

Output sensitivity is a key concept in optimizing a static scene for effi-
cient rendering. However, achieving such a situation is quite complex, and
case dependent optimizations become essential. The various culling tech-
niques are discussed in section 4.2 in more detail.

Figure 4.1: Culling techniques to reach output sensitivity.

Classification of culling algorithms
Visibility determination algorithms may yield results of varying accuracy,
and can be categorized as follows [107]:

• Conservative. The result is overestimated; no truly visible objects are
discarded. There are no artifacts caused by the visibility calculation,
but the set of visible objects may be larger than necessary.

• Exact. The result exactly matches the truly visible objects. No hidden
objects are included, nor are any visible objects discarded.

• Approximate. The result is constructed as an approximation, where
some truly visible objects may be discarded, and some hidden objects
included.

• Aggressive. The result is underestimated; it does not include any hid-
den objects, but some truly visible objects may be discarded.

Visibility can be generally determined for a single viewpoint or for a
larger region of space. The algorithms are called, respectively, from-point
and from-region (or from-cell) algorithms [107]. Similarly, depending on
the atomic target of the visibility determination, they can be called to-region
(to-cell) and to-object. An algorithm determining the visibility of objects
within a given region (cell) seen from another region can be called a cell-to-
cell algorithm.

28 MOBILE THREE-DIMENSIONAL CITY MAPS

Out-of-core rendering
When the scene to be rendered exceeds the capabilities of the graphics sub-
system, the renderer needs to swap parts of the scene out and read new
parts in from main memory or external media. Computational methods that
depend on utilizing external memory are called out-of-core algorithms, ap-
plicable to a range of fields within computer sciences [4]. In the case of ren-
dering urban 3D environments, the resources of mobile devices can clearly
be expected to be insufficient (see Chapter 2), and such methods become a
necessity. Out-of-core algorithms are discussed in Section 4.4.

4.2 Culling techniques for static scenes

Image space visibility
Image space visibility determination, or hidden surface removal (HSR) was
one of the major research topics of computer graphics in the 1970s. Several
algorithms were suggested [151], until the Z-buffer algorithm by Ed Cat-
mull [37] became the de facto method. The Z-buffer method asserts that
only the closest pixels of a scene end up in the frame buffer, resulting in
a correct rendering of the scene. However, it does not solve the issue of
scalability: larger scenes still require more computations, slowing down the
update rate. An improvement was provided by Greene et al. with the hier-
archical Z-buffer (HZB) [66]. The authors use dual data structures, an octree
in object space, and a Z-pyramid in image space. The scene is subdivided
onto an octree by starting from the root node (a very large virtual cube)
encompassing the entire scene, then subdividing recursively until each leaf
node contains a “sufficiently small” number of primitives. This hierarchy is
then utilized in object-space visibility determination: if a node is occluded,
so are its children (its sub-cubes). To speed up the node visibility test, a
hierarchy of Z values is used, where the finest level is the original Z buffer.

Other conservative image space visibility determination algorithms in-
clude Zhang’s hierarchical occlusion map (HOM) [167]. HOM assembles
a set of potential occluders at pre-process stage, renders them onto the frame
buffer at run time from the current viewpoint and scales them to a hierarchy.
The bounding boxes of scene objects are then tested against this set. The di-
rectional discretized occluders (DDOs) algorithm by Bernardini et al. pro-
vides another image-space solution with object and image space hierarchies
and pre-generated view-dependent occluders [18]. Image space algorithms
depend on reading back the frame and Z buffers, causing a major bottle-
neck. The situation has improved to some extent with hardware support, for
example by the HP Occlusion Query extension to OpenGL [142].

Exact 3D visibility
An optimal output sensitive situation would not be just conservative, but ex-
act. Naylor suggested using a binary space partitioning (BSP) tree [61],
constructed using particular heuristics, for describing the scene and per-
forming a 3D-to-2D tree projection with ordered set operations on the poly-
hedral faces, leading to an exact, output sensitive situation [106]. The
weaknesses of this algorithm have been pointed out to be the dependency

MOBILE THREE-DIMENSIONAL CITY MAPS 29

of the particular BSP tree generation heuristics and the lack of real world
BSP-tree-based models [150], lack of practical performance [64], and as
Sudarsky and Gotsman point out [150], it is not generally feasible to trans-
form the more generally available boundary representation models (B-reps)
to BSPs due to the requirements imposed on the models. Other exact vis-
ibility solutions can be found from the work by Nirenstein et al. [107]
and from the aspect graphs arising from the fields of computer vision and
photogrammetry [122, 58].

Approximate visibility and contribution culling
Approximate visibility algorithms are used to replace conservative or exact
algorithms for efficiency reasons, to enable faster rendering with the penalty
of allowing perceivable artifacts to emerge. For example, the prioritized-
layered projection (PLP) algorithm applies a probabilistic estimate on the
visible primitives for a given viewpoint, up to a user-specified budget [81].
If the resulting artifacts are limited to only small details, they may not affect
much the viewing experience. Andújar et al. define such a set of objects
that contribute only a small number of pixels to the view as the hardly visi-
ble set (HVS), a subset of the potentially visible set [9]. At run time, objects
from the HVS are discarded up to a user-bounded threshold. This technique
is also known as contribution culling. Contribution culling methods have
been applied for view-dependent rendering of urban environments, observ-
ing that typically the rendering quality is not degraded notably [119].

Architectural walkthroughs
Aside from the theoretical frameworks, researchers also approached the vis-
ibility problem from the viewpoint of practical cases. Architectural walk-
throughs were considered important applications in the late 1980s, charac-
terized by interaction and a first person view. In early experiments, scenes
of 5000–8000 polygons were rendered every 3–5 seconds, but increased to
9 updates per second by advancing rendering systems and separating the
model database to a “Master Model” and a “Working Model”, a specialized
subset that was used for fast rendering [30]. Further work in this direction
resulted in the concept of a potentially visible set (PVS) by John Airey [7],
and Seth Teller and Carlo Séquin [153, 152]. The PVS is a list of visible
objects from a certain viewpoint, or view cell. The visible objects can be
contained within a similar object space cell. In an indoor environment, the
cells can be naturally divided to rooms and corridors, connected by portals
(doors). These solutions depend on a pre-process that generates the visibil-
ity lists. Airey provided several “sampling” approaches, which are generally
considered not to guarantee conservative solutions [45], while Teller’s work
included a conservative, analytical but also computationally more expensive
solution. In Teller’s cell-to-cell visibility schemes, all objects that belong
to a certain cell would be considered visible, if the cell itself is deemed
visible, unless further (cell-to-object or eye-to-object) examinations are per-
formed [62]. Later, Luebke and Georges [92] claimed that for dynamic
cases, where the walkthrough would be a part of an interactive modeling
software, pre-process is not a viable option. Their online eye-to-object solu-
tion projects the portals to 2D cull boxes. During scene traversal, each suc-

30 MOBILE THREE-DIMENSIONAL CITY MAPS

cessive portal is added to the aggregate cull box with simple comparisons.
Cell contents (objects) are tested for visibility by projecting their bounding
boxes to the aggregate cull box.

Figure 4.2: The potentially visible set in a 2D indoor scene (from [152]).

Urban walkthroughs
Urban environments pose another case of densely occluded environments.
In this case, the environment is open, where occlusion is formed from sev-
eral individual objects, such as buildings. At street level, the nearby build-
ings occlude most of the city, and give rise to another class of applications,
namely urban walkthroughs. Nadler et al. [105] provided an analysis of
street-level (2D) visibilities in urban environments, yielding a mathematical,
probabilistic model for aiding urban walk-through algorithm optimizations.
Wonka and Schmalstieg [163] made a less theoretical analysis of the prop-
erties of urban scenes using European cities, noting how the environment
consists of mainly a ground mesh with different objects, such as buildings,
trees, traffic signs, etc., placed on top of it. They also note that common
views are blocked by a small set of buildings, but there are also larger areas
such as railway stations where occlusion is still high, but the occlusion is
made up of a larger number of occluders. They exploit the “2.5D” prop-
erty of the environment to render occluder shadows with graphics hardware
to 2D bitmaps, cull maps, where the object space is divided to a regular
grid. For each frame, they select the occluders, draw the 2D cull maps, and
traverse the cull map to create the PVS.

Cohen-Or et al. [46] partition the view space to cells at street level, and
for each potentially visible object search for a single strong occluder, which
could completely hide the object from the view cell. If such is found, the
object is culled and is not included in the conservative PVS. The authors
also demonstrated the system for a 3D case with spheres. In their follow-
up paper [164], Wonka and Schmalstieg developed a conservative from-cell
occluder fusion method applied to urban environments with precomputed
visibility. They solved the unconservativeness problem inherent to sam-
pling systems by observing that if the occluder is shrunk by ε, the resulting
visibility is conservative within the distance of ε from the sample point.

MOBILE THREE-DIMENSIONAL CITY MAPS 31

Now, at pre-process time, by suitable selection of ε and sample points, they
could guarantee the conservativeness of the resulting PVS. Their algorithm
was able to fuse even disjoint umbrae, and the view space (the streets) was
partitioned by a constrained Delaunay triangulation.

Marvie and Bouatouch followed the tradition of urban walkthroughs in
[95], suited for VRML viewing, where they limited the navigation space to
a joined set of convex cells, and extended the VRML format by this struc-
ture. Their system provides both cell-to-object and cell-to-cell visibilities.
In the former case, objects are mainly buildings, and in the latter, the object
space cells contain all objects small enough to fit in the cell. The authors
call the combined visible set a hybrid PVS. They also discuss memory man-
agement, where parts of the model can be discarded from memory, if they
are not referenced to. The system featured progressive downloading, where
the content is transferred when needed (when appearing in the PVS), or pre-
fetched. However, the system required the contents of a cell’s whole hybrid
PVS to be transferred before navigation in it could start. The system relied
on VRML extensions, to be run on VRML viewers.

View frustum culling
Many of the occlusion culling methods described in the previous sections
perform view frustum culling (VFC) as part of the occlusion culling pro-
cess. However, if an implementation requires a separate VFC, hierarchical
methods have been proved efficient. For example, Möller and Haines [101]
presents a general, hierarchical VFC algorithm. We assume that a scene is
arranged into a directed acyclic graph (DAG), a scene graph, where the ge-
ometry is stored in the leaves, and nodes store pointers to its children [42].
Leaves and nodes are enclosed by virtual bounding volumes. The bounding
volumes can be compared to the view frustum starting from the root node,
discarding entire subtrees if a node lies outside the frustum. They also pro-
vide efficient intersection tests for frustum against bounding volumes, such
as bounding spheres and bounding cubes. [12] provides mechanisms for
further speed-ups based on frame-to-frame coherence (temporal coherence)
where VFC results are cached, and modified by the movement of the view-
point, which can provide a “generous speed-up in comparison to a naïve
VFC”.

Back-face culling
Any flat polygon can be viewed from both sides. However, when polygons
are used for constructing objects, the insides seldom need to be rendered. In
this case, back-face culling can remove the unnecessary faces. The facing
direction is defined by polygon winding, the order in which the polygon’s
vertices are specified. The back-face culling test can then be implemented
by computing the normal of the polygon’s projection in screen space, and
testing for its sign [101]. Back-face culling reduces rasterization, but in-
creases geometric computations. 3D programming interfaces commonly
support back-face culling [22]. However, when the back-face test is per-
formed in the graphics pipeline and not at application level, the geometry
and its related detail, including textures, need to be loaded to the graphics
subsystem, increasing memory consumption.

32 MOBILE THREE-DIMENSIONAL CITY MAPS

4.3 Level-of-detail methods

Due to perspective projection, objects in the distance appear smaller on the
screen than those in vicinity. Level-of-detail (LOD) techniques exploit this
fact to optimize the representation of objects and their detail to suit the esti-
mated screen size. [162] provides an early description of building an “image
pyramid” out of a set of scaled textures, successively dividing the texture by
two until the smallest required size is reached (ultimately, 1x1). When ren-
dering a scene, the most suitable scale can be selected, matching the size on
the screen. The image pyramid is also called a mipmap. If a surface is tilted
along the view direction, the matching LOD might differ in the closer and
farther ends of the surface. When different LODs are blended during ren-
dering, this is called trilinear interpolation. This requires the entire image
pyramid to be held in the memory.

Similar pyramidal data structures can be developed for geometry. [41]
and the thorough [93] provide an extensive view to the related technologies.
View-independent techniques generate a set of objects independent of view-
ing angle, while view-dependent algorithms consider the angle as well. A
common problem is the “popping” artifact, which happens when the LOD
version of an object changes. Hoppe developed a method for avoiding this
with progressive meshes, where the mesh is progressively simplified or re-
fined with the edge collapse and vertex split operators [70].

Impostors are flat images of objects that can be used to represent entire
objects. A billboard is such an image, always oriented toward the viewer.
Pasman and Jansen compared simplification methods using a mathemati-
cal model for estimating image quality resulting from different simplifica-
tion methods, including geometric and image-based techniques [121]. Their
case was an augmented reality application, where object representations
would be streamed from a server, computing the view dependent error on
geometric distortion. As an example of the results, they demonstrate that
an object of the size of one meter could be replaced by an impostor from
farther than 15 meters. Sillion et al. discuss the use of impostors for re-
placing building geometry in urban walkthroughs [145]. They also provide
examples of using the depth information of the actual geometry to create a
triangulated approximation surface, which would not suffer from the paral-
lax effect due to viewpoint movement as much as normal, planar impostors.

4.4 Out-of-core algorithms for 3D rendering

Continuing on the research on architectural walkthroughs, Funkhouser,
Séquin and Teller implemented a system integrating levels-of-detail and
visibility with real time memory management and a refresh algorithm for
“choosing which objects to render at which levels of detail in each frame”
[62]. Their display database system contains a segment index holding every
objects’ id, type, size and pointers to either memory or a file. The segments
are considered just chunks of bytes with a size, with the same format in
memory and file to allow fast swapping. To minimize file I/O latencies, ob-
jects belonging to a same cell (in object space) are grouped contiguously
in the database file. Furthermore, they are sub-grouped according to their

MOBILE THREE-DIMENSIONAL CITY MAPS 33

LOD. Objects straddling a cell boundary are stored redundantly for each
cell. At run time, their refresh algorithm fetches visible objects, and chooses
a LOD version with sufficient detail for the current view. They also im-
plemented pre-fetching, considering that “frame updates might be delayed,
waiting for objects to be read from disk before they can be rendered”.

Funkhouser, Séquin and Teller intuitively developed application level
control for data management to optimize their system. Later, Cox and
Ellsworth demonstrated how relying on operating system’s abilities for vir-
tual memory management leads to “egregious” performance, and how appli-
cation level management can indeed be used to solve the problem of out-of-
core visualization, significantly improving performance [54]. In their termi-
nology, in out-of-core rendering, the main memory (but not the memory of
the graphics subsystem) is sufficient to hold the entire data set. When main
memory becomes insufficient, they call the situation remote out-of-core vi-
sualization1, where data is fetched from external medium, possibly from a
file server. Out-of-core algorithms have later been a central part of render-
ing large data sets, such as terrain [88], and are often accompanied by pre-
fetching algorithms [53]. The vLOD system by Chhugani et al. was one of
the first systems providing efficient walkthroughs of large models with low
CPU load, combining preprocessed 3D visibilities and preprocessed LOD
selection with efficient encoding mechanisms to yield interactive display of
out-of-core models [39].

4.5 A 3D map engine for urban environments

Engine requirements
Of the early systems, only LAMP3D and Nokia’s TellMaris Guide applied
spatial subdivision, but not to the extent computer graphics optimization
methods in previous sections have been discussed2. Of these methods, ur-
ban walkthroughs would best suit our case. However, would they be suffi-
cient for a navigation application, with the common limitation of the view-
point to the street level? Would this limitation be supported by users? We
postulate that this can only be verified by navigation experiments on the
field with real users. Therefore – until proved otherwise – our mobile 3D
map should be able to provide free browsing in the entire 3D space, while
providing interactive frame rates.

Our engine should also provide a full support for a 3D navigation user
interface. Discussion on navigation related research is presented in section
6.1. From the discussion, it is obvious that landmarks pay a significant
role in navigation. Therefore, the engine needed to have direct support for
them. We therefore chose to render landmarks even if they lie beyond the
far plane of the view frustum. Navigating too close or through virtual world
objects has also been identified as a major source of disorientation [146].

1Hesina and Schmalstieg coined the term ’remote rendering’ to describe remote out-of-
core rendering [69]. However, remote rendering has later been used to describe a situation
where the rendering is performed remotely, and final frames sent to the clients [132, 25].

2The authors of LAMP3D acknowledge the work by Marvie and Bouatouch [95], but similar
to Marvie and Bouatouch, the system was dependent on the capabilities of VRML viewing
libraries.

34 MOBILE THREE-DIMENSIONAL CITY MAPS

Therefore, collision avoidance should be applied. Navigation features that
are not related to 3D rendering are discussed in section 6.

Visibility culling for a 3D city map
Publication P1 presents our static 3D map engine. Considering the lack of
resources, especially memory and CPU, the engine needed to be lightweight,
mainly utilizing look-up tables instead of run time computations. This is
exactly what from-region precomputed potentially visible sets provide: lists
of potentially visible objects from a given view cell. In our case, neither the
indoor spatial subdivision to rooms and corridors (building walkthroughs),
nor the 2D or “2.5” division to cells at street level (urban walkthroughs)
would suffice. We needed the view space to span the entire 3D volume, so
we chose a 3D regular grid subdivision.

As demonstrated by urban walkthroughs, a PVS solution provides sig-
nificant savings at street level, but an overview of a city would not be so
beneficial. There, a PVS would mostly cull geometry that could be dealt
with in the graphics pipeline with back-face culling. However, let us con-
sider our resources. For back-face culling, geometry and the textures need
to be loaded in the graphics subsystem. Furthermore, back-face culling
requires online computations for each triangle, while a PVS simply never
loads the occluded geometry. Similar savings are gained by hierarchic frus-
tum culling. Only the bounding volumes of buildings and, hierarchically,
surfaces, are tested before the actual model data needs to be loaded in.

Our algorithm for the PVS generation pre-process is approximate to sim-
plify the implementation, but aims for conservativeness. The scene is ren-
dered from the corners and center of each cell to every direction using color
coding for objects, extracting the colors, mapping them back to IDs, and
combining onto a visibility list (a view cell is visualized in Fig. 4.6 on page
42). The pre-process can be shared over a network, where multiple pre-
process clients render the scene, submitting the resulting visibility lists to
the server.

Publication P2 presents an additional culling scheme, contribution
culling. This is implemented by calculating the contribution of each ob-
ject in pixels during the pre-process, and including only those above a fixed,
minimum threshold. This adds control over the aggressiveness of the pre-
process.

We trusted in field experiments to provide feedback on the possible arti-
facts caused by the approximate visibility sampling algorithm and the con-
tribution culling.

Compressing visibility lists
A preprocessed PVS approach generates visibility look-up tables where po-
tential visibility can be resolved for individual polygons, polygon aggregates
such as meshes, entire objects, their bounding volumes, or object groups and
their bounding volumes. The smaller this atomic unit, the more exact the
list. However, the cost of this exactness is the larger size of the lists. Van de
Panne and Stewart discuss effective visibility compression techniques and
offer one solution [159]. They consider a look-up table with view cells on a
row, and potentially visible polygons on a column. By merging similar rows

MOBILE THREE-DIMENSIONAL CITY MAPS 35

and columns, they provide a lossy compression of the table. By creating
new aggregate rows and columns, they provide a lossless clustering, com-
pressed by run-length encoding (RLE). Bouville et al. have later improved
this algorithm by applying row and column pivoting operations to increase
the size of the clusters, and applying more efficient compression algorithms,
such as the JBIG [26].

Rendering individual triangles is usually more costly than for aggre-
gates, such as triangle strips or triangle fans3 [101]. Van de Panne and Stew-
art mention that polygons could be “pre-clustered” manually given some
knowledge of the scene. We chose to do this at modeling phase, using the
façades and rooftops as atomic objects, meshes. The external knowledge
utilized here is the common rectangular shape of buildings.

The scheme by van de Panne and Stewart has yet another, innate prob-
lem. Their encoding algorithm breaks the natural coherence between the
visibilities of adjacent view cells present in a 3D space subdivision4: the
view cells are arranged to a one-dimensional row, and the 3D adjacency
cannot be recovered fully with 1D operations, such as Bouville et al.’s row
and column pivoting. Therefore, as described in publication P1, we chose to
develop a compression scheme based on a tree structure, where a root cell
includes a full list of visible objects, and the lists of the leafs (adjacent cells)
only store the differences. A set of rules was established to limit the cluster
size, such as a maximum amount of visibility difference, and a maximum
distance from the root cell. Currently, we pack the difference lists with run-
length encoding. Independently of us, Chhugani et al. developed a similar
scheme for their vLOD 3D walk-through system, where they included LOD
information to the tree and applied Huffman encoding to the lists [39]. We
may still proceed toward this direction, as claimed in publication P1.

Levels of detail
Typical virtual environments tend to use mipmapping as a standard way of
avoiding visual artifacts caused by texture sampling errors, even for mobile
systems [99]. However, mipmapping requires all levels of detail of a texture
to be held in memory. Our choice was to hold in memory only the currently
needed LOD texture. For the lowest LOD, we chose a dominant color, the
color that contributes most to the building. Quite recently, a similar but
more sophisticated system was implemented by Grabler et al., where they
segment the façade texture to components, average each component and
select the brightest color [65].

For geometry, the contribution culling scheme culls away detail meshes
from far away, and includes them when they contribute sufficiently: the
building geometry is progressively increased. Protruding features such as
balconies naturally suit this system. In addition, this allows increasing the
view distance in a natural manner. Distant but significant buildings are in-
cluded, while partially occluded buildings (even those that might lie close
to the view point) are dropped.

3In the presence of a vertex cache, and if vertices are properly localized, polygon soups can
achieve or even exceed the performance of aggregate meshes

4With a regular 3D space subdivision, it is likely that nearly the same objects are visible
from neighboring cells.

36 MOBILE THREE-DIMENSIONAL CITY MAPS

Caching
In out-of-core rendering systems, efficient access to external data along with
memory and cache management is critical for system performance. In our
earlier system [113], we observed a significant increase in file I/O latencies
as the number of individual files in a directory grew, a situation described
by Cox and Ellsworth [54]. On occasion, this effect was prohibitive, even
in relatively modern devices. We measured the average speed of opening a
file with the fopen() call as the number of files on a directory increase on
Nokia N93 and N95 smart phones5 (not published earlier; see Table 4.1).
With 1000 files on a directory on an external memory card, the N93 could
open only five files in two seconds. During the call, all program execution
was blocked, including responding to user interactions. Similar increases in
latency were observed with multiple different devices and memory cards (all
with the FAT32 file system). We expected a high number of individual files
to emerge from the pre-process (see Section 4.6). Therefore, a filesystem
independent local cache storage was developed.

Function Files in dir. Nokia N93
int.

Nokia N93
ext.

Nokia N95
int.

Nokia N95
ext.

fopen() 1 667 23.5 667 500
fopen() 10 667 24.4 666 500
fopen() 100 250 22.0 250 154
fopen() 1000 20 2.4 222 125

Table 4.1: The latency of fopen() call increases as the number of files in a
directory increase. Units are calls in seconds.

The complete caching scheme consists of three cache levels, from a
compressed memory cache and local file cache to a content server. The
system is presented in Figure 4.3, and described in publication P2. Cur-
rently, all cache files are kept open at run time, and completion of writes
asserted with fflush() calls to avoid file corruption on system hangs or
crashes. The data chunks are arranged at pre-process onto a form similar
to their internal binary structure. This scheme, familiar from the building
walk-through by Funkhouser et al. [62], minimizes run time parsing. Net-
working is described further in Section 5.

Figure 4.3: Out-of-core rendering and caching (from publication P2). Dur-
ing navigation, data is retrieved from a compressed memory cache, local
storage or server. The memory limits are pre-configurable.

5Memory cards were Transcend 1GB 80x MMC with the N93, and Nokia 1GB MicroSD
with the N95.

MOBILE THREE-DIMENSIONAL CITY MAPS 37

Increasing realism: a detailed 3D model
Our primary goal for developing a 3D map engine was the ability to increase
both the realism and rendering speed in comparison to the early experiments,
a goal supported by the feedback from these studies. This required a case
model. In the sense of Ptolemy’s chorographic principle, we did not in-
tend to create a geometrically accurate model, but one that maximizes the
likeness, capturing the minute details. There were two 3D models available
from the case area6, namely a 3D model created and maintained by the City
Survey Division of the Real Estate Department of Helsinki, and a 3D model
called Helsinki Arena 2000 created in a project by the local phone operator
Elisa [89]. We set our target accuracy for detail to be approximately one
order of magnitude better than in the TellMaris Guide, namely 10–20cm,
which we intended to be achievable with higher resolution textures. The
model by City Survey Division was maintained in the Microstation CAD
system. Both geometry and surface detail varied within the model in the
case area. A single sample building consisted of 40.000 polygons with in-
consistent surface normals. Furthermore, we could not export the textures
along with the model. The Arena 2000 model was consistently created and
contained multiple levels of detail, but was completely void of textures. Our
solution was to build a case model from scratch.

As discussed in previous sections, some visibility culling methods, such
as Naylor’s BSP tree projection [106], pose considerable requirements to 3D
models. We chose to support a common 3D model boundary representation
format with less strict requirements, and without being tied to the format’s
particular features nor to any features of available model viewers. We ob-
served that VRML was well supported in several 3D modeling packages,
and a model built with 3D Max was capable of sustaining consistent nor-
mals, so we chose this combination for creating our reference model. Our
approach for using the VRML format was in the spirit of COLLADA, by
incorporating the model into our production pipeline, optimized and suited
for our particular case (see Section 2).

Publication P1 provides the details of our modeling practices and de-
signs. We reprise them here:

• Consistent normals. Every building surface points outward.
• A flat topography. Not a restriction of our engine, the decision was

supported by previous observations of urban environments [163].
• Large scale landmark structures modeled with plenty of detail.
• Relatively simple ordinary buildings modeled with textured outer

façades and plain colored rooftops.
• Most distinguishable medium scale features chosen by the modeling

person.
• Local salient features such as statues represented by a single distance-

and view-independent billboard. This decision was not supported by
the observations of Pasman and Jansen [121]. In our case, we con-
sidered recognizability and lesser rendering or transmission cost to be

6The m-LOMA project was funded by EU InterregIIIA, requiring the focus to be on South-
ern Finland or Northern Estonia. With City of Helsinki as a partner, Helsinki was the only
viable option for the case area.

38 MOBILE THREE-DIMENSIONAL CITY MAPS

more important than perceivable error.
• Hierarchy. Façades and rooftops were bound to buildings, and build-

ings to blocks (see figure 4.4). This structure poses a similarity to the
urban data model (UDM) by Coors [47].
• A mesh as an atomic unit for the model, defined with VRML’s
IndexedFaceSet.

Our 3D map engine utilized the model hierarchy in frustum culling, and
meshes in visibility determination (see Section 4.5). The presented design
issues were subjected to validation by field experiments (see Section 6.6).

Figure 4.4: Model hierarchy and simplicity of modeling: individual meshes
(façades and rooftops) constitute a building, where detail is provided by
textures (from publication P1).

The pre-process pipeline
Our entire final pre-process pipeline consists of the following steps, imple-
mented with C/C++ (elaborated from publication P1):

1. VRML parsing. Assigns ID’s to meshes, determines bounding vol-
umes, calculates mesh normals and stores the mesh hierarchy. Also
stores landmark annotation (if present).

2. Texture processing. LOD texture generation into JPG or PNG files,
JPG and PNG header cleaning, dominant color selection for low-
est LOD. Optional: decomposition into segments with recomposition
rules.

3. Visibility determination with hardware-acceleration, shared with net-
working.

4. Visibility list encoding.
5. Packaging data onto cache files.

Runtime out-of-core rendering
At run time, most of the client side logic related to 3D rendering lies in data
management and culling processes. The following presents the main stages
of rendering, modified from publication P1 (dynamic entities are discussed
in section 5):

1. Fetch a visibility list

MOBILE THREE-DIMENSIONAL CITY MAPS 39

2. Fetch potentially visible meshes
3. Determine visibility of meshes with frustum culling
4. Select LOD textures based on distances of visible meshes
5. Optional: render a skybox
6. Optional: render a ground plane or ground meshes
7. Render landmarks with Z buffer writes disabled
8. Render meshes and billboards with Z tests
9. Render the user interface components (see section 6)

All data is managed through the cache system presented in figure 4.3 and
discussed in section 4.5. Rendering was implemented with C/C++ and
OpenGL ES 1.0 Common profile. Prior to rendering, meshes are depth-
sorted in closest-first order. This reduces texturing of occluded parts of
meshes, speeding up rendering (see Table 4.6). It also accelerates colli-
sion tests, which can be performed to the bounding volumes of the closest
meshes against the motion vector.

The first versions of the system loaded all meshes and textures immedi-
ately when needed. However, this affected interactivity due to the I/O laten-
cies. To improve interactivity, data fetching from local storage is currently
minimized during maneuvering. When movement stops, the system starts
loading data. When rendering is required due to user interaction or for up-
dating dynamic components (see section 5), missing data is not waited, but
rendering starts immediately with the data that currently resides in memory.

The system features a textured sky for increased yet artificial realism,
which is not necessary for navigation. By default, it is turned off on mo-
bile platforms, replaced by a clear blue color. The separate rendering pass
for landmarks utilizes the landmark information gathered either from the
VRML model or from later annotations by a system administrator. For each
major landmark, a billboard must exist, replacing the landmark at long dis-
tances. The landmark rendering pass takes place before the building mesh
rendering pass, and does not perform the Z test nor update the Z buffer.

The ability to render incomplete scenes differentiates this system from
some of the previous systems. The urban walk-through by Marvie and
Bouatouch [95] required the full currently visible data set to be loaded
into memory before navigation or rendering was possible. The system by
Funkhouser, Séquin and Teller resembles our system with several similar
solutions. However, it featured pre-fetching to have the data ready when
needed [62]. Pre-fetching is typically based on motion vector estimates,
which are available only when the viewpoint is moving (or when the navi-
gation space is limited and topological extrapolation of the potential naviga-
tion direction is feasible). Our observation on lost interactivity due to slow
I/O is in contrast to the idea of pre-fetching during movement. We keep the
currently visible meshes and textures in memory, and secondarily optimize
what could be visible in near future. However, this would require external
information on the expected behavior of the virtual camera (if we load data
only when the viewpoint is stationary, the motion vector is not available).
Due to these reasons, we manage the existing data based on the least recently
used algorithm, with emphasis on saving small data chunks to minimize file
accesses.

40 MOBILE THREE-DIMENSIONAL CITY MAPS

4.6 Results

A 3D city model
Our case 3D city model consisted of 183 uniquely textured buildings, cov-
ering the entire center of Helsinki, presented in figure 4.5. The buildings
were built with 1029 meshes, totaling in 12610 triangles. 471 textures
were created, to the minimum texel scale of 10–20cm. 143 of the textures
reached the texel size of 5–10cm. The textures were created with digital
photography with ortho-rectification and removal of artifacts, such as cars,
wires, trees etc. in image editing software. All 14 statues from the area
were created with a similar method, as billboards. The size of the orig-
inal VRML file was 14.3MB7, but the preprocessed binary set of meshes
was only 714kB (including the precomputed bounding boxes, normals and
façade colors without further compression). Model veridicality is discussed
in section 6.

Figure 4.5: The 3D model of Helsinki, consisting of approximately 200 tex-
tured buildings and 133 “dummy” buildings. Façades visible to pedestrians
were textured.

Efficiency of the 3D engine
The first version of the pre-process took a bit less than a day on an Athlon
3500+ machine with a NVidia 6800GT graphics card. Since that, several
improvements have been made, as foreseen in publication P1. For example,
the original version calculated visibilities for shared vertices between view
cells redundantly. Currently, the pre-process of the recent, larger model (210
textured buildings, 133 non-textured buildings, composed of 1874 meshes,
13378 triangles and 500 textures) takes 44 minutes on an Intel Core i7 920
(2.667Ghz) machine with an NVidia GeForce GTX 285 graphics card and
6GB or RAM. The output of the pre-process yields (with typical configura-
tion) 2000 textures (4 LOD levels of each texture), over 1000 meshes and
approximately 10000 PVS clusters, packed onto 140 cache files.

The PVS culls, as expected, a lot of geometry at street level (typically
over 90%) and approximately half at the sky (see Figure 4.6 for the street

7Recent VRML exporters have yielded more compact files.

MOBILE THREE-DIMENSIONAL CITY MAPS 41

level efficiency). Frustum culling reduces roughly half of the remaining
meshes. In the worst case, when having a view over the entire city, 72% in
total is culled, and in the best case, at street level, as much as 98%. Example
views from these positions are presented in Figure 4.7. The different views
portray the different culling characteristics, where PVS dominates at street
level, while frustum and contribution culling dominate at long distances,
and frustum culling dominates at top-down views. In all cases, PVS culls
over 50% of the meshes. 4MB was sufficient in all tested mobile devices
to hold the application along with the textured façades in all situations. For
Nokia n-Gage, with only 3.4MB of memory, view distance was limited to
300m and maximum resolution of textures to 128x128. This also helped in
increasing the rendering speed of the n-Gage to interactive levels.

Figure 4.6: Visibility culling. The potentially visible set of the blue cell
(right) contains only 23 out of the 264 meshes visible to the virtual camera
(left).

Figure 4.7: Example views. (left) street-level view (1063 triangles in 71
meshes, 25 meshes textured), (middle) rooftop view over the city (2803
triangles in 246 meshes, 36 meshes textured) and (right) top-down view
from the sky (3095 triangles in 235 meshes, 32 meshes textured).

42 MOBILE THREE-DIMENSIONAL CITY MAPS

Device Laptop PDA/6630 n-Gage
View distance 800 500 300
Texture max res. 512x512 256x256 128x128
HVS 1 pixel 1 pixel 1 pixel
PVS Resolution 768x768 320x320 208x208
VRML file size 14.3MB 14.3MB 14.3MB
Binary model size 714kB 714kB 714kB
PVS size (raw) 50MB 20MB 10MB
Clustered PVS 9MB 5MB 3MB
JPG textures 8.5MB 5MB 2MB

Table 4.2: 3D model pre-process settings and statistics for the first genera-
tion m-LOMA engine.

Meshes/position Total In PVS In frustum Culled%
Street 1029 40-100 20-60 95-98%
Crossing 1029 120-160 40-80 93-96%
Rooftops 1029 400-500 150-250 86-77%
Sky 1029 500-650 200-300 82-72%
Sky, looking down 1029 500-650 50-100 90-95%

Table 4.3: Culling efficiency statistics (a 90◦ field of view and 4:3 aspect
ratio).

Rendering speed and details
With a view distance of 500m and maximum texture size of 256x256, the
rendering speed reaches interactive rates on all our primary devices (see
Table 4.4)8. The rasterization hardware of N93 and N95 boost the speed by
an order of magnitude, to 60fps. Furthermore, hardware is not much affected
by texture resolution, while there is a penalty for larger textures for software
rasterizers. Texture detail on roughly 30% of façades is better than 10cm.
Typically, 20–40 closest façades are textured. With four texture LODs, the
lowest LOD (single colored LOD) is reached at approximately 300m.

Platform Dell M60 Dell X30 Nokia 6630 Nokia N93/N95
Resolution 1024x768 240x320 176x208 240x320
Startup time <5s 5s 16s 7s
Street 300-600fps 20-25fps 10-20fps 100-300fps
City overview 200-300fps 10-15fps 5-12fps 50-100fps
In sky, looking down 200-300fps 10-16fps 6-14fps 50-100fps

Table 4.4: Approximate rendering speeds for the “PDA/6630” preprocessed
data set on typical platforms. The measured rendering speeds are based
on averaged rendering speeds of selected view positions without file I/O or
texture decompression and are not limited by actual display refresh rates.

Comparisons to earlier systems
For this thesis, Rakkolainen and Vainio kindly provided us both their orig-
inal models that they utilized in their 3D City Info project [133, 158]. The
original “Tre-D” model was nearly comparable to our Helsinki model in
size and detail. The model contained a single, large terrain, which we split
to smaller pieces, including the texture. We separated building surfaces from
terrain surfaces, and re-grouped them onto a hierarchy. We scaled textures to

8In practice, experienced update rates are slightly less, depending on allocated memory –
with less memory, more data needs to be swapped in and out at run time.

MOBILE THREE-DIMENSIONAL CITY MAPS 43

closest compatible resolutions (2nx2m), and removed our flat ground render-
ing pass. After our pre-process, both the full sized and mobile 3D City Info
models ran in 624MHz Axim X30 devices at interactive rates with software
rasterization, and in N93 and N95 with hardware acceleration over 30fps,
in only 4MB of memory (see Table 4.5). Our collision avoidance scheme
automatically kept the viewpoint from penetrating the ground.

Prototype 3D City Info (full) 3D City Info (mobile) m-LOMA 3D Helsinki
Triangles 8709 1572 12610
Textures (raw size) 260 (39MB) 16 (3.4MB) 500 (88.5MB)
Buildings 194 47 210 textured+133 plain
N93/N95 fps 50–300fps 50–300fps 50–300fps
Axim X30 fps 12–16fps 20–30fps 10–16fps

Table 4.5: Comparison of the 3D City Info model (“Tre-D”) and the latest
m-LOMA Helsinki model running on mobile devices. The rendering speeds
do not include file I/O or texture decompression.

Direct comparison to the rendering rate reported by Rakkolainen et al.’s
3D City Info (0.125fps at street level on 133Mhz 32MB PDA) is not possi-
ble due to lack of a similar device. However, indicative performance can be
deduced by 3D benchmarking. We have performed a set of measurements
on our OpenGL ES benchmark software on various devices during devel-
opment9. The following results have not been published earlier. Table 4.6
provides benchmarks of 3D matrix computations, and rendering Gouraud
shaded and textured triangles with two triangle sizes and two texture reso-
lutions on various devices10.

The benchmark results vary greatly. CPU clock speeds do not always
correlate with rasterization and 3D matrix operation speeds. For example,
the 206Mhz iPAQ H3800 renders textured triangles faster than the 400Mhz
PocketLoox, which outperforms it in 3D matrix operations. The differences
between 3600 and 7200 pixel triangles indicate linear fill-rate dependency.
These results also demonstrate the importance of the memory subsystem,
which is the key to high rasterization speeds [102]. Unfortunately, memory
subsystem specifications are not generally available for mobile devices.

Combining the results, we approximate that the 206–400MHz PDAs de-
liver half of the fps reached with the 624MHz X30. For the original PDA
used by Rakkolainen et al., with a 133Mhz CPU, we estimate that it would
probably perform at one quarter speed in comparison to the 624Mhz X30.
However, Rakkolainen et al. used half a screen resolution for 3D rendering,
which, based on our benchmarks, is twice as fast to render as full screen.
Therefore, our best estimate is that the full Tre-D model would yield 6–8fps,
and the mobile version 10–15fps on the original device, where the highest
fps is achieved at street level. This is two orders of magnitudes faster than
was achieved with direct model viewing. 3D rasterization hardware yields
nearly another order of magnitude increase, but rendering in this case be-
comes CPU limited.

Other early models were not as detailed as the Tre-D and our Helsinki

9Our software rendering tests are all based on Gerbera rasterizer by Hybrid Graphics.
10The CPU speeds of the Nokia n-Gage and the 6630 are fetched from Internet sources

[110, 10]. The specifications of the other devices are available on manufacturer sites and users’
manuals [108, 109, 44, 91, 43].

44 MOBILE THREE-DIMENSIONAL CITY MAPS

models with the possible exception of the model demonstrated by Blech-
schmied, Etz and Haist [21]. Unfortunately, their run time client was only
able to present a few low resolution textures, and model details were not
reported. Given the similar PDAs and Cortona VRML libraries used in the
other early prototypes, we expect a rendering speed increase of at least an
order of magnitude with our engine, supported by an efficient rasterizer such
as Gerbera by Hybrid Graphics.

Platform Nokia n-
Gage

Nokia
6630

Nokia
N93/N95

HP iPAQ
H3800

PocketLoox Dell X30

CPU 104MHz
ARM-9

220Mhz
ARM-9

332MHz
ARM-11

206MHz
StrongARM

400Mhz
PXA250

624Mhz
PXA270

glTranslatef(); 75294 102400 186350 171086 252525 416667
glRotatef(); 23748 44444 28760 56956 103923 142959
glMultMatrixf(); 21459 39938 49868 39940 78555 107181
3600p gouraud tris 2783 4476 144928 1709 4090 6468
7200p gouraud tris 1576 2452 100000 1255 1699 3565
3600p 256x256 tex tris 857 1939 120000 1281 1062 1922
3600p 128x128 tex tris 1079 2370 120000 1401 1128 3372
7200p 256x256 tex tris 497 1044 81081 747 503 1075
7200p 128x128 tex tris 573 1289 83333 757 689 1734

Table 4.6: Selected OpenGL ES benchmarks using Hybrid Graphics Ger-
bera rasterizer v.2.0.3. and v1.2.7 HW PowerVR MBX driver (N93/N95).
Units are calls in seconds.

3D Model sizes and file formats
Rakkolainen et al. identified the model size as a key problem. However,
they were looking forward to X3D as the future model standard, whose
viewers could be “particularly suitable for mobile devices”. On the other
hand, the suitability of an XML-based format for mobile use was not ex-
pected to be very good in TellMaris Guide [24]. Recently, the issue was
put to the test: Mulloni et al. created an OpenGL ES Common-Lite -based
building walk-through system utilizing X3D, on a 624MHz Dell Axim X51v
with 64MB memory. In their final version, they discarded all textures due
to slow file I/O, and reported that “mean loading time for the smaller cells
is about 2.5 seconds (1 second for file I/O and 1.5 seconds for parsing)”,
where the number of triangles per cell varied from 102 to 452 [103]. Our
binary model is considerably reduced in size in comparison to the original
VRML file. Due to the machine friendly binary format, the parsing time of
a set of 1000–4000 visible triangles is negligible, consisting of memcpy()
operations taking less than 1ms. Most of our time spent in swapping oper-
ations is consumed in texture decoding, but without hindering interactivity.
Due to these reasons, we believe that our machine compatible binary format
is viable and quite suitable for mobile use.

MOBILE THREE-DIMENSIONAL CITY MAPS 45

46 MOBILE THREE-DIMENSIONAL CITY MAPS

5 NETWORKING AND DYNAMIC ENTITIES

Mobile networking opens interesting possibilities for 3D maps. First, static
models can be downloaded when needed, on the fly. Second, annotations
and location-based information can be similarly transmitted. This data can
be temporary, emerging and expiring at run time. Third, by near real time
updates, the world can be given life by populating it with moving, dynamic
entities such as vehicles and people. In this chapter, we address all these
issues, based on publications P3 and publication P5.

5.1 Internet in mobile environments

During the early 3D map experiments, researchers noted that network ca-
pacity is one of the main bottlenecks for 3D model transmission [133, 139].
We therefore have a look at the properties of Internet Protocol (IP) networks
[125] and the protocols available via the socket interface, TCP [126] and
UDP [127], and measure the performance and characteristics of the cellular
networks (for these concepts, refer to Section 2.3).

Both TCP and UDP provide packet transmissions between two hosts in
the Internet. TCP provides reliability with the cost of increased round-trip
times (RTT) and larger headers, acknowledging all packets automatically.
Acknowledgments are asynchronous. Several packets can be sent consec-
utively before receiving acknowledgments. This mechanism is called the
sliding window paradigm, and is intended to minimize the effect of long
RTTs that would render synchronous transmissions prohibitively slow. TCP
also provides network congestion control by automatic transmission speed
adaptation, where network speed is gradually increased or decreased de-
pending on the network’s congestion. This gives rise to the slow start effect,
where each TCP connection is first assumed to be slow, and speed is in-
creased as acknowledgments arrive. Due to the slow start, non-persistent
connections, such as HTTP v1.0, cannot fully utilize the available network
capabilities unless large amounts of data are transferred. For example, ev-
ery object on a web page requires a separate TCP connection, each suffering
from this effect [120].

UDP, being simpler than TCP, only guarantees the intactness of trans-
mitted data with a checksum, but does not ensure that each packet reaches
its destination. For reliable UDP transmissions, application level logic is
necessary.

In general, TCP provides a convenient interface to programmers. How-
ever, our intention is to find out which of the two methods is best suited for
mobile use, and for our case. This choice depends among other things on
network characteristics, such as packet loss, where some data is lost during
transmission. If a connection suffers from a relatively high rate of packet
loss, TCP’s transmission control properties, assuming the cause to be con-
gestion, decreases data rates, sometimes too radically. In addition, retrans-
missions of data tend to add to the problem. For systems where response
times are critical, UDP is a better choice as the application receives the data

MOBILE THREE-DIMENSIONAL CITY MAPS 47

without waiting for packet arrival acknowledgments. For example, typical
3D first-person shooter games use UDP. First of these was ID Software’s
Quake, which mainly used unreliable, compressed UDP packets containing
full game states for each game frame on the server-to-client direction. A
dropped packet did not need to be resend, as a new one followed immedi-
ately at the next simulation step [6, 23].

Publications P2 and P5 provide insight to the IP framework and assert
the performance of the “2.5G” (GPRS/EDGE), “3G” (UMTS) and “3.5G“
(HSDPA) networks. The results are presented in Tables 5.1, 5.2 and 5.3, and
Figures 5.1 and 5.2.

The RTTs of GPRS/EDGE connections are high (400-800ms), but the
connections do not suffer from excessive packet loss. Data rates vary be-
tween 10–15kB/s (downlink) and 5–11kB/s (uplink) (Table 5.1). The RTT
of “3G” connections is rather stable, approximately 150ms. The uplink and
downlink speeds yield a constant 40kB/s, except for the older device (6630)
(Table 5.2). The slow start property of TCP is evident, with maximum net-
work capacities reached after the first 100kB is transferred (Table 5.3).

The “2.5G” and “3G” results are from good conditions, measured from
a static point. The “3.5G” results provide insight to the real world situation
with varying signal strengths as the device is moving in the environment.
During the test, the speed varies from zero to near theoretical maximum,
3.6Mbit/s, sometimes staying at older generation levels (Figures 5.1 and
5.2).

As the connections do not suffer from packet loss, and our scenario does
not require near instantaneous interaction, TCP would suit our needs. Due
to the slow start of TCP, a persistent connection is essential. The network
speed exhibits great variation, so the application programmer cannot trust in
the highest speeds advertised by operators.

Platform Nokia N93 Nokia 6630
Technology GPRS/EDGE GPRS/EDGE
Packet loss (UDP 0.5kB) <3% <1%
UDP RTT 400–800ms 400–800ms
Max TCP speed downlink 13-15kB/s 10-14kB/s
Max TCP speed uplink 9-11kB/s 5-10kB/s
TCP RTT 400-800ms 400–800ms

Table 5.1: Network statistics for a 2.5G (GPRS/EDGE) network in good
conditions.

Platform Nokia N93 Nokia 6630
Technology UMTS UMTS
Packet loss (UDP 0.5kB) <1% <1%
UDP RTT 140–150ms 140–150ms
Max TCP speed downlink 40kB/s 40kB/s
Max TCP speed uplink 40kB/s 15kB/s
TCP RTT 140–150ms 140–150ms

Table 5.2: Network statistics for a 3G (UMTS) network in good conditions.

48 MOBILE THREE-DIMENSIONAL CITY MAPS

Network UMTS/6630 UMTS/N93
10kB upload 5–7kB/s 6–7kB/s
100kB upload 12–14kB/s 24–28kB/s
1000kB upload 13–15kB/s 39–41kB/s
10kB download 5–6kB/s 5–6kB/s
100kB download 22–24kB/s 22–24kB/s
1000kB download 39–41kB/s 39–41kB/s

Table 5.3: The slow start of TCP. Each test starts by opening a new TCP
connection.

Figure 5.1: Cell network speed. 3.5G network speed ranges between
GPRS/EDGE (0–16kB/s), UMTS (16–48kB/s) and HSDPA (48–384kB/s)
during the first 400 seconds of use. The speed differences account for vary-
ing signal strengths and network load as the user navigates, while a content
server sends as much data as possible. The path of the user is shown in
figure 5.2.

Figure 5.2: Path of the network speed test of fig. 5.1 and public transporta-
tion.

5.2 Lightweight, efficient mobile communications

When model and texture sizes exceed several megabytes and the wireless
networking potential might be only a few kilobytes/sec, an efficient deliv-
ery method is necessary. Common high level middleware protocols, such
as SOAP, which rely on XML enveloping, tend to lead to excessive over-

MOBILE THREE-DIMENSIONAL CITY MAPS 49

head, which is considered rather prohibitive in mobile map applications
[24, 155, 123]. Attempts at standardizing network protocols for virtual envi-
ronments have been made. For example, Brutzman et al. provided designs
for Virtual Reality Transfer Protocol (VRTP), to link virtual environments
in the manner similar to HTTP linking web pages, combining “multiple ex-
isting dissimilar protocols (such as HTTP, DIS, multicast streaming, Java
agents, network monitoring etc.)” [33]. Such generic purpose VE network
protocols have not been adapted in general. Certain model formats, such as
M3G, support serialization for networking [131, 2, 130]. However, our mo-
bile client is not a model viewer, but an application utilizing the optimization
methods discussed in previous chapters. Consequently, a proprietary solu-
tion is necessary.

Publication P2 defines a TCP-based network protocol suited for mobile
3D maps. The protocol data units (PDUs) are described with XML, which
is tokenized onto a binary form with a Python script, outputting serializers
for both C and C++. The PDUs consists of messages, which can have at-
tributes, specified as fields with the appropriate field type. The length of the
message header is always 4 bytes, but the length of a field varies depending
on the type, usually 1 or 4 bytes. Types can also be enumerated, such as the
result field of each response. End tags are needed only for the description
and are not included in the binary protocol. Binary data, for which exact
field lengths cannot be defined in advance, is carried in containers. The
container type, such as uint32_t, defines the container’s atomic data unit.
Previously defined structures, such as texture_data, can also be used as
atomic container types. As an example of the protocol definition, table 5.4
presents the XML description for a mesh request and a response. The parse
time of the binary protocol is negligible.

<message name="mesh_data_request">
<field name="id" type="uint32_t"/>

</message>
<message name="mesh_data_response">
<field name="result" type="result"/>
<field name="id" type="uint32_t"/>
<container name="data" type="uint8_t"/>

</message>

Table 5.4: XML specification for a mesh request and response.

All requests perform a query for a single object, which is answered by
a single object. For example, a mesh query would contain a 4 byte header
(the enumerated message name), and the payload (mesh id) is another 4
bytes. In a case where the user raises from street level, he may instantly
see perhaps 200-400 new meshes over the rooftops. The client serializes the
requests, 400x8 bytes = 3200 bytes, and places it onto a send buffer (Figure
5.3). When flushed to the TCP socket, only a couple of full TCP packets are
generated1 and sent in a fraction of a second. The response is received asyn-
chronously, and consists of 400 response messages. With an average mesh
size of 512 bytes, 200kB would need to be transferred. The overhead im-

1The maximum transfer unit (MTU) of TCP is 1500 bytes.

50 MOBILE THREE-DIMENSIONAL CITY MAPS

posed by our protocol to the responses would be only (4 + 4)/512 = 1.56%
(if the mesh id, 4 bytes, would be counted as part of the payload). Still,
the network would be saturated for several seconds (in HSDPA networks
at full speed, a second would suffice), managed and controlled by TCP. Our
buffering scheme is able to handle prioritized requests (such as landmark ge-
ometry) due to the ability of arbitrary management of the buffered messages
until they are actually flushed to the TCP socket.

Figure 5.3: Pipelined, asynchronous request-response networking with send
buffers.

The benefits of our protocol, in contrast to other lightweight protocols,
say, JSON [77], include very low overhead, light-speed parsing, capabil-
ity to send binary data such as textures, send buffer management, including
control for maximizing TCP packet size, and asynchronous data transmis-
sion.

5.3 Networked delivery of 3D content

The 3D content download strategy depends on the application and the un-
derlying 3D engine, or in case of a simple model viewer, on the 3D file
format. For example, in VRML, the whole model with all its details need
to be downloaded completely prior to rendering, while the M3G provides
direct support for serialization. In general, progressive transmissions are
possible only if the data is serializable.

Hesina and Schmalstieg considered demand-driven geometry transmis-
sion for distributed virtual environments [141]. Similarities to out-of-core
rendering are noted, where fetching from storage is slow in comparison to
having models reside in memory. They present ideas for progressive trans-
mission of hierarchical level-of-detail geometry. Parts of the model around
an area of interest (AOI), defined by a radius, are downloaded with a pre-
fetching scheme. This case, and the follow-up [69], do not address texturing.

Pasman and Jansen examine geometry simplification methods for aug-
mented reality systems [121]. In addition to continuous LOD, they consider
replacing models with view-dependent impostors rendered at server side on
the fly. The focus is in choosing representations where noticeable geometric
error is minimal, assuming a wireless connection of 2–10Mbit/s.

Prior to emergence of mobile 3D hardware, the possibility of remote ren-
dering was considered to provide the rendering services at the server side.
In this case, the mobile device acts as an interface, where the maneuvering

MOBILE THREE-DIMENSIONAL CITY MAPS 51

commands are transmitted to a server, which renders the scene and sends
back the resulting images. This method induces latencies and scalability
problems. The minimum latency is the round-trip-time of the network, and
the transmission time for the payload (the image or the encoded stream frag-
ment). For example, with a 20kB average frame size and 40kB/s network
speed, the latency would be 150ms + 500ms = 650ms, without the contribu-
tion of rendering and encoding. Quax et al. have examined this possibility
from the viewpoint of encoding, where a single encoding server with a dual
core 3GHz CPU could serve 25 clients [132]. We consider the latencies
prohibitive for interactive use, and aim for a scalable system where servers
tend not to become computational bottlenecks.

Figure 5.4: A progressive visibility-based static 3D map data download
scheme. Received data is stored to local cache files for fast recovery.

Figure 5.4 presents our visibility-based progressive download scheme,
merging the descriptions provided in publications P2 and P5 (with minor
modifications on the figure published in [112]). Based on the current po-
sition of the viewpoint, a visibility cluster is fetched. Then, the potentially
visible meshes are fetched, followed by the LOD textures required for the
current view. Rendering is asynchronous, where geometry and detail is
added to the scene as they arrive. Table 5.5 presents observations during
the progressive download on “3G” networks. The observations depend on
transmission speed. With 48kB/s, an initial view over the city is populated
fully in less than half a minute. When maximum speed of 3.6Mbit/s of the
“3.5G” networks is available, the view is populated fully in a few seconds.

Our system has certain resemblance to that of Hesina and Schmalstieg,
as we transmit our model with levels of detail. The model geometry is in-
cremented with our contribution culling scheme. At client side, common
LOD geometry is supported in principle as mesh IDs can change between
view cells. Different IDs could reference to different LODs of a single
model. However, our reference model only contains static LOD buildings
with some small and medium scale details that can appear as contribution
culling threshold is exceeded. We explicitly support LOD textures, which
have been preprocessed to LOD levels. However, instead of an AOI, our
fetch is based on predetermined potential visibility. We have approximated

52 MOBILE THREE-DIMENSIONAL CITY MAPS

our statues with billboards, but use a single view independent impostor in-
stead of constructing them on the fly at the server as in Pasman and Jansen’s
scenario. We do not perform remote rendering of any kind to avoid server
side computational bottlenecks.

Time Event Data transferred
0–5s Authentication 1–10kB
5–10s First buildings appear 10–100kB
10–15s Most buildings present,

some textured
100kB–1MB

15-20s All visible buildings present,
nearest ones textured

200kB–2MB

25s–1min All visible buildings tex-
tured

300kB–10MB

1min– Possible pre-fetching of
larger areas

Table 5.5: 3D city download in cell networks (20kB/s–2Mbit/s): a user’s
point of view.

5.4 Location-based information

3D maps can act as a gateway to location-based information. Traditional
mobile map-based information and annotation systems are widely research
and implemented. For discussion on such systems, refer, for example, to
[14, 98]. Our contribution focuses on visibility-based culling issues to min-
imize network traffic and on using the hierarchy of the 3D model as a higher
level grouping mechanism.

Figure 5.5 presents the idea behind annotation and location-based con-
tent culling. All such data is associated to façades or street segments, and in-
dependently of their representation (in the figure, billboards are used), they
inherit the visibility properties from the mesh they are attached to. Now,
when a surface is visible to a client, the client can query or subscribe onto
the associated data based on the mesh ID. By a subscription, all new anno-
tations are received in near real time as they are created. Traditional user
profile filtering can be applied at server side for further culling. Annotations
and location-based content is managed similarly. This data is stored to local
caches along with geometry and textures, but can possess an expiration date.

The model hierarchy can link entire buildings or building clusters such
as a large shopping mall to a single mother node. Any reference to a mesh
can then be linked to the mother node’s content, possibly presented as ser-
vices and annotations.

5.5 Dynamic entity management

Challenges
In networked virtual environments (NVEs), multiple users and other dy-
namic entities share a common world. NVEs range from text-based games
such as multi-user dungeons (MUDs) to immersive, collaborative virtual

MOBILE THREE-DIMENSIONAL CITY MAPS 53

Figure 5.5: Approximate location-based information culling with façade
visibility. Annotations “inherit” the visibilities of the surfaces to which
they’re attached.

environments (CVEs). The most popular form of NVEs is networked
3D gaming, including massive multi-player online role-playing games
(MMORPG) such as the World of Warcraft, and first person shooters (FPS)
such as the Counter-Strike.

The main challenge in NVEs is related to the scalability of the shared
environment. There are two common bottlenecks. First, the system may
face computational limits. This is typical in client-server systems, where the
server is needed for decision making to ensure consistency and persistence
of the virtual world. For example, as a near simultaneous action, two clients
may claim to occupy the same spot or resource. The physics of the virtual
world may also need to be guarded by the server. In this case, the server
performs a full world simulation for each client, and eventually saturates as
the number of clients increase. Typical cases are first person shooters, which
provide high interaction between clients, and where server-to-client traffic
increases linearly with the number of clients [59]. The system architecture
typically limits the number of simultaneous FPS clients to 32–64.

The second potential bottleneck is the network. On peer-to-peer (P2P)
systems, simulation is distributed to the clients, but they need to send their
state updates to other clients. As the number of clients increase, so does
the network traffic. The very first large scale NVE, the SIMNET, was a
combat simulator for small unit interaction. In SIMNET, and the follow-up
NPSNET, Players were expected to be honest. The Players were responsible
for their part of the simulation, submitting their own locally calculated states
and effects of interaction, such as hits on enemy vessels, to other Players. To
minimize network traffic, SIMNET Players only transmitted state updates
when a Player’s extrapolated (dead reckoned) state (their Ghost) exceeded
an error threshold in comparison to the real one [20]. In NPSNET-IV, state
updates were distributed among all Players, saturating a 10Mbit/s Ethernet
with about 300 Players. In addition, each Player had to calculate the Ghosts
of all other Players to run the simulation, causing also a computational bot-
tleneck.

To increase scalability of NVE systems, interest management was intro-
duced, to filter communication based on interest expressions, for example
geographically (area of interest) or functionally (a tank being interested in

54 MOBILE THREE-DIMENSIONAL CITY MAPS

ground vehicles) [136]. Later NVEs have utilized spatial localization in
message filtering, and the concept of communication visibility [36].

Solutions
Due to their dynamic nature, visibilities of dynamic entities cannot generally
be predetermined. Chrysanthou and Slater assert three requirements for an
algorithm intended for managing dynamic 3D scenes [40], the abilities to
1. Change the camera view
2. Add objects to the scene
3. Delete objects from the scene
A dynamic entity is then managed by deleting it from the old position, trans-
lating it, and inserting back to the scene. This introduces significant over-
head, a problem long recognized. In addition, entity visibility would need
to be determined for each frame. This requirement is relieved by Sudarsky
and Gotsman’s temporary bounding volume (TBV), which contains the ob-
ject during a validity period [150]. During this time, run time visibility
calculations rely on the TBV. A TBV is created based on a priori knowledge
of the object’s behavior. For objects with well-known trajectories, sweep
volumes can be used. However, the method does not solve the visibility
problem. In addition, the validity period depends on the motion of the view-
point, namely user interaction, which cannot be predicted accurately. In
addition to the discussions on publications P3 and P5, it should be noted
that if visibility would be used as a communication culling mechanism in
NVEs, the message passing server should perform visibility determination
processes for each client at run time, causing a severe computational bottle-
neck, unless predetermination methods are applicable.

Our solution to the dynamic entity management problem is discussed in
publication P3. Our algorithm exploits topologies in urban environments,
where the navigable space of real world entities such as people and vehi-
cles is limited to the street network and open spaces such as parks. Whit-
ing et al. have performed similar topologization of CAD models for nav-
igation purposes, including indoors [161]. However, they did not adapt
the system for visibility pre-computations. In our system, street segments,
crossings and open areas are assigned virtual cells covering physically nav-
igable space (Figure 5.6). These virtual, static cells are included in the
PVS pre-computation as atomic units along with the building façades and
rooftops. At run time, for visibility determination, pedestrians and vehicles
are mapped to the closest street segments or open areas, which they occupy.
Now, when a virtual cell is potentially visible, we assume that the occupy-
ing entities are visible as well, in the to-region visibility sense. Message
passing is managed by these visibility tables based on a publish/subscribe
system. Dynamic entities publish their position, and clients subscribe to vis-
ible virtual cells. A message passing server acts as a switchboard, managing
a simple subscription table.

Message updates are minimized in the manner similar to the
Player/Ghost scheme. As long as a dynamic entity acts according to its be-
havioral function, updates are not necessary as the state can be extrapolated.
We calculate the maximum time between updates with a view independent

MOBILE THREE-DIMENSIONAL CITY MAPS 55

Figure 5.6: Exploiting street topology for entity management. (left) Pedes-
trians are projected onto a street network for approximate visibility determi-
nation, (right) cell occupations and validity periods for trams.

occupation validity period, which describes how long a given entity is likely
to stay in a view cell. For large entities, an update is triggered when ever
the entity leaves a cell, or part of it arrives at a new cell (the front and aft
of the tram depicted in Figure 5.6). Our scheme is in contrast to the TBV,
where the shape of the TBV depends on the entity motion, and its validity
period depends on viewpoint’s motion. The presented mechanism pushes
the update logic entirely to clients, as was the case with NPSNET.

5.6 A scalable networking system for dynamic mobile 3D maps

Publication P2 combines the networking efforts to a system overview. Fig-
ure 5.7 presents the overall architecture, where static data, including 3D
models, road topologies, and location-based content, typically presented in
heterogeneous formats, is parsed and preprocessed at an interface layer, and
placed to a database. At run time, data is contained in an efficient, binary
format suited for our system. We view all external data as digital assets,
independently of their format. This approach is similar to the COLLADA
scheme discussed in Section 2.1.

Figure 5.8 (from P5) presents the entire run time system. For scalability
purposes, all static content services can be parallelized and spatially limited
to multiple servers. As rendering is performed locally, only the network
speed becomes a limiting factor for content delivery. Similarly, all compu-
tations related to dynamic entities are pushed to the clients, or parallelizable
proxies. Entity servers act as fast switchboards, forwarding messages initi-
ated at clients to the subscribers. Scalability is facilitated by spatially limited
entity servers, which subscribe to each other’s entities at borders. The en-
tire system provides a roaming and authentication service, that directs the
moving clients to appropriate content or entity servers.

The current implementation is set up on a single combined server. A
public transportation simulation based on the first version of the system has
been running on a local science park over two years continuously with a
simple interface proxy for mapping SOAP position messages to an inter-
nal binary format, achieving 97-99.7% compression ratios by discarding the
excessive XML envelopes (described in publication P3).

56 MOBILE THREE-DIMENSIONAL CITY MAPS

Figure 5.7: System interfaces. External interfaces accept various formats,
while internally the data is stored and transmitted in compact form.

Figure 5.8: Static and dynamic 3D map services. Static content is prepro-
cessed and distributed by independent, replicable servers. Dynamic entity
servers act as switchboards. The number of servers can be increased to cover
large areas, but neighboring servers must exchange information.

MOBILE THREE-DIMENSIONAL CITY MAPS 57

58 MOBILE THREE-DIMENSIONAL CITY MAPS

6 TOWARDS A MOBILE 3D MAP USER INTERFACE

Mobile 3D maps have been hypothesized as being intuitive in contrast to the
abstract 2D maps due to the supposedly shorter cognitive distance between
the real world and the 3D representation, which attempts to replicate it. With
a 3D city model built for realism and an efficient 3D engine suited for mobile
devices, this can be put to the test on the field. However, in order to use
the 3D representation during navigation, users must be able to navigate in
the 3D model. We expect that the potential intuitivity of the representation
may not be transferred to users, unless the user interface - the navigation
interface - is intuitive as well. A 3D representation, realistic or not, poses
significant challenges for mobile use. The number of degrees of freedom
would require a high amount of inputs for a full control, while in mobile
phones, inputs are rather limited, and on the other hand, full control may
not be the best alternative for easy maneuvering.

This chapter discusses approaches for developing a 3D navigation inter-
face, focusing on users. This development is incremental. Instead of simply
creating a 3D navigation interface and measuring its performance on the
field, we attempt to understand the phenomena related to navigation itself,
including users’ needs, navigation tasks, and the differences between the 3D
and traditional map representations. We first gather empirical data from 3D
navigation with a deliberately straightforward 3D maneuvering interface.
We analyze the results for possibly emerging common navigation patterns,
apply this knowledge for an improved interface, and perform another exper-
iment, in hopes of conclusive results.

The details of the formal experiment set-ups and their direct quantitative
results are out of the scope of this thesis, and can be found from [116, 114].
In our context, we focus on the findings relevant for developing a 3D nav-
igation interface. In addition, the experiments have provided a wealth of
indirect results and observations. They have been published in publications
P2 and P5. Publication P4 presents, partly based on the first experiment, def-
initions, categorizations, and a larger framework for mobile 3D navigation
interface development.

6.1 Navigation

Navigation is not a single, monolithic task. It is a complex process, con-
sisting of several factors from way-finding and other mental processes to
physical movement. In order to create a good navigation interface, to serve
the purpose of the map [57], the interface should support and reflect the
related processes.

Darken and Peterson define navigation as the aggregate task of way-
finding and motion [56]. Way-finding is the cognitive element of naviga-
tion, involving planning and observations, building up a cognitive map, an
internal spatial model of the environment. Motion is the motoric element,
the act of getting somewhere, namely travel. They describe maneuvering
as a subset of motion, consisting of “smaller movements that may not nec-

MOBILE THREE-DIMENSIONAL CITY MAPS 59

Figure 6.1: A general framework for the navigation process (reproduced
from [56], an adaptation from [78]).

essarily be a part of getting from “here” to “there” but rather adjusting the
orientation of perspective, as in rotating the body or sidestepping”. We also
define micro-maneuvering, which takes place in the virtual environment if a
single supporting maneuver, such as a view orientation, consists of a series
of actions.

Downs and Stea divide a navigation task to four main stages, 1) initial
orientation, 2) maneuvering, 3) maintaining orientation and 4) recognizing
the target [57]. Navigation tasks that take place in virtual environments are
further categorized by Darken and Cevik [55]. When a goal is marked
on a map, a navigator performs a targeted search. When only the target’s
approximate location is known, a primed search is performed. When the
location is unknown, the navigator performs an exhaustive, naïve search
in the entire environment. Finally, the navigator can simply roam about,
conducting exploration.

Figure 6.1 presents a model of the navigation process by Jul and Fur-
nas [78], as modified by Darken and Peterson [56]. The process starts by
goal forming, continues with strategy selection, and continues in the loop
of perception (cue extraction), assessment of progress, and motion. This
loop involves way-finding and develops the cognitive map as the navigator
moves within the environment, observing it. Publication P4 presents a vari-
ation of the presented navigation model involving two distinguished forms
of actions, pragmatic and epistemic [79]. While this model was utilized
in the navigation interface development, it is a sole contribution by Antti
Oulasvirta.

Navigation processes involve the use of spatial knowledge in problem
solving. The classic hierarchical model builds on the concepts of landmark
knowledge, route knowledge and survey knowledge [144]. The importance
of landmarks and other structural features of urban environments was estab-
lished in the seminal work by Lynch [94]. Use of a secondary source, such
as a map, helps navigators to directly observe spatial relations and acquire

60 MOBILE THREE-DIMENSIONAL CITY MAPS

survey knowledge [154]. However, map usage is a situated action, inter-
active and dynamic in nature, where the navigator, the current task and the
environment constitute an integral whole [148]. The task dependency also
poses the scaling problem, well known in both paper and electronic maps
[63, 56]. For example, when navigating in a large virtual world, one needs a
large scale view to maintain a sense of the overall environment, but a small-
scale view is required for cue extraction, to identify details that are used to
match the two worlds [115].

6.2 Controlling navigation: maneuvering

Publication P4 proceeds to discuss the innate problems related to controls
of mobile devices in the context of 3D maneuvering. As a general frame-
work for reducing the degrees of freedom, Hanson and Wernert have mod-
eled this as a mapping from control space G to navigation space N, which
provides movement on a guide manifold, a constrained subspace of the
navigation space [68]. Commonly, the higher level interaction schemes
are described with metaphors. Research on virtual environments has pro-
vided several metaphors that support maneuvering for specific tasks, gen-
eral movement, or assistance [147]. Publication P4 discusses the various
approaches to aid navigation, including teleportation, click-and-fly, various
steering techniques, automatic adjustment of camera angle to maximize ori-
entation value [34, 80], interest fields [68], and attentive camera [71]. Some
solutions are not considered viable. For example, teleportation, which pro-
vides instantaneous travel to a target, is known to cause disorientation [27].

The numerous navigation interaction schemes involve varying amounts
of user control. Publication P4 categorizes them to a set of maneuvering
classes depending on the level of freedom of control (see Table 6.1).

Maneuvering class Freedom of control
Explicit The user controls motion with a mapping depending

on the current navigation metaphor.
Assisted The navigation system provides automatic support-

ing movement and orientation triggered by features
of the environment, current navigation mode, and
context.

Constrained The navigation space N is restricted and cannot span
the entire 3D space of the virtual environment.

Scripted Animated view transition is triggered by user inter-
action, depending on environment, current naviga-
tion mode, and context.

Automatic Movement is driven by external inputs, such as a
GPS device or electronic compass.

Table 6.1: Maneuvering classes in decreasing order of navigation freedom.

MOBILE THREE-DIMENSIONAL CITY MAPS 61

Figure 6.2: A direct mapping from a PDA’s buttons to movement. While
possibly cumbersome, this UI did not restrict navigation in 3D space, allow-
ing us to gather valid maneuvering data from field experiments.

6.3 A 3D navigation field experiment with explicit controls

Our first formal field experiment consisted of navigation and pointing tasks
using our 3D model and 3D engine. Navigation tasks involved movement
in the environment, with the initial view at the current physical location.
Pointing tasks involved only orientation in the physical environment, but
maneuvering in the 3D world. Pointing tasks were initiated both from the
3D view and the real world. Our 3D map was installed on a Dell Axim X30
PDA with 624Mhz XScale processor and 64MB RAM. The mapping from
the PDAs joypad and buttons to movement was explicit. Figure 6.2 presents
the simple controls that allowed subjects to move forward and back, turn left
and right, and elevate/descend. They could also look up or down, or move
sideways, resulting in four available degrees of freedom.

Figure 6.3 presents a navigation task (from publication P4). A test sub-
ject physically located at (A) maneuvers a 3D map view from (A) to (B)
(Figure 6.3A), to spot a landmark known to her in advance (a major church).
Figure 6.3B presents the initial 3D view. In the beginning of this task, the
subject orients to the environment, spotting a recognizable façade (Figure
6.3C), orienting the 3D view towards the same façade (6.3D). The subject
then determines a direction of movement and starts to maneuver along a
road. After two blocks, the subject finds the target landmark and stops.
Figure 6.3E presents the path and points of orientation resulting from per-
forming the task. Figure 6.3F presents the related joypad state as a function
of time. To perform this simple task, the subject performed a total of 20 ro-
tations and 10 forward movements, using only two degrees of freedom from
the available four. The subject did not move backward. The task took 135
seconds to complete, and the controls were used in two sequences: 5 sec-
onds during initial orientation and 29 seconds during maneuvering towards
the target. The remainder of the time, the subject observed the environment
and waited for a car and a tram to pass (the tram remained in view for almost
a minute). All actions on controls were performed sequentially.

In Figure 6.4 (upper, navigation path published in P4, Fig. 10.4A) a
subject is asked to navigate from (A) to (B). This is the subject’s first ex-
posure to the 3D model. Instead of performing the task, the subject chooses
to explore the virtual environment.

In Figure 6.4 (lower left, published in P2 and P5), the subject is phys-

62 MOBILE THREE-DIMENSIONAL CITY MAPS

A B C

D E F

Figure 6.3: A navigation experiment with maneuvering at street level.

Figure 6.4: Navigation experiments. Exploration (up). Initial disorientation,
local orientation and navigation towards target (lower left). Elevating the
view point to spot a distant target (lower right).

MOBILE THREE-DIMENSIONAL CITY MAPS 63

ically located at (A) and asked to maneuver to (B). Initial view is at (1),
in 90oangle to the (A)�(B) route. The subject first descends and moves
forward to (2), just to realize his error (noticing a park), then returns to his
physical location (3), where he performs orientation near street level, and
finally proceeds over rooftops to destination (4).

In figure 6.4 (lower right, published in P2), a subject at (A) is asked to
find a landmark (B) in the 3D view. (B) lies off the screen with a 180o initial
angle difference, but is visible in the physical space. The subject ascends to
sky for a better view (2), soon spots the target (3), and returns back (4).

6.4 Improving navigation interaction

In our first experiment, we performed a total of 26 successful way-finding
experiments, and 50 orientation experiments. Navigation with direct con-
trols was considered cumbersome by most subjects, which was expected.
However, the experiments provided valuable data. We observed the naviga-
tion tasks defined by Downs and Stea, navigation types by Darken and Cevig
(except targeted search as we lacked target markers), and the need to scale
the view depending on the current task – to lower the view for local orienta-
tion, or elevate it to spot a target further away. Subjects frequently put effort
in finding a suitable view to match their task. This often involved micro-
maneuvering – unnecessary and repeated adjustments to counter the poor
affordability of the direct controls, observable in Figure 6.3. Nor the start
position or the target were marked during navigation experiments. Users
found it particularly difficult to remember the target’s exact position, in-
creasing cognitive load.

Publication P4 states goals for mobile navigation controls in pursue of
transparency, where a user would be embedded in performing a task to such
extent that he would be unaware of the actual interface [111]:

• minimize cognitive load (as defined by working memory load, amount
or duration of cognitive task processing, or complexity of mental com-
putations)
• minimize motor effort and procedural complexity
• minimize use of time

Furthermore, publication P4 asserts goals for the 3D view for navigation
support:

• maximize information that helps orientation
• maximize information that helps performing the current task
• minimize information that leads to disorientation
• maximize information that helps forming an accurate cognitive map

Fulfilling these objectives ensures that the user

• does not get lost
• is able to find and visit all places of interest
• is able to re-visit places
• feels familiar with the space

64 MOBILE THREE-DIMENSIONAL CITY MAPS

Figure 6.5: Navigation features. (left) Landmark View turns toward the
nearest landmark, presenting it and the user’s current position with Mark-
ers. (right) Tracks restrict navigation to the street network, reducing micro-
maneuvering.

The challenge in UI development has now become a question of finding
a suitable combination of metaphors, assisting functionalities and naviga-
tion constraints that match and support the navigation tasks, suited for the
limited controls. Based on our data from the field experiments, and further
ideas from literature, we created an improved version of the interface. Table
6.2 provides a short list of navigation aids that have been implemented. Fig-
ure 6.5 presents three of the improvements, namely Landmark View, Tracks
and Markers. The Landmark View animates the viewpoint smoothly to an
overview position, showing both the current GPS position and a landmark,
pointed by markers and provided by distances from the view position. If
GPS is not available, the last view position is shown. Tracks limits naviga-
tion to the street network. However, as presented in Figure 6.6, if the view
is rotated when on the tracks, it is simultaneously translated farther to pro-
vide a better view on the opposing façade. Similarly, the Tracks view on
Figure 6.5 demonstrates the view angle resulting from automatic tilting as
the viewpoint is moved up from the street level. At street level, the view is
tilted slightly upward, to reveal features of the façades, as shown on Figure

Figure 6.6: A navigation assisting scheme. When on Tracks, rotating the
view automatically adjusts the view’s distance from the opposing façade to
provide a better view.

MOBILE THREE-DIMENSIONAL CITY MAPS 65

Interaction aid Purpose and functionality
Tracks Minimize micro-maneuvering. Restrict navigation

space to a street network. Provide street names.
Orientation value Maximize view’s orientation value. Orient down-

ward when elevating, and upward when descending;
when in tracks mode at street level, translate away
from the opposing façade for a better view.

Speed adjustment Match motion with user’s needs. Adjust speed au-
tomatically and smoothly based on elevation, being
slower at street level and faster at sky.

View landmark Orientation aid. Trigger an animated view transition
to present a landmark and the user’s current position

Change viewpoint Minimize micro-maneuvering. Scripted view level
transition to three predetermined view levels (street
level, rooftop level, sky) with automatic orientation.

Markers Decrease cognitive load, enable targeted search in-
stead of primed search. Marker arrows point at,
for example, the start point and the target, releasing
users from remembering the exact 3D positions.

Fly-to-target A scripted action to fly to a target. If fast transition
is needed, a smooth but fast fly is less disorienting
than teleportation, and demands less from the user
than manual maneuvering.

Orbit mode Aid for recognizing a target. View is locked towards
a point, and controls are mapped to a cylindrical co-
ordinate system, orbiting around the point.

Table 6.2: Aids for 3D navigation.

6.6 (right). Users are allowed to override the automatic tilting with explicit
controls.

Publication P4 describes other potential features as well, such as GPS
driven maneuvering, assisted camera schemes, and routing. Most of these
have been implemented, such as the GPS functionalities and routing with
visualization aids and automatic route walkthroughs.

6.5 A 3D navigation field experiment with improved controls

A second focused field experiment was conducted with the improved inter-
face, using the functionalities listed in Table 6.2. The Fly-to-target always
flew to the predetermined target of the current experiment task. Other func-
tionalities, such as GPS positioning and routing, were left out due to two
reasons. First, GPS positioning was observed to be inaccurate and error
prone. Second, our goal was to observe maneuvering and navigation, not
guided route following. The device in the second experiment was a 3D
hardware-accelerated smart phone, the Nokia N93. The results and details
of the experiment are available at [114], and provides insight to the different
bodily conduct, use of cues and self-localization in the presence of a profes-
sionally drawn 2D map and our 3D map. In our context, we draw attention
to the secondary, qualitative results, also available in publication P5.

The new functionalities were used often, especially Change Viewpoint

66 MOBILE THREE-DIMENSIONAL CITY MAPS

Figure 6.7: A 2D street map1 and a 3D map of the same area.

(elevate/descend with automatically adjusted tilt). In addition, Tracks and
View Landmark were used quite often. Orbiting was tried out, but not found
useful. Once subjects learned a maneuvering routine, they didn’t explore
alternatives. Although the subjects were different than in the first test, in
general we noticed increased performance and reduced cognitive load.

In the two experiments, comparisons were made against 2D maps. In
the first experiment, the 2D map was simulated by a top-down view without
street names. That did not yield as good a performance as the 3D map. In the
second experiment, the 2D map was a professionally drawn raster map, with
clearly marked street names (the map was not in scale due to the emphasized
street names). Figure 6.7 presents the two maps. The street names on the
2D map proved to be a superior cue in comparison to the cues provided
by the 3D map – statues, parks, recognizable buildings or building features
and rooftop logos of companies. However, as a secondary strategy, some
subjects attempted to use street numbers as additional cues. This proved to
be a an inferior strategy due to poor correspondence between the map and
the physical world – they could not be matched well. When subjects used
the Tracks mode, their performance improved, although not to the level of
the street map. The results and the feedback from subjects indicated that
positioning functionality would be more important in the 3D maps than in
the 2D maps.

6.6 Validation and veridicality

Chapters 4 and 5 have provided technical benchmarks on the presented sys-
tem. However, answers to the other issues raised in earlier chapters can be
found from the two field experiments. Publication P5 collects the most im-
portant ones together. We reprise them here, along with general observations
arising from this work.

What is sufficient rendering speed?
In Section 1.1, we defined a rendering system to be interactive if it reached
6fps, and assumed that over 20fps would not provide a significant improve-
ment. Our goal was therefore to reach 6fps at minimum, and attempt to
reach or exceed 20fps. In our first experiment with the Dell X30, the update

12D map courtesy of City Survey Division of the Real Estate Department of Helsinki.

MOBILE THREE-DIMENSIONAL CITY MAPS 67

rate varied between 8–16fps2. Users reported this sluggish, but sufficient
for navigation. In the second experiment with Nokia N93, over 20fps was
reached in all situations. Users reported this smooth. Without an explicit and
controlled rendering speed experiment, we cannot provide a quantitatively
supported estimate for the minimum rendering speed; we can only provide
an estimate. We believe that less than 10fps would yield too unpleasant an
user experience for a 3D map to be widely acceptable, while 20fps or better
will be pleasant.

What is sufficient rendering distance?
One of our initial requirements was to be able to render at least 100 build-
ings. In navigation use, the ability to observe the target on the map is critical
for route planning. The farther one can see, the farther one can plan. Simi-
larly, large landmarks, which aid orientation, may be visible and identifiable
from several kilometers by the human eye. However, in the small display of
the mobile device, the perspective transformation diminishes these distant
features. We do not have quantitative data on how distant objects are per-
ceived on mobile displays with a given field-of-view. Our field experiments
have been performed with a 500m view radius, which was sufficient for the
experiments, including over 100 potentially visible buildings, although the
distant buildings were very small. At that distance, individual buildings be-
come difficult to recognize, but the structure of the environment can still
be perceived. In an overall view, a roughly 1km2 area can be viewed. To
support orientation with landmarks, in our implementation we render em-
phasized landmarks even from several kilometer’s distance. In general, with
our current knowledge, we would not suggest limiting view distance to less
than 500m.

Is it necessary to build special lightweight 3D models for mobile devices?
Traditional adaptation of large maps to a smaller medium has involved man-
ual culling and selection processes, where the entire data set is scaled down.
If 3D models are created with good design (including coherent normals,
shared vertices, appropriate hierarchies and levels of detail), this can be au-
tomatized to a level where the selection and culling can be performed at run
time, for any given view, at interactive update rates, even in resource limited
mobile devices. Our case model was simple in geometry, but more complex
models would be applicable with appropriate level-of-detail management.
The critical issue is not mobility, but quality of the models, which becomes
evident when attempting optimizations for rendering.

Given the small screen size of mobile devices, do we need detail?
A mobile, navigable 3D map is an interactive application. Even though
the small screen size definitely accentuates the keyhole property of the view,
users can maneuver closer to a cue in order to recognize it, if it is available at
sufficient resolution. Figure 6.8 (from publication P5) presents a situation,
where a subject attempts to verify a navigation target (the edge between

2During the first experiment, our cache system was not finalized and file I/O affected the
rendering rates.

68 MOBILE THREE-DIMENSIONAL CITY MAPS

Figure 6.8: When “realism” fails. Local salient cues, the two company
logos, are hard to recognize from a 3D model due to lack of detail.

two buildings) by two company logos, which were salient to him in the
physical world, but hardly recognizable in the 3D view on the smart phone’s
display. In this case, our supposedly realistic model fails to meet the quality
requirements – our 10–20cm texel size is insufficient. This example also
implies the importance of cues.

Can the view in 3D be limited to street level?
3D rendering can be greatly accelerated, if viewpoint is forced to the street
level, and only the visible façades are rendered. However, navigation fre-
quently involves changes in view elevation, from local cue extraction near
street level to sky views for longer distance way-finding. A limitation to
street level would severely undermine a 3D map’s potential in navigation.

Veridicality and realism
During our development, we have made several assumptions related to
model veridicality (recognizability) and engine properties. We combine the
observations from publication P5 here.

• Recognizability. Most buildings, and all landmarks, including statues
represented by view-independent billboards, were recognized easily.
• Street level contents. Our façade textures could not replicate the street

level due to excessive occluders such as cars and people, and weekly
varying window contents. However, our subjects were able to neglect
the street level without trouble.
• Façade inaccuracies. Our initial model lacked a few façade textures,

and some had been copied from adjacent, similar façades. When sub-
jects had learned to trust the model, these artifacts caused disorienta-
tion.
• Color differences. Perceived color differences between adjacent

buildings caused disorientation in places where the colors were con-
sidered a dominant feature.

MOBILE THREE-DIMENSIONAL CITY MAPS 69

• Ground. Plain gray ground disoriented subjects at parks and other
open spaces. Consequently, we created flat colored areas and added
trees. However, our subjects were not generally seeking cues from the
ground. A couple of subjects requested crosswalks.
• Texel accuracy. Mostly sufficient, but in local orientation, where no

landmarks were visible, the 10–20cm texel accuracy was sometimes
insufficient (see figure 6.8).
• Geometry. Our model was geometrically lightweight. However, only

features that had a particular meaning to our subjects, such as univer-
sity stairs, or a specific object marking a meeting place, were consid-
ered missing.
• Roofs. Our roofs were only colored, not textured. The roofs were not

very visible from the physical viewpoint, but quite visible in the 3D
view when subjects raised their viewpoint. This was found irritating
to a few subjects. Roofs were not considered important for naviga-
tion, but the labels we had placed on top of a few selected landmark
buildings were used often.
• Topography. While we built the initial 3D model, we had no topo-

graphic data available, so the resulting model was flat, despite our en-
gine’s support for topography. During our first trial, subjects did not
even notice that topography is missing, so we left it be. However, on
the second experiment, we placed one navigation task on elevated ter-
rain, featuring stairs, where subjects reported difficulties in matching
the 3D view with reality. In future, we would recommend including
topography to 3D city models.
• Approximate visibility determination. Our approximate visibility

scheme was generally successful, and the scene was rendered prop-
erly in almost all situations. During the first experiment, only one
noticeable artifact was present: a statue disappeared in a certain view
cell. We tracked the problem to a missing cell sample point. The
second experiment didn’t suffer from noticeable visibility artifacts.
• Inherited visibility. The location-based information culling mecha-

nism presented in Figure 5.5 was not experimented on the field, but
initial feedback from potential users was encouraging.
• Free comments. A few subjects reported that inanimate window re-

flections were distracting. Long view range was considered essential
for orientation with major landmarks.

6.7 Open issues

We have incrementally improved our 3D navigation interface, but it is not
yet finalized, nor perfect. However, our cyclic approach of developing and
experimenting has kept us on the right track. Improving the interface will
go hand in hand with a better understanding of small scale cognitive phe-
nomena related to navigation tasks. Essential to this would be improved
registration of user behavior and state. To this end, an accurate mobile eye
tracking system could provide another leap in navigation research. As an ex-
ample, an experiment for resolving the situation of being lost would benefit

70 MOBILE THREE-DIMENSIONAL CITY MAPS

greatly from such technology.
In addition to the observations resulting from our field experiments,

there are several further factors that affect the usefulness of mobile 3D maps.
For example, lighting conditions are obviously important. In direct sunlight,
the screens of mobile devices are nearly impossible to view due to lack of
contrast, unless the devices are equipped with transreflective displays. Al-
though a developer cannot affect environmental conditions, this could be
taken into account during the modeling phase, creating more contrast rich
models, with emphasis on cues. The screen size itself is a problem, as very
small details cannot be recognized without closer observation, cutting down
the informativeness of any given view. This cannot be much improved by
manipulating the field of view (FOV), as the FOV is always a compromise.
A wide FOV provides a better view on the vicinity, while a narrower FOV
yields more details from far away features. Allowing a user to manipulate
the FOV would involve registering further controls. From our current data,
we cannot quantify these issues, nor produce conclusive guidelines. How-
ever, these questions can be answered by further field experiments, which
our platform has made possible.

The subjects in our field experiments were all able to read traditional
maps, and were relatively familiar with the test environment. A short intro-
ductory teaching session for using a 3D map might not compensate for years
of 2D map usage. We currently have no data to compare the learning curves
of different map representations. Indeed, the intuitivity of a representation
might be better described by the time required to understand it, for unfa-
miliar persons. Such experiment is yet to be performed. With our current
experience, we hypothesize that 2D maps would require more conceptual
learning, while 3D maps would require more practice on interaction.

Recent 3D hardware enabled mobile devices such as Apple’s iPhone
and Nokia’s N900 are equipped with touch screens. These devices already
host accelometers, and affordable magnetometers are on the market. The
key issue with 3D maps, interaction, might benefit greatly from these tech-
nologies, and will be the focus in our next generation 3D map interaction
design.

Our system has been designed for and only tested with pedestrians.
Other cases, such as car navigation, would require different design choices,
and are open for future research.

MOBILE THREE-DIMENSIONAL CITY MAPS 71

72 MOBILE THREE-DIMENSIONAL CITY MAPS

7 CONCLUSIONS AND FUTURE

This thesis has addressed the challenges of a potential next generation inter-
active navigation system, a mobile 3D map that presents together even the
most minute features, attending to likeness of the environment. This work
has focused on four fundamental research goals. The methodology has been
constructive. We can now assess the status of the questions.

1. Can realistic urban 3D environments be rendered in current mobile
devices at interactive rates? Yes. It is possible to render large, de-
tailed 3D cities in mobile devices at interactive rates (over 5fps) even
without hardware acceleration. With 3D hardware, rendering rates
exceed 30fps.

2. Can realistic 3D city maps be downloaded on the fly to mobile devices
with sufficient speed for common navigation tasks, without hindering
interactive use? Yes. Current cellular networks (40kB/s) are sufficient
in supporting progressive transmission of detailed 3D models during
navigation, given an efficient networking scheme. Interactivity is not
hindered, given an efficient caching scheme.

3. Can a mobile 3D city map system support dynamic content transmis-
sion and representation in near real time in scalable manner? Yes.
Urban environments and entity behaviors can be exploited to limit
network traffic to be linear with the number of visible dynamic en-
tities and location-based information, serving mobile clients in near
real time without network congestion, given reasonable entity densi-
ties. Scalability is achieved by spatially limited entity servers.

4. Is a realistic mobile 3D map interface inherently intuitive? No. A
realistic 3D representation can facilitate a recognition of the vicinity
with a wealth of cues. However, the real question for intuitive use
lies in the appropriate support of interaction methods and representa-
tion for the navigation task at hand. A 3D map can fully support all
navigation tasks, but easy maneuvering in the virtual environment is
challenging. Dependency on other technologies, such as positioning,
appears to be more critical for 3D maps than traditional maps. Even
with an appropriate interface, the 3D representation may not be the
best one for all navigation tasks: self-locationing with a map that di-
rects the focus on diagnostic cues such as street names appears to be
more efficient, as long as these cues are available. As a corollary, this
may hint towards the highest potential of detailed 3D city maps: when
diagnostic cues such as street names are not available, matching be-
comes difficult. In this case, detailed 3D maps may prove their value.
Also, in certain types of tasks, such as pinpointing a target, the ability
for accurate representation may become invaluable.

We have developed a system for shared virtual environments, suited for
mobile devices, where the representation is based on real-world structures.

MOBILE THREE-DIMENSIONAL CITY MAPS 73

The system, implemented with C/C++ and OpenGL ES 1.0 Common Pro-
file, runs on mobile phones in a small amount of memory. Without 3D hard-
ware acceleration, interactive rates are achieved for large, detailed models,
and in the presence of 3D hardware, rendering rates become very satisfac-
tory. In essence, we have successfully transformed the traditional and lossy
map data “pre-process”, where the entire data set is manually adapted to
available medium, to a non-lossy process, which arranges the data to such
structures that on-the-fly selection is fast and feasible. This selection pro-
cess is even incorporated to cover dynamic entities in a scalable manner.
We call this adequacy mapping, where a given data set is transformed to a
representation that is most adequate for a given purpose. With our platform,
we have been able to perform field experiments that have provided valuable
data for understanding and improving a 3D navigation interface.

But will such optimizations be necessary in future? Isn’t the next gener-
ation of mobile platforms and networks going to solve all technical issues?In
3D gaming industry, demands have always exceeded resources. Subse-
quently, the industry is not relying on hardware solutions only. For example,
although modern 3D cards can hold over 1GB of texture memory, Infinity
Ward’s 2009 title, Modern Warfare 2, applies ’texture streaming’, similar
to our LOD management, for detail.Simultaneously, good solutions, such as
id Software’s optimization algorithms for Quake (1996), imposing strict re-
quirements for 3D models, live long and prosper, and are used for example
in Valve Software’s 2009 title Left for Dead 2. With 3D city models, we an-
ticipate increase in size and detail over our small case model, be the source
automatic laser scanning or community efforts. Consequently, we believe
that optimized and task-suited 3D engines such as ours will continue to pro-
vide a better solution for 3D maps than generic viewers. In mobile use, these
optimizations also manifest themselves as longer battery life.

As usual, answers rise new questions. We assumed to have reached re-
alism by accurate textures. Now, witnessing the occasional failure of our
accuracy, the follow-up question is, “what is sufficiently accurate”? Cur-
rently, there are no technical or perceptual tools for determining the “real-
ism”, or sufficiency, of a 3D model. In future, we will address this issue,
experimenting with the recognizability of the environment.

Considering the purpose of a 3D map, or any map, there is still room for
speculation of the ultimate representation. Veridicality concerns all maps;
unless cues in a 2D map match the real world, users become disoriented.
A “realistic” 3D map can provide redundant, multiple cues, which are not
necessarily as diagnostic as traditional cues, but the redundancy provides
potential for spotting at least something that can be matched. For navigation
use, can we then apply traditional cartographic practices of simplification
by emphasizing potentially salient cues? Can we emphasize 3D landmarks
by a larger size, as the Romans did already in their Forma Urbis Romae,
and which was done with our 2D raster street map (Fig. 6.7)? If we pur-
posefully break the scale of the map, what happens to integration of legacy
2D-location-based information data sets, which, even with accurate global
coordinates, would no longer match with the model? Furthermore, city engi-
neers require exactness of positioning and geometry. These and other issues
call for future research and collaboration between 3D GIS and computer
graphics scientists, application developers and end users.

74 MOBILE THREE-DIMENSIONAL CITY MAPS

8 SUMMARY OF PUBLICATIONS AND CONTRIBUTIONS OF THE AUTHOR

Publication [P1]
This publication attacks the problem of rendering realistic 3D maps in mo-
bile devices using computer graphics methods. The main obstacles are
solved with efficient visibility culling methods, applying preprocessed po-
tentially visible sets, a novel visibility list management system, explicit
memory and level-of-detail management and caching. Realism is pursued
with relatively detailed textures. In contrast to previous urban 3D rendering
systems, the viewpoint is not limited to street level but can span the en-
tire 3D space. For the lowest LOD texture, the publication presents a sim-
ple algorithm for selecting a dominant façade color instead of the average
color. The publication discusses 3D model requirements that enable effi-
cient culling processes, and presents an example system including a model
and a preprocess stage. As a result, a large and detailed 3D city model is
rendered at interactive and near interactive rates in PDAs and mobile phones
for the first time. The design decisions that were made during development
are validated based on initial results from a field experiment.

Publication [P2]
This publication develops a progressive 3D model download scheme and
measures the effect of 3D hardware on mobile devices. Cellular network
properties and results from a navigation field experiment are discussed.
Based on the visibility and LOD based rendering scheme of P1, and ob-
served real world navigation patterns, an efficient and lightweight progres-
sive model transfer scheme is developed using a binary XML based proto-
col over TCP/IP. The networking scheme emphasizes progressive download
and caching while maintaining interactivity. In contrast to earlier systems,
pre-fetching is not considered essential or feasible, although possible for sit-
uations where all visible content has been downloaded. It is asserted that 3G
networks are sufficiently fast for on-the-fly model download during naviga-
tion without hindering interactivity. The impact of 3D hardware on mobile
devices is measured and discussed. It is noted that rasterization speed in-
creases over an order of magnitude, although this alone does not solve the
original problems of rendering 3D city maps; large models require an effi-
cient out-of-core algorithm. This publication provides further details to the
out-of-core algorithm that was shortly presented in P1.

Publication [P3]
In this publication, mobile networking capabilities are utilized to leverage
a static 3D map to a dynamic, shared virtual environment where moving
entities can be managed in a lightweight manner. The publication exploits
the urban environment and presents a scalable solution for transmitting and
exchanging states of dynamic entities, including position. The solution is
based on precomputed visibility, providing a substantial improvement over
existing dynamic entity visibility culling algorithms. Most computations are

MOBILE THREE-DIMENSIONAL CITY MAPS 75

transferred to clients based on their honestness, leaving a server to act as a
fast message passing switchboard. A public transportation simulator with
near real time vehicle tracking, based on the first version of the system, is
described as an example of the potential of the system.

Publication [P4]
This publication provides a definition for 3D maps, and develops a 3D
navigation interface for mobile devices. The discussion is based on liter-
ature reviews and a field experiment, stressing the necessity of user studies.
The challenges are analyzed, and a maneuvering control categorization pre-
sented, based on the level of user interaction. An advanced 3D maneuvering
user interface is designed, matched to the various navigation tasks. The pub-
lication has been co-published with Antti Oulasvirta. Sections 1.3.3 (Sup-
port for embodied interaction) and 1.4 (A model of interactive search on
mobile maps) and references to pragmatic and epistemic action within other
sections are contributions of A. Oulasvirta. The rest has been contributed
by the author of this thesis.

Publication [P5]
This publication draws together the efforts of publications P1, P2, P3 and P4,
presenting the entire scalable dynamic mobile 3D map system and user in-
terface features. An inheritance-based visibility culling scheme for location-
based information is presented, applied to the networking scheme. Results
from two field experiments are presented, validating the various design de-
cisions.

76 MOBILE THREE-DIMENSIONAL CITY MAPS

BIBLIOGRAPHY

[1] Tomi Aarnio. JSR-184: Mobile 3D graphics API for J2ME.
http://www.jcp.org/en/jsr/detail?id=184, 2005.

[2] Tomi Aarnio. M3G API overview. ACM SIGGRAPH 2005 Course #35: De-
veloping Mobile 3D Applications With OpenGL ES and M3G, August 2005.

[3] Tomi Aarnio. JSR-297: Mobile 3D graphics API 2.0 public review draft.
http://www.jcp.org/en/jsr/detail?id=297, June 2008.

[4] James M. Abello and Jeffrey Scott Vitter, editors. External memory algo-
rithms. American Mathematical Society, Boston, MA, USA, 1999.

[5] Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long, Rob
Kooper, and Mike Pinkerton. Cyberguide: a mobile context-aware tour guide.
Wirel. Netw., 3(5):421–433, 1997.

[6] Michael Abrash. Ramblings in Realtime. Dr. Dobb’s Sourcebook, 2000.

[7] John M. Airey. Increasing Update Rates in the Building Walkthrough System
with Automatic Model-Space Subdivision and Potentially Visible Set Calcula-
tions. PhD thesis, UNC Chapel Hill, 1990.

[8] Arttu Heinonen anb Simo Pulkkinen and Ismo Rakkolainen. An information
database for vrml cities. In Proceedings of the IEEE International Conference
on Information Visualization, pages 469–473. IEEE, 2000.

[9] Carlos Andújar, Carlos Saona-Vázquez, Isabel Navazo, and Pere Brunet. In-
tegrating occlusion culling and levels of detail through hardly-visible sets.
Computer Graphics Forum, 19(3), 2000.

[10] Fone Arena. Nokia 6630 - the first nokia 3G smartphone.
http://www.fonearena.com/reviews/Nokia-6630-review.php, 2004.

[11] Masatoshi Arikawa, Shin’ichi Konomi, and Keisuke Ohnishi. Navitime: Sup-
porting pedestrian navigation in the real world. IEEE Pervasive Computing,
6(3):21–29, 2007.

[12] Ulf Assarsson and Tomas Möller. Optimized view frustum culling algo-
rithms. Technical report, Chalmers University of Technology, March 1999.
http://www.cs.chalmers.se/staff/uffe.

[13] Mark Barnes and Ellen Levy Finch. Collada - digital asset schema release
1.5.0, April 2008.

[14] Jörg Baus, Keith Cheverst, and Christian Kray. A survey of map-based mo-
bile guides. In Liqiu Meng and Alexander Zipf, editors, Map-based mobile
services - Theories, Methods and Implementations, pages 197–213. Springer,
2005.

[15] Jörg Baus, Christian Kray, and Antonio Krüger. Visualization of route de-
scriptions in a resource-adaptive navigation aid. Cognitive Processing, 2(2-
3):323–345, 2001.

[16] Jörg Baus, Antonio Krüger, and Wolfgang Wahlster. A resource-adaptive
mobile navigation system. In IUI ’02: Proceedings of the 7th international
conference on Intelligent user interfaces, pages 15–22, New York, NY, USA,
2002. ACM.

[17] J. Lennart Berggren and Alexander Jones. Ptolemy’s Geography, An Anno-
tated Translation of the Theoretical Chapters. Princeton University Press, 41
William Street, Princeton, New Jersey, USA, 2000.

MOBILE THREE-DIMENSIONAL CITY MAPS 77

[18] Fausto Bernardini, James T. Klosowski, and Jihad El-Sana. Directional dis-
cretized occluders for accelerated occlusion culling. Computer Graphics Fo-
rum, 19(3):507–516, 2000.

[19] Tim Berners-Lee, Roy Thomas Fielding, and Henrik Frystyk Nielsen. Hyper-
text transfer protocol – http/1.0. http://tools.ietf.org/html/rfc1945, May 1996.

[20] Brian Blau, Charles E. Hughes, Michael J. Moshell, and Curtis Lisle. Net-
worked virtual environments. In SI3D ’92: Proceedings of the 1992 sympo-
sium on Interactive 3D graphics, pages 157–160, New York, NY, USA, 1992.
ACM Press.

[21] Heiko Bleschmied, Markus Etz, and Jörg Haist. Providing of dynamic three-
dimensional city models in location-based services. In MOBILE MAPS 2005
- Interactivity and Usability of Map-based Mobile Services. A workshop. Mo-
bile HCI, 2005.

[22] David Blythe. OpenGL ES common/common-lite profile specification, ver-
sion 1.0.02. http://www.khronos.org/opengles, 2005.

[23] Shawn Bonham, Daniel Grossman, William Portnoy, and Kenneth Tam.
Quake: An example multiuser network application - problems and solutions
in distributed interactive simulations. Technical report, University of Wash-
ington, May 2000. CSE 561 Term Project Report.

[24] Gerard Bosch i Creus. 3d environments in wireless information devices.
Master’s thesis, Espoo-Vantaa Institute of Technology, Degree Programme
in Computer Engineering, 2002.

[25] Azzedine Boukerche and Richard Werner Nelem Pazzi. Remote rendering
and streaming of progressive panoramas for mobile devices. In MULTIME-
DIA ’06: Proceedings of the 14th annual ACM international conference on
Multimedia, pages 691–694, New York, NY, USA, 2006. ACM Press.

[26] Christian Bouville, Isabelle Marchal, and Loïc Bouget. Efficient compression
of visibility sets. In International Symposium on Visual Computing (ISVC
2005). ISVC, Springer-Verlag, 2005.

[27] Doug A. Bowman, David Koller, and Larry F. Hodges. Travel in immersive
virtual environments: An evaluation of viewpoint motion control techniques.
In Proceedings of VRAIS’97, pages 45–52, 1997.

[28] Robert Braden. Requirements for internet hosts – communication layers.
http://tools.ietf.org/html/rfc1122, 1989.

[29] Claus Brenner, Norbert Haala, and Dieter Fritsch. Towards fully automated
3D city model generation. In Proc. Workshop Automatic Extraction of Man-
Made Objects from Aerial and Space Images III. International Society of Pho-
togrammetry and Remote Sensing, 2001.

[30] Frederick P. Brooks, Jr. Walkthrough—a dynamic graphics system for simu-
lating virtual buildings. In SI3D ’86: Proceedings of the 1986 workshop on
Interactive 3D graphics, pages 9–21, New York, NY, USA, 1987. ACM.

[31] Lloyd A. Brown. The story of maps. Little, Brown and Company, 1949.

[32] Don Brutzman and Leonard Daly. X3D Extensible 3D Graphics for Web
Authors. Morgan Kaufmann Publishers, Elsevier Inc, 2007.

[33] Donald P. Brutzman, Michael Zyda, Kent Watsen, and Michael R. Macedo-
nia. Virtual reality transfer protocol (vrtp) design rationale. In WET-ICE ’97:
Proceedings of the 6th Workshop on Enabling Technologies on Infrastructure
for Collaborative Enterprises, pages 179–186, Washington, DC, USA, 1997.
IEEE Computer Society.

78 MOBILE THREE-DIMENSIONAL CITY MAPS

[34] Henrik Buchholz, Johannes Bohnet, and Jurgen Dollner. Smart and
physically-based navigation in 3D geovirtual environments. In IV ’05: Pro-
ceedings of the Ninth International Conference on Information Visualisation,
pages 629–635, Washington, DC, USA, 2005. IEEE Computer Society.

[35] Stefano Burigat and Luca Chittaro. Location-aware visualization of vrml
models in gps-based mobile guides. In Web3D ’05: Proceedings of the tenth
international conference on 3D Web technology, pages 57–64, New York, NY,
USA, 2005. ACM Press.

[36] Michael V. Capps and Seth J. Teller. Communication visibility in shared vir-
tual worlds. In WET-ICE ’97: Proceedings of the 6th Workshop on Enabling
Technologies on Infrastructure for Collaborative Enterprises, pages 187–192,
Washington, DC, USA, 1997. IEEE Computer Society.

[37] Edwin Earl Catmull. A subdivision algorithm for computer display of curved
surfaces. PhD thesis, University of Utah, 1974.

[38] Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian Friday, and Christos
Efstratiou. Developing a context-aware electronic tourist guide: some issues
and experiences. In CHI ’00: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 17–24, New York, NY, USA,
2000. ACM, ACM Press.

[39] Jatin Chhugani, Budirijanto Purnomo, Shankar Krishnan, Jonathan Cohen,
Suresh Venkatasubramanian, David S. Johnson, and Subodh Kumar. vlod:
High-fidelity walkthrough of large virtual environments. IEEE Transactions
on Visualization and Computer Graphics, 11(1):35–47, 2005.

[40] Yiorgos Chrysanthou and Mel Slater. Computing dynamic changes to bsp
trees. Computer Graphics Forum (Eurographics 1992), 11:321–332, 1992.

[41] Paolo Cignoni, C. Montani, and R.Scopigno. A comparison of mesh simpli-
fication algorithms. Computers & Graphics, 22(1):37–54, February 1998.

[42] James H. Clark. Hierarchical geometric models for visible surface algorithms.
Commun. ACM, 19(10):547–554, 1976.

[43] Dell Co. Dell axim x30 owner’s manual.
http://support.euro.dell.com/support/edocs/systems/aximx30/en/index.htm,
2004.

[44] Hewlett-Packard Co. Quickspecs compaq ipaq pocket pc h3800 series.
http://h18000.www1.hp.com/products/quickspecs/10977_na/10977_na.HTML,
2002.

[45] Daniel Cohen-Or, Yiorgos L. Chrysanthou, Cláudio T. Silva, and Durand Du-
rand. A survey of visibility for walkthrough applications. IEEE Transactions
on Visualization and Computer Graphics, 09(3):412–431, 2003.

[46] Daniel Cohen-Or, Gadi Fibich, Dan Halperin, and Eyal Zadicario. Conser-
vative visibility and strong occlusion for viewspace partitioning of densely
occluded scenes. Computer Graphics Forum, 17(3), 1998.

[47] Volker Coors. 3D-GIS in networking environments. In International Work-
shop on 3D Cadastres. FIG Commission 2, November 2001.

[48] Volker Coors. Dreidimensionale karten für location based services. In
Alexander Zipf and J. Strobl, editors, Geoinformation mobil. Wichmann Ver-
lag, October 2002.

[49] Hewlett-Packard Corporation. Hp jornada 548 pocket pc. HP Product Speci-
fications (http://www.hp.com), 2000.

MOBILE THREE-DIMENSIONAL CITY MAPS 79

[50] Hewlett-Packard Corporation. Hp ipaq pocket pc h5400 series. HP Reference
Guide (http://www.hp.com), April 2003.

[51] Hewlett-Packard Corporation. ipaq pocket pc h3900 series. HP Getting
Started Guide (http://www.hp.com), February 2003.

[52] Superscape Corporation. Superscape technology – swerve client.
http://www.superscape.com/gamedelivery/3dtechnology/swerveclient.php
(last accessed Fall 2008), 2008.

[53] Wagner T. Corrêa, James T. Klosowski, and Cláudio T. Silva. Visibility-based
prefetching for interactive out-of-core rendering. In PVG ’03: Proceedings
of the 2003 IEEE Symposium on Parallel and Large-Data Visualization and
Graphics, pages 1–8, Washington, DC, USA, 2003. IEEE Computer Society.

[54] M. Cox and D. Ellsworth. Application-controlled demand paging for out-of-
core visualization. Visualization Conference, IEEE, 0:235, 1997.

[55] Rudolph P. Darken and Helsin Cevik. Map usage in virtual environments:
Orientation issues. In Proceedings of IEEE Virtual Reality 99, pages 133–
240. IEEE, 1999.

[56] Rudolph P. Darken and Barry Peterson. Spatial orientation, wayfinding and
representation. In K. M. Stanney, editor, Handbook of Virtual Enviroment
Technology, chapter 28. Lawrence Erlbaum Associates, Inc., 2002.

[57] Roger M. Downs and David Stea. Maps in Minds: Reflections on Cognitive
Mapping. Harper & Row, New York, 1977.

[58] David W. Eggert, Kevin W. Bowyer, and Charles R. Dyer. Aspect graphs:
State-of-the-art and applications in digital photogrammetry. In Proceedings
of the 17th Congress of International Society for Photogrammetry and Remote
Sensing (ISPRS), pages 633–645. ISPRS, 1992.

[59] Johannes Färber. Traffic modelling for fast action network games. Multimedia
Tools Appl., 23(1):31–46, 2004.

[60] Roy Thomas Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen,
Larry Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext transfer pro-
tocol – http/1.1. http://tools.ietf.org/html/rfc2616, June 1999.

[61] Henry Fuchs, Zvi Kedem, and Bruce Naylor. On visible surface genera-
tion by a priori tree structures. Computer Graphics (Proc.SIGGRAPH’80),
14(3):124–133, 1980.

[62] Thomas A. Funkhouser, Carlo H. Séquin, and Seth J. Teller. Management
of large amounts of data in interactive building walkthroughs. In SI3D ’92:
Proceedings of the 1992 symposium on Interactive 3D graphics, pages 11–20,
New York, NY, USA, 1992. ACM Press.

[63] George W. Furnas. Generalized fisheye views. In SIGCHI 1986, pages 16–23.
ACM SIGCHI, 1986.

[64] Craig Gotsman, Oded Sudarsky, and Jeffrey A. Fayman. Optimized occlusion
culling using five-dimensional subdivision. Computers and Graphics, 23,
1999.

[65] Floraine Grabler, Maneesh Agrawala, Robert W. Sumner, and Mark Pauly.
Automatic generation of tourist maps. In SIGGRAPH ’08: ACM SIGGRAPH
2008 papers, pages 1–11, New York, NY, USA, 2008. ACM.

[66] Ned Greene, Michael Kass, and Gavin Miller. Hierarchical z-buffer visibility.
In SIGGRAPH ’93: Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, pages 231–238, New York, NY, USA,
1993. ACM Press.

80 MOBILE THREE-DIMENSIONAL CITY MAPS

[67] Khronos Group. Khronos member hybrid graphics deliv-
ers world’s first OpenGL ES API software implementation.
http://www.khronos.org/news/press/Releases/hybrid-feb-17-04.html, Febru-
ary 2004.

[68] Andrew J. Hanson and Eric A. Wernert. Constrained 3D navigation with 2D
controllers. In IEEE Visualization, pages 175–182, 1997.

[69] Gerd Hesina and Dieter Schmalstieg. A network architecture for remote
rendering. Technical Report TR-186-2-98-02, Institute of Computer Graph-
ics and Algorithms, Vienna University of Technology, Favoritenstrasse 9-
11/186, A-1040 Vienna, Austria, April 1998. human contact: technical-
report@cg.tuwien.ac.at.

[70] Hugues Hoppe. Progressive meshes. In SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics and interactive techniques,
pages 99–108, New York, NY, USA, 1996. ACM.

[71] Stephen Hughes and Michael Lewis. Attentive camera navigation in virtual
environments. In IEEE International Conference on Systems, Man & Cyber-
netics, pages 96–103, 2000.

[72] Sun Microsystems Inc. Java3D API specification.
http://java.sun.com/javase/technologies/desktop/java3d/releases.html, 2002.

[73] The VRML Consortium Incorporated. The virtual reality modeling language,
international standard iso/iec 14772-1:1997, 1997.

[74] Berg Insight. Mobile maps and navigation. Market Report, 2007.

[75] ISO/IEC. Iso/iec cd 19776-3 – X3D encodings – part 3: Binary encod-
ing. http://www.web3d.org/x3d/specifications/x3d_specification.html, De-
cember 2004.

[76] Michael T. Jones. Google’s geospatial organizing principle. IEEE Computer
Graphics and Applications, 27(4):8–13, 2007.

[77] Json.org. Introducing json. http://json.org, 2006.

[78] Susanne Jul and George W. Furnas. Navigation in electronic worlds: A chi
97 workshop. SIGCHI Bulletin, 29(4), 2007.

[79] David Kirsh and Paul Maglio. On distinguishing epistemic from pragmatic
action. Cognitive Science, 18:513–549, 1994.

[80] Szilárd Kiss and Anton Nijholt. Viewpoint adaptation during navigation based
on stimuli from the virtual environment. In Web3D ’03: Proceedings of the
eighth international conference on 3D Web technology, pages 19–26, New
York, NY, USA, 2003. ACM.

[81] James T. Klosowski and Cláudio T. Silva. The prioritized-layered projection
algorithm for visible set estimation. IEEE Transactions on Visualization and
Computer Graphics, 6(2):108–123, 2000.

[82] Thomas H. Kolbe, Gerhard Gröger, and Lutz Plümer. Citygml - interopera-
ble access to 3D city models. In Oosterom, Zlatanova, and Fendel, editors,
First International Symposium on Geo-Information for Disaster Management
GI4DM. Springer Verlag, March 2005.

[83] David Koller, Jennifer Trimble, Tina Najbjerg, Natasha Gelfand, and Marc
Levoy. Fragments of the City: Stanford’s Digital Forma Urbis Romae Project.
Proceedings of the Third Williams Symposium on Classical Architecture,
Journal of Roman Archaeology, Supplementary Series, 61:237–252, 2006.

[84] Christian Kray, Christian Elting, Katri Laakso, and Volker Coors. Presenting
route instructions on mobile devices. In IUI03, pages 209–224. ACM, 2003.

MOBILE THREE-DIMENSIONAL CITY MAPS 81

[85] Antonio Krüger, Andreas Butz, Christian Möller, Christoph Stahl, Rainer
Wasinger, Karl-Ernst Steinberg, and Andreas Dirschl. The connected user in-
terface: realizing a personal situated navigation service. In IUI ’04: Proceed-
ings of the 9th international conference on Intelligent user interface, pages
161–168, New York, NY, USA, 2004. ACM, ACM Press.

[86] Katri Laakso, Ove Gjesdal, and Jan Sulebak. Tourist information and naviga-
tion support by using 3D maps displayed on mobile devices. In Mobile HCI
2003 Workshop on HCI in Mobile Guides, 2003.

[87] Annalina Levi and Mario Levi. Itineraria picta: Contributo allo studio della
tabula peutingeriana. The Journal of Roman studies, 60:242, 1967.

[88] Peter Lindstrom and Valerio Pascucci. Terrain simplification simplified:
A general framework for view-dependent out-of-core visualization. IEEE
Transactions on Visualization and Computer Graphics, 8(3):239–254, 2002.

[89] Risto Linturi, Marja-Riitta Koivunen, and Jari Sulkanen. Helsinki arena 2000
- augmenting a real city to a virtual one. In Digital Cities, Technologies, Expe-
riences, and Future Perspectives, pages 83–96, London, UK, 2000. Springer-
Verlag.

[90] Allan Christian Long, Jr., Shankar Narayanaswamy, Andrew Burstein,
Richard Han, Ken Lutz, Brian Richards, Samuel Sheng, Robert W. Brodersen,
and Jan Rabaey. A prototype user interface for a mobile multimedia terminal.
In CHI ’95: Conference companion on Human factors in computing systems,
pages 81–82, New York, NY, USA, 1995. ACM.

[91] Fujitsu Ltd. Pocket loox user’s manual. http://www.pc-
ap.fujitsu.com/uguide/pocketloox/looxeng.pdf, 2002.

[92] David Luebke and Chris Georges. Portals and mirrors: simple, fast evaluation
of potentially visible sets. In SI3D ’95: Proceedings of the 1995 symposium
on Interactive 3D graphics, pages 105–106. ACM, 1995.

[93] David Luebke, Benjamin Watson, Jonathan D. Cohen, Martin Reddy, and
Amitabh Varshney. Level of Detail for 3D Graphics. Elsevier Science Inc.,
New York, NY, USA, 2002.

[94] Kevin Lynch. The Image of the City. Cambridge: M.I.T.Press, 1960.

[95] Jean-Eudes Marvie and Kadi Bouatouch. A VRML97-X3D extension for
massive scenery management in virtual worlds. In Web3D ’04: Proceedings
of the ninth international conference on 3D Web technology, pages 145–153,
New York, NY, USA, 2004. ACM Press.

[96] Stephanie Meece. A bird’s eye view - of a leopard’s spots. the Çatalhöyük
’map’ and the development of cartographic representation in prehistory. Ana-
tolian Studies: Journal of the British Institute at Ankara, 56:1–16, 2006.

[97] James Mellaart. Excavations of catal hyuk, 1963. Anatolian Studies: Journal
of the British Institute at Ankara, 19:17–177, 1964.

[98] Liqiu Meng, Alexander Zipf, and Stephan Winter, editors. Map-based Mobile
Services. Springer, 2008.

[99] Ville Miettinen. Building scalable 3D applications. ACM SIGGRAPH 2005
Course #35: Developing Mobile 3D Applications With OpenGL ES and
M3G.

[100] Paul Milgram and Fumio Kishino. A taxonomy of mixed reality visual dis-
plays. IEICE Transactions on Information Systems, E77-D(12):29–33, De-
cember 1994.

82 MOBILE THREE-DIMENSIONAL CITY MAPS

[101] Tomas Möller and Eric Haines. Real-time rendering. A. K. Peters, Ltd.,
Natick, MA, USA, 1999.

[102] Steven Molnar. The pixelflow texture and image subsystem. Computers &

Graphics, 20(4):491 – 502, 1996. Hardware Supported Texturing.

[103] Alessandro Mulloni, Daniele Nadalutti, and Luca Chittaro. Interactive walk-
through of large 3D models of buildings on mobile devices. In Web3D ’07:
Proceedings of the twelfth international conference on 3D web technology,
pages 17–25, New York, NY, USA, 2007. ACM.

[104] Aaftab Munshi and Jon Leech. OpenGL ES common profile specification
version 2.0.22 (full specification). http://www.khronos.org/opengles, April
2008.

[105] Boaz Nadler, Gadi Fibich, Shuly Lev-Yehudi, and Daniel Cohen-Or. A qual-
itative and quantitative visibility analysis in urban scenes. Computers &

Graphics, 23(5):655 – 666, 1999.

[106] Bruce F. Naylor. Partitioning tree image representation and generation from
3D geometric models. In Proceedings of Graphics Interface ’92, pages 201–
212, 1992.

[107] Shaun Nirenstein, Edwin Blake, and James Gain. Exact from-region visibil-
ity culling. In EGRW ’02: Proceedings of the 13th Eurographics workshop
on Rendering, pages 191–202, Aire-la-Ville, Switzerland, Switzerland, 2002.
Eurographics Association.

[108] Nokia. Nokia N93 Technical Specifications.
http://www.forum.nokia.com/devices/N93, 2006.

[109] Nokia. Nokia N95 Technical Specifications.
http://www.forum.nokia.com/devices/N95, 2008.

[110] Nokia-Tuning.net. Nokia mobile phones processors. http://www.nokia-
tuning.net/index.php?s=processor, 2009.

[111] Donald Norman. The Psychology of Everyday Things. Basic Books, New
York, 1988.

[112] Antti Nurminen. m-loma – a mobile portal to location-based information. In
Eurographics 2006 (short papers). Eurographics, 2006.

[113] Antti Nurminen. A mobile 3D archipelago. In Proceedings of IASTED Com-
puter Graphics and Imaging 2007. IASTED, 2007.

[114] Antti Oulasvirta, Sara Estlander, and Antti Nurminen. Embodied interaction
with a 3D versus 2D mobile map. Personal and Ubiquitous Computing, 2008.
Accepted for publication in Special Issue on Mobile Spatial Interaction.

[115] Antti Oulasvirta, Annu-Maaria Nivala, Ville Tikka, Lassi Liikkanen, and
Antti Nurminen. Understanding users’ strategies with mobile maps. In Mo-
bile Maps 2005 - Interactivity and Usability of Map-based Mobile Services,
a workshop. Mobile HCI, 2005.

[116] Antti Oulasvirta, Antti Nurminen, and Annu-Maaria Nivala. Interacting with
3D and 2D mobile maps: An exploratory study. Technical Report 1, HIIT,
2007.

[117] ParallelGraphics. Pocket cortona.
http://www.parallelgraphics.com/products/cortonace/notes, 2000.

[118] Yoav I. H. Parish and Pascal Müller. Procedural modeling of cities. In SIG-
GRAPH ’01: Proceedings of the 28th annual conference on Computer graph-
ics and interactive techniques, pages 301–308. ACM Press, 2001.

MOBILE THREE-DIMENSIONAL CITY MAPS 83

[119] Jong-Seung Park and Bum-Jong Lee. Hierarchical contribution culling for
fast rendering of complex scenes. In L-W. Chang, W-N Lie, and R. Chiang,
editors, Advances in Image and Video Technology, Lecture Notes in Computer
Science, pages 1324–1333. Springer Berlin, 2006.

[120] Stefan Parkvall, Eva Englund, Peter Malm, Tomas Hedberg, Magnus Persson,
and Janne Peisa. Wcdma evolved – high-speed packet-data services. Ericsson
Review 2, Ericsson, 2003.

[121] Wouter Pasman and Frederick W. Jansen. Comparing simplification and
image-based techniques for 3D client-server rendering systems. IEEE Trans-
actions on Visualization and Computer Graphics, 9(2):226–240, 2003.

[122] Harry Plantinga and Charles R. Dyer. Visibility, occlusion, and the aspect
graph. International Journal of Computer Vision, 5(2):137–160, November
1990.

[123] Stefan Poslad, Heimo Laamanen, Rainer Malaka, Achim Nick, Phil Buckle,
and Alexander Zipf. Crumpet: creation of user-friendly mobile services per-
sonalised for tourism. In 3D Mobile Communication Technologies. IEEE,
2001.

[124] Günther Pospichil, Martina Umlauft, and Elke Michlmayr. Designing lol@,
a mobile tourist guide for umts. In Proceedings of Mobile HCI 2002, pages
140–154. Mobile HCI, Springer-Verlag, 2002.

[125] Jon Postel. Dod standard internet protocol. http://tools.ietf.org/html/rfc760,
January 1978.

[126] Jon Postel. Rfc 761 – transmission control protocol.
http://tools.ietf.org/html/rfc761, January 1980.

[127] Jon Postel. Rfc 768 – user datagram protocol.
http://tools.ietf.org/html/rfc768, August 1980.

[128] Jon Postel and Joyce Reynolds. Rfc 959 – file transfer protocol.
http://tools.ietf.org/html/rfc959, October 1985.

[129] Claudius Ptolemy. Geōgraphikē Hyphēgēsis. The Great Library of Alexan-
dria, ca. 150.

[130] Kari Pulli, Tomi Aarnio, Ville Miettinen, Kimmo Roimela, and Jani Vaarala.
Mobile 3D graphics: with OpenGL ES and M3G. Morgan Kaufmann, 2008.

[131] Kari Pulli, Tomi Aarnio, Kimmo Roimela, and Jani Vaarala. Designing graph-
ics programming interfaces for mobile devices. Computer Graphics and Ap-
plications, 25(6):66–75, 2005.

[132] Peter Quax, Bjorn Geuns, Tom Jehaes, Wim Lamotte, and Gert Vansichem.
On the applicability of remote rendering of networked virtual environments
on mobile devices. ICSNC, 0:16, 2006.

[133] I. Rakkolainen, J. Timmerheid, and T. Vainio. A 3D city info for mobile users.
Computers and Graphics, 25(4):619–625, 2001.

[134] Matti Rantanen, Antti Oulasvirta, Jan Blom, Sauli Tiitta, and Martti Mäntylä.
Inforadar: group and public messaging in the mobile context. In NordiCHI
’04: Proceedings of the third Nordic conference on Human-computer inter-
action, pages 131–140, New York, NY, USA, 2004. ACM Press.

[135] Martin Reddy, Yvan Leclerc, Lee Iverson, and Nat Bletter. Terravision ii:
Visualizing massive terrain databases in vrml. IEEE Comput. Graph. Appl.,
19(2):30–38, 1999.

84 MOBILE THREE-DIMENSIONAL CITY MAPS

[136] Michael R.Macedonia. A Network Software Architecture for Large Scale Vir-
tual Environments. PhD thesis, Naval Postgraduate School, Monterey, Cali-
fornia, June 1995.

[137] Benet Salway. Travel, itineraria and tabellaria. In Colin Adams and Ray Lau-
rence, editors, Travel & Geography in the Roman Empire. Routledge (Taylor
& Francis), 2001.

[138] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing appli-
cations. In WMCSA ’94: Proceedings of the 1994 First Workshop on Mobile
Computing Systems and Applications, pages 85–90, Washington, DC, USA,
1994. IEEE Computer Society.

[139] Arne Schilling, Volker Coors, and Katri Laakso. Dynamic 3D maps for mo-
bile tourism applications. In L. Meng, T. Reichenbacher, and A. Zipf, editors,
Map-based Mobile Services - Theories, Methods and Implementations, Earth
and Environmental Science, pages 227–239. Springer, 2005.

[140] Arne Schilling and Alexander Zipf. Generation of vrml city models for focus
based tour animations: integration, modeling and presentation of heteroge-
neous geo-data sources. In Web3D ’03: Proceeding of the eighth interna-
tional conference on 3D Web technology, pages 39–ff, New York, NY, USA,
2003. ACM Press.

[141] Dieter Schmalstieg and Michael Gervautz. Demand-driven geometry trans-
mission for distributed virtual environments. Computer Graphics Forum,
15(3):421–431, 1996.

[142] Noel D. Scott, Daniel M. Olsen, and Ethan W. Gannett. An overview of the
visualize fx graphics accelerator hardware. HP Journal, May 1998.

[143] John Rennie Short. The World Through Maps: A History of Cartography.
Firefly Books, P.O.Box 1338, Buffalo, New York 14205, USA, 2003.

[144] A.W. Siegel and S.H. White. The development of spatial representations of
large-scale environments. In H.W. Reese, editor, Advances in Child Develop-
ment and Behaviour, volume 10, pages 9–55. Academic Press, 1975.

[145] François Sillion, George Drettakis, and Benoit Bodelet. Efficient impostor
manipulation for real-time visualization of urban scenery. Computer Graphics
Forum, 16(3), 1997.

[146] Shamus P. Smith and Tim Marsh. Evaluating design guidelines for reducing
user disorientation in a desktop virtual environment. Virtual Reality, 8(1):55–
62, 2004.

[147] Rory Stuart. The Design of Virtual Environments. McGraw-Hill, 1996.

[148] Lucy Suchman. Plans and Situated Actions: The Problem of Human-machine
Communication. Cambridge University Press, 1987.

[149] Oded Sudarsky and Craig Gotsman. Output-sensitive visibility algorithms
for dynamic scenes with applications to virtual reality. Computer Graphics
Forum, 15(3):249–258, 1996.

[150] Oded Sudarsky and Craig Gotsman. Output-sensitive rendering and commu-
nication in dynamic virtual environments. In VRST ’97: Proceedings of the
ACM symposium on Virtual reality software and technology, pages 217–223,
New York, NY, USA, 1997. ACM, ACM Press.

[151] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. A charac-
terization of ten hidden-surface algorithms. ACM Comput. Surv., 6(1):1–55,
1974.

MOBILE THREE-DIMENSIONAL CITY MAPS 85

[152] Seth J. Teller and Carlo H. Séquin. Visibility preprocessing for interactive
walkthroughs. SIGGRAPH Comput. Graph., 25(4):61–70, 1991.

[153] Seth Jared Teller. Visibility Computations in Densely Occluded Polyhedral
Environments. PhD thesis, University of California at Berkeley, 1992.

[154] Perry W. Thorndyke and Barbara Hayes-Roth. Differences in spatial knowl-
edge acquired from maps and navigation. Cognitive Psychology, 14:560–589,
1982.

[155] Martina Umlauft, Günther Pospischil, Georg Niklfeld, and Elke Michlmayr.
Lol@, a mobile tourist guide for umts. Information Technology and Tourism,
5:151–164, 2003.

[156] Teija Vainio. Towards more personalized navigation in mobile three-
dimensional virtual environments. In Intelligent User Interfaces, a position
statement on a workshop Beyond Personalization. ACM, 2005.

[157] Teija Vainio and Outi Kotala. Developing 3D information systems for mo-
bile users: some usability issues. In NordiCHI ’02: Proceedings of the sec-
ond Nordic conference on Human-computer interaction, pages 231–234, New
York, NY, USA, 2002. ACM Press.

[158] Teija Vainio, Outi Kotala, Ismo Rakkolainen, and Hannu Kupila. Towards
scalable user interfaces in 3D city information systems. In Mobile HCI ’02:
Proceedings of the 4th International Symposium on Mobile Human-Computer
Interaction, pages 354–358. Mobile HCI, 2002.

[159] Michiel van de Panne and James Stewart. Effective compression techniques
for precomputed visibility. In Rendering Techniques ’99 (Proceedings of the
10th EG Workshop on Rendering, Springer Computer Science, pages 305–
316. Eurographics, Eurographics Association, 1999.

[160] Flavius Renatus Vegetius. Epitoma rei militaris. In Michael D. Reeve, editor,
Epitoma Rei Militaris. Clarendon Press, 2004.

[161] Emily Whiting, Jonathan Battat, and Seth Teller. Topology of urban environ-
ments. In Proceedings of CAAD Futures’07, 2007.

[162] Lance Williams. Pyramidal parametrics. In SIGGRAPH ’83: Proceedings of
the 10th annual conference on Computer graphics and interactive techniques,
pages 1–11, New York, NY, USA, 1983. ACM Press.

[163] Peter Wonka and Dieter Schmalstieg. Occluder shadows for fast walk-
throughs of urban environments. Computer Graphics Forum, 18(3), 1999.

[164] Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. Visibility prepro-
cessing with occluder fusion for urban walkthroughs. In Proceedings of the
Eurographics Workshop on Rendering Techniques 2000, pages 71–82, Lon-
don, UK, 2000. Springer-Verlag.

[165] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. In-
stant architecture. ACM Trans. Graph., 22(3):669–677, 2003.

[166] Tatu Ylönen and Chris Lonvick. The secure shell (ssh) protocol architecture.
http://tools.ietf.org/html/rfc4251, January 2006.

[167] Hansong Zhang. Effective occlusion culling for the interactive display of
arbitrary models. PhD thesis, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA, 1998.

[168] Siyka Zlatanova and Edward Verbree. Technological developments within 3D
location-based services. In Proceedings of the International Symposium and
exhibition on Geoinformation, pages 153–160, October 2003.

86 MOBILE THREE-DIMENSIONAL CITY MAPS

TKK DISSERTATIONS IN MEDIA TECHNOLOGY

TKK-ME-D-1 Sampo Vesa

Studies on Binaural and Monaural Signal Analysis – Methods and Applications

ISBN 978-952-248-192-4 (print)
ISBN 978-952-248-193-1 (online)
ISSN 1797-7096 (print)
ISSN 1797-710X (online)

