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ABSTRACT
The Open Source mobility middleware developed in the Fuego
Core project provides a stack for efficient XML processing on
limited devices. Its components are a persistent map API,
advanced XML serialization and out-of-order parsing with
byte-level access (XAS), data structures and algorithms for
lazy manipulation and random access to XML trees (Ref-
Tree), and a component for XML document management
(RAXS) such as packaging, versioning, and synchronization.
The components provide a toolbox of simple and lightweight
XML processing techniques rather than a complete XML
database. We demonstrate the Fuego XML stack by build-
ing a viewer and multiversion editor capable of processing
gigabyte-sized Wikipedia XML files on a mobile phone. We
present performance measurements obtained on the phone,
and a comparison to implementations based on existing tech-
nologies. These show that the Fuego XML stack allows go-
ing beyond what is commonly considered feasible on limited
devices in terms of XML processing, and that it provides
advantages in terms of decreased set-up time and storage
space requirements compared to existing approaches.

Categories and Subject Descriptors
I.7.1 [Document and Text Processing]: Document Man-
agement; E.1 [Data Structures]: Trees

General Terms
Design, Experimentation, Performance

Keywords
XML, mobile, lazy, tree, parsing, serialization

1. INTRODUCTION
Interoperability and openness are fundamental motivators

behind the Extensible Markup Language (XML) [34]. Ap-
plication development and deployment becomes easier as ex-
isting software components for processing XML may readily
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be used. When data is stored in an open XML format it
becomes accessible to other applications, which may then
provide functionality beyond what was originally intended.

The number of mobile phones and other limited devices
on the Internet capable of hosting generic applications is
rapidly rising, and may soon outgrow the number of regu-
lar computers [15]. In terms of software development, these
devices are challenging due to their significantly lower pro-
cessing capabilities compared to desktop systems. Thinking
that faster processors will make this go away is a fallacy: as
these devices are battery-powered, saving CPU cycles trans-
lates into longer operation on a single charge, which is often
a key selling point. Thus, in this domain, saving processing
cycles is of paramount importance.

Storage on limited devices, on the other hand, is another
business, as it typically does not consume any power when
idle. During recent years, we have seen rapid growth in
storage capacity on limited devices. This has led to an in-
creasing mismatch between storage and processing power.
For instance, the mobile phone we use can accommodate a
1 GB XML file. However, it will take the phone some 9 hours
just to parse that file. This is around 270 times slower than
the same task on our current desktop PC.

In the Fuego Core project series (2002–2007) at the Helsinki
Institute for Information Technology1 we are developing a
set of middleware services based on the ideas of interoper-
ability, openness, and computational simplicity. This Fuego
mobility middleware [28] uses XML as its primary format for
data storage and manipulation. The middleware is available
under an Open Source license on the Web.2

In this paper we present the Fuego XML stack, which is
the collective name for the XML processing components in
the Fuego middleware. The stack provides efficient read
and write random access to ordinary XML files, small and
large alike. The distinguishing features of the stack are:
i) the ability to process significantly larger XML files on
limited devices than what is commonly considered feasible,
and ii) extensive use of verbatim XML for on-disk storage.
Our stack enables application developers to use large XML
data files on mobile devices, without expensive format con-
versions, and in a very interoperable and open manner.

The components of the stack are the XAS API for effi-
cient XML parsing and serialization, the RefTree API for
lazy XML tree manipulation, and the Random Access XML
Store (RAXS) API for XML document management such as
packaging, versioning, and synchronization. The efficiency

1http://www.hiit.fi
2http://hoslab.cs.helsinki.fi/homepages/fuego-core/
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of our stack stems from the use of lazy data structures and
the advanced parsing and serialization capabilities of XAS.

When storing data on disk, we use the original XML in its
verbatim format as far as possible. That is, we avoid having
to import and export XML documents to and from a store
format, and instead use the XML file directly. This way, our
store is open to XML processing applications, and we can
avoid costly and sometimes error-prone format conversion.

We demonstrate the use of the stack by building a Wiki-
pedia viewer and editor, which we are currently able to run
successfully on a real mobile phone with an input file whose
size is 1 GB. We also wrote two additional parallel implemen-
tations of the viewer, where one stores data in application-
specific files, and the other uses an SQL database. We
present measurements on the viewer and the implementa-
tions, based on which we provide a performance analysis,
and a comparison showing the strengths and weaknesses of
our software stack versus other prevalent storage solutions.

Our stack is not an XML database, but a database could
potentially be built on top of it. However, Stonebraker
et al. [24,25] observed that an application-specific data stor-
age may be significantly faster than a generic one. Since we
think that this observation is relevant for limited devices as
well, our stack opts to provide a toolbox of APIs for XML
access rather than a complete database.

We start by describing the components of the Fuego XML
stack in Section 2, and then move on to the Wikipedia viewer
in Section 3, where we present background on Wikipedia,
and describe how the APIs of the XML stack are used to
implement the editor. The experimental results and their
analysis are in Section 4. We review related work, mainly
in the areas of lazy XML and XML versioning, in Section 5.
This is followed by concluding remarks in Section 6.

2. THE FUEGO XML STACK
Consider such applications as an address book, a collec-

tion of media files with metadata, a rich text editor, or a
high-score list for a game. All of these need to store some
data persistently. They read it in a linear or random-access
fashion, potentially using some narrowly-defined search cri-
teria (e.g., the data for a specific entry in the address book,
the metadata for a particular media file). Changes are typi-
cally made to a limited subset of the data, often one record
at a time. Data display, too, may be limited to a subset
of the data, e.g., one screen of the text document, or the
topmost entries for the high-score list.

Using XML as the storage format is a popular choice that
provides significant interoperability out-of-the-box, a desir-
able feature that is as useful on the limited device as it is on
the desktop. Desktop computers typically have enough re-
sources to parse the XML data into memory, where random
access and updates are performed, after which it is written
back as a whole. However, on limited devices we frequently
find that the available processing and memory resources are
insufficient for such an approach. The Fuego XML stack
addresses this by providing random-access read and write
functionality to verbatim XML files, without requiring the
files to be fully parsed, nor fully loaded into memory. The
maximum size of a manageable XML document becomes
mostly dependent on the subset of the data the application
needs to access, rather than the full document.

An overview of the components of the stack is shown in
Figure 1. On the bottom we have the fundaments: XML
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Figure 1: Overview of the Fuego XML Stack

XML XAS Item
<p> ST(p) ST(x) = Start Tag x
<i> ST(i)

Hi T(Hi) T(x) = Text x
</i> ET(i) ET(x) = End Tag x
<b> ST(b)

LyX T(LyX)

</b> ET(b)

</p> ET(p)

Figure 2: XML document and XAS items.

parsing and serialization and a persistent map for opaque
binary objects (BLOBs). XML parsing and serialization is
handled by the XAS module, which distinguishes itself by
allowing XML documents to be parsed out-of-order, and by
giving access to the raw byte input and output streams of
the XML parser and serializer.

On top of these we have the trees-with-references (Ref-
Tree) API for manipulating XML documents using a tree
model. RefTree provides a fashion of lazy trees, which al-
lows loading XML documents partially into memory. The
API features efficient in-memory buffering of tree changes,
and algorithms for manipulating the lazy aspects of trees.

At the highest layer we have the Random Access XML
Store (RAXS), which provides overall XML document man-
agement operations, such as change transactions, versioning,
and synchronization. RAXS functions as a container for an
XML document along with any auxiliary files and indices.

2.1 XAS
XAS is designed to be a general-purpose XML processing

system that includes sufficient extensibility to permit clean
and efficient implementation of many different XML pro-
cessing tasks. We focus here on the parts of XAS that are
relevant to the RefTree and RAXS implementations, but the
full system contains much more functionality.

The basic concept in XAS is the item that represents an
atomic piece of XML data, and roughly corresponds to an
event in the SAX API [4]. An XML document is then viewed
as a sequence of items. XAS provides both a streaming
model for parsing and serializing XML and an in-memory
item list model for XML processing applications. An exam-
ple XML document and the corresponding XAS items are
shown in Figure 2.



The item stream and list models of XAS are familiar from
other APIs, but XAS also includes lower-level access to the
actual bytes comprising the XML document. The main users
of this functionality are expected to be applications that
transform XML, so this byte stream access is provided also
when serializing an XML document. By reading and writing
bytes directly, incoming subtrees need to be parsed only if
they need to be changed.

While byte stream access is extremely beneficial in some
cases, it also places a burden on applications using it. Since
the application essentially takes the place of the XML pro-
cessor, it must also take care that, after the byte stream pro-
cessing is complete, the application is in the same subtree
and at the same level as it was prior to the byte processing.
This ensures that the state of the XML processor remains
valid, so it can continue its processing.

The concept of the processor’s state is formalized in XAS
by the notion of processing context. This is a stack main-
tained by the XAS processor, which consists of start tags of
elements that are ancestors of the current node being pro-
cessed. Thus, an application using byte stream access needs
to finish the access with the same processing context as it
was in the beginning.

The formalization of the processing context gives rise to
another technique, that of the seekable parser which to our
knowledge is unique to XAS. When the XML document be-
ing parsed comes from a random-access storage such as a
file, a seekable parser can be constructed on top of the in-
put. Such a parser allows repositioning of the underlying
input to an application-specified location. To ensure cor-
rect parser functionality, the application must also set the
processing context correctly for the repositioning.

The repositioning offset and processing context at that off-
set combine to form the parsing state of the position. The
seekable parser interface contains operations to access and
set the current parsing state. Usually, when setting the pars-
ing state, the new state will be one previously accessed, but
since the offsets are simply bytes, correct parsing states can
also be computed. However, the application needs to take
care that the processing context is suitable for the offset.

A seekable parser makes it possible to parse XML docu-
ments out of order or lazily. This will require the application
to pre-build an index for the parsing states of the relevant
subtrees, usually including the byte lengths of the subtrees
as well. Then, when reading the document the next time, if
the application does not wish to parse a subtree, it can use
the indexed parsing state to seek after the skipped subtree.
To parse lazily, the application can simply insert a place-
holder item containing the indexed parsing state so that the
subtree can be later parsed correctly if needed.

2.2 Tree-with-References (RefTree)
A basic strategy for dealing with data structures that do

not fit in main memory is to load into memory only those
parts of the structure that are needed for the task at hand.
Our rendition of this strategy is the tree-with-references,
abbreviated reftree, data model with accompanying methods
to manipulate such trees.

A reftree is an ordered tree with two types of nodes: ordi-
nary and reference nodes. A reference node acts as a place-
holder for a single node or, more importantly, an entire sub-
tree. In cases when processing does not require inspection of
a subtree, we may replace that subtree with a reference node,
and manipulate the reference node rather than the subtree,

T0 T
R→ T0 T

R→ T0 expanded

a: ST(p)

b: ST(i)

c:T(Hi)

d: ST(b)

e:T(LyX)

a

d

b

f:T(.)

ST(p)

ST(b)

ST(i)

T(Hi)

T(.)

Tree Reference Node Reference

Figure 3: RefTree holding XAS Items and the cor-
responding XML.

yielding savings in memory and processing time. Reference
nodes can be thought of as placeholders for subtrees whose
evaluation has been delayed.

A reftree T along with the reftree TB its reference nodes

point to is denoted T
R→ TB , with T being the referencing

tree and TB the referenced tree. We do not allow a reftree
to reference nodes from more than one tree.

Every tree node has a key, by which it is uniquely iden-
tified inside the reftree, and an application-specific content
object. The ability to identify and address nodes by their
unique key is an important part of the reftree tree model, as
will be evident further on.

Reference nodes have a target as their content. The target
holds the key of the node being referenced. There are two
variants of reference nodes: tree references and node refer-
ences. The former references the subtree rooted at its target,
and the latter the target node only.

For a tree reference, the descendants of the target node in
the referenced tree are said to be virtual in the referencing
tree. Thus, there are in total four kinds of nodes: ordinary,
node reference, tree reference, and virtual.

In our XML stack we use reftrees for in-memory storage
of XML. The reftree structure mirrors the structure of the
XML document, and the XAS items from the document
are stored in the tree as content of ordinary nodes. As an
example, consider the tree T0 in Figure 3, which holds the
XAS items of the XML document in Figure 2. Note that
we have assigned a key to each node (a, b, c, . . . ) and that
end tags are not stored in the tree structure, as these can

be inferred. T
R→ T0 is a reftree that references nodes in T0:

a and d are referenced using node references, and b using a

tree reference. In T
R→ T0, the node f is ordinary, whereas

a and d are node references, b is a tree reference, and c is a

virtual node. Rightmost is T
R→ T0 with all reference nodes

expanded.

If two reftrees T
R→ TB and T ′ R→ TB become identical

when the reference nodes in both trees have been replaced
with the nodes they reference, we say that T and T ′ are

reference equal. We denote this T
R
= T ′.

A reftree may be interpreted as the cumulative state change
to the referenced tree induced by some edits. More precisely,
assume we apply edit operations to a tree T to get T ′. We
may now use reftrees to express T ′ using references to T , i.e.,

express the state change as T ′′ R→ T so that (T ′′ R→ T )
R
= T ′.

When we want to emphasize that a reftree expresses such a
state change we use the term change tree. For instance, we

can interpret T
R→ T0 in Figure 3 as a change tree that edits

T0 by moving d below a, deleting e, and inserting f .



Reference nodes are not auto-evaluating, i.e., they do not
appear to be, or get automatically replaced with, the nodes
they reference. This is to avoid costly computation that
would potentially happen “behind the back” of the applica-
tion developer. Instead, reference nodes are explicitly ma-
nipulated. For this the RefTree API provides a set of oper-
ations for common reftree manipulation tasks.

2.2.1 RefTree Operations
In the reference expansion operation a selected set of ref-

erence nodes are replaced with the nodes they reference.
The application operation is used to combine two “chained”

reftrees of the form T
R→ (T ′ R→ T0) into a single reftree

T
R→ T0. In particular, using repeated application, we may

combine a list of reftrees of the form Tn
R→ Tn−1

R→ . . .
R→ T0

into Tn
R→ T0. The intuitive meaning of application is to

combine several change trees into one change tree that ex-
presses the cumulative change.

In the reference reversal operation, the roles of the refer-
encing and the referenced trees are reversed, i.e., we compute

T ′B
R→ T from T

R→ TB so that T ′B
R
= TB . When thinking

of a reftree as a change tree from state a to b, reference re-
versal produces the change tree from state b to a. We note
that reference reversal is a special case of a more general
operation, reference normalization [18].

Note that we want the algorithms to yield results that use
reference nodes whenever possible in order to ensure process-
ing and memory efficiency (both application and reference
reversal have trivial solutions where all nodes are expanded).
Our reftrees implementation produces results that are effi-
ciently computable and honor this requirement.

From an implementation point of view, we found that it
makes sense to categorize reftrees depending on the ability
to traverse and change the tree. First, there are the basic
immutable reftrees, or just reftrees, which may be traversed
along the parent and child axes. The addressable reftree
adds the ability to look up nodes by their key in a random-
access fashion. Finally, a mutable reftree is an addressable
reftree that can be changed by subtree insert, delete, update,
and move operations.

The change buffer is a special mutable reftree that wraps
around an addressable reftree Ta. Initially the change buffer
appears identical to Ta. Any subsequent change operations
modify the buffer as any other mutable reftree. However,
behind the scenes, the change buffer maintains a mutable

reftree Tc
R→ Ta, which is a change tree that expresses the

cumulative change from Ta. To maintain the change tree, we
expand the nodes involved in each operation in the change
tree, and then execute the operation on the expanded tree.
The change buffer can be queried for the change tree at any
point with the getChangeTree() method.

The change buffer thus computes from a list of edit op-
erations the cumulative state change as a change tree. The
RefTree API also includes an algorithm for the reverse, i.e.,
to construct a list of edit operations from a change tree. Us-
ing this algorithm, a mutable reftree Tm may be edited into

the state indicated by some change tree T
R→ Tm.

The API allows casting an immutable reftree to an ad-
dressable reftree by the means of a wrapping tree that main-
tains an index of keys and nodes. An addressable reftree, in
turn, may be cast to a mutable reftree by wrapping it with a
change buffer. This functionality along with the aforemen-

T0

R

a

c

b

E0=del(c),
E1=upd(b,e)−−−−−−−−−→

T1

R

a e

E2=ins(R,f,2)−−−−−−−−−−→

T2

R

a e f

T ′
1

R→ T0

R

a e

T ′
2

R→ T1

R

a e f

T ′
2

R→ T0

R

a e f

T ′
0

R→ T2

R

a

c

b

Figure 4: Different reftrees.

tioned categories let the application developer implement
the minimum level of functionality that is required to ac-
complish a task in a sufficiently efficient manner. For in-
stance, for a small tree, only the basic reftree needs to be
implemented, as the API methods for casting to more able
types are typically efficient enough.

A way to conserve memory is to instantiate individual
nodes on-demand, rather than the full tree structure, and
discard nodes from memory immediately when no longer
needed. We call nodes that are used in this manner tran-
sient. When implementing transient nodes, it is easy to
accidentally waste memory if one uses object pointers be-
tween nodes, as the pointers may prevent the node from
being freed (i.e., garbage collected) by making it reachable
through some other node that is in use. However, as nodes
have unique keys in our API, this problem can be avoided
by using these instead of object pointers to link nodes.

In Figure 4, we see a tree T0 that is first edited into a
tree T1, which in turn is modified into T2. The edit of T0

into T1 expressed as a change tree is T ′1
R→ T0, and T ′2

R→ T 1

expresses the edit of T1 into T2 using references to nodes
in T1. To obtain the cumulative change between T0 and
T2 we can combine these two reftrees using the application

operation, yielding T ′2
R→ T0. Note that since neither e or f

appears in T0, we cannot use references to these in T ′2
R→ T0.

Suppose T0 is an immutable tree, but we nonetheless want
to edit it as shown. We can then wrap T0 with a change
buffer, which will allow us to perform the required edits by
buffering them into memory as a change tree. In particular,
if we query the change buffer for the current change tree after

application of the edits E0, E1, we get T ′1
R→ T0, and after E2

we would get T ′2
R→ T0. Finally, we may want to swap the

roles of T0 and T2 so that we express T0 using references

to T2. This is done by reference reversal of T ′2
R→ T0, and

yields the tree T ′0
R→ T2 shown rightmost. By expanding

the references in T ′0
R→ T2 with nodes from T2, we see that

T ′0
R→ T2 and T0 are indeed identical, i.e., T ′0

R→ T2
R
= T0.

While space does not permit a detailed description of how
the reftree operations are implemented, we can report that
implementations that scale as O(n log n) or better are possi-
ble, where n is roughly the combined sized of the input and
output trees, and excluding virtual nodes. This is based on
our current implementation of the operations, which in each
case performs an amount of work bounded by O(log n) for
each input and output node.



2.3 Indexing with Persistent Maps
We provide a persistent map for maintaining indexes. The

map is one-way, and between arbitrary keys and values, and
it is stored as binary files that grow dynamically with the
size of the map. We currently use an implementation of
the dynamic hash algorithm in [16] provided by the Solinger
Sdbm project3, mainly because it is simple and lightweight.

The precise format of the keys used to identify nodes is not
dictated by the RefTree API, but in practice we have found
it useful to use Dewey keys [30], i.e., keys consisting of a path
of integers from the root where the key i0i1 . . . ik selects the
ithk child node of the node selected by the key i0i1 . . . ik−1.
The benefits of these are mainly that they can denote any
node in the XML document and that determining structural
relationships between two Dewey keys is straightforward.

In the common case where we key XML data in a reftree
by Dewey keys, a persistent map of Dewey keys to XAS
parsing states turns out to be a very useful index. The
structural properties of Dewey keys allow parent and sibling
keys to be inferred, so such a map suffices for performing the
lookup and tree traversals needed by an addressable reftree.

A useful key-related construct is the key map, which is a
bi-directional map on node keys. Key maps may be used
to, e.g., control which nodes align during reftree operations,
or to re-map the structure of a tree. A particularly useful
key map implementation is our Dewey-keyed mutable ref-
tree, which is able to map between the Dewey keys of the
referenced and referencing trees.

2.4 The Random Access XML Store (RAXS)
At the top level of the Fuego XML stack, we have the Ran-

dom Access XML Store (RAXS). RAXS ties together data
files, a reftree model, and tree mutability. The API allows
opening an XML file as a reftree, editing that tree, and writ-
ing the changes back to the file in a transactional manner.
A RAXS can be thought of as a limited XML “database”,
which is stored as a main XML file with an accompanying
set of files storing indexes and related binary objects.

To the application developer a RAXS instance exposes
its data as an addressable reftree T . This tree is obtained
with the getTree() method, which can also be used to ob-
tain previous versions of T by passing a version number as
argument. A store is edited by calling the getEditableTree()
method, which returns the store contents as a mutable ref-
tree, and also flags the start of an editing transaction. The
mutable reftree is generated by constructing a change buffer
T ′ on top of T . Thus, any changes made to the store are

buffered as a change tree T ′ R→ T in memory.
The edited data is committed by calling the commit()

method with T ′ as an argument, which also ends the edit
transaction and returns the mutable tree to the store. If
the changes should be discarded instead of committed, the
change buffer is simply reset.

Setting versioning aside for a moment, the main task of
commit() is to update T to T ′. One way to do this is to
rewrite T , and another is to use a forward delta from T to

T ′. In both cases we use the change tree T ′ R→ T maintained
by the change buffer.

In the rewrite approach we traverse T ′ R→ T , emitting
nodes to the new tree as we go along. Given an appropri-
ate index to the XML text for T we may serialize any tree

3http://sourceforge.net/projects/solinger/

reference nodes by using the XAS byte streaming abilities
to copy bytes from the original T to the new tree data file.
That is, unchanged subtrees of T will be written to the new
file by performing byte stream copy, rather than using slower
XML parsing and serialization.

The forward delta approach can be used when it is in-
feasible to rewrite T , e.g., if it is too large even for stream

copying, or it is on read-only media. In this case T ′ R→ T is
simply stored in an auxiliary file, which will then effectively
contain a forward delta from the original T to T ′. When
we want to recall T ′ we wrap T from the original file with a
change buffer, and apply the reftree in the auxiliary file to
the change buffer, hence yielding T ′. A feature of this ap-
proach is that all changes may be flushed by removing the
auxiliary file. A drawback of the forward delta approach is
a memory overhead corresponding to the size of the change
tree expressing the cumulative edits from the original tree.

On each commit we assign a version number to the store.
For the purpose of recalling past versions we store reverse
deltas, which allow recalling version v−1 from version v. As
the delta we use a reftree that expresses T using references

to T ′, and store it on disk. Since we know T ′ R→ T , we

can get T
R→ T ′ using reference reversal. We note that the

ability to recall past versions is useful when synchronizing
data [19].

Each RAXS instance is connected to an addressable ref-
tree that provides the tree content through an interface
called StoredTree. In addition to providing the store with
a tree, interface implementors also provide the tree update
method. We have found that this interface nicely separates
the concerns of RAXS from those of the storage layer.

3. VIEWING AND EDITING WIKIPEDIA
In recent years, the simple style of text markup used in

Wikis [17] has become popular for collaborative Web author-
ing. The basic idea is to use visually non-intrusive markup
on plain text to facilitate easy editing. For instance, sur-
rounding a word with two single quotes (’’word’’) may pro-
duce emphasis in the formatted view, and prefixing lines
with a hash sign (#) may produce an enumerated list. While
different Wikis typically use slightly differing syntax, this
basic idea is common to all.

We use the term wikitext for text marked up according
to some Wiki syntax. One of the most well known corpora
of wikitext is the English-language Wikipedia4, an online
encyclopedia to which anyone with a Web browser may con-
tribute. XML dumps of the Wikipedia corpus are publicly
available on the Wikipedia web site.

To put our architecture to test, we elected to implement an
offline viewer and editor for Wikipedia based on the available
XML dumps, as we think it would make for a realistic use
case. We did not use the complete English Wikipedia (some
8.5 GB5 at the time of writing), but rather a file consisting
of the first 1 GB of the XML dump dated March 3, 2006.
This corpus is also known as the Hutter Prize enwik9 data
set6. It has 243 419 articles encompassing a wide range of
sizes: the 10th, 50th, 99th, and 99.9th percentiles are 26,
1 685, 35 128 and 68 274 bytes of wikitext, respectively.

4http://en.wikipedia.org
5We follow the convention to use base 10 prefixes for files,
and base 2 for RAM. Hence, 1 GB=109 bytes for files.
6http://prize.hutter1.net/

http://sourceforge.net/projects/solinger/
http://en.wikipedia.org
http://prize.hutter1.net/


Figure 5: The editor on a Nokia 9500 showing the article on the word “Wiki”

The individual articles in a Wikipedia XML dump are con-
tained in child elements of the document root. Each article
has a title along with some other metadata in its child ele-
ments, and the actual article text inside a <text> element.
The article text is wikitext rather than marked up as XML,
i.e., from an XML point of view, it is a single text node.
While the use of wikitext is regrettable from a pure XML
perspective, it is a good example of the kind of practical
XML usage that our architecture should accommodate.

In the following, we describe the Wikipedia viewer imple-
mentation, along with central code snippets that show how
the Fuego XML API is put to use.

3.1 The Wikipedia Editor
For running the viewer we used the Nokia 9500 Communi-

cator, which is a smartphone for the GSM cellular network.
The Nokia 9500 ships with a Java implementation support-
ing the Java Personal Profile (PP) specification [26]. It also
supports the more common Mobile Information Device Pro-
file (MIDP) [27], but that is insufficient for our purposes, as
it lacks the necessary APIs for random access to files. Our
unit supports up to 1 GB of solid state storage on industry
standard reduced-size multimedia card (RS-MMC) memory.
The viewer uses RAXS to access the articles that are in the
enwik9 file, which is stored on the MMC memory card on
the phone. The Java heap was limited to 4 MB.

Figure 5 shows the Wikipedia editor running on the 9500
and showing the article on the word “Wiki”. Hyperlinks
between Wiki articles are shown in blue (e.g., IPA in the
Figure), and may be navigated with the arrow keys and
followed by pressing Enter. The currently selected link (IPA)
is shown on yellow background. Articles may be looked up
by entering a partial article name, after which the user may
pick one of the 10 alphabetically closest titles.

To edit the current article, the user enters edit mode. In
this mode, the user is able to view and change the article
wikitext in a plaintext editor widget. Figure 6 shows the
wikitext editor view along with the corresponding formatted
view for a sample article.

3.2 Implementation
The starting point for the implementation is the enwik9

XML dump file. We designed our editor to use the XML
dump verbatim without any extra data transformation stages
in between. To manage the file we implement a Wikipedia
RAXS, to which we provide the XML file as an address-
able reftree through the StoredTree interface. Thus, the first

Figure 6: Editor and formatted views for an article.

step is to implement an addressable reftree TW holding the
content of enwik9, with RAXS then providing editing and
versioning on top of this tree. The nodes of TW should be
transient due to the size of the file.

We construct TW so that it mirrors the structure of en-
wik9, uses Dewey keys, and stores the corresponding XAS
items at its nodes. We generate the nodes of TW on-the-
fly using XAS’s seekable XML parser. When a node is re-
quested, we seek to the corresponding position in enwik9,
parse the XAS item at that position, and finally wrap the
item along with its Dewey key as a reftree node.

class WikiTree implements AddressableRefTree, StoredTree {
RefTreeNode getNode(DeweyKey k) {
ParserState p = lookup(k);
parser.setState(p);
return new RefTreeNode(k,parser.nextItem());

Since nodes are typically requested in an out-of-order fash-
ion, we need to be able to look up the position and length
in enwik9 corresponding to a given Dewey key. For this pur-
pose we build an index IK , which is a map of Dewey keys to
the corresponding parsing states in enwik9. Thus, the node
lookup in the code snippet above is implemented as

class WikiTree { ...
ParserState lookup(DeweyKey k) {

IK.lookup(k);



Due to the size of enwik9 the index will not fit into working
memory. Instead we build it in advance, and store it in the
persistent map provided by our API. Indexing is typically
done on faster hardware, or as a background job on the
target device prior to use. This is since to index an XML
document we need to parse through it – and just parsing
1 GB of XML takes some 9 hours on the 9500.

To be able to look up an article by its title we use an
additional persistent map IT that maps an integer key to
a 〈title, Dewey key〉 pair, so that the key of the pair is the
position of the title in the sorted list of titles. Each index
requires around 16 MB of additional storage on disk.

3.2.1 Implementing Editability
To store the changes persistently we need to augment TW

with a tree update method that gets called by the RAXS
instance. Recalling different alternatives from Section 2.4,
we find that in this case a forward delta from the unmodified
enwik9 file is more appropriate, as rewriting the file on the
target device is both slow and strenuous on storage capacity.
Thus, when the user saves his edits, we simply store onto the
file system the change tree that RAXS maintains and passes
on commit:

class WikiTree { ...
updateTree(ChangeBuffer editTree) {

RefTree changes = editTree.getChangeTree()
serialize(changes,"changes.xml")

There is, however, a scalability issue with this approach
and the way the enwik9 data set is structured. Consider
what the change tree for TW will look like when a single
article has been edited. We cannot use a tree reference for
the entire tree (as it has changed), which means that we will
have to use a node reference for the root, and tree references
for each of the unchanged articles in its child list. The prob-
lem is that there are 240 000 articles, which implies at least
that many nodes in the change tree. We cannot afford to
store that many nodes in memory on the 9500.

A solution in the spirit of the reftree model is to introduce
artificial tree levels in the structure of TW compared to en-
wik9, where the nodes on these levels represent increasingly
larger groups of articles. We may thus reference a group
of nodes, rather than individual nodes, which reduces the
size of the change tree significantly. This can be done by
re-mapping the keys (and structure) of TW using an appro-
priate key map m: TW = new MappedRefTree( TW , m)

3.2.2 Streaming Wikitext
Some articles weigh in at tens of kilobytes of wikitext and

above, and expand to roughly twice the size in working mem-
ory if we use Java strings. As the editor needs to load into
memory the forward delta, which holds the full wikitext of
each changed article, we would like to minimize the mem-
ory footprint of nodes with wikitext. In addition, the XAS
text items holding the article wikitexts are rarely accessed
(except when the particular article is viewed). Thus, nodes
holding wikitext are good targets for optimization.

To save memory we make these text items lazy, i.e., they
do not load their content from the XML file unless accessed.
To further improve performance in cases when the content
is read or copied to another file, we use the byte stream ca-
pabilities of XAS to access the content as a raw byte stream.
This allows us to bypass the XML parser when no parsing

is needed (as in the case of wikitext), and to eliminate un-
necessary text buffering.

Laziness is implemented with a special StreamedText XAS
item. This item only stores the parser state at the text item,
which allows us to load the actual text when needed. When
the item is accessed, it can transparently load its text, or
alternatively, provide an input stream to the text. Using
streamed text, the serialize() method looks as follows:

class WikiTree { ...
serialize(RefTreeNode n, XasSerializer s) {
if ( n.content instanceof StreamedText )
copyStream(n.content.inputStream, s.outputStream )
else normalOutput(n.content, s)
for ( child: n.children ) serialize(child, s)

Our wikitext formatter is StreamedText-aware, and con-
structs the display primitives directly from the input stream,
without any intermediary buffers. Using streamed wikitext
in the formatter and in forward deltas enables viewing wiki-
texts larger than the available working memory. Thus, our
approach scales both on the level of XML document nodes,
and on the level of the content size of individual nodes.

4. MEASUREMENTS
To validate our approach, we performed two experiments.

In the first, we measured memory usage and the responsive-
ness perceived by the end user during use of the application,
and in the second we compared versions of the viewer that
used storage back-ends based on alternate approaches to the
approach based on the Fuego XML stack.

4.1 Responsiveness and Memory Usage
To test the responsiveness of the editor we measured the

time elapsed for 4 basic tasks on articles of varying size:

Lookup The article was looked up using the Find func-
tionality by typing the article name and executing a
lookup. We measured the time from starting lookup
until a list of the 10 closest matching articles was ready.

Hyperlink A Wiki hyperlink from a dummy article to the
test article was followed. We measured the time from
activating the hyperlink until the text of the article
was visible on screen.

Edit Edit mode was entered from article view mode. We
measured the time from edit activation to having loaded
the wikitext into the text edit widget.

Save The article was saved in edit mode. We measured
the time from executing save until the updated article
text was visible on screen. The save test was executed
in two variants: Save 1 and Save n, where 1 denotes
the first save of the article, and n a later save. We
expect Save 1 to be slower than n due to reference
node expansion in the change buffer at the first save
(on subsequent saves, all nodes are already expanded).

The tasks were run on 4 articles, whose wikitexts serialized
as XML were 1 kB, 4 kB, 16 kB, and approximately 64 kB.

The results are shown in Table 1, which lists the median
time over 5 repetitions (4 for Save 1 due to a faulty test
run), along with the maximum deviation from the median in
parentheses. The times for the lookup and hyperlink tests



Table 1: Responsiveness by task and document
Time[ms] 1k 4k 16k 64k

Lookup 203 (15) 203 (15) 203 (16) 235 (5)

Link 1 938 (156) 2 156 (32) 2 047 (109) 1 984 (155)

Edit 250 (47) 438 (1) 1 406 (109) 4 734 (109)

Save 1 11 553 (244) 11 438 (188) 12 008 (40) 12 844 (235)

Save n 5 703 (79) 5 828 (141) 6 844 (110) 9 953 (688)

Table 2: Editor RAM usage and size of delta files
Space [kB] 1k 4k 16k 64k
Max memory 473 491 565 688
Size of delta 4.3 7.2 19.4 62.1

are satisfactory, especially considering that repainting the
screen, which is a part of the hyperlink and save tests, takes
about 500–800 ms.

The times to enter editing and saving range from reason-
able (some 6 s to save an already edited small document) to
a bit on the slow side (13 s for saving a large document for
the first time). However, we note that the performance is
similar to that of the 9500’s native applications. A quick test
yielded that opening an unformatted 64 kB text file with the
native Documents application, which ships with the phone,
takes some 7 s, and saving the same document around 5 s.

We note that there is a peculiar discrepancy between the
increases in save time for the Save 1 and n tasks: in the
former case, there is very little increase, whereas in the latter
case the save time almost doubles between 1 kB and 64 kB.
This has to do with mixed usage of Text and StreamedText
items: in the former case the wikitext is copied as a byte
stream from one file to the other, in the latter case a Java
string with the wikitext is converted to UTF-8 and serialized
as bytes, a process which we have found to be rather slow.

We also measured maximum Java memory usage over var-
ious points in the view-edit-save-view cycle, as well as the
size of the forward delta holding the changed text. These
results are in Table 2. We see that memory consumption
remained well below 1 MB during all tasks, and that the
forward deltas are quite compact, with only some 3 kB of
XML for reference nodes in addition to the article text.7

4.2 Alternate Implementations
To validate the use of the Fuego XML stack, we imple-

mented alternate versions of the viewer that used more tra-
ditional approaches for storing the wikitext. These versions,
listed below, were written following good engineering prac-
tice in order to provide a fair comparison.

File store (FS) In this version, each article is stored in a
separate XML file, yielding some 240 000 files on disk.
As is customary, the files were dispersed over several
subdirectories to improve file lookup speed.

SQL store (SQL) The enwik9 dump was imported into a
MySQL8 database, using the default Wikipedia database
schema. Articles were then fetched using SQL state-
ments, which were prepared before execution in order
to improve performance.

7The 64 kB article shrunk below 64 kB because we serialized
some entities differently.
8http://www.mysql.com

Table 3: Performance comparison between Fuego,
SQL, and FS implementations

Fuego SQL FS
Import time (ext2) 170 s 1620 s 456 s
Read time (ext2) 7123 ms 7736 ms 6952 ms
Space (ext2) 1017 MB 1789 MB 1629 MB
Space (FAT16) 1017 MB 1790 MB ≈14000 MB

For each version, we obtained three measurements

Import The time to import the enwik9 file into the store.
This time includes IK index building, splitting into
files, etc. IT building, which would roughly double
import time, was disabled during the comparison since
that indexing functionality was not available in the
alternate implementations. If the IT index were added
to the alternate implementations, their import time
would increase as well.

Random read The time to read a sequence of articles. The
same random ordering was used for all implementa-
tions. We disabled streaming text nodes in the Fuego
version during this test to make our approach more
similar to the others. Read time was measured with a
warmed file system cache.

Space The amount of disk space required by the store im-
plementation. The test was run on both ext2 and FAT
file systems. FAT was included as it is commonly used
on solid state storage devices. We used the FAT16
variant, as several contemporary devices (e.g., the 9500
Communicator) do not yet support the newer FAT32.

All tests were run on a 3 GHz Pentium 4 desktop running
Ubuntu Linux 6.10 with 2 GB RAM. We could not run these
tests on the 9500 since the alternate versions were not fea-
sible on that platform due to storage limitations and lack of
a suitable SQL engine.

The results are in Table 3. Looking at import time, we
find that our approach is the fastest, followed by FS at more
than twice the time. SQL setup is significantly slower, even
though we measure only the time to run the import, not the
actual conversion from XML to SQL.

In the read test there are only minor differences between
the approaches, with some minor overhead in the Fuego API
over the FS case, and still some more overhead for using
SQL. If we enable streaming in the Fuego case to save mem-
ory, this adds some 1300 ms to execution time due to addi-
tional seeks in the input file. Note that this option to reduce
memory usage is not available in the other implementations.

Looking at space overhead we find that our approach saves
some 40% compared to the SQL and FS on ext2 approaches.
With FAT16 the FS approach becomes infeasible, as needed
space surpasses the 4 GB limit of that file system, and we
have to resort to an estimate based on extrapolation. This
happens because FAT16 allocates space per file in incre-
ments of 32 kB. This issue should be alleviated as more mod-
ern file systems become prevalent on solid state storage, but
it is a concern with current devices.

In summary, we see that the Fuego approach provides
comparable performance to other common approaches, while
providing significantly lower space overhead and faster im-
port times. Furthermore, we note that these results alone

http://www.mysql.com


already rule out the FS approach on the 9500 due to space
requirements.

5. RELATED WORK
Delayed, also known as lazy, evaluation is a basic tech-

nique in algorithmic design. In the reftrees API we use ex-
plicit rather than implicit evaluation of delayed structures,
akin to Scheme-style delayed evaluation [2], and less like the
Haskell-style“invisible” laziness [22]. This latter form of lazi-
ness is used in the “lazy” mode of the Xerces XML parser9,
as well as in the lazy XML parsing and transformation re-
search presented by Noga, Schott, et al., in [21, 23]. Their
positive findings on the performance improvements that a
lazy approach may offer should be pertinent to reftrees.

A form of delayed evaluation is also behind the XML pro-
jection technique [20] where an in-memory model of an XML
document is constructed only as much as is needed for an-
swering a given query. The described technique based on
projection paths should be directly applicable to obtain the
set of nodes to expand in a reftree. With reftrees, data may
be expanded beyond the initial projection, thus permitting
more dynamic and flexible access to the result.

Inflatable XML trees [13] are close in functionality to tree
reference nodes combined with lazy parsing. Like these, in-
flatable trees are based on the idea of parsing only what is
needed by the application, and they also support efficient
serialization by direct copying of bytes. The main difference
is that inflatable trees are not index-based but store the un-
parsed bytes in memory, so they would not be suitable for
our use where usable RAM is very limited.

Compact representation of XML trees in memory has also
been achieved by sharing of subtrees [5], effectively mak-
ing the tree a DAG. This technique is very useful in saving
memory, but it requires the separation of content and struc-
ture, and this requirement is not addressed clearly. Busatto
et al. [7] keep the content in a string buffer, and during
traversal determine the indices. Neither technique seems
amenable to arbitrary traversals of a document in memory.

The reftrees update model has two features that stand
out: support for the move operation and the construction
of a change tree based on the cumulative effect of edits. An
update model based on insert and delete operations, as was
done in early work of Tatarinov et al. [29], is still often used
as the basic model. However, we and others argue [9, 12]
that the move is a valuable addition, as it can capture struc-
tural changes – and XML is indeed much about structure.
The lazy XML update mechanisms proposed in [8], and the
versioned documents in [31] both keep a log of updates, as
opposed to our approach, which maintains a state change.

In RAXS, we use reftrees for computing XML deltas and
maintaining versioned documents. References across trees
are used in the same manner in the Reference-Based Version
Model (RBVM) [10] to implement versioned documents. [11]
addresses querying, and finds RBVM to provide an excellent
basis for queries on versioned documents.

The Xyleme XML warehousing project uses a versioned
XML repository [19] for storage and retrieval of XML. New
document versions are received as snapshots of their state,
based on which a delta between the new and present versions
is computed. The deltas are complete in the sense that they
can be used both in the backward and forward directions;

9http://xerces.apache.org/

past versions are retrieved by following a chain of deltas
starting at the current version. The set of edit operations is
the same as those used with our mutable reftree.

In [6] Buneman et al. propose a method for archiving
scientific XML data, and observe that it is important that
the deltas equate elements properly over versions, i.e., that
the “same” element can be tracked through versions. This
is an issue especially in the case that document snapshots,
rather than a log of edits is used, as is the case in Xyleme
and the archive of Buneman et al. We note that in our
XML stack element tracking is straightforward if changes
are made through the mutable reftree interface.

For delta-based approaches, version recall has been op-
timized by the use of techniques for co-locating referenced
nodes [10] and by storing full intermediate versions [32]. The
latter approach is immediately applicable to RAXS.

Experience shows that generic DBMS solutions do not
necessarily fit all application scenarios [24, 25]. In particu-
lar, with large data sets, a customized solution can be up
to one or two orders of magnitude faster than a generic one.
On mobile devices, the data sets may not be extraordinarily
large, but mobile devices are typically a few orders of magni-
tude slower than desktops, thus creating a similar situation.

Space usage concerns could be alleviated by using com-
pression or an alternate serialization format10. However,
document editing requires random access [33], so standard
compression algorithms would not work that well. Fur-
thermore, common alternate formats usually tokenize names
starting from the beginning, so while they preserve the struc-
ture of the XML file, the XAS parsing state would need to
be extended to include the tokenization in effect. While our
system includes support for alternate formats, we do not yet
have a seekable parser for them. Finally, using an alternate
format would entail transformations from textual XML that
would not be feasible on a mobile device for large files.

6. CONCLUSIONS
We presented the Fuego XML stack, which is a toolbox of

APIs for efficient reading, lookup, writing, and management
of XML documents that utilizes out-of-order parsing and
lazy data structures. Using the toolbox, it becomes feasible
to process even gigabyte-sized XML files on weak devices,
such as mobile phones. We demonstrated this by implement-
ing a multiversion editor for Wikipedia XML dump files.
We measured the performance of the editor on a Nokia 9500
Communicator smartphone when editing a 1 GB XML file,
and found it to be sufficient for real-world usage. We also
compared our approach to alternate implementations, and
found that our approach allows much shorter set-up time
and requires significantly less space on disk. Finally, the
editor demonstrates that our approach scales both with the
number of document nodes as well as with the size of the
individual nodes in the XML document.

The key to short set-up time is that we read from and write
to verbatim XML files: the XML file is the data store. No
document shredding or other conversion operations are re-
quired. This way, we maintain maximum compatibility with
other XML processing tools. Our stack is also an example
of the usefulness of a rich XML API, which is an XML data
management API that goes beyond simple parsing and seri-
alization, but without becoming a full-blown XML database.

10http://www.w3.org/XML/Binary
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