
TKK Dissertations 202
Espoo 2009

XML-AWARE DATA SYNCHRONIZATION FOR
MOBILE DEVICES
Doctoral Dissertation

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

Tancred Lindholm

TKK Dissertations 202
Espoo 2009

XML-AWARE DATA SYNCHRONIZATION FOR
MOBILE DEVICES
Doctoral Dissertation

Tancred Lindholm

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission
of the Faculty of Information and Natural Sciences for public examination and debate in Auditorium
T1 at Helsinki University of Technology (Espoo, Finland) on the 11th of December, 2009, at
12 noon.

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

Teknillinen korkeakoulu
Informaatio- ja luonnontieteiden tiedekunta
Tietotekniikan laitos

Distribution:
Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering
P.O. Box 5400
FI - 02015 TKK
FINLAND
URL: http://www.cse.tkk.fi/
Tel. +358-9-47001
E-mail: tancred.lindholm@hiit.fi

© 2009 Tancred Lindholm

ISBN 978-952-248-212-9
ISBN 978-952-248-213-6 (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)
URL: http://lib.tkk.fi/Diss/2009/isbn9789522482136/

TKK-DISS-2685

Picaset Oy
Helsinki 2009

AB
ABSTRACT OF DOCTORAL DISSERTATION HELSINKI UNIVERSITY OF TECHNOLOGY

P. O. BOX 1000, FI-02015 TKK
http://www.tkk.fi

Author Tancred Lindholm

Name of the dissertation

Manuscript submitted May 26, 2009 Manuscript revised November 6, 2009

Date of the defence December 11, 2009

Article dissertation (summary + original articles)Monograph
Faculty
Department

Field of research
Opponent(s)
Supervisor
Instructor

Abstract

Keywords mobile computing, data synchronization, XML

ISBN (printed) 978-952-248-212-9

ISBN (pdf) 978-952-248-213-6

Language English

ISSN (printed) 1795-2239

ISSN (pdf) 1795-4584

Number of pages 80 + app. 64

Publisher Department of Computer Science and Engineering, Helsinki University of Technology

Print distribution Department of Computer Science and Engineering

The dissertation can be read at http://lib.tkk.fi/Diss/2009/isbn9789522482136/

XML-aware Data Synchronization for Mobile Devices

X

Faculty of Information and Natural Sciences
Department of Computer Science and Engineering
Data Synchronization and Mobile Computing
Professor Liviu Iftode
Professor Antti Ylä-Jääski
Professor Kimmo Raatikainen

X

In everyday life, and when using computer systems in particular, it is sometimes the case that a logical datum is
replicated into multiple copies, such as when we send a document by electronic mail, or inform interested parties of a
new address of residence. If the datum for some reason changes, we would then also like the changes to be reflected in
the copies. The problem of keeping the copies up-to-date with respect to each other is studied under the heading of
data synchronization.

In this thesis, we address data synchronization for mobile devices with limited energy resources and limited
connectivity to the Internet, such as mobile phones. The importance of data synchronization is emphasized here, as it
becomes infeasible to communicate continuously and in high volumes about the current state of each copy. The
established conventions of the Internet and mobile computing environments on such matters as storage interfaces and
data formats define an overall system architecture, into which we as seamlessly as possible want to incorporate our
proposal. By focusing on interoperability we lower the threshold for utilizing our research in practice.

We present a comprehensive approach to data synchronization for mobile devices that is optimistic and state-based,
and which targets opaque and XML files on a standard file system. We consider how to use the available connectivity
in an economical manner, and so that existing sources of data on the Internet can be utilized. We focus on XML
synchronization, where we identify an opportunity to utilize the structure of the data the format exposes. Specifically,
we present an algorithm for merging concurrent changes to XML documents which supports subtree moves, an
efficient heuristic algorithm for computing tree-level changes between two XML documents, and an overall
architecture and algorithms to support the use of lazily instantiated XML documents. Our data synchronization
approach is evaluated quantitatively in several experiments, as well as qualitatively by constructing applications that
build on top of the approach. One of our applications is an editor that processes 1 GB XML files on a mobile phone.

AB
SAMMANFATTNING (ABSTRAKT)
AV DOKTORSAVHANDLING

TEKNISKA HÖGSKOLAN
PB 1000, FI-02015 TKK
http://www.tkk.fi

Författare Tancred Lindholm

Titel

Inlämningsdatum för manuskript den 26e maj, 2009

Datum för det korrigerade manuskriptet den 6e november, 2009

Datum för disputation den 11e december, 2009

Sammanläggningsavhandling (sammandrag + separata publikationer)Monografi
Fakultet
Institution

Forskningsområde
Opponent(er)

Övervakare
Handledare

Sammanfattning (Abstrakt)

Ämnesord (Nyckelord) mobil IT, datasynkronisering, XML

ISBN (tryckt) 978-952-248-212-9

ISBN (pdf) 978-952-248-213-6

Språk Engelska

ISSN (tryckt) 1795-2239

ISSN (pdf) 1795-4584

Sidantal 80 + app. 64

Utgivare Institutionen för datateknik, Tekniska Högskolan

Distribution av tryckt avhandling Institutionen för datateknik

Avhandlingen är tillgänglig på nätet http://lib.tkk.fi/Diss/2009/isbn9789522482136/

Datasynkronisering med XML-stöd för mobila fickdatorer

X

Fakulteten för informations- och naturvetenskaper
Institutionen för datateknik
Datasynkronisering, mobil IT
Professor Liviu Iftode
Professor Antti Ylä-Jääski
Professor Kimmo Raatikainen

X

Vi stöter dagligen, och speciellt när vi använder IT, på situationer då information mångfaldigats så att kopior uppstår.
Detta sker exempelvis då vi använder e-post eller meddelar ny adress efter att ha flyttat. Om informationen ändras vill
vi att ändringarna syns även i kopiorna. Inom datasynkronisering studeras hur vi kan hålla kopior av information
aktuella.

I denna avhandling behandlar vi datasynkronisering för bärbara datorer med begränsad tillgång till energi och
bredband, som exempelvis mobiltelefoner. Datasynkronisering är speciellt viktig i denna miljö, eftersom den inte
lämpar sig för kontinuerlig datakommunikation eller för att överföra stora mängder data i syfte att hålla alla kopior
aktuella i det ovannämnda fallet. Etablerade konventioner på internet och inom mobil IT gällande t.ex. gränssnitt och
format för lagring av data definierar en övergripande systemarkitektur i vilken vi vill infoga vårt bidrag så friktionsfritt
som möjligt. Genom att fokusera på kompatibilitet underlättar vi användningen av vår forskning i praktiska
tillämpningar.

Vi presenterar en komplett metod för synkronisering av data på mobila fickdatorer som är optimistiskt och s.k.
state-based. Metoden lämpar sig för synkronisering av filer i ett filsystem, speciellt sådana som innehållar data i
XML-formatet. Vi överväger hur man kan använda det tillgängliga datanätet sparsamt, och på ett sätt som möjliggör
användning av existerande datakällor på internet. Vi granskar synkronisering av XML, och identifierar möjligheter i
den exponering av struktur som XML medför. Specifikt presenterar vi en algoritm för att införliva (merge) jämsides
löpande ändringar i XML-dokument som stöder flyttning av trädstrukturer, en effektiv heuristisk algoritm för att
beräkna ändringar i trädstrukturen hos ett XML-dokument, och en övergripande arkitektur med tillhörande algoritmer
som möjliggör att XML-dokument laddas i arbetsminnet efter behov. Vi utvärderar synkroniseringsmetoden
kvantitativt i ett antal experiment, samt även kvalitativt genom att konstruera applikationer som bygger på våra resultat.
Bland de applikationer vi konstruerat finns ett redigeringsprogram som kan hantera 1 GB stora XML-filer i en
mobiltelefon.

Acknowledgments

If it were not for the inspiration, interest, and thought-provoking discus-
sions by which others have enriched my career as a researcher this thesis
would never have progressed beyond being a set of undeveloped philo-
sophical musings of mine. I am thus most grateful towards each and every
person who has taken an interest in this work, be it brief or lasting through-
out the process.

The majority of the work presented here has been carried out at the
Helsinki Institute for Information Technology (HIIT), at the time led by
Prof. Martti Mäntylä, whom I thank, along with the Institute and its past
and current personnel, for providing a stimulating environment where sci-
entific research truly comes first and foremost. I am indebted to my in-
structor, Prof. Kimmo Raatikainen, who always furthered the interests of
his students, and regret that he is no longer among us.

It is most fascinating to work with talented people on a daily basis, and
I feel this was indeed the case in the Fuego Core project, my home at HIIT.
I thank my fellow researchers at HIIT, and those who worked with me in
the Fuego Core project in particular. I thank Dr. Jaakko Kangasharju for his
invaluable insights and solid advice on writing, and Prof. Sasu Tarkoma
for his strong support during the last two years. The funding provided
by partners in industry and the National Technology Agency of Finland
(TEKES) is gratefully acknowledged.

I thank the pre-examiners of this thesis, Prof. Jukka Riekki (University
of Oulu) and Associate Professor Anthony D. Joseph (University of Cali-
fornia, Berkeley) for their valuable comments and suggestions, based on
which I have been able to make this thesis a better one. I would also like to
thank my supervisor, Prof. Antti Ylä-Jääski, especially for helping me cut
through all the red tape that goes with this process.

i

I would further like to thank the Google Docs team for giving me the
opportunity to work on data synchronization in a large-scale distributed
application in the "real world". Working where theory meets practice has
been most inspiring.

I express my deepest gratitude and love to my wife Anne for her un-
ending belief that this project would be finished, for her inspiring words to
keep going forward, and for single-handedly maintaining the household
during periods of intense writing. Finally, I thank my parents Mikael and
Christel, my brothers, relatives, and friends.

Helsinki, November 6, 2009
Tancred Lindholm

Anschauung und Begriffe machen also die Elemente
aller unserer Erkenntnis aus, so daß weder Begriffe,

ohne ihnen auf einige Art korrespondierende Anschauung,
noch Anschauung ohne Begriffe,

ein Erkenntnis abgeben kann.

— Immanuel Kant, Kritik der reinen Vernunft
1781

Contents

Acknowledgments i

Original Publications vii

1 Introduction 1
1.1 Research Question, Scope, and Objectives 2
1.2 Structure of the Thesis . 3
1.3 Summary of Contribution . 3
1.4 Research Methodology and History 4

2 The Mobile Computing Environment 7
2.1 Designing Software for the Mobile Environment 10

3 Data Synchronization 13
3.1 Data Objects and Synchronization 15
3.2 Causality and Consistency . 17

3.2.1 Causality . 18
3.2.2 Consistency . 21

3.3 Optimistic Data Synchronization 22
3.4 Update Detection and Propagation 24

3.4.1 Update Propagation and the Synchronization Protocol 25
3.5 Reconciliation . 27

3.5.1 The Two-step Reconciliation Process 28
3.5.2 Object Life Cycle Edits 30
3.5.3 Some Observations on File System Reconciliation . . 31

4 Synchronizing XML 33
4.1 The Extensible Markup Language (XML) 34
4.2 Differencing . 36
4.3 Merging . 37

5 Data Synchronization in the Mobile Environment 41
5.1 Synchronization in Mobility Middleware 43

v

6 Contributions 45
6.1 State-based XML Reconciliation 46
6.2 Lazy Trees for Data Access and Synchronization 48
6.3 Efficient XML Differencing . 52
6.4 XML-aware Synchronization for Mobile Devices 54

7 Discussion and Conclusions 59

References 63

List of Figures 77

Index 78

Original Publications

I Tancred Lindholm. A three-way merge for XML documents. In
Ethan V. Munson and Jean-Yves Vion-Dury, editors, ACM Symposium
on Document Engineering, pages 1–10. ACM Press, October 2004.

II Tancred Lindholm, Jaakko Kangasharju, and Sasu Tarkoma. A hybrid
approach to optimistic file system directory tree synchronization. In
Vijay Kumar, Arkady B. Zaslavsky, Ugur Çetintemel, and Alexandros
Labrinidis, editors, Fourth International ACM Workshop on Data
Engineering for Wireless and Mobile Access, June 2005.

III Tancred Lindholm, Jaakko Kangasharju, and Sasu Tarkoma. Fast and
simple XML tree differencing by sequence alignment. In David F.
Brailsford, editor, ACM Symposium on Document Engineering, pages
75–84, October 2006.

IV Tancred Lindholm and Jaakko Kangasharju. How to edit gigabyte
XML files on a mobile phone with XAS, RefTrees, and RAXS. In Fifth
Annual International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services (MobiQuitous 2008), Dublin,
Ireland, July 2008.

V Tancred Lindholm, Jaakko Kangasharju, and Sasu Tarkoma. Syxaw:
Data synchronization middleware for the mobile web. Mobile
Networks and Applications, 14(5):661–676, 2009

The author of this thesis is the main author of the above publications.
In Articles II–V the other authors (Jaakko Kangasharju and Sasu Tarkoma)
have contributed valuable suggestions for improvement of the subject mat-
ter and suggestions and corrections to the presentation. The XAS compo-
nent mentioned in Article IV is mainly the work of Jaakko Kangasharju.
The thesis author has however participated in the implementation of the
XAS random access and streaming parsing facilities that are described in
the Article.

vii

Chapter 1

Introduction

My wife and I recently moved to a new location. One of the many things
to remember is to make sure that everyone gets the new address, so your
mail will not be appearing in the mailbox of whoever moves in at the old
address. At least here in Finland, changing your address typically involves
notifying several parties, and you are still likely to lose the occasional piece
of mail. The root of the problem is that the address is stored in the com-
puter systems of companies, government agencies, and contact books, both
hand-written and electronic. When you move, all of these need to be up-
dated, and in reality, they seldom are.

The example above is a typical instance of a data synchronization prob-
lem. Namely, there is a single logical datum, in this case the current address
of my wife and I, of which there exists several copies. When our address
changes so should each copy.

Readers familiar with a modern office setting where electronic corre-
spondence is common are likely to have encountered a variation of this
problem when collaborating on some document. Copies of the document
are edited by co-workers, and are passed around by means of electronic
mail and portable storage (“USB sticks” are popular at the moment). How-
ever, in the end, a single revision incorporating the edits of the collabora-
tors is needed, and producing this revision by carefully surveying copies
for changes can be quite tedious.

Data synchronization has been researched for several decades. Much
progress has been made, both in terms of theory and on practical aspects. It
would, however, be premature to say that data synchronization is “solved”.
The examples we gave above happen every day. Data synchronization is an
area where improvements and inventions are still needed, stated Bill Gates
in his keynote at the 2008 Consumer Electronics Show [31].

Data synchronization is not yet as effortless and automated as one could
envision. We believe this is largely due to challenges in the applied aspects
of data synchronization, rather than due to weaknesses in the theory. A key

1

CHAPTER 1. INTRODUCTION

issue here appears to be accommodating the large amount of existing soft-
ware systems and data sources that could benefit from synchronization. It
therefore seems worth focusing on providing synchronization in a manner
that is interoperable with existing systems.

Consequently, in this thesis, data synchronization is treated from an ap-
plied research perspective with the principle of interoperability with exist-
ing systems as an overall guideline.

1.1 Research Question, Scope, and Objectives

Consider a distributed computing environment [20] where a number of com-
putational nodes exchange data by passing messages between each other.
Furthermore, in this particular case, each node harbors a data object that
may be subjected to edits by an entity local to the node, such as an applica-
tion or an end user.

In this setting, we can formulate the theoretical data synchronization prob-
lem considered in this thesis as follows: how can we make the data objects
consistent by passing messages about the edits between the nodes? The
answer can be stated in the form of a synchronizer, which is an algorithm
that implements a solution to the synchronization problem.

The practical research aspect rises from the environment in which we
consider the theoretical synchronization problem. We address data syn-
chronization for a mobile environment consisting of devices with limited
energy resources and limited connectivity to the Internet, such as mobile
phones. The importance of data synchronization is emphasized here, as
it becomes infeasible to communicate continuously and in high volumes
about the current state of each copied object. The established conventions
of the Internet and mobile computing environment on such matters as stor-
age interfaces and data formats define an overall system architecture, into
which we as seamlessly as possible want to incorporate our proposal.

When several copies of a data object get modified in isolation the syn-
chronizer needs to resolve how the modifications should be combined. This
often requires knowledge of the structure of the data object, which has
traditionally not been available, as closed and proprietary storage formats
have been common. However, more recently, the benefits of an open struc-
ture have been recognized, and have even received some attention in main-
stream media (e.g. [79]). Currently, the main vehicle for open structure is
the Extensible Markup Language (XML) [143]. A synchronizer that is able
to leverage XML structure when synchronizing XML data, for instance in
the process of propagating or applying edits, or to successfully combine
modifications, is said to be XML-aware.

Besides using a widely supported data format, being interoperable with
existing applications means supporting a storage interface that is widely

2

1.2. STRUCTURE OF THE THESIS

used. The standard hierarchical file system interface (e.g., [119]) is ubiqui-
tously supported, and thus becomes the natural choice.

This setting motivates the research question which we investigate in
this thesis:

How can we provide XML-aware file synchronization in a manner
that is compatible with existing applications and suited for the mobile
environment?

The first objective of the research then becomes the construction of a data
synchronizer suited for mobile devices and which synchronizes file sys-
tems and XML files in particular. The second objective is to evaluate the
proposed synchronizer for utility and fitness to the mobile environment.

1.2 Structure of the Thesis

To define more precisely what is meant by the “mobile environment”, we
start by presenting the mobile computing environment considered here
and its implications on software design in Chapter 2. We then move on
to an overview of the field of data synchronization in Chapter 3, in order to
put our work in context. We present the theoretical foundations of synchro-
nization and the area of optimistic data synchronization, while focusing on
the so-called state-based approach, and in particular its application to file
system synchronization, according to the scope of the research carried out
in this thesis. XML-specific aspects of synchronization are considered in
Chapter 4, with XML differencing and merging forming the topics.

Against the background of the target environment and data synchro-
nization, we are in a position to consider the design of data synchronizers
in the mobile environment, and to further motivate the chosen scope of
state-based optimistic synchronization. We do this in Chapter 5 where we
also review the design of synchronizers that have been constructed for the
mobile environment.

In Chapter 6 we present the contributions of this thesis, which are or-
ganized into the topics of XML merging and differencing, efficient use of
XML, and the construction of an XML-aware data synchronizer for the mo-
bile environment, which builds on the previous topics. The thesis is con-
cluded with a discussion in Chapter 7.

1.3 Summary of Contribution

The contribution of this thesis consists of this Introduction and Articles I–V,
whose main contributions are as follows.

3

CHAPTER 1. INTRODUCTION

Article I contributes the design, implementation, and evaluation of a three-
way merge for XML with support for subtree moves.

Article II contributes the design, implementation, and evaluation of three-
way merging and other algorithms for partially instantiated XML
documents, and a method for efficiently scanning a file system for
changes.

Article III contributes the design, implementation, and evaluation of a
high-performance XML differencing algorithm, and a quantitative
comparison with related work.

Article IV contributes an XML processing system based on partially in-
stantiated XML documents that provides functionality for document
mutability, data synchronization, and document versioning. The sys-
tem is implemented and evaluated, demonstrating that it enables pro-
cessing of XML files in the order of 1 GB on mobile phones.

Article V contributes the design, implementation, and evaluation of an
XML-aware data synchronizer suited for interoperable synchroniza-
tion on mobile devices. The evaluation consists of quantitative mea-
surements of the techniques used to improve network utilization, and
a study of the suitability of the synchronizer for providing synchro-
nization services on a mobile device.

The complete set of algorithms and other software components presented
in the above Articles are available as Open Source to facilitate dissemina-
tion and verification of the results, as well as to lower the threshold for
transfer of the results to practitioners and industry. The detailed contribu-
tions with pointers to source code are given in Chapter 6.

1.4 Research Methodology and History

The research presented in this thesis was carried out in the Fuego Core
project1 series (2002–2007) at the Helsinki Institute for Information Tech-
nology2. The aim of the project was to develop a set of middleware services
for mobile devices, and the overall vision of the project was to emphasize
the qualities of interoperability, openness, and computational simplicity.

The project was divided into 1-year cycles to support an iterative, incre-
mental, and constructive approach to research. Each cycle, as applicable to
the work carried out here, consisted of the following steps:

1http://www.hiit.fi/fuego/fc
2http://www.hiit.fi

4

http://www.hiit.fi/fuego/fc
http://www.hiit.fi

1.4. RESEARCH METHODOLOGY AND HISTORY

1. Analyze previous work outside the project and the results of previous
research cycles

2. Identify a research topic where progress over the current state seems
possible

3. Establish a set of requirements for an improved approach

4. Propose a specification for an improved approach

5. Implement the improved approach as computer software

6. Evaluate the approach and implementation with a focus on quantita-
tive measurements and the requirements established in Step 3.

In each cycle, the overall aim of constructing a data synchronizer for mo-
bile devices guided the choice of relevant research topics. The construction
of software in each cycle provided concrete systems that could be tested
against acceptance criteria, such as memory footprint, network usage pat-
terns, etc. In particular, having testable systems meant that infeasible ap-
proaches could be rejected early on.

During 2002–2003 a prototype data synchronizer, “XMLFS”, was built,
which, however, did not execute on authentic devices. Still, realistic net-
work usage could be observed with the aid of a cellular network interface.
With XMLFS we proposed a layered file system approach, rather than a file
system synchronizer. We identified merging of XML documents as a viable
research topic, which resulted in the publications [61] and Article I.

In 2004, we abandoned the idea of a file system in favor of a file syn-
chronizer. This was motivated by the identification of topics specific to
XML synchronization for the next research steps, and by the requirement
to move towards a more platform-neutral design. The goal to use XML
throughout the system as far as possible lead us to investigate synchro-
nization of file system directory trees expressed as XML.

As a heritage from the file system approach we still considered synchro-
nization of complete file systems with thousands of entries, rather than a
limited subset. In doing this we encountered scalability issues with a state-
based approach to directory tree synchronization. However, as the state-
based approach had several advantages, we did not abandon it in favor
of an edit-based approach, but rather identified efficient state-based direc-
tory tree synchronization as a research topic. The results were published in
Article II.

In 2005 we considered how the synchronization model could be ex-
tended with more advanced structures for managing causality between
changes. The goal was to allow direct device-to-device synchronization
in cases when the network infrastructure was temporarily unavailable. We
also considered partial synchronization of XML data by attaching queries

5

CHAPTER 1. INTRODUCTION

to the synchronization control metadata. Although functional, this work
was in the end not carried out further, as we pre-empted it with work on
efficient XML synchronization which seemed more viable. That work was
the construction of the XML differencing algorithm presented in Article III.

An important development during 2005 and especially 2006 was that
the data synchronizer, now named Syxaw, was ported to a mobile device,
the Nokia 9500 Communicator smartphone. This enabled us to construct
sample applications (e.g., [50]) and to obtain authentic measurements.

During 2006 and 2007, we focused on elaborating ideas originating in
the state-based directory tree synchronization work in Article II. An inte-
grated approach for efficient read and write random access to verbatim
XML documents was developed, and published in Article IV.

During 2008 we elaborated on the interoperability aspects of the syn-
chronization protocol used by Syxaw. The Syxaw synchronizer was subse-
quently published in Article V.

6

Chapter 2

The Mobile Computing
Environment

The research in this thesis targets an environment of personal communica-
tions devices with support for Internet networking, such as mid- to high-
end mobile phones. These devices are commonly referred to as smartphones.
The setting belongs to the domain of mobile computing [105], and its de-
scendant fields of pervasive and ubiquitous computing [106, 132]. While the
Internet has traditionally been the domain of non-mobile nodes, mobile In-
ternet usage is on the rise, and has been envisioned to outgrow fixed-node
networking eventually [56].

A representative smartphone at the time of writing shown in Figure 2.1
is the “Dream” from HTC Corporation1. The phone has a built-in camera,
a Global Positioning System (GPS) [40] receiver along with other sensors,
and supports cellular, Wireless LAN (WLAN) [44], and Bluetooth [10] wire-

Figure 2.1: The “Dream” smartphone from HTC Corporation

1http://www.htc.com/

7

http://www.htc.com/

CHAPTER 2. THE MOBILE COMPUTING ENVIRONMENT

less access technologies. The phone runs the Android operating system1.
Applications include a browser for the Word Wide Web, Email and Cal-
endar applications, and Internet-based applications for video sharing and
street maps, to mention a few. The phone can be extended by installing
further applications, much in the same way as a conventional desktop or
laptop personal computer is.

Smartphone Central Processing Unit (CPU) clock frequencies are char-
acteristically in the range of 200–250 MHz and Random Access Memory
(RAM) capacity between 64 and 128 MB. There is typically a per-process
quota for memory on the order of 10–20 MB, and in contrast to conventional
computers, virtual memory is not available. As power source rechargeable
batteries are used with capacities between 800 and 1200 mAh. [98, 103]

Smartphone technology is evolving, and some of the figures given above
are already becoming outdated, although the source is relatively recent. For
instance, the more recent Dream has a 528 MHz CPU and 192 MB RAM in
total, with a quota of 16 MB per process [33, 41]. However, the capacity of
the standard battery is 1150 mAh, which still lies inside the range reported
above.

A general trend is that the processing capabilities of smartphones are
improving rapidly, as is the case with conventional computers. However,
the amount of expendable energy, both in total and per unit of time, on the
battery-powered smartphones is orders of magnitude smaller than on con-
ventional computers connected to the electrical grid. While energy short-
age can to some extent be offset by optimizing smartphone CPUs for pro-
cessing cycles per energy unit (“MIPS per watt”) , the amount of processing
and other energy-consuming activities is still limited compared to conven-
tional computers [105]. The gap is not likely to disappear, as battery tech-
nology is improving slowly [83]. Furthermore, highly energetic processing
on a small device would introduce considerable heat dissipation issues.2

The prevalent technology for persistent storage is flash memory [85],
with capacities up to 4 GB [98]. As with processing, the amount of persis-
tent storage on smartphones has been growing rapidly. In contrast to pro-
cessing and networking, flash memory requires energy only when in active
use, so energy is less of a limiting factor in this case, setting smartphones
less aside from desktops in this matter [97].

Besides the computing substrate, data communications are of central
importance in a distributed system. On a smartphone communications is
typically quite expensive in terms of energy [4, 51]. Furthermore, network
usage may incur a monetary cost to the user [37]. Energy is also consumed

1http://www.android.com/
2In the process of writing this text, I have been making extensive use of the data con-

nectivity of my smartphone. The energy consumption and heat dissaption issues are very
apparent: the phone becomes quite hot, and it needs to be continuously connected to a
charger to prevent the battery from running out prematurely.

8

http://www.android.com/

by other components such as cameras, GPS receivers, and other sensors.
However, these are not considered here, as they were not utilized in our
research.

Contemporary smartphones typically include several wireless network-
ing technologies. For services provided by a telecommunications operator,
such as voice and wide-area data communications, there is an interface for
second (2G) and third generation (3G) cellular networks, such as GSM [23]
and UMTS [80]. This may be complemented by a WLAN interface for con-
necting to institutional and home networks, as well as to WLAN hotspots.
Compared to a cellular network, WLAN typically offers higher bit rates
and lower latency. On the other hand, WLAN is not as ubiquitous as cellu-
lar networks. Besides cellular and WLAN interfaces, Bluetooth is also com-
monly available. Bluetooth mainly provides energy-efficient short-range
device-to-device connectivity at lower speeds than WLAN, and is popular
for connecting peripheral devices.

The characteristics of the network connection may vary greatly depend-
ing on the network interface used and the physical circumstances [105].
Network throughput varies from some 30 kbps in the case of a General
Packet Radio Service (GPRS) [13] connection up to above 1 Mbps in the
case of a WLAN connection. There is also a rather large variance in latency,
from some 600 ms in the case of GPRS to 10 ms when using WLAN. [98]

Furthermore, the smartphone may experience periods of disconnection,
due to, e.g., radio interference, hand-off between cellular base stations, lack
of coverage, or unreasonable pricing when roaming to a foreign network.
Weakly connected is a term commonly used to describe devices connected
to this kind of network, and the ability of an application to remain func-
tional despite periods of network partitioning is known as supporting dis-
connected operation.

It is possible to network a set of devices by forming an ad-hoc network [86]
between the devices without relying on an existing network. However,
in this thesis we consider infrastructure-based networking, where the smart-
phone is connected to the Internet through a wireless base station (also access
point). The base station is part of both the fixed and wireless networks, and
thus acts like a gateway between these. This leads to a two-tiered network
topology, where nodes in the fixed network share a high-bandwidth, low-
latency network, while the final routing step, or final hop, goes over the
wireless link, and is thus subject to latency, bandwidth, and connectivity
issues.

Hand-off between base stations belonging to the same network access
technology can usually be managed at the link-level layer in a manner that
is transparent to the network layer. However, this is not the case in a vertical
handover, where the access technology is switched. In this case the smart-
phone typically has to acquire a new IP address, causing existing network
connections to fail. While there are proposed solutions to this problem such

9

CHAPTER 2. THE MOBILE COMPUTING ENVIRONMENT

as Mobile IP [47] and the Host Identity Protocol (HIP) [74], the current state
of the matter is that a mobile device cannot be assumed to have a fixed IP
address.

When referring to the general class of devices considered here we will
use the term mobile device. We use this term because it emphasizes the mo-
bility aspect, and because the energy constraint argument is to some extent
also applicable to more powerful mobile devices, such as laptop computers.
While we have evaluated our research on a smartphone platform, we have
in general targeted this broader class, which also includes, e.g., Personal
Digital Assistants (PDAs) equipped with networking facilities. Because of
the need for economical use of the processing and networking facilities,
the category of devices we are describing here is also referred to as weak or
limited in the literature.

2.1 Designing Software for the Mobile Environment

Compared to the desktop environment, the features of the mobile environ-
ment call for a differing software design on many accounts. The limited
supply of energy suggests that we minimize the amount of processing and
network usage, especially since long-lasting batteries is an important sell-
ing point. However, in optimizing for energy consumption one should
carefully consider the benefits of a design that weakens interoperability
with existing services. For instance, in the Wireless Application Protocol
(WAP) [131] efficiency was favored over interoperability with the existing
Internet, leading to criticism and slow adoption [32]. We also note that
because of the smaller form factor, user interface (UI) design differs consid-
erably. However, we do not consider UI aspects here.

A smartphone is expected to be continuously powered on, rather than
explicitly started up for a certain task. Thus, software may be continu-
ously running for long durations (even months or years). This means re-
sources need to be meticulously managed so that they do not remain allo-
cated when no longer needed, i.e., there should not be any resource leak-
age. Even a small leak rate may build up to large amounts over time. In the
case of memory, the problem is further accentuated by the lack of virtual
memory. [103]

As there is a certain startup energy as well as energy overhead asso-
ciated with using the wireless network interfaces [4, 71], it is beneficial
to combine network transmissions into fewer runs of high network us-
age. In cases where increased computation may be used to reduce network
load [7, 51], (e.g., by using data compression) energy consumption should
be taken into account in addition to other factors. In particular, ongoing
background communication is to be avoided [98].

10

2.1. DESIGNING SOFTWARE FOR THE MOBILE ENVIRONMENT

Because of the high latencies of the network, an asynchronous commu-
nications paradigm is advocated to make efficient use of the network, and
to avoid waiting for it unnecessarily. However, one should be aware that
asynchronous programming is more demanding on the software developer
than synchronous. [98]

The two-tiered network topology lends itself to the introduction of gate-
ways in the fixed network that act as intermediaries between the fixed and
wireless environments. The gateway approach has been proposed to im-
prove Transmission Control Protocol (TCP) connections [11], for secure
wireless messaging [51], and it is used for Web content transcoding in WAP.
Security is a concern with gateways, as usually they need plaintext access
to some part of the communication.

Software development for smartphones can be rather laborious com-
pared to the desktop due to the above concerns, but also because of is-
sues with today’s development environments. Software developers are
currently likely to run into discrepancies between emulated and actual en-
vironments, as well as unexpected issues and platform defects during both
native and Java development [53, 98]. Therefore, it seems worth stressing
the points raised in [90]: any Application Programming Interface (API) pro-
vided by the software needs to be well-designed, modular, and extensible.

11

CHAPTER 2. THE MOBILE COMPUTING ENVIRONMENT

12

Chapter 3

Data Synchronization

In this Chapter we present an overview of data synchronization. We start
with more theoretical questions, such as what consistency means, and how
we may reason about causality between edits made at different nodes and
different points in time. We then move on to actual synchronizers, with
particular attention to state-based optimistic ones, and their application to
file system synchronization.

Consider a computing environment where the computational nodes
N1, N2, . . . exchange messages over a network. Each node harbors an ob-
ject (O1, O2, . . .) and uses messages (Mij) to communicate edits (ε1, ε2 . . .) to

�
�

�
�

�
�

�
��
���

�
	

�
��
���

�
	

�

�

�

����������	

�������	

Figure 3.1: Data Synchronization

13

CHAPTER 3. DATA SYNCHRONIZATION

����������
��	��

��	�
��
�����

������
��	�

����	��

��	�
���������
��
����������������

��
�������
����
��	��

���� �	��!��
"	���	��

���

#
�
�����������

���� �	��!
��	�
��	�	�	��	$��

����	��

��������	

�����

���� �	��!��

"	��
%�"
&�
����
%�"	���������
%����	�����
��	�

'��
��
��	�
�
��	�

'��
���
#������	�

(�����	�
�	��&�����
�
����

�
�	
)
�

�	��

�
� �

*

�
�

Figure 3.2: Data Synchronizer Components

objects on other nodes. The purpose of the message exchange is to syn-
chronize the objects. As the synchronization algorithm is distributed in na-
ture, both the actual flow of the local processes and the interaction between
processes, i.e., the communications protocol, are of interest. This setting is
illustrated in Figure 3.1, where we have hilighted a few nodes (N1, . . . , N3)
and the interactions between these.

We first describe the data objects that are subject to synchronization in
Section 3.1. Then, comparing any two objects in the system, we may ask
if they have the same content, i.e., if they are consistent. We can also com-
pare edits in the system, and consider the causality between these. For
instance, did ε1 cause ε2, and does ε2 rely on effects of ε1? Or, if both ε1
and ε2 originated from the same object, and ε1 preceded ε2, is ε2 still mean-
ingful without ε1? Causality and consistency is considered in Section 3.2.
Having considered these more theoretical concepts, we then move on to
the particular type of synchronization known as optimistic in Section 3.3.

Figure 3.2 shows an archetypal data synchronizer, whose components
are presented in Section 3.4 and onwards, and which we will briefly de-
scribe here to sketch an overall picture of data synchronizers in general.
Starting from the data, we have one or more data objects in some persis-
tent store which accepts read and write operations from a storage system
such as a “files-and-directories” hierarchical file system. Applications use

14

3.1. DATA OBJECTS AND SYNCHRONIZATION

the stored objects, and access them using a model that is supported by the
synchronizer. In some cases this means to use the storage interface directly,
and in other cases it means using a data access interface provided by the
synchronizer. Some synchronizers also act as a proxy for the storage inter-
face in order to monitor activity and alter the behavior of the original in-
terface. The optional nature of this functionality is illustrated by a dashed
boundary for the proxy component in the Figure. The synchronizer may
furthermore provide an interface that applications can use to control the
synchronization process.

The interface used by the synchronizer to communicate changes with
other nodes consists of the synchronization protocol and its serialization
over a network transport. Changes are readied for transmission using the
update propagation mechanism, which for instance compresses the changes
to reduce network use. To obtain what changes to an object there were, the
synchronizer uses an update detection mechanism. For instance, changes
may be detected by comparing past and present revisions of an object.

At the core of synchronization we have the causality (versioning) and
consistency model, and reconciliation of local and remote edits. The model
typically captures the causality between edits, and determines how com-
munication is scheduled and how data objects may be accessed in order
to remain compliant with the consistency guarantees that the model pro-
vides. Reconciliation is the logic that applies local and remote edits in a
consistent manner across nodes with support from the causality and con-
sistency model. We consider reconciliating edits that happen concurrently
explicitly in the merging subsystem.

Note that we here for the sake of clarity consider only a single object
per node. The generalization to more objects is straightforward.

3.1 Data Objects and Synchronization

We start by establishing some terminology and by discussing properties of
the data that we synchronize. We use the term object for the pieces of data
that are subject to synchronization, and allow the data contained in an ob-
ject to change over time. We use the term state for a snapshot of the content.
What constitutes the objects of a synchronizer varies from implementation
to implementation, so it is hard to give a general and yet precise defini-
tion. One possible definition, which we have used here, is that the object
is the smallest unit of data to which the synchronization process can be ap-
plied. For instance, in a file synchronizer, the same overall steps are used
for each file, and thus the file is the object. Another example is the SyncML
protocol [117] which synchronizes named collections of data records (e.g.,
calendar entries). Here the collections become the objects.

15

CHAPTER 3. DATA SYNCHRONIZATION

A synchronizer adds propagation of changes between objects. A group
of objects that exchange updates with each other through the synchroniza-
tion mechanism are known as replicas. Sometimes it is useful to distinguish
the objects as they appear outside the synchronizer compared to how they
are viewed from within. We use the term user object for the former case,
where the users may be both humans (also known as end users) as well as
other computer applications. For instance, in the case of file synchroniza-
tion, the user objects are files.

To be able to access a particular object among others, we need to attach a
discriminative name to the object. Persistent and unique names which may
be used to identify resources and communication endpoints are crucial for
the organization and access of resources. This is particularly true when
managing data in a distributed system [66].

We can distinguish a few common ways of naming user objects. One
way is to attach a distinct name to each replica, and another one is to at-
tach a name to each group of replicas. In the latter case the distributed
nature of the object is hidden, as one is no longer able to name the individ-
ual members of the group. Instead, the synchronization system becomes
responsible for channeling access to an appropriate replica, and for mask-
ing situations when access becomes inhibited. In the former case, we lose
the convenience of being able to address the replicas using a single group
name. The individual replicas become visible, for better and for worse.

Object names may encode information on object type, access protocol,
and location in a distributed system. A common case in this category is to
use Uniform Resource Identifiers (URIs) [9] for object names. Another op-
tion is to name objects by their state. To keep names manageable in practice
in this case we use a fingerprint [91] of the state, typically in the form of a se-
cure hash. The advantage of this scheme is that the name of any object can
be computed locally without coordination. URIs have been used in [116],
and state-based names were used in [96, 19, 109].

Both synchronizers and users may utilize or require some particular
structure for the content of each object. In [70], four different levels of struc-
tural awareness are presented: textual, syntactic, semantic, and structural.
Consider an object containing program source code. A textual synchronizer
processes it a sequence of characters without any particular meaning. On
the syntactic level, the syntax of the programming language may be uti-
lized. Finally, on the semantic and structural levels, we may use knowledge
of, e.g., the intended behavior of the program to prevent synchronization
of changes that would introduce erroneous behavior.

We note that it can be detrimental if a synchronizer requires a particular
structure for objects that is not naturally supported by the user. Consider
a system that requires content to be XML data. In this case, synchronizing
a binary image in, e.g., JPEG format [46], is not immediately supported,

16

3.2. CAUSALITY AND CONSISTENCY

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 3.3: Editing the state of an object

�
�

�
�

�
�

�
� �

�

�
�

�
�

��
���

�
��
�

�
�

�
�

Figure 3.4: Concurrent editing of an object

unless one goes through the trouble of devising an XML encoding for JPEG
images, and adds support to this in applications.

The term metadata is commonly used for data describing other data,
with the metadata typically requiring significantly less space compared to
the data it describes. Examples include dates relevant to the creation and
modification of the data, format of the data, size in bytes, and keywords.
Some synchronizers are designed for synchronizing metadata only [116].

3.2 Causality and Consistency

A process where an entity changes the state of a data object through a se-
quence of edits is depicted in Figure 3.3. Starting from an initial state S0 we
apply the edit operation ε1, which results in state S1. State S1 then yields
S2 through the edit ε2, and so forth. The graph of states and transitions
through edits is the history of the object. A state with no successor state (S4
in the Figure) is known as a current state of the object.

We may extend the example so that several edits are applied to the same
state. In this case, a state may have several successor states, corresponding
to alternate branches in the object’s history. However, we typically aim for
consistency, where the object has only one current state. This is achieved by
reconciling two or more states into a common state with the help of reconcil-
ing edits. The reconciling edits typically incorporate the changes from the
other branches.

Branching and reconciliation is illustrated in Figure 3.4. Here, S1 is
edited in two different manners with ε2 and ε′2, yielding two current states
S2 and S′2. These are then reconciled into the state S3 with the reconciling
edits ε3 and ε′3 , where ε3 incorporates ε′2 and ε′3 incorporates ε2. Typically
S2 and S′2 would reside on different nodes, and the node with S2 would
execute ε3 to reconcile, while the node with S′2 would execute ε′3.

17

CHAPTER 3. DATA SYNCHRONIZATION

Multiple current states of an object arise when an object is edited in
different manners. It is then the task of the data synchronizer to restore
consistency by exchanging states and edits between nodes. The synchro-
nizer thus needs to be able to reason about these, and answer questions
like: How do we order edits and states received from remote nodes? What
were the edits to a state? Which states may we apply a remote edit to? How
do we know when a replica is consistent?

3.2.1 Causality

To help us reason about these matters we introduce the happens-before rela-
tion, as defined by Lamport in [58]. Consider a distributed system consist-
ing of an arbitrary number of concurrent processes. Within each process, an
ordered sequence of events occurs, such as the transmission and reception
of messages. Given two events a and b, Lamport defines that a happens-
before b if

1. a and b are events within the same process, and a precedes b in the
process’ sequence of events, or

2. if a is the sending of a message, and b is the reception of the same
message. In this case, a and b may occur in different processes.

Furthermore, if a happens-before b and b happens-before c, then a happens-
before c, i.e., the relation is transitive. We denote that a happens-before b
with a→ b, as is done in [58].

We stress that despite its name, the happens-before relation has very
little to do with the time at which the event occurred. Rather, a happens-
before b expresses a relationship of causality between a and b. More exactly,
a happens-before b means that it is possible for a to have causally affected
b.

Consider the events in the processes A and B depicted in Figure 3.5,
where message exchanges are drawn using arrows. Here, a1 happens-
before both a2 and a3, by the definition of happens-before inside a process.
The events a1 and b1 correspond to the transmission and reception of mes-
sage µ1, and hence a1 → b1. Since b1 → b2, and b2 → b3, we may deduce
that a1 → b3 using the transitivity of the relation.

In the Figure, neither may a2 have causally affected b2, nor could b2 have
causally affected a2, since no information of either event had arrived at the
opposite node. In such a case when there is no possibility of causal effect
of one event on another, we say that the events are concurrent. Using the
happens-before relation, if both a 6→ b and b 6→ a, the events are concurrent.

In data synchronization we particularly consider events that are edits
on objects. A reasonable assumption to make is that each new edit on an
object is affected by a subsequence of previously applied edits to that same

18

3.2. CAUSALITY AND CONSISTENCY

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� �

Figure 3.5: Events is a distributed system

object. For instance, when editing a text document, changes are typically
made based on existing content in the document. Note that in some cases
the sequence of edits causally affecting a new edit may be empty, as for
instance in the case of recording the outcome of tosses of a fair coin. Fur-
thermore, there may be information external to the system that affects a
new edit, such as an author’s knowledge and intentions.

Let us consider the creation of a new edit ε. Setting aside any communi-
cation not modeled by the system, the maximal set of edits that may causally
affect the edit ε is exactly the set of edits that happened-before ε.

We now see why the happens-before relationship plays an important
role in data synchronization. If we receive an edit ε for an object o, and all
previous edits on o happened-before ε, we know that ε positions itself last
in the sequence of edits on o. If there is an edit ε′ on o that is concurrent
with the creation of ε, ε may no longer be valid, as it cannot possibly have
taken ε′ into account. In such cases, we need to reconcile the effects of ε and
ε′. We may also find that we have not yet received all edits that happened-
before ε, in which case it is not necessarily correct to apply the edit, as the
current sequence of edits may have caused another edit than ε (e.g., one
that is in transit but has not yet been received).

Of the set of edits that happened-before a particular edit, a synchronizer
typically does not know the exact subset that affects the edit. However,
we may make the safe assumption that an edit is affected by any edit that
happened-before it. Encoding the happens-before relationship between ed-
its, or an approximation thereof, therefore takes a prominent place in the
design of a data synchronizer.

The Lamport clock [58] is a scalar-valued function C(·) on events so that
if a→ b then C(a) < C(b). Such a clock can be implemented using an inte-
ger counter, which is incremented at the nodes of the system in accordance

19

CHAPTER 3. DATA SYNCHRONIZATION

with the so-called clock condition. Due to the compact representation of
the Lamport clock, we could conceivably stamp the clock value onto edits
at creation time, and then use that value to compute the happens-before re-
lationship between two edits. For instance, if C(a) = C(b), it follows that a
and b are concurrent. We could also approximate that C(a) < C(b)⇒ a→
b. However, since this is not necessarily true, in such a system we would
risk falsely deducing that the effects of a were already taken into account
into b. For instance, if we in Figure 3.5 assign clock values according to the
position of the event on the vertical axis, the clock condition is satisfied,
and C(a2) < C(b2). However, as pointed out previously, a2 6→ b2.

A popular method for determining the outcome of synchronization is
to use the state with the most recent change time [102]. Extending the
method with a deterministic ordering for equal timestamps yields the so-
called Thomas’ write rule [123]. However, in many applications, the change
time has no correlation with the happens-before relation. In such cases, the
change time provides no help in determining the causality between edits,
and using it for this may lead to loss of data. As an example, consider
two authors who download the same text onto their laptops, and then con-
tinue working on their copies in isolation. When the authors meet again,
it makes little sense that they would consider the copy that has the most
recent timestamp as the “latest” revision. Note that the situation does not
improve even if the system clocks in the laptops were synchronized to some
arbitrarily small tolerance.

A lost update occurs when an edit is erroneously discarded or otherwise
fails to propagate correctly. As this is a form of loss of data, it is generally
considered undesirable to allow lost updates in a data synchronizer [107,
97, 95, 36]. For instance, in the example above, a lost update would occur
due to the failure of the timestamp-based scheme to detect concurrent edits.

The version vector [84] (also vector clock) is a compact data structure for
encoding the happens-before relationship. The components of the version
vector v = (v1, . . . , vn) are monotonically increasing numbers, where the
node ni is associated with the component vi. We assign version vectors so
that the next edit on ni gets the vector v′ = (v1, . . . , vi + 1, . . . , vn), where v
is the version vector of the preceding edit. That is, the components vi act as
local version counters for the nodes. The version vectors va and vb assigned
to the edits a and b now allow us to determine if either edit happened-
before the other according to a→ b⇔ ∀i : va

i ≤ vb
i and va 6= vb.

Version vectors have been used in several systems [108, 87, 88, 37]. The
use of one vector component per node is problematic in some applications,
especially in cases where the set of active nodes changes frequently. Subse-
quent work [127, 3] has addressed this to some extent.

The hash history [48] is a structure for encoding happens-before that
scales with the number of states, rather than the number of nodes. Here,

20

3.2. CAUSALITY AND CONSISTENCY

the history of previous states is communicated along with the current ob-
ject state in the form of a graph of state fingerprints.

3.2.2 Consistency

Making the replicas of an object consistent, either de facto or in appearance,
is challenging. This is especially the case if message passing between nodes
is constrained in some ways, which is often the case. Therefore, some data
synchronizers relax the requirement for strict consistency between replicas.
The tradeoff for this increased relaxation is some exposition of the differ-
ences between the replicas of an object.

At the strictest level of consistency there is single-copy consistency, or
linearizability [39], where each operation on each node observes values and
has effects that are equivalent to a serial run of the operations on a single
object. Implementing single-copy consistency in a fully decentralized man-
ner typically amounts to establishing distributed consensus in an error-
prone environment, which requires relatively complex protocols (e.g., [96]),
and is problematic even in theory [26].

A popular alternative is to offer eventual consistency, where the repli-
cas will converge on the same state after some amount of additional mes-
saging after update activity has ceased [102, 122]. Eventual consistency is,
however, not always a strong enough guarantee for applications to operate
correctly, or to isolate users from anomalies due to the distributed nature
of the system. For instance, the state of an object may appear to revert to a
previous value, if suddenly a less recent replica is taken into use.

The Bayou [87, 122] system provides several levels of consistency to
application sessions, so that the application may use the most appropriate
one. The levels model different tradeoffs between consistency and avail-
ability. For instance, the “Read your Writes” level guarantees that reads in
a session see any previous writes within that session, whereas the “Mono-
tonic Writes” level guarantees that writes from a session are seen in order
on all replicas. The latter condition constrains the set of replicas capable of
serving the request more than the former, decreasing the availability of the
object. The OceanStore [96] large-scale storage service provides both ses-
sions with single-copy consistency and sessions with weaker guarantees.

Content addressable storage systems identify an object by its content [109,
96], as expressed in condensed form with a fingerprint. With this method
the content of the object is consistent by definition. However, maintaining
consistency does not become fundamentally easier in such systems, rather
it is trivially solved by making each state an object of its own. The changing
association between the states that form the history of an object still needs
to be made consistent.

Consistency may also be required across objects. A pertinent example is
a text file and a file indexing the words of that file. In this case, only some

21

CHAPTER 3. DATA SYNCHRONIZATION

combinations of object states constitute a consistent state for the indexed
text. Consistency across objects typically requires some notion of a trans-
action [64, 112]. We have not considered consistency management across
objects in this thesis.

Data synchronization research until the late 1980s focused mostly on
techniques for single-copy consistency, where access to a replica was pre-
vented unless the replica was provably up-to-date. In particular, systems
where one replica was designated as the primary replica were used. The pri-
mary replica controlled access to the object, thus acting as a single point
where accesses were linearized. In case of failure there was a protocol for
electing a new primary replica. [107, 102]

Guaranteeing consistency in a design with a primary replica becomes
less challenging, as does maintaining the happens-before relationship: a
simple counter at the primary replica suffices. However, channeling all
accesses through the primary copy does not scale well with increased load.
Furthermore, when clients use locks to obtain exclusive access, failing to
release a lock may lead to the entire system becoming unavailable.

The assumption that any replica not provably consistent is unsuited to
serve object accesses gives rise to the term pessimistic for describing these
techniques. Another name is traditional techniques, to set them aside from
more modern approaches, such as the optimistic approach. We will discuss
this approach next.

3.3 Optimistic Data Synchronization

The optimistic model for data synchronization overcomes many limitations
of the traditional synchronization model by trading off strict consistency
guarantees for increased availability and flexibility [102, 107]. The adjec-
tive “optimistic” refers to the assumption that accessing data without strict
consistency guarantees will rarely, if ever, be problematic. In optimistic sys-
tems we typically allow replicas to be temporarily updated in a diverging
manner.

For data synchronizers built on the optimistic principle, a set of com-
mon aspects have been identified in [6, 102], which we will present here
briefly. Some of the aspects are also pertinent to traditional systems. How-
ever, here we focus on their manifestation in optimistic systems.

Update Detection In many practical applications edits are not readily avail-
able for propagation by the synchronizer. Rather, a mechanism is
needed to establish if a replica has been edited, and sometimes also
how it was edited.

Update Propagation Update propagation is the communication of object
edits over the network. It needs to be designed with care, so that en-

22

3.3. OPTIMISTIC DATA SYNCHRONIZATION

ergy is not needlessly consumed and the data synchronizer remains
agile despite weak connectivity. Update propagation between nodes
may be restricted by some communications topology so that a given
node may not be able to communicate directly with any other node
in the network.

Reconciliation To counteract replica divergence we need a mechanism for
reconciling concurrent edits. This includes detecting concurrency,
e.g., using the mechanisms for capturing happens-before mentioned
previously. The reconciliation mechanism may classify some concur-
rent edits as irreconcilable, in which case they form a conflict.

State or Edit A system typically stores either object states Sn or the edits
εn between states, based on which we can classify a system as either
state-based or edit-based. It should however be noted that state-based
systems may compute edits for reconciliation and update propaga-
tion purposes, and that edit-based systems may maintain a state for
improved performance.

Stream or Snapshot In general, data synchronization may be implemented
as a continuous process, or as periodic runs of limited duration. We
refer to these as the stream and snapshot approaches respectively (also
immediate and periodic [37]). Typically, streaming synchronizers are
edit-based, while snapshot-based use state. Note that our definition
of streaming synchronization does not exclude disconnected opera-
tion. Disconnection merely means that the process temporarily halts.

Readers and Writers Among the replicas of an object, only some may be
directly written to, while the rest receive updates from the writable
replicas only. In such cases, the writable replicas are known as master
replicas. In some cases the writable objects are co-located at a set of
master nodes.

Commitment A common requirement is to have identifiers that name a
state across all replicas1. We refer to the process of establishing these
identifiers as commitment. For instance, we may identify a state with
a revision number, and expect that revision number to identify the
same state regardless of which replica we use.

The need for commitment arises from both user and system aspects. Users
typically want to be able to name a specific state, as in “the revision from
yesterday”. On a system level, commitment helps manage the amount of
edits and states that need to be retained. A straightforward method to im-
plement commitment is to have a primary replica that assigns identifiers to

1As defined in [102], commitment does not include identifiers for the established states.
However, we suggest that these are a relevant part of the concept.

23

CHAPTER 3. DATA SYNCHRONIZATION

states [87]. Uncommitted updates are commonly referred to as tentative and
a system may allow access to tentative updates in additional to committed
ones [87, 96].

We discuss update detection and propagation and reconciliation in more
detail in the following.

3.4 Update Detection and Propagation

The first step in synchronization is to perform update detection where we
identify the changes to propagate. This step may be trivial in some cases,
e.g., if the synchronizer is able to monitor data change operations, whereas
some application domains require considerable engineering effort.

Update detection typically need not result in a minimal set of changes.
Rather, we may tolerate false positives in the form of changes that have
already been synchronized. However, propagating such changes consumes
networking and other resources needlessly, and may cause false detection
of concurrent updates that complicate reconciliation. Thus, in general false
positives are to be avoided.

Update detection is particularly significant in synchronization of file
systems, as these typically only maintain state by default [92]. Accurate
tracking of file system activity is possible by implementing a synchronizer
that also acts as the provider of the file system. Application file operations
are then intercepted by the synchronizer, and may be logged. The synchro-
nizer may in turn use another file system for storage, in which case we say
that the approach is that of a layered file system. The file system provider
approach relies on functionality beyond the traditional file system inter-
face, and may require system-level functionality and a continuously run-
ning process to provide the file system. Examples of approaches providing
a file system include Coda [108], OceanStore, and Ficus [88].

Another type of file synchronizers is written as ordinary applications
that use the standard file system interface. In this case the file system needs
to be traversed in order to find modified objects. Typically, file metadata,
such as time of last modification, length, or inode number1, is used to
quickly determine if a file has changed, although such an approach may
miss some uncommon cases [6]. A safer approach is to examine the full
contents of the file, but this may be computationally expensive. Synchro-
nizers in this category include the Concurrent Versions System (CVS)2,
Rsync [128], and Unison3. Both Rsync and Unison allow the user to specify
different update detection algorithms to trade off accuracy for speed.

1On Unix-like systems, this number identifies the storage object that the file name is
bound to.

2http://www.nongnu.org/cvs/
3http://www.cis.upenn.edu/~bcpierce/unison/

24

http://www.nongnu.org/cvs/
http://www.cis.upenn.edu/~bcpierce/unison/

3.4. UPDATE DETECTION AND PROPAGATION

Change detection may in addition to finding out which objects were
modified also establish how the states of the objects were changed. For
instance, in addition to knowing that a text file has been changed, we may
also detect that the change consisted of, e.g., removing the last line from
the file. Detecting changes with a finer granularity than whole-object may
save bandwidth during updated propagation and can also improve recon-
ciliation.

In addition to monitoring change activity, change information may also
be obtained by comparing the current object state S to a previous state S′

maintained by the synchronizer. This process is known as differencing, or
diffing, as it is more commonly called. The output of the diffing process
is known as a delta (also diff and patch). The delta may then be used to
reconstruct S using S′ in a process known as patching.

A well-known pair of tools for diffing and patching text files is the Unix
diff and patch tools which are based on the text differencing algorithm
in [77]. For binary data, there is for instance the xdelta tool [67]. CVS
computes changes to text files using the diff algorithm, and Rsync is able
to compute changes on arbitrary binary files. In the Rsync algorithm, S is
constructed using references to subsequences of bytes from S′ along with
subsequences of S not found in S′. This same general idea is used in xdelta.
There are also diffing and patching algorithms specifically tailored for the
XML format, which we will return to in Chapter 4. The use of deltas in the
context of Coda has been studied in [38].

The detected changes may sometimes be optimized by leaving out those
that only contribute to short-lived object states that need not be synchro-
nized. For instance, temporary files are commonly created, and these files
typically need not be synchronized. Such files may be optimized away if
we buffer changes locally before propagating them, and then prune any
changes that cancel out or are obsolete from the buffer before propaga-
tion. The buffer is typically constructed so that a change must age a certain
amount before exiting. When the delay time of the buffer exceeds the life
span of a transient state, that state may be optimized away. This technique
is used in [108].

3.4.1 Update Propagation and the Synchronization Protocol

With update propagation we understand the synchronizer’s mechanism
for transmission and reception of updates over a network transport. We
may classify the update propagation mechanism according to the synchro-
nization topology (also reconciliation topology [37]), which describes which
nodes may exchange updates directly, whether one-way communication
is sufficient, and how the messaging channel is utilized over time. We are
also interested in how updates may be transformed and packaged to make
optimal use of channels with a limited bandwidth and high latency.

25

CHAPTER 3. DATA SYNCHRONIZATION

The synchronization protocol defines how the synchronizer exchanges
messages with other synchronizers. The main, and sometimes only, task
of the synchronization protocol is to implement update propagation. How-
ever, a synchronization protocol may also include such functionality as ob-
ject locking [108], information exchange for data compression [128], dis-
tributed agreement [96], or even data search operations [117]. Some syn-
chronization protocols take a very generic view of the data they synchro-
nize, whereas others are more specifically tied to particular data structures.

We may observe some differences in the message exchange patterns
exhibited in synchronization protocols. Messages may be exchanged in
a synchronous or asynchronous manner. In the synchronous pattern mes-
sages are exchanged as a dialogue of requests and replies, where the trans-
mitting party explicitly waits for the response before proceeding. In the
asynchronous case, on the other hand, processing proceeds in response to
incoming messages, along with other activities. If the protocol is one-way,
no reply (synchronous or asynchronous) is required to transmitted mes-
sages. A special case of one-way messaging is to let updates be propagated
by means of storing and retrieving them from some storage media. An-
other aspect is whether message traffic is typically bursty with stretches of
idleness interrupted by periods of high network utilization, or if it is more
of a continuous nature.

Bayou features an asynchronous model which supports continuous
propagation of updates. On the other end of the spectrum, there is CVS,
which relies on synchronous bursty communication. Coda lies in between,
with both synchronous and asynchronous message exchange used during
synchronization. Depending on which state Coda is in, network traffic may
be bursty or continuous and frugal in use of bandwidth [108].

In a fully unconstrained synchronization topology each node may ex-
change updates with every other node. This is known as epidemic propaga-
tion [22]. However, a fully unconstrained topology is not always desired,
as we may improve change propagation time and reduce complexity by in-
troducing a more regular topology [102]. For instance, in the star topology
all updates pass through the central node, which introduces a fixed-length
path for updates, and simplifies synchronizer design. This is because the
central node can easily enforce linearizability, perform reconciliation in a
non-distributed manner, assign state identifiers, and maintain a natural
“most recent” state of objects.

To overcome the reliance on a single central node, we may replace it
with a central network of nodes, yielding a two-tiered topology. Typically,
the inner tier will act as a single logical entity to the nodes in the outer tier.
As an example of a two-tiered topology, there are high-traffic Web sites,
where the inner tier consists of a group of servers, and OceanStore, where
the inner tier consists of a group of nodes that establish committed states
of the object.

26

3.5. RECONCILIATION

����������

�		��

�����

Figure 3.6: Star, two-tiered, and tree synchronization topologies

In the tree topology, each node that is not a leaf acts as a central node for
its children, thus providing scalability by successively reducing complex-
ity on each level of the tree. The Domain Name System (DNS) [72, 73] is
structured using a tree topology.

Figure 3.6 illustrates the star, two-tiered, and tree topologies. Note that
the topology of the actual messaging network may in practice further con-
strain the pair of nodes that can communicate compared to the idealized
view of the synchronization topology.

As mentioned when we considered update detection, one step towards
reducing network bandwidth requirements is to use a change detector
which yields compact changes. The next step to further reduce the size of
changes is then to use algorithms for data compression and efficient encod-
ing. Furthermore, if connectivity is weak, latency has a significant impact.
In this case we may batch (also bundle) several changes together, so as to
eliminate unnecessary network roundtrips.

Rsync, Unison (which uses the Rsync algorithm), and CVS all include
functionality for compressing network communications. [76] presents a
method based on maintaining a cache of file fragments, and then using
these fragments to construct the object state. [59] explores the idea of trans-
mitting shell commands that generate the object state, rather than the state
itself. Using batching to reduce the impact of network latency was one
of the improvements introduced in the 1.1 version of Hypertext Transfer
Protocol (HTTP) [25], as well as in version 4 of the Network File System
(NFS) [113].

3.5 Reconciliation

In the reconciliation phase of synchronization we integrate into a replica
changes from one or more other replicas. Alternative terms used in the
literature are integration and, also, merging. We emphasize that here the
term includes both the case when changes are classified as concurrent and
the case when changes may be ordered. In particular, this includes the case

27

CHAPTER 3. DATA SYNCHRONIZATION

where a received change is simply appended to the local history of edits.
A conflict arises when the reconciliation mechanism, unaided by human
intervention, is unsuccessful in integrating a remote edit into the existing
history, thus potentially leading to a lost update.

We will discuss reconciliation from the perspective of a process exe-
cuting on a given object. The process receives an edit εm from a remote
replica, which it reconciles with the current state and the edit history of
the object. State-based systems are modeled by considering edits εm for
which Si

εm→ Sm for any state Si. Although we look at one operation only,
in practice one will usually receive several edits per communication. How-
ever, this typically reduces to reconciling the operations one by one, or by
considering εm to be a cumulative edit capturing the effects of all edits in-
volved.

When determining at which point in the edit history we want to in-
sert εm we typically consider the happens-before relationship between εm
and the part of the edit history that is locally known. If we find that the
happens-before relation yields an unambiguous position for εm among the
existing edits, and the edits before that position satisfies the dependencies
of εm, we may insert εm at that position. In state-based systems, this trans-
lates to either setting the state to that implied by εm (if the previous state
happened-before εm), or ignoring εm (as the edit that εm happened-before
translates any state to the current state).

In contrast to considering εm dependent on all edits that happened-
before it, we may also encode the dependencies (also constraints, precondi-
tions) of the edit explicitly, and then consider the edit applicable at positions
in the local history where the dependencies are satisfied. This approach,
which was used in [55, 87, 96], has the advantage that it may be easier to
find a valid position for the edit in the edit history. This is because stating
explicit dependencies allows us to set aside any unnecessary dependencies
implied by an overall generic dependency model. On the other hand, an-
notating edits with an explicit dependency set can be quite burdensome for
the application, as well as hard to do correctly [102].

The context diff format used with the diff and patch tools provides an
example where explicit dependencies for edits are given. Here, changes are
expressed so that context from the original unchanged text is included, in
this case in the form of original lines of text around the change. A change
is applicable to an object state if the context of the change is present in the
state, but otherwise no conditions on change order etc. is imposed.

3.5.1 The Two-step Reconciliation Process

A rather common approach to reconciliation is to use what we call the two-
step reconciliation process. In the first step the position of εm with respect
to the other edits is either determined, or εm is classified as concurrent. In

28

3.5. RECONCILIATION

the latter case, the second step is executed, where the concurrent changes
are reconciled in a merge process. Ordering in the first step is typically
attempted using the happens-before relationship, or the part of it which is
known.

To perform successful reconciliation in the second step the merge may
process the object in a more fine-grained manner, use different and more
sophisticated methods than the first step, and utilize knowledge of the ob-
ject structure. Note that while we here use the term “merge” to denote the
second step in two-step reconciliation, “reconcile” and “merge” are often
used interchangeably and sometimes with narrower scope, so that recon-
ciliation entails only the integration of concurrent changes.

Two and three-way merging and the use of diffs and patches are well-
known state-based merging strategies. On the edit-based side a commonly
used method is that based on the Operational Transformation (OT) ap-
proach, where edits are transformed to take into account the effects of other
concurrent edits [115]. We consider state-based strategies here, as that has
been the focus of our research.

Let Sx and Sy be the states to merge. In basic two-way merging [70], the
states Sx and Sy are compared for differing regions, and for each such re-
gion, the alternative from either Sx or Sy is used. Basic two-way merge has
a limitation, however, as it cannot tell which of the alternatives should be
used without some auxiliary information. For instance, if the differences
consist of alternative records, and timestamps are available as auxiliary in-
formation, the timestamps could be used to choose the more recent alter-
native.

A particularly interesting piece of auxiliary information is the most re-
cent common ancestor (MRCA) state in the history of Sx and Sy, which we
denote Sb. By comparing Sx and Sy to Sb we can deduce which change al-
ternative represents an incremental change from Sb. This is the basic idea
behind three-way merging [70]. Comparing the MRCA to other alternatives
for auxiliary information, it seems advantageous that it is a state, just as Sx
and Sy, and therefore does not introduce any additional data structures in
the merging process. In three-way merging we use the term base state for Sb
and the states Sx and Sy are known as the derived states.

In diff/patch merging we either apply (patch) the diffs between Sb and Sx
to Sy, or vice versa. The method is commonly used in an ad-hoc fashion
during software development, and positions itself between two and three-
way merging in terms of capabilities.

Two-way merging for text is implemented in such tools as the ediff

mode in the Emacs editor1 and in the document compare functionality in

1http://www.gnu.org/software/emacs/

29

http://www.gnu.org/software/emacs/

CHAPTER 3. DATA SYNCHRONIZATION

word processing software such as Microsoft Office1 and OpenOffice2. The
Unix diff3 tool3 is a widely used three-way merger for text files. Darcs [99]
is a distributed revision control system with diff/patch-based merging that
includes a special “token replacement” patch. We consider XML merging
in Chapter 4.

3.5.2 Object Life Cycle Edits

The set of edits may include operations that cause objects to be created and
deleted. When an object is deleted, the goal is to reclaim all storage space
required by the object, thus necessitating eradication of all information per-
taining to the object, including the fact that the object has existed. This is for
instance how most file systems work, as keeping even the smallest amount
of information after object deletion would inevitably lead to storage space
exhaustion after a sufficient number of create and delete cycles.

Interestingly, it turns out that implementing complete eradication for
optimistically synchronized objects is harder than it may initially appear.
To see why this is, consider the following scenario, where the edit ε0 sig-
nifies object creation, and the edit ε∞ complete eradication of the object.
Suppose we delete the object locally by issuing ε∞. The complete eradica-
tion criterion now requires that we delete all knowledge of the object, i.e.,
its content, edit history, any metadata, and the fact that we knew it existed.
Now, due to the optimistic nature of the system, it is possible that we re-
ceive a change εn from another node pertaining to the same object. How
should this change be processed?

Suppose εn happened-before ε∞, which means that the object should
stay deleted. However, having lost the edit history of the object we cannot
establish this. This could potentially be solved by defining that any other
operation happened-before ε∞. This, too, leads to issues, as it is in fact pos-
sible that εn was concurrent with ε∞, and εn would become a lost update.
Also, how can we create an object if ε∞ is implied by the absence of the ob-
ject? Assuming the opposite, that ε∞ happens-before any other operation,
unfortunately means that receiving ε0 would reinstate the object, in which
case ε∞ becomes a lost update.

The problem occurs in even simple synchronization models, such as
pairwise file synchronization where any file not on either node is propa-
gated to the other node: deletion on one node becomes indistinguishable
from insertion on the other node, as there is no timestamp for the deleted
object to inspect. An early observation of this create/delete ambiguity is due
to [27].

1http://www.microsoft.com
2http://www.openoffice.org
3http://www.gnu.org/software/diffutils/

30

http://www.microsoft.com
http://www.openoffice.org
http://www.gnu.org/software/diffutils/

3.5. RECONCILIATION

An alternative to deletion as complete eradication is to use tomb-
stones [36] (also, delete markers). A tombstone discards the object state, but
records the fact that the object has been deleted and information to resolve
the happens-before relationship between the deletion and subsequently re-
ceived edits. This allows object deletion to be managed in a manner similar
to other object edits. The downside is that tombstone maintenance will re-
quire a small, but yet monotonically increasing amount of storage, unless
tombstones are removed using some mechanism. One approach is to au-
tomatically discard tombstones after some specified time longer than the
maximal estimated update propagation time [102], but this is not guaran-
teed to be correct. For ensured correctness, distributed garbage collection
algorithms may be used, such as those described in [36]. Tombstones were
used in, e.g., [88, 94], and more recently in [82, 97].

3.5.3 Some Observations on File System Reconciliation

File system synchronizers implement reconciliation of file system edits as
an integral part of the synchronizer. However, the reconciler typically ex-
cludes merging of concurrent edits to the same file, and either classifies
these as a conflict, or delegates them to a merger external to the synchro-
nizer. External mergers are for instance used in Rumor [37] and Coda.

As the file system interface is unsuited for capturing operations native
to the data structure stored in the file (as compared to operations on the
byte sequence encoding of the data structure), the external mergers are typ-
ically state-based, while the overall reconciliation mechanism may use file
system change operations, too. For instance, Coda natively implements a
reconciler for operations such as directory entry create, delete, and update,
while its application-specific mergers operate on file states. An example of
a fully state-based approach to file-system reconciliation is [6].

Some file synchronizers have facilities for reconciling moves (renames),
i.e., the file system operation where the hierarchical name of a file system
object changes. Recognizing file moves helps reduce bandwidth required
by update propagation, as the same object content can then be migrated
locally from one path to another, rather than having to be transmitted over
the network. In situations where the end user’s input is needed for conflict
resolution it is also beneficial to be able to present changes using moves
rather than insert/delete pairs [92].

31

CHAPTER 3. DATA SYNCHRONIZATION

32

Chapter 4

Synchronizing XML

Having considered synchronization in general, we will now move on to
synchronizing XML data. The Extensible Markup Language (XML) [143]
has in the past decade become a lingua franca for information exchange.
The comparatively large amount of structure exposed when using XML, as
well as its widespread deployment motivates us to consider the problem of
synchronizing data encoded as XML. Since the structure of XML is a tree,
we find that the problem on a more general level is that of synchronizing
tree structures.

Synchronizing XML data as opposed to an opaque sequence of bytes al-
lows us to utilize the structure of the data exposed by the XML encoding. In
particular, when merging states, we may process the object at a finer granu-
larity than an all-or-nothing approach. As there exist well-established ways
of querying and transforming XML [135, 144, 136], we may also consider
synchronizing only a subset or a transformed variant of the object. Further-
more, during update propagation we may use XML-level information to,
e.g., reduce resource usage [57], or to eliminate some changes that do not
affect the content of the object.

We consider merge strategies for XML which are applicable to object
states. Update detection is thus called for to deduce edits between states,
and to be useful to the merger, the edits need to be meaningful at the XML
level. Hence, XML differencing arises as an important topic in state-based
XML synchronization. Differencing is also a vehicle for implementing re-
call of past revisions, which is of use in synchronization, too [68]. Note that
the choice of data format (XML in this case) will in general not affect the
reasoning about causality between changes. Hence, XML-awareness is ide-
ally only required when merging concurrent edits, whereas other parts of
the reconciliation method (e.g., ordering changes, detecting concurrency)
remain unaffected.

While we do not consider synchronization where objects are related
by transformations or queries further in this thesis, we note that support-

33

CHAPTER 4. SYNCHRONIZING XML

<p>

This thesis was written using the open-source

<i>

document processor

</i>

LyX.

</p>

Figure 4.1: A simple XML document

ing such functionality is often mainly a matter of introducing a suitable
mapping between the full and transformed content at an appropriate point
in the synchronization process. However, constructing such a mapping,
known as the view update problem in the bi-directional case, is a large topic
of its own. The problem in the unordered tree case is investigated in [29].

In the following, we start by introducing XML. This is followed by
XML differencing and merging methods. XML differencing and merging
are considered as we have identified these as the parts of synchronization
where XML-aware processing matters.

4.1 The Extensible Markup Language (XML)

Along with the rise of the Word Wide Web and the HyperText Markup Lan-
guage [133] (HTML) in the mid to late 1990s there was a need for a markup
language with general applicability and which would be suited for the
Web. The existing Standard Generalized Markup Language (SGML) [45],
of which HTML is an application, was deemed too complex, and thus un-
suited. However, SGML was still considered a good starting point, from
which unnecessary complexity could be removed. The result was the Ex-
tensible Markup Language, XML. [34, 143]

A simple XML document is shown in Figure 4.1. As is the case with
HTML, XML is a text-based format, which means it is relatively easy for
humans to author and read. Document structure is introduced by using
matching pairs of opening and closing tags, where in the basic case the
opening tag is of the form <element-name> and the closing of the form
</element-name>. Together the matching tags form an element, whose name
is element-name, and whose enclosed content (other elements or text) is the
part of the document between the opening and closing tags. The opening
tag may also include a set of attributes with associated values. The outer-
most element of an XML document, of which there must be exactly one, is
known as the root.

34

4.1. THE EXTENSIBLE MARKUP LANGUAGE (XML)

Thus, in the Figure the <p> and </p> tags delimit the p element, whose
content is the text “This...”, the element i, and the element a. The a el-
ement has an attribute href, whose value is http://www.lyx.org, and a
content which is the text “LyX.”. In this case the root element is the p ele-
ment.

The XML specification [143] does not attach any particular meaning to
the element or attribute names; rather they are specific to each particular
XML-based format. Our example document uses markup that has an in-
terpretation as part of a document in XHTML [138], the XML-based refor-
mulation of HTML. More specifically, XHTML defines that the p element
contains a paragraph of text, the i element encloses content that should ap-
pear in italic font, and the a element along with its href attribute encode a
Web hyperlink.

Compared to our example document, additional syntax and content be-
sides elements and text are defined in the XML specification. Character and
XML content can be referred to using entities of the form &entity-name;. Of
particular importance are the entities for the characters <, >, and &, which
allow the inclusion of these characters in text content without being inter-
preted as XML markup. As a special short-hand for elements with no con-
tent the syntax <element-name /> is used. To combine similar tag names
from different domains, there is syntax that allows elements to be placed
in different name spaces [140]. Additional content types include processing
instructions (one is usually present at the beginning of the document to in-
dicate XML version and the document character set), comments, and the
document type declaration.

The hierarchical enclosure of elements and text with other elements
forms the document tree, which is an ordered tree with the root element as
its root. Thus, each element corresponds to a subtree of the document tree.
The notion of a well-formed XML document essentially guarantees an un-
ambiguous interpretation of the document as a tree structure, and includes
such requirements as the unique root element, as well as a nesting of tags
that does not violate the hierarchical containment principle. An XML doc-
ument may also be associated with some schema [143, 142], which states
further constraints beyond well-formedness. In case the XML document
conforms to the rules of its schema, it is said to be valid.

However, the XML specification makes no reference to a tree structure,
and well-formedness is not defined using a tree model. Instead XML is
defined in terms of a string of Unicode [129] characters. This is also true
for the canonical representation of an XML document [137], where the doc-
ument is serialized as characters so that XML documents that would be
considered equivalent will have identical canonical representations. The
actual tree structure of the XML document has been accounted for in the
XML Information Set [141] and the XPath data model [145] World Wide
Web Consortium (W3C) recommendations.

35

CHAPTER 4. SYNCHRONIZING XML

4.2 Differencing

As the inherent syntactic structure of XML data is that of a tree, XML differ-
encing may be approached by considering the more generic problem of dif-
ferencing trees. This problem is known as the tree-to-tree correction problem,
where a given set of tree operations and associated costs are used to find
the minimum-cost sequence of operations transforming one tree to another.
The cost is known as the edit distance. The groundwork on the tree-to-tree
correction problem was laid by [118], with improvements in computational
complexity by [65] and [111].

Trees may be classified into those that are ordered, where the order
among sibling nodes matters, and those that are unordered, where order
does not matter. Disregarding application semantics, XML itself is ordered
(the order of elements matters), and therefore an ordered tree and differenc-
ing model appears more suited for the general case. XML-based formats
with an ordered model include office documents [81], drawings [139], and
XHTML documents, to mention a few. An unordered model may be more
appropriate for, e.g., databases [130]. The unordered differencing problem
has been studied in [16] and [130].

A concern with ordered tree differencing is that generalized minimum-
cost tree diffing algorithms exhibit worst-case complexities from quadratic
upwards [18, 101]. The quadratic upper bound of the general approach has
been improved by introducing restrictions regarding the operations used
and on the structure of the data [147, 17, 15].

For instance, in the algorithm by Chawathe et al. [17], assumptions on
allowable parent-child relationships are made, which lowers complexity to
O

(
ne + e2), where e is an edit distance between the inputs and n is the

input size. The algorithm consists of two phases: building a matching be-
tween the input documents, and finding the minimum-cost edit script cor-
responding to the matching. This algorithm is used in the Open-Source
xmldiff1 and diffxml2 XML differencing tools.

Another approach to reduce complexity is to relax the strict require-
ment for minimum edit distance, and replace it with greedy and heuristic
approaches [16, 18]. The xydiff [18] tool computes the diff using a heuristic
algorithm that has a computational complexity of O(n log n), which makes
it attractive for use on larger documents. The designers of the XML ver-
sioning API for office documents [101] found xydiff to be the best tool on
which to base their design.

While approaches not based on a minimum edit distance have tradi-
tionally been seen as “second-class” approaches, we find that this point can
be argued [18]: An optimal diff is only optimal with respect to some cost

1http://www.logilab.org/projects/xmldiff/
2http://diffxml.sourceforge.net/

36

http://www.logilab.org/projects/xmldiff/
http://diffxml.sourceforge.net/

4.3. MERGING

Revision 1
Styles

<i>Italic</i>

<pre>Typewriter</pre>

Bold

Revision 2
Styles in alphabetic order

Emphasized

<i>Italic</i>

<pre>Typewriter</pre>

Revision 0
Styles

Bold

<i>Italic</i>

<pre>Typewriter</pre>

Figure 4.2: Example XML reconciliation task

model (i.e., set of edit operations). As several models may be constructed,
it is not obvious which model corresponds to the “correct” diff.

The expressiveness of the change operations computed by differencing
algorithms range from those that detect inserts and deletes to those that
also detect moves and copying of subtrees. Typically node insert, delete,
and update operations are detected. The subtree move operation is a useful
addition, which allows the diff to more accurately model XML restructur-
ing, such as item reordering, rich text restructuring, or directory tree ma-
nipulations. Including the move as a primitive in tree differencing has been
motivated in [18, 16, 17, 101].

4.3 Merging

As with XML differencing, XML merging, too, can be considered a special
case of the corresponding computation on an abstract tree structure. How-
ever, whereas a differencing tool is able to compute changes between any
well-formed inputs, with merging there is the possibility of failure due to
conflicting changes. To avoid unnecessary conflicts this typically means
that the merge tool needs to be aware of the semantics of the data, i.e., par-
ticularities of the XML format. Hence the problem of XML merging cannot
be viewed as only a tree merge problem. For instance, one would usually
not consider attribute ordering significant in XML, whereas such behavior
is not motivated in the general tree case.

Occasionally, conflicts may only be resolved by considering application-
specific semantics, and sometimes by doing this on more than one level of
abstraction. Furthermore, some conflicts may go unnoticed without con-
sidering application semantics. For instance, a common assumption when
merging data in a text-based format is that concurrent changes directed at
different parts of the text (e.g., different lines) can be applied to the same

37

CHAPTER 4. SYNCHRONIZING XML

Revision 3
Styles in alphabetic order

<i>Italic</i>

<pre>Typewriter</pre>

Emphasized

Figure 4.3: Merge of revisions 1 and 2 in Figure 4.2

state, while still yielding a semantically correct result. This assumption is
a large improvement over considering concurrent changes mutually exclu-
sive, and is pervasively used.

However, this simple assumption does not guarantee correctness in all
cases. For instance, consider two concurrent source code changes that both
insert the declaration of a new symbol x, but at different locations. Here
the assumption yields a result where the declaration of x occurs twice,
while the programming language may not allow multiple declarations of
the same symbol. Detecting that conflict requires considering a higher level
of abstraction, where we take into account the semantics of the program-
ming language.

It appears that to never produce an invalid result a generic XML merger
would need to have full semantic knowledge of all XML-based formats. As
this is quite infeasible, we find that there is no practical definition for an
infallible generic XML merge procedure. Nevertheless, this does not mean
that there cannot exist highly useful XML mergers, as evidenced by the
text-based diff and patch tools. While these do not guarantee even syn-
tactic correctness when used to merge XML data, they produce the desired
result in a large number of cases.

A merging example for an XHTML-like document is shown in Fig-
ure 4.2, where revisions 1 and 2 are to be merged. We note that inspection
of only these revisions does not yield enough information to merge. For in-
stance, is the correct text inside the element Emphasized or Bold? Thus,
without auxiliary data, the two-way merge approach can only yield a con-
flict in this case. While there are two-way mergers for XML, such as [43],
we do not consider these further here for this reason.

If we instead consider revisions 1 and 2 as derived from the base revi-
sion 0 (also shown in the Figure), we may deduce that in revision 1, the
 subtree has been moved to the end of the list, whereas in revision 2,
the word Bold has been changed to Emphasized, and the title of the list has
been updated to Styles in alphabetical order. We find that it is indeed possible
to construct a revision 3, depicted in Figure 4.3, which contains all changes.
Note that in order to generate the merged revision we need to be able to
reason about moved document subtrees. In a model with inserts, deletes,
and updates only, we would conclude that the subtree was deleted

38

4.3. MERGING

(and a similar subtree later inserted) in revision 1 whereas it was updated
in revision 2, which typically would yield a conflict.1

Closer inspection of the merged document exposes a problem, however.
While the heading states that the list is in alphabetical order, it clearly is
not. This is despite the fact that both revisions 1 and 2 are consistent with
their heading. This is again an example of how data semantics affects what
constitutes a valid merge. The hardness of this problem is illustrated by
the fact that in this case the merger would have to understand English to
detect the conflict!

In diff/patch-based merging, we merge by applying changes in the
form of a diff from other replicas to an object. The diff is computed by
differencing the two states Si and Sj between which the changes occurred,
and thus it encodes the edits made on either branch of the object history. To
illustrate, in the above case we could either compute the diff between revi-
sion 0 and 1, and patch it to revision 2, or we could patch the diff between
revisions 0 and 2 to revision 1. We note that diffs may also be readily avail-
able, e.g., in a revision repository, or in the form of edit scripts in edit-based
systems.

In order for diff/patch-based merging to work the changes in the diff
need to be applicable to a state different from Si, as is pointed out in [100].
The central problem is how to identify the parts of the document to change
in a manner that is both robust to deviations from Si, and yet specific
enough to address the same node that changed in Sj. For instance, if a
change is encoded as “update the fifth child of the document root”, the
change will obviously address the wrong node if the node that was the
fifth child of the root in Si has been shifted to appear as the sixth child of
the root in the state that gets patched.

One method to address this is to use unique identifiers for the nodes of
the XML document that are consistent across revisions, as is done in [18].
Another approach is to add context to a change, such as the parent and
sibling nodes of the changed node. The target document is then scanned
for this context, and the change applied where the context is found. This
is similar to how text files can be merged by using the context differencing
facilities of diff and patch.

Context-based XML differencing is used in [100] to implement merge of
XML documents as used by OpenOffice. Diff/patch-based XML merge is
further used in the Xmiddle [69] middleware, where changes are generated
using the XML diff tool [42].

In three-way merging we include the base state Sb in the merge pro-
cess to enable additional reasoning about the changes. Furthermore, with
three-way merging all three states can be kept in working memory simul-

1While the issue can be avoided in this particular case by considering the <i> and <pre>

subtrees inserted and deleted, the issue still remains in the general case.

39

CHAPTER 4. SYNCHRONIZING XML

taneously, which simplifies correlating nodes across the input trees, and
eliminates the diff/patch merge problem of how to encode the diffs in a
serializable format, i.e., a format that does not use identifiers whose scope
is local to a single process only, such as memory addresses.

This is illustrated in the DeltaXML [28] tool, which is able to generate
a “three-way-delta” by matching the nodes of the input trees in memory
and outputting a combined document where the nodes are annotated with
change information. Three-way merging is then a matter of accepting all
changed nodes. The node matching is based on a general tree matching al-
gorithm that uses element identifiers and performs longest common subse-
quence alignment at each level of the input trees. Another three-way merg-
ing method applicable to hierarchically structured documents is outlined
in [5]. This method does not include change detection, i.e., the changes
between the base and the input states need to be explicitly provided.

The Harmony synchronization framework [30] combines a three-way
merging strategy with an unordered tree data model and a data “filtering”
language that aids reconciliation and enables synchronization across data
formats. The concrete input data structures (e.g., XML documents) are first
transformed to an abstract unordered tree structure suited for synchroniza-
tion by, e.g., introducing keys for data elements and filling in data that may
be missing from the concrete structure. The transformation, known as a
lens, is bi-directional, so that it can be used to transform the result back to
the concrete representation, or, if using another lens, to another concrete
format, for cross-format synchronization. The synchronizer for the abstract
tree merges any non-conflicting changes, and takes note of any conflicts for
later rounds. The use of schemas to detect conflicts is also supported.

Further work on three-way merges on tree-like structures include tools
for software source code merging [70], as well as state-based directory tree
merging [6]. Inserts, deletes, and updates are essentially treated in the
same way in all three-way merging methods we have surveyed. The differ-
ence lies in the support for a “move” operation, and the rules for merging
moves.

40

Chapter 5

Data Synchronization in the
Mobile Environment

The design space for data synchronizers is rather large. The data syn-
chronization overview in this thesis, although focusing on optimistic ap-
proaches and state-based synchronization, still leaves open many possibil-
ities for managing causality, detecting and propagating updates, and per-
forming reconciliation. Considering the characteristics of the mobile envi-
ronment can help us narrow down the design. In this Chapter, we con-
sider the design features of synchronizers that have been constructed for
the mobile environment. For a bird’s eye view of synchronization as part
of an integrated system on a mobile device, we also briefly look at mobility
middleware that include synchronization as a component.

There is consensus that the optimistic rather than the pessimistic model
offers better data availability in an environment with weak connectivity
and intermittent disconnections [102, 107, 37, 97]. The primary caution of
the optimistic model is conflicting concurrent updates, but in practice it
has been found that conflicts are rare [110], and that they are usually easy
to resolve [37].

One can distinguish between two major approaches to synchroniza-
tion topology: infrastructure-based client/server and peer-to-peer [37]. In the
client/server model, the mobile nodes exchange updates with a designated
server node (or set of nodes), whereas in the peer-to-peer model, any node
may synchronize with any other node. The peer-to-peer approach is advan-
tageous when passing updates through the server node would be slower
or more costly than direct node-to-node communication [93]. Furthermore,
should the infrastructure become unavailable, no progress is possible in the
client/server model.

On the other hand, not relying on a fixed infrastructure increases the
demand for object replication in order to ensure availability. This consumes
additional resources and can lead to poor scalability [93, 94]. One could

41

CHAPTER 5. DATA SYNCHRONIZATION IN THE MOBILE ENV.

even make the argument that in the end, ensuring availability is easier with
a client/server model [146]. A further point in favor of the client/server
approach is that clients and servers need to be parted anyway, because they
will be optimized for different tasks [104]. Finally, we note that there are
hybrid approaches which strike a balance between the two models [94].

Reduced power and network usage is beneficial [2], and is indeed often
mentioned as a design goal [37, 146, 107]. As the bandwidth and communi-
cation costs of the network may vary, we want to choose wisely when to use
the network. Specifically, when considering whether to propagate updates
immediately or after some duration, the increased opportunity to use fast
and cheap connectivity is weighted against the user’s need for immediate
propagation of changes. Delayed propagation has the further advantage
that several updates may be batched onto a single connection, and some
updates may even be optimized away. [108, 37, 104] Network usage may
also be reduced with metadata-only synchronization [126, 37], which is a
technique that can reduce network usage considerably in cases when the
full content of an object is not needed, but rather a description of it.

The synchronizer should tolerate network partitions or complete net-
work disconnection [105, 97]. Disconnections are sometimes abrupt with
no preceding indication, and are in some cases related to user mobility, as
when leaving the office for a location without network access. Still, the user
should ideally not need to provide the system with advance notification to
ensure continued operation [93]. However, in practice some systems allow
the user to prepare for the disconnected period by hoarding required data
onto the device [108, 126, 146].

When considering different alternatives for the object storage model,
providing a standard file system API, or having the synchronizer interface
with the existing file system comes across as the logical choice [146, 126, 88].
While a customized API offers more control and does not have to account
for a sometimes ill fit between synchronization and the file system model,
this is offset by the utility of providing synchronization to existing file-
based applications. In particular, files managed by the synchronizer should
behave as ordinary files during both read and write access [116, 97].

We typically synchronize the complete file state, as obtained during a
period when no writers are active, as that state is internally consistent un-
der normal circumstances. If we, on the other hand, propagate individual
writes to a file, additional mechanisms are required to ensure that a con-
sistent state is seen [104]. Furthermore, detecting individual writes to a file
usually requires access to file and operating system internals, whereas a
portable application-level approach is generally preferred [107, 37].

Against this background, designing a state-based synchronizer for the
standard hierarchical file system appears reasonable. However, we note
that there are applications, such as video, where partial synchronization of
a file is beneficial due to the large size of the complete file. [126]

42

5.1. SYNCHRONIZATION IN MOBILITY MIDDLEWARE

A vast amount of data is already accessible on the Web through es-
tablished protocols, such as HTTP, the File Transfer Protocol (FTP) [89],
etc. There is thus an incentive to make a synchronizer that is interopera-
ble with existing Web infrastructure. Using standard protocols is a good
starting point [107]. We should also consider that changing the existing
server infrastructure to accommodate novel systems may be unrealistic. In
particular, the server versioning model may be rather limited, e.g., the only
“version number” available may be a modification timestamp based on the
server’s internal clock [126].

As the illusion of a single replica and single-copy serializability breaks
down during periods of disconnection and weak connectivity, the user will
be aware of synchronization activity. It then becomes important to convey
a consistent mental model of the synchronization process to the end user,
so that he can understand what the synchronizer is doing. A good synchro-
nization model can even support users in their work. For instance, a user
may prefer to work in isolation, and only initiate synchronization when a
mature enough version of his changes is completed [8].

In the case of concurrent modifications that cannot be merged with-
out user intervention, we should avoid a synchronization process where
the user’s immediate feedback is required for further progress. Rather, the
conflict should be recorded and resolution at an arbitrary node should be
allowed [92]. Care needs to be taken regarding how the conflict is repre-
sented to the user. This can be especially challenging when one is limited
to use the standard file system API. In [107], using a symbolic link to a non-
existent location is suggested as a method for alerting the user of a conflict
when a file is accessed.

5.1 Synchronization in Mobility Middleware

Data synchronization has been proposed as a component of mobility mid-
dleware in several cases. Here we briefly describe a selection of such sys-
tems with an eye towards how user data is modeled and synchronized.

In Aura [114], the goal was to minimize distractions arising from man-
ually managing computing resources, such as files, printers, displays, etc.
This is done by providing highly automated allocation and management
of computing resources and peripherals in a dynamic and heterogeneous
environment. Mobile data access is provided by a version of the Coda [108]
file system that has been enhanced with data staging capabilities. As Coda
normally only caches a subset of files on the client, there is a possibility for
cache misses. The staging capabilities consist of a staging server that keeps
read-only, encrypted copies of the full set of shared files, thus alleviating
cache misses.

43

CHAPTER 5. DATA SYNCHRONIZATION IN THE MOBILE ENV.

Xmiddle [69] is mobile computing middleware for ad-hoc networks that
supports mobile application development and enables transparent sharing
of XML documents across heterogeneous mobile hosts, while allowing on-
line and off-line access to data. The middleware uses optimistic replication
to support disconnected operation, and includes a generic XML reconcili-
ation mechanism for integrating concurrent updates. Besides generic rec-
onciliation, application-specific policies are also supported for cases that
require application-specific semantic knowledge. There is support for di-
rect synchronization between nodes hosting replicas derived from the same
base object, i.e., the originating node is not required to be always available.

Fugeo Core [121] is a mobility middleware which focuses on modular-
ity, extensibility, and interoperability through the use of standardized pro-
tocols and data formats. The middleware consists of an event system [120],
and components for messaging [49], data synchronization [62], presence,
and reconfigurability. Host mobility is supported by HIP [74]. XML is used
throughout the system as data interchange format, and reconciliation ca-
pabilities for concurrently modified XML documents are included in the
synchronization component. Besides XML, the synchronizer supports effi-
cient synchronization of hierarchical file systems.

Lime [75] is a middleware based on tuple spaces for the mobile environ-
ment with support for shared data. A tuple is a vector of arbitrary values,
and a tuple space is a collection of tuples. The tuple space in Lime supports
operations to put, take, and read tuples from the Lime tuple space. Syn-
chronization happens by having nodes combine their tuple spaces into a
single space. However, a tuple in the shared space is still associated with a
single location, and it is removed from the space if the location disconnects.
In a way this leads to a pessimistic model, as participants need to hoard the
tuples they intend to use before disconnection

One.world [35] is a system that supports application development in
the pervasive computing environment. Data in One.world is represented
as tuples, with nesting of tuples permitted. A replication service is pro-
vided to keep data synchronized in an optimistic manner. Reconciliation is
performed with the help of edit logs, which the system captures as tuples
are modified.

When comparing middleware systems to stand-alone synchronizers it
appears that middleware systems more easily opt for custom data mod-
els and storage options. This may be more natural in the middleware
case, as these are frequently complete application environments, and to
a high degree applications are expected to be built on top of the middle-
ware. However, recognizing that it may be that only some components
of a middleware get deployed outside the academic community suggests
an approach of more independent components that interface using well-
established standards. This design is exemplified by the Fuego Core mid-
dleware.

44

Chapter 6

Contributions

The published contribution of this thesis in the area of optimistic data syn-
chronization in the mobile environment consists of Articles I–V, which are
summarized and put in a larger perspective in this Chapter. As sometimes
happens, the research history did not follow a straight path from topic to
topic. For the benefit of the reader, we have hence forgone presenting the
articles in chronological order and instead present them by synchronization
topic.

We first consider Article I, where we present a three-way merging algo-
rithm for XML data. Then, addressing the computational limitations of the
target environment, in Articles II and IV we consider a lazily evaluated tree
structure (“Reftree”) for XML and how it can be used with the three-way
merging algorithm of Article I as well as for state-based XML synchroniza-
tion in general.

The three-way merger of Article I assumes a pre-existing document
matching which correlates the “same” content across the input documents.
However, such a matching may not be readily available, in which case we
can obtain it by using an XML differencing algorithm. XML differencing
also plays a natural role in XML synchronization as part of the change de-
tection mechanism. In Article III we present an XML differencing algorithm
where detecting the minimum set of edits is traded off for the mobile envi-
ronment cornerstones of efficiency and simplicity. The algorithm builds on
the Reftree structure presented in Articles II and IV.

The contributions of Articles I–IV are then leveraged in Article V, where
an XML-aware file synchronizer for mobile devices is presented. The file
synchronizer features interoperability with existing Internet infrastructure,
while conforming to the requirements of the mobile environment.

45

CHAPTER 6. CONTRIBUTIONS

6.1 State-based XML Reconciliation

In today’s working environment it is common practice to edit content in a
collaborative fashion. Different authors may write different parts of a doc-
ument, or a document may be sent out to reviewers that make supplemen-
tary edits and add comments. In particular, multiple copies of a file may
be involved, where each copy receives differing edits, while in the end a
single copy that integrates all edits is desired. That is, we want to merge the
edits in many copies into one.

With XML, the structure of data is exposed in an interoperable manner.
The widespread move towards XML-based application storage formats in
the recent decade has thus made the structure of application files increas-
ingly transparent. Herein lies an opportunity to address scenarios like the
one above and construct a merging algorithm which would be of relatively
large scope and which would be able to process data at a relatively high
semantic level.

On the matter of whether to use an edit or state-based approach, we find
that applications do not generally record change operations along with the
data, and furthermore, there is little consensus among applications as to
what the XML change operations should be. Our goal of interoperability
with existing software thus calls for a state-based approach to XML merg-
ing.

In Article I we present a state-based merger for XML that uses the three-
way merging technique. Three-way merging was chosen over other ap-
proaches as it eliminates the need for a serializable format for changes, and
because of the advantages of using a common base revision over other aux-
iliary data. Furthermore, we have proposed that the flexibility of three-way
merging makes it well suited for the mobile environment [61].

We argued in Chapter 4 that there is no single “right” way to define a
three-way merge for tree-structured data, but rather that many variants are
possible. To find a variant with reasonably broad applicability we analyzed
a set of merging use cases from the domain of XML documents with an
ordered tree model. This domain includes important applications such as
Web documents (XHTML), word processing and other office documents,
drawings, etc.

Based on the use cases we identify an inclusion principle where we
require certain fragments of the derived documents to be included in the
merged document. The fragments are taken from the areas where the de-
rived documents changed with respect to the base document. This preser-
vation of document fragments in the merged document is an instance of
the no lost updates principle. In the Article, the XML document is modeled
as an ordered tree, and the fragments are informally known as contexts.
These are subsequently formalized as relations that constrain the content
of nodes and allowable parent and sibling relationships between nodes.

46

6.1. STATE-BASED XML RECONCILIATION

The essence of the merging algorithm is then to construct an unambigu-
ous, or consistent, merged tree from the required relations. The relations
from the input trees state ambiguous content or structure for the nodes
around changes, and are thus normally inconsistent. The merging algo-
rithm obtains a consistent merged tree form the inputs by discarding rela-
tions that are considered expendable. Such relations are those that do not
represent a change compared to the base document. If a consistent tree is
not obtained when no further relations may be discarded a conflict has oc-
curred. The computational complexity of the algorithm is O(n log n), and
in the Article we present empirical evidence that implementations can scale
in accordance with this.

An important aspect that we take into account is how to merge subtree
moves. In particular, our merger allows reconciliation of a moved subtree
with changes inside that subtree, including moves. This allows for merg-
ing of cases where, e.g., one editor reorganizes the overall structure of a
text, and another author adds some text and proofreads. The support for
moves sets our approach apart from other research, including the more re-
cent diff/patch-based approach described in [100].

In addition to the no lost updates principle, the merge has the property
of being symmetrical with respect to the derived documents, i.e., it does not
matter which derived document contains which changed state. Thus, no
changes are given preference over others. However, in a conflict situation
it may be desirable to prefer the change from one derived document over
the other.

The merge relies on the ability to correlate the “same” node across trees,
i.e., it assumes a matching [16, 17] (also: alignment) of tree nodes. We do
not consider how to construct the matching in the Article, as that has been
studied elsewhere, and those results are directly applicable. We note that
the construction of accurate matchings in an efficient manner is of large
practical importance.

The merging algorithm gives rise to a taxonomy for conflicts pertain-
ing to concurrent XML modifications. We identify the update/update con-
flict, where a tree node changes in different manners (not including posi-
tion in the document), the position/position conflict, where the position of a
tree node in the merged tree is ambiguous, and the delete/edit conflict, where
there are changes that are no longer present in the merged tree.

The contributions of this research are a three-way merging algorithm
for XML with unique support for subtree moves, a set of use cases illus-
trating XML merging and desired outcomes, a set of design guidelines
for XML three-way merging in the domain of the Article, and a classi-
fication of conflicts. Furthermore, the algorithm has been implemented
and evaluated against the use cases. Both the implementation and the
use cases are available as Open Source at http://fc-raxs.googlecode.com
and http://tdm.berlios.de.

47

http://fc-raxs.googlecode.com
http://tdm.berlios.de

CHAPTER 6. CONTRIBUTIONS

The author has previously described a variant of the merging algorithm
in unpublished work [60]. We have furthermore published a variant suited
for plain text, with specific applications to syntactically invalid XML and
HTML in [63].

6.2 Lazy Trees for Data Access and Synchronization

The rapid growth of storage on mobile devices raises the concern that we
cannot utilize all the data that is stored on the device efficiently. One way
to address this is to adapt the data into a form more suited for the mo-
bile device that is more compact and which requires less processing [54].
However, this breaks interoperability to some extent, and widens the gap
between mobile and fixed devices. Ideally, we want to use the same data
files on fixed and mobile devices alike.

In Article IV we present the Fuego XML Stack, which consists of algo-
rithms and software components that allow applications to read and write
verbatim XML files in a random-access fashion, while using the process-
ing resources efficiently. By retaining XML as the on-disk storage format
we stay compatible with existing XML processing applications, minimize
the effort of data import and export, and eliminate the need to temporar-
ily store the same data twice. Furthermore, data sources that can interface
through an XML document model, although not necessarily using XML
natively, are also easily integrated with our components.

The central idea of this work is the use of lazy data structures [1], i.e.,
data structures that are only partially instantiated in memory according to
the data access pattern of the application. We provide these to applications
by means of a custom API, rather than through the file system. This is be-
cause the file read-modify-write cycle is part of the problem, so compatibil-
ity in this sense cannot be retained. Nonetheless, since data remains stored
in an XML file, access through the file system remains an option, when-
ever that becomes feasible. Examples of this include cases where the data
is moved onto a fixed device, or when energy concerns are not relevant,
e.g., because the mobile device is connected to a charger.

In Article II we consider state-based file system directory tree synchro-
nization. As storage capacity increases, so does the number of files and
directories that may be stored. This leads to a situation where the direc-
tory tree state becomes unmanageable due to its size. However, there is an
opportunity for lazy data structures here, as we are interested in only the
changes to the file system since the last point of synchronization rather than
the full state per se.

We may now put the Fuego XML Stack to work: by providing an XML
document interface to the file system directory tree and using the Stack in

48

6.2. LAZY TREES FOR DATA ACCESS AND SYNCHRONIZATION

Figure 6.1: Editor for 1 GB XML file with Wikipedia content.

combination with the XML merger of Article I adapted for lazy trees, state-
based reconciliation of large directory trees becomes possible.

As a further demonstration of the capabilities of the Stack we have also
built an editor for a 1 GB XML file consisting of some 240 000 articles from
Wikipedia1. The editor runs on what can nowadays be considered a modest
smartphone with 4 MB RAM available per process and a 150 MHz proces-
sor. The editor, shown running on the smartphone in Figure 6.1, allows the
user to look up articles by a keyword, and edit the wiki-style markup of the
articles.

The Fuego XML Stack consists of three main components. The Random
Access XML Store (RAXS) is the top-level component that provides overall
XML document management such as packaging, versioning, and support
for synchronization. It builds on the XAS component for efficient XML
parsing and serialization, and the tree-with-references (Reftree) component
for lazy XML manipulation. The terminology used for the lazy tree struc-
tures is regrettably not consistent across the Articles: they go by the name
Reftrees in Article IV and XML-with-references (XMLR) in Article II.

RAXS is the primary API for applications that utilize the XML docu-
ment random access read and write functionality. The API allows opening
an XML file as a Reftree, editing that tree, and writing the changes back
to the file in a transactional manner. RAXS maintains past revisions of the
XML document, as well as deltas between the revisions. These are use-
ful for three-way merging and synchronization in general, as was seen in
Chapter 4. A RAXS can be thought of as a limited XML database, which
is stored as a main XML file with an accompanying set of files for storing
indexes, past revision, etc.

XAS provides two key pieces of functionality: out-of-order parsing of
XML documents and streaming access to the unparsed bytes of an XML
document during the parsing and serialization process. Out-of-order pars-
ing in combination with an index is used in the Wikipedia editor to imple-
ment random access to articles by their title. Specifically, we do not need
to parse the markup preceding the relevant article, as is required when us-

1http://www.wikipedia.org

49

http://www.wikipedia.org

CHAPTER 6. CONTRIBUTIONS

ing a conventional XML parser. The raw byte access functionality allows
copying unchanged XML content without a cycle of parsing and serializa-
tion. Furthermore, it provides access to large text content in a streaming
fashion, eliminating the need for intermediary buffers. The raw byte access
functionality is used in the Wikipedia Editor to manage large articles.

When accessing the XML content one uses Reftrees. In a Reftree the
in-memory trees contain special nodes, known as reference nodes.1 The ref-
erence nodes act as placeholders for subtrees and nodes from another tree,
known as the referenced tree. Lazy access to a tree T is then implemented as
a Reftree referencing T, where the nodes from T that are needed are present
in-memory, and the rest of the nodes in T are indirectly included through
appropriate reference nodes. Reftrees are also used for trees that repre-
sent a change with respect to some original tree. In this case, the reference
nodes are used to include parts of the original tree that are identical in the
changed tree. This construct allows us to implement mutability of a large
tree without fully instantiating that tree in memory.

The Reftree API provides a set of methods for manipulating Reftrees
that we have found to be of general utility: expansion of reference nodes
into the nodes they reference, providing tree mutability on top of an im-
mutable tree, combining the changes represented by Reftrees, and revers-
ing the direction of the change represented by a Reftree. The algorithms
implementing the methods are summarized in Article IV and presented in
more detail in Article II.

To fully benefit from the lazy approach in synchronization we also need
a reconciliation algorithm that supports Reftrees. This is considered in Ar-
ticle II, where the three-way merging algorithm of Article I is extended
to work with Reftrees, with directory tree synchronization as the specific
case being considered. We find that the extension can be done as a pre-
processing step to the original algorithm. In essence we need to expand
nodes in the input Reftrees, so that each node in the input trees appears in
the same form across trees, i.e., either in reference or ordinary form. We
call this process Reftree normalization. After the input Reftrees have been
normalized, merging is delegated to the original algorithm.

The modular nature of the extension to the three-way merge, in combi-
nation with the regular form of normalized trees, suggest that normaliza-
tion may be used when extending other processing algorithms for Reftrees
as well. The essential requirement on the algorithm to extend then becomes
similar to that which makes it suitable for lazy processing in the first place,
namely the ability to execute without visiting some parts of the tree struc-
ture.

In Article II we also propose a method for file system change detection
that is in the spirit of the lazy tree approach. A large file system is expensive

1The term used in Article II is placeholder node

50

6.2. LAZY TREES FOR DATA ACCESS AND SYNCHRONIZATION

to traverse in order to find changes, which is necessary if we use standard
file system operations only. Our method consists of a minor alteration to
the semantics of the file system that allows change detection to focus on
areas of actual change.

Specifically, we propose a change to the semantics of the modification
timestamp for directories, so that it maintains the most recent time of mod-
ification of the directory itself or of any of the descendant entries (files and
directories) of the directory. Thus, with a known last time of synchroniza-
tion, we only need to scan those directories which have a more recent modi-
fication stamp for changes. Similar semantics for the directory modification
timestamp are used in [21], but it is used for a different purpose.

Comparing the Fuego XML Stack to other approaches, there are some
notable differences. We access the XML document from the file system,
while other approaches [24, 12, 14] keep the unparsed XML in memory.
Our update model supports moves which, although important [16, 18], are
not commonly included. We are not aware of any work which addresses
lazy XML editing as comprehensively, and have found related work for the
sub-components only. In particular, the idea of selective instantiation (nor-
malization) of lazy trees for the purpose of interoperability with existing
algorithms stands out.

Comparing the directory tree synchronization mechanism to distributed
file systems and file synchronizers, we propose a compromise where we do
augment the semantics of the file system interface, but in a very lightweight
manner. Our directory synchronization mechanism is state-based, and yet
exhibits edit-based scalability as it scales with the number of changes, rather
than the size of the state. Furthermore, moves of files and directories are
considered to be first class operations in addition to the more common in-
sert, delete, and update operations.

The central contribution of Article IV is the Fuego XML Stack which
makes it possible to process significantly larger XML files on mobile devices
than is commonly considered feasible, while remaining compatible with
the XML storage format. This conclusion is supported by a multi-version
editor for Wikipedia articles stored in a 1 GB XML file on the mobile device,
and empirical measurements of the editor that indicate that its performance
is comparable to that of other standard applications available on the device.
We also present experimentation with alternate approaches, which show
that the Stack besides scalability can provide advantages in terms of shorter
set-up time and reduced storage space consumption.

Article II contributes algorithms for normalization and other operations
on Reftrees, and shows how Reftrees can be used to implement three-way
merging of XML documents that do not fit in memory in their fully ex-
panded form. In particular, we show how this method can be applied to
directory tree merging. We also show empirically how change detection on

51

CHAPTER 6. CONTRIBUTIONS

file systems can be improved over the naive scanning approach by intro-
ducing a change of semantics to the directory modification timestamp.

An Open Source implementation of the Fuego XML Stack is available at
http://fc-raxs.googlecode.com and http://fc-xas.googlecode.com.
The directory tree synchronization mechanism is included in the syn-
chronization component of the Fuego Core Middleware, of which an
Open Source implementation is available at http://fc-middleware.

googlecode.com.

6.3 Efficient XML Differencing

In Articles II and IV we obtained XML deltas for synchronization and ver-
sion management by capturing tree edits through a custom change API,
and computing a cumulative change in the form of a Reftree. However,
requiring that applications use this API for XML manipulation in the case
where there are no concerns regarding XML file size is not feasible, and it
contradicts the goal of retaining interoperability. Thus, we need to look for
another method for obtaining XML deltas.

With only XML states available, we need to use an XML differencing
algorithm to detect the changes. Furthermore, as motivated in the previous
and Chapter 4, we require that the move operation should be supported.
Since the available energy on the mobile device limits the amount of pro-
cessing, and traditional minimum edit-distance XML differencing tools are
computationally taxing, especially when the move operation is included,
we also consider heuristic solutions. This narrows down the field to the
algorithms presented in [17] and [18].

However, restrictions on allowable parent-descendant relationships and
other assumptions regarding the form of the input XML in [17] do not fit
our more general domain. The generation of a sequential edit script from
the established alignment of the input trees in [17] and [18] is also super-
fluous in the Reftrees model, where changes are unordered. It seems that a
simpler approach based on heuristics is possible.

In Article III we present a heuristic XML differencing algorithm that
has been optimized for speed and simplicity, and that meshes well with
the Reftrees change model. We use an approach where the tree differenc-
ing problem is translated to the domain of sequence alignment, and then
transformed back to the tree domain in order to generate a delta that is
expressed as tree operations, rather than operations on sequences. An or-
dered tree model is used, as it is applicable to a large domain of practical
applications.

As elements of the sequences we use the parse tokens produced when
parsing the input documents. Thus, sequential representations of the input
trees are readily available, and we only need to consider how to align the

52

http://fc-raxs.googlecode.com
http://fc-xas.googlecode.com
http://fc-middleware.googlecode.com
http://fc-middleware.googlecode.com

6.3. EFFICIENT XML DIFFERENCING

input sequences, and how to transform the aligned sequences back to the
tree domain, yielding an alignment of the input trees. The delta is then
generated from the aligned trees.

Sequence alignment is a well-studied problem, and there are algorithms
for computing alignments that incorporate moves [125]. While these could
be considered in this case, we instead use a simple heuristic alignment al-
gorithm. This choice is motivated by the encouraging results from practical
use in other tools [67, 128], as well as by being amenable to variations with
different alignment heuristics.

The transformation back to the tree domain is done so that the output is
a Reftree, thus making the result immediately useful for other components
of the Fuego XML Stack. The idea of the sequence-to-tree alignment trans-
formation algorithm is straightforward: subtrees corresponding to aligned
subsequences are encoded as reference nodes, and subsequences without
a match as ordinary nodes. However, since the sequence alignment does
not respect subtree boundaries, the algorithm becomes somewhat more in-
volved. Both the heuristic alignment and the transformation algorithms are
presented in detail in the Article.

Besides the Reftree expression of the delta, we also introduce a simple
XML delta format that is in essence a serialization of the delta Reftree where
some repetitive patterns have been eliminated and where a method based
on XPath [135] is used for addressing nodes. The format features a parallel
edit model, is quite readable by humans, and shows changes using a tree
structure that reflects that of the target document. A drawback of the for-
mat is that it does not encode deleted data, although this appears easy to
correct.

To validate the design, and in particular the simple greedy alignment
heuristics, we evaluated a Java implementation of the differencing algo-
rithm on a set of documents from its intended domain of use. Evaluation
was done by measuring the performance, both in terms of scalability and
absolute quantities, and the size of the resulting deltas. Furthermore, to re-
late the algorithm to previous work, we also performed the measurements
on similar existing XML diff tools. We also included a binary differencing
tool as baseline against which to compare the tree-based approaches.

In the experiments on execution time and scalability our tool overall
matched the best XML differencing approaches, which suggests that our
algorithm is viable. We also observed that all XML diff tools were out-
performed in terms of both execution time and compactness by the binary
differencing approach.

The principal contribution of Article III is a high-performance XML dif-
ferencing approach which supports move operations, and that consists of a
method to map the problem to the domain of sequence alignment, an algo-
rithm for heuristic alignment of sequences, and an algorithm for transform-
ing aligned XML sequences to a Reftree that encodes the changes between

53

CHAPTER 6. CONTRIBUTIONS

File

/home/ctl
data

photos
incoming

anne.jpg

archive
family
friends

File

File

File

C:\
My Documents

Images
anne.jpg
poster.jpg
vacation.jpg

C:\
data

photos
incoming

anne.jpg

Users
ctl

photos
incoming

joe

ISP

PC

Internet

Figure 6.2: Synchronization links

the input documents. Furthermore, we contribute an implementation and
measurements of its performance, scalability, and output size, as well as a
quantitative comparison with existing work. We also observed that binary
diffs may work very well if XML-level changes are not needed. The imple-
mentation, known as the Fuego Core XML differencing tool, is available as
Open Source at http://fc-xmldiff.googlecode.com.

6.4 XML-aware Synchronization for Mobile Devices

The unifying theme in Articles I–IV is state-based synchronization of XML
files stored on an ordinary file system. In Article V we then present a file
system synchronizer with support for XML file synchronization in particu-
lar. This synchronizer, named “Syxaw”, is the synchronization component
of the Fuego Mobility middleware [121]. Besides integrating the work in
Articles I–IV, Syxaw proposes a model for synchronization that is designed
for interoperability with data sources on the Internet, and which is well
suited for the mobile environment. We also consider the synchronization
model easy to understand for end-users and developers alike.

Despite advances in the state of the art, data synchronization is still fre-
quently performed manually and on an ad-hoc basis. We believe one rea-
son for this is that existing systems do not fit well into the user environment
in terms of synchronization concepts or interoperability with existing data
sources. This is why we prioritized interoperability in the design, and why
we think that the synchronization model should be based on simple con-
cepts that the user ideally is already familiar with, and which accurately
model the constraints of the environment. Interestingly, our analysis of

54

http://fc-xmldiff.googlecode.com

6.4. XML-AWARE SYNCHRONIZATION FOR MOBILE DEVICES

these requirements suggested that the model should be rather conserva-
tive, perhaps even old-fashioned, compared to modern systems.

The data sharing model in Syxaw is known as the “linked objects”
model. In this model files and directories can have a synchronization link
that states a synchronization target data source, typically in the form of a
remote file. When synchronization is invoked on a linked file, its content is
synchronized with its target object. In case of directories, the target is an-
other directory tree, and synchronization means that the linked directory
trees are synchronized.

An example scenario is shown in Figure 6.2, where synchronization
links are set up between devices as indicated by the arrows. In this ex-
ample, directories containing photos are linked to maintain a collection of
photos across the user’s devices. For instance, the smartphone stores new
photographs in the Images directory, which is linked to the incoming direc-
tory on the home PC. Thus, to upload new photos from the phone to the
home PC, the user invokes synchronization on the Images directory.

Synchronization links are set up to organize the objects in a tree syn-
chronization topology, so that the link target of each object is its parent in
the tree. We use a model of causality where each object conceptually has
three revision numbers: the local revision (denoted v), and the last syn-
chronization target and local revisions, denoted vl and vt. The local revi-
sion is incremented if, and only if, there is a change to the object state, and
the synchronization revisions vl and vt are used to record the local version
numbers of the object and its link target on completion of a synchronization
run.

When synchronizing, v is compared to vl and the revision v′ of the link
target is compared to vt. The four possible outcomes accurately identify
the cases where there were no changes (v = vl , v′ = vt), only local changes
(v > vl , v′ = vt), only changes to the link target (v = vl , v′ > vt), or
concurrent changes of both objects (v > vl , v′ > vt). The algorithm does not
differentiate between object changes that are of local origin and those that
are applied to an object in its role as a link target during synchronization.
Thus, the synchronization procedure is uniform across all levels of the tree.

Figure 6.3 shows a simplified overview of the Syxaw architecture, and
also how the contributions of the previous Articles fit into the architecture.
At the center of Syxaw, we have the synchronization engine, which per-
forms synchronization of linked objects, i.e., files and directories. To the
operating system, Syxaw appears like any other application that reads and
writes data stored on the file system. This design is portable and avoids the
intricacies of development at kernel level.

Between the synchronization engine and the file system there is an ab-
straction for stored, synchronizable objects, known as the object provider.
The object provider is used to provide type-specific aspects of synchroniza-
tion. Syxaw supports type-specific behavior for an object’s update proce-

55

CHAPTER 6. CONTRIBUTIONS

File
System
(objects)

User
Application

Object
Transport

Layer

Network
Optimization

Synchronization
Engine

(multithreaded)

Object Provider

Articles II, III, IV: Repository

Articles II,III,IV: Update format

Articles I, II, III: Reconciler

Synchronization protocol
operations

Syxaw Instance

Optimized HTTP

Foreign Protocol

A
rticle II

Figure 6.3: Overview of Syxaw and contributions of Articles I–IV

dure, revision history, and reconciliation, among others. For generic XML
data there is an object provider where the XML differencing algorithm or
the RAXS functionality is used to obtain and update objects with XML
deltas, where reconciliation is based on the XML three-way merger of Ar-
ticle I, and where a repository of past revisions is maintained using RAXS
functionality. Reftree lazy tree structures are used where applicable. The
change detector presented in Article II can be used to improve file system
change detection performance.

A distinguishing feature of Syxaw is that directory trees are processed
as any other data objects throughout the synchronization process. They are
encoded as XML documents, and rely on the generic XML object provider
for basic versioning and update propagation. Reconciliation and update
application, i.e., translating changes in the XML directory tree to file system
operations, are unique to the directory tree type. Directory tree reconcilia-
tion is, however, not built from scratch, but rather as an augmentation of
the generic XML three-way merger.

The synchronization engine communicates with remote instances either
through the optimized HTTP-based Syxaw synchronization protocol, or
through some other protocol as required by external data sources. For or-
dinary Web resources this protocol is typically HTTP, but with application-
specific request formats.

The abstract synchronization protocol is designed to be very simple.
The only operation that an external data source must support is the GET op-
eration, which retrieves the current content of a resource. This is sufficient

56

6.4. XML-AWARE SYNCHRONIZATION FOR MOBILE DEVICES

for one-way synchronization. Overall, we assume only a small set of com-
monly available functionality on the link target node in order to be able to
easily interface with existing services on the Internet.

The Syxaw synchronization protocol is a concrete serialization of the
abstract synchronization protocol, and it is used when the link target, too,
is a Syxaw instance. With the Syxaw protocol we optimize network usage
by reducing the required bandwidth and maximally utilizing the available
bandwidth (as motivated in Chapter 5). Bandwidth reduction is mainly
achieved by use of compression, which may be both generic and type-
specific. High bandwidth utilization is achieved by batching object re-
quests, and using a multithreaded process flow when synchronizing ob-
jects. The use of concurrency allows, e.g., the reconciliation of one object to
progress in parallel with transfer of another object.

A relatively large part of the Article is devoted to evaluating Syxaw.
We qualitatively evaluate Syxaw as a provider of synchronization services
to applications, and perform measurements on the efficiency of the Syxaw
synchronization protocol. We also measured overall synchronization per-
formance and resource usage for a set of realistic use cases. All evaluation
was done on a smartphone connected to an authentic cellular network.

Based on the evaluation we conclude that Syxaw is a feasible approach
for providing synchronization for existing as well as novel applications.
Furthermore, we find that the techniques of operation batching and con-
current use of network downlink and uplink improve network utilization,
but that achieving full bandwidth usage with a resource-constrained mo-
bile client is challenging in practice. The resource usage profile of Syxaw is
found to be consistent with its target environment.

Compared to other synchronization proposals, Syxaw distinguishes it-
self in that it interoperates transparently with resources on the World Wide
Web, and in that it addresses an extensive set of synchronization-related
functionality in a reasonable default manner, all while preserving the op-
tion for applications to customize any part of this functionality. In partic-
ular, Syxaw stands out in its support for reconciliation of XML data, cus-
tomizable update formats, and batching and concurrent network transfer
strategies.

In Article V we contribute a data synchronization model suited for in-
teroperable synchronization on mobile devices, a comprehensive synchro-
nization architecture based on this model, and a qualitative evaluation
of the architecture as provider of synchronization functionality. We pro-
vide measurements on the effectiveness of the batching and concurrency
techniques used to improve synchronization performance. Furthermore,
we present findings that Web interoperability suggests that the data share
model be kept simple and conservative, and that moving functionality onto
the client is advantageous. An Open Source implementation of Syxaw is
available at http://fc-syxaw.googlecode.com

57

http://fc-syxaw.googlecode.com

CHAPTER 6. CONTRIBUTIONS

58

Chapter 7

Discussion and Conclusions

In this thesis we set out to address data synchronization on limited mo-
bile devices. We focused on interoperability with existing applications and
Internet infrastructure, as we think this is a key enabler for ubiquitous
data synchronization. As background, we characterized the mobile en-
vironment, and surveyed the topic of data synchronization with an eye
towards state-based optimistic synchronization for XML data and opaque
files. Three main components can be identified in optimistic data synchro-
nization, namely update detection, propagation, and reconciliation, and we
considered each of these in turn. We then presented a complete data syn-
chronization approach, and proposed the use of lazy XML structures as an
overall strategy to improve scalability.

We may now return to the research question presented in the begin-
ning of the thesis, and consider the research presented here in light of that
question, which is restated here for convenience:

How can we provide XML-aware file synchronization in a manner
that is compatible with existing applications and suited for the mobile
environment?

As answers to this question, we can summarize our findings as follows:

• The networking environment and interoperability with existing ap-
plications suggested that synchronization should be based on an op-
timistic and state-based model.

• The merging aspect of synchronization was addressed by identifying
patterns for merging XML, and implementing these as an XML three-
way merger in Article I.

• To overcome scalability issues in processing XML data during syn-
chronization, in Articles II and IV we proposed an approach where
lazily evaluated XML documents are used.

59

CHAPTER 7. DISCUSSION AND CONCLUSIONS

• To address the change detection aspect, for the purposes of both merg-
ing and update propagation, either an approach based on lazily eval-
uated XML documents or XML differencing may be used. For XML
differencing, we proposed in Article III that a relatively lightweight
approach based on heuristics for aligning a sequential representation
of the input documents may be used.

• The interoperability requirement affects the design of the syn-
chronization model and protocol. In Article V, we found that a
client/server model with a set of synchronization protocol operations
that have semantic counterparts in popular Internet protocols sup-
ports interoperability. We also observed an incentive to move func-
tionality onto the mobile client.

• Overall, the implementation of the research results provides a run-
ning system that demonstrates how to perform XML-aware data syn-
chronization on mobile devices.

There has been some concerns on the performance of XML, both in the gen-
eral case [78] and when considering applications on weak devices specifi-
cally [124, 52]. This has lead to the proposal of “binary” XML, i.e., serializa-
tions of the abstract XML structure that are more compact and that require
less processing than XML. WAP Binary XML [134] is an early example. The
W3C has a working group on the Efficient XML Interchange (EXI) Format1,
which aims to standardize one such serialization. Weak and mobile devices
are targeted by this work.

Throughout the research carried out here, standard XML has been used
because of the interoperability advantages that it provides, and for the rea-
son of interoperability we have explicitly avoided transcoding XML data
into an alternate format. Given that we, too, address performance issues
when using XML, some comparative observations with alternate serializa-
tions can be made.

Our results help demarcate the boundary between when XML and when
an alternate serialization should be used. Specifically, in cases where only
limited parts of the document need to be accessed it seems beneficial to use
XML, as reasonable performance can be obtained with the use of lazy XML
structures, while XML compatibility is retained. Furthermore, as one could
conceivably implement lazy tree structures similar to those presented here
for an alternate format, the approaches appear complementary rather than
exclusive.

Because of the limited resources of mobile devices, it is commonly ar-
gued that processing should be offloaded to nodes in the fixed network. In

1http://www.w3.org/TR/exi/

60

http://www.w3.org/TR/exi/

contrast to this, in constructing the data synchronizer we found that mov-
ing some functionality onto the mobile device brings advantages in terms
of deployability on the Internet. In particular, we advocate an approach
where merging of concurrent changes happen on the mobile device, rather
than the fixed node. However, this approach emphasizes the need for effi-
cient algorithms.

Decentralized systems for dissemination of data where each node is
roughly equal in terms of capabilities (so-called peer-to-peer systems) are
currently quite popular. The idea of addressing scalability, availability, and
fault tolerance issues by increasing the number of nodes in a distributed
system is indeed appealing. In contrast to this trend, our approach is a
more traditional client/server design. We find that this model allows us to
naturally interact with the existing Internet server infrastructure, and that
the client/server approach lends itself to a rather straightforward model
of causality based on simple integer revision numbers. Furthermore, as
pointed out in Chapter 5, with a client/server approach we can reduce net-
work usage. The obvious drawback of the approach is the reliance on cen-
tralized infrastructure.

Interoperability with the current Internet by using standard protocols is
generally considered beneficial (e.g., [107]), and HTTP has become some-
thing of a generalized transport layer, on top of which new protocols are
developed. However, it seems less common to consider how to choose
protocol operations so that these can be mapped to operations on existing
Web services, as we have done in this thesis.

While we have constructed an integrated approach for data synchro-
nization on mobile devices, we note that some of the results are likely to be
applicable outside this original context. The XML three-way merging algo-
rithm seems suited for use in document revision management systems, and
indeed it was presented at a document engineering venue. This is true for
the XML differencing approach as well, which has found uses, e.g., in the
W3C EXI working group for verifying candidate implementations. Finally,
the lazy XML structures could be used on fixed nodes as well to enable ap-
plications to store even larger sets of data as XML, rather than have to use
proprietary formats.

There are some further venues of research which we considered during
this thesis work, but which were not carried out far enough to obtain re-
sults suitable for publication. Reftree-based synchronization of XML docu-
ment subsets could be used when only some parts of an XML document
is needed on the mobile device. The synchronization model presented
here may potentially be extended to allow for peer-to-peer collaboration
in cases when the Internet infrastructure is unavailable. This could poten-
tially include epidemic dissemination of updates, while retaining a central-
ized node for committing updates.

61

CHAPTER 7. DISCUSSION AND CONCLUSIONS

Future work includes a more detailed study of the feasibility of build-
ing application-specific mergers on top of the generic XML merger pre-
sented here. The effect of matching accuracy in XML merging should also
be researched, in order to determine what the implications of an “incor-
rect” matching may be on the merge result. Specifically, access to a large
corpus of structured data that has undergone concurrent editing would en-
able validation and potential refinement of the three-way merger.

62

References

[1] H. Abelson and G. J. Sussman. Structure and Interpretation of Computer
Programs. MIT Press, 2nd edition, 1996.

[2] S. Agarwal, D. Starobinski, and A. Trachtenberg. On the scalability of
data synchronization protocols for PDAs and mobile devices. IEEE
Network, 16(4):22–28, 2002.

[3] P. S. Almeida, C. Baquero, and V. Fonte. Version stamps – decentral-
ized version vectors. In ICDCS ’02: Proceedings of the 22nd Interna-
tional Conference on Distributed Computing Systems (ICDCS’02), pages
544–544. IEEE Computer Society, July 2002.

[4] A. Anand, C. Manikopoulos, Q. Jones, and C. Borcea. A quantitative
analysis of power consumption for location-aware applications on
smart phones. In Proceedings of the 2007 IEEE International Symposium
on Industrial Electronics, pages 1986–1991, Vigo, Spain, June 2007.

[5] U. Asklund. Identifying conflicts during structural merge. In Pro-
ceedings of the Nordic Workshop on Programming Environment Research,
pages 231–242, Lund, Sweden, June 1994.

[6] S. Balasubramaniam and B. C. Pierce. What is a file synchronizer? In
Proceedings of the Fourth Annual ACM/IEEE International Conference on
Mobile Computing and Networking, pages 98–108, Oct. 1998.

[7] K. C. Barr and K. Asanovic. Energy-aware lossless data compression.
ACM Transactions on Computer Systems, 24(3):250–291, Aug. 2006.

[8] M. Bento and N. Preguica. Operational transformation based recon-
ciliation in the FEW file system. In IWCES8: Proceedings of the Eight In-
ternational Workshop on Collaborative Editing Systems, IEEE Distributed
Systems Online. Institute of Electrical and Electronic Engineers, Nov.
2006.

[9] T. Berners-Lee, R. T. Fielding, and L. Masinter. RFC 3986: Uniform
Resource Identifier (URI): Generic Syntax. Internet Engineering Task
Force, Jan. 2005.

63

REFERENCES

[10] Bluetooth SIG. Specification of the Bluetooth System, Core Package version
2.0, Nov. 2004.

[11] J. Border, M. Kojo, et al. RFC 3135: Performance Enhancing Proxies
Intended to Mitigate Link-Related Degradations. Internet Engineering
Task Force, June 2001.

[12] P. Buneman, M. Grohe, and C. Koch. Path queries on compressed
XML. In J. C. Freytag, P. C. Lockemann, et al., editors, 29th Inter-
national Conference on Very Large Data Bases, pages 141–152. Morgan
Kaufmann Publishers, Sept. 2003.

[13] J. Cai and D. J. Goodman. General packet radio service in GSM. IEEE
Communications Magazine, 35(10):122–131, Oct. 1997.

[14] B. Catania, B. C. Ooi, W. Wang, and X. Wang. Lazy XML updates:
Laziness as a virtue of update and structural join efficiency. In F. Öz-
can, editor, Proceedings of the 2005 ACM SIGMOD International Confer-
ence on Management of Data, pages 515–526, June 2005.

[15] S. S. Chawathe. Comparing hierarchical data in external memory. In
M. P. Atkinson, M. E. Orlowska, et al., editors, VLDB ’99: Proceed-
ings of the 25th International Conference on Very Large Data Bases, pages
90–101, San Francisco, CA, USA, Sept. 1999. Morgan Kaufmann Pub-
lishers Inc.

[16] S. S. Chawathe and H. Garcia-Molina. Meaningful change detection
in structured data. In J. Peckham, editor, Proceedings of the 1997 ACM
SIGMOD International Conference on Management of Data, pages 26–37.
ACM Press, May 1997.

[17] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom.
Change detection in hierarchically structured information. In H. V.
Jagadish and I. S. Mumick, editors, Proceedings of the 1996 ACM SIG-
MOD International Conference on Management of Data, pages 493–504,
June 1996.

[18] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in XML
documents. In 18th International Conference on Data Engineering, pages
41–52, Feb. 2002.

[19] B. Cohen. Incentives build robustness in BitTorrent. In 1st Workshop
on Economics of Peer-to-Peer Systems, Berkeley, CA, USA, June 2003.
Proceedings online.

[20] G. Colouris, J. Dollimore, and T. Kindberg. Distributed Systems: Con-
cepts and Design. Addison-Wesley, Boston, Massachusetts, USA, 2nd
edition, 1994.

64

REFERENCES

[21] L. P. Cox and B. D. Noble. Fast reconciliations in fluid replication. In
Proceedings of the 21st International Conference on Distributed Comput-
ing Systems (ICDCS’01), pages 449–458. IEEE Computer Society, Apr.
2001.

[22] A. Demers, D. Greene, et al. Epidemic algorithms for replicated
database maintenance. In Proceedings of the sixth annual ACM sym-
posium on Principles of distributed computing, pages 1–12. ACM Press,
1987.

[23] R. Dettmer. GSM: European cellular goes digital. IEE Review,
37(7):253–257, July 1991.

[24] R. Fernandes and M. Raghavachari. Inflatable XML processing.
In G. Alonso, editor, Proceedings of the 6th International ACM/I-
FIP/USENIX Middleware Conference, volume 3790 of Lecture Notes in
Computer Science, pages 144–163, Heidelberg, Germany, Nov. 2005.
Springer-Verlag.

[25] R. Fielding, J. Gettys, et al. RFC 2616: Hypertext Transfer Protocol —
HTTP/1.1. Internet Engineering Task Force, June 1999.

[26] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, Apr. 1985.

[27] M. J. Fischer and A. Michael. Sacrificing serializability to attain high
availability of data in an unreliable network. In Proceedings of the 1st
ACM SIGACT-SIGMOD symposium on Principles of database systems,
pages 70–75, Mar. 1982.

[28] R. L. Fontaine. Merging XML files: a new approach providing intelli-
gent merge of XML data sets. In Proceedings of XML Europe 2002, May
2002.

[29] J. N. Foster, M. B. Greenwald, et al. Combinators for bi-directional
tree transformations: a linguistic approach to the view update prob-
lem. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 233–246.
ACM Press, 2005.

[30] J. N. Foster, M. B. Greenwald, et al. Exploiting schemas in data syn-
chronization. Journal of Computer System Sciences, 73(4):669–689, 2007.

[31] B. Gates. 2008 International Consumer Electronics Show Keynote, Jan.
2008. Transcript available online.

65

REFERENCES

[32] D. Gavalas and D. Economou. The technology landscape of wire-
less web. International Journal of Mobile Communications, 5(5):508–527,
2007.

[33] Google Inc., Mountain View, California, USA. Android Operating Sys-
tem Source Code 1.0, 2008.

[34] J. Gray. A conversation with Tim Bray. ACM Queue, 3(1):20–25, Feb.
2005.

[35] R. Grimm, J. Davis, et al. System support for pervasive applications.
ACM Transactions on Computer Systems, 22(4):421–486, Nov. 2004.

[36] R. Guy, G. Popek, and T. Page, Jr. Consistency algorithms for op-
timistic replication. In International Conference on Network Protocols,
pages 250–261, San Francisco, CA, USA, 1993. Institute of Electrical
and Electronic Engineers.

[37] R. Guy, P. Reiher, et al. Rumor: Mobile data access through optimistic
peer-to-peer replication. In 17th International Conference on Conceptual
Modeling (ER98): Workshop on Mobile Data Access, pages 21–24, Nov.
1998.

[38] A. Helal, A. Khushraj, and J. Zhang. Incremental hoarding and rein-
tegration in mobile environments. In Proceedings of the 2002 Sympo-
sium on Applications and the Internet, pages 8–11, Feb. 2002.

[39] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Transactions on Programming Languages
and Systems, 12(3):463–492, July 1990.

[40] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global posi-
tioning system: theory and practice. Springer-Verlag, New York; Wien,
1992.

[41] HTC Corp., Taiwan, R. O. C. HTC Dream Specification, 2009.

[42] IBM Alphaworks. XML TreeDiff, 1998.

[43] IBM Alphaworks. XML Diff and Merge Tool, 1999.

[44] Institute of Electrical and Electronic Engineers, Piscataway, New Jer-
sey, USA. IEEE Std 802.11 — Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications, Mar. 1999.

[45] International Organization for Standardization, Geneva, Switzer-
land. ISO 8879:1986. Information Processing — Text and Office Systems
— Standard Generalized Markup Language (SGML), 1986.

66

REFERENCES

[46] International Organization for Standardization, Geneva, Switzer-
land. JPEG Standard ISO/IEC 10918-1/ITU-T Recommendation T.81,
1993.

[47] D. B. Johnson, C. E. Perkins, and J. Arkko. RFC 3775: Mobility Support
in IPv6. Internet Engineering Task Force, June 2004.

[48] B. B. Kang, R. Wilensky, and J. Kubiatowicz. The hash history ap-
proach for reconciling mutual inconsistency. In ICDCS ’03: Proceed-
ings of the 23rd International Conference on Distributed Computing Sys-
tems, pages 670–670. IEEE Computer Society, May 2003.

[49] J. Kangasharju. XML Messaging for Mobile Devices. PhD thesis, Uni-
versity of Helsinki, Department of Computer Science, Helsinki, Fin-
land, Jan. 2008.

[50] J. Kangasharju, T. Lindholm, et al. Collaborative XML editing on
small devices: An application of mobility middleware. In Pervasive
2007 Demo Session, May 2007.

[51] J. Kangasharju, T. Lindholm, and S. Tarkoma. XML security with
binary XML for mobile Web services. International Journal of Web Ser-
vices Research, 5(3):1–19, July 2008.

[52] J. Kangasharju, S. Tarkoma, and T. Lindholm. Xebu: A binary for-
mat with schema-based optimizations for XML data. In A. H. H.
Ngu, M. Kitsuregawa, et al., editors, The 6th International Conference
on Web Information Systems Engineering, volume 3806 of Lecture Notes
in Computer Science, pages 528–535, Heidelberg, Germany, Nov. 2005.
Springer-Verlag.

[53] O. Kassinen, T. Koskela, E. Harjula, and M. Ylianttila. Case study on
Symbian OS programming practices in a middleware project. Studies
in Computational Intelligence, 150:89–99, 2008.

[54] R. H. Katz. Adaptation and mobility in wireless information systems.
IEEE Personal Communications, 1(1):6–17, 1994.

[55] A.-M. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The Ice-
Cube approach to the reconciliation of divergent replicas. In PODC
’01: Proceedings of the twentieth annual ACM symposium on Principles of
distributed computing, pages 210–218. ACM Press, 2001.

[56] S. Keshav. Why cell phones will dominate the future Internet. Com-
puter Communication Review, 35(2):83–86, 2005.

[57] F. Lam, N. Lam, and R. Wong. Efficient synchronization for mobile
XML data. In 12th ACM Conference on Information and Knowledge Man-
agement, pages 153–160, Nov. 2004.

67

REFERENCES

[58] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[59] Y.-W. Lee, K.-S. Leung, and M. Satyanarayanan. Operation shipping
for mobile file systems. IEEE Transactions on Computers, 51(12):1410–
1422, Dec. 2002.

[60] T. Lindholm. A 3-way merging algorithm for synchronizing ordered
trees — the 3DM merging and differencing tool for XML. Master’s
thesis, Helsinki University of Technology, Department of Computer
Science and Engineering, Espoo, Finland, Sept. 2001.

[61] T. Lindholm. XML three-way merge as a reconciliation engine for
mobile data. In Third ACM International Workshop on Data Engineering
for Wireless and Mobile Access, pages 93–97, Sept. 2003.

[62] T. Lindholm, J. Kangasharju, and S. Tarkoma. Syxaw: Data synchro-
nization middleware for the mobile web. Mobile Networks and Appli-
cations, 14(5):661–676, 2009.

[63] T. Lindholm and T. Rüger. A fault-tolerant three-way merge for XML
and HTML. In M. H. Hamza, editor, Proceedings of the Ninth IASTED
International Conference on Internet and Multimedia Systems and Appli-
cations, pages 71–76. ACTA Press, Feb. 2005.

[64] Q. Lu and M. Satyanarayanan. Improving data consistency in mo-
bile computing using isolation-only transactions. In Fifth Workshop
on Hot Topics in Operating Systems (HotOS-V), pages 124–128. Institute
of Electrical and Electronic Engineers, 1995.

[65] S.-Y. Lu. A tree-to-tree distance and its application to cluster anal-
ysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
1(2):219–224, Apr. 1979.

[66] P. Lucas. Mobile devices and mobile data — issues of identity and
reference. Human-Computer Interaction, 16(2):323–336, 2001.

[67] J. MacDonald. File system support for delta compression. Master’s
thesis, UC Berkeley, May 2000.

[68] A. Marian, S. Abiteboul, G. Cobéna, and L. Mignet. Change-centric
management of versions in an XML warehouse. In P. M. G. Apers,
P. Atzeni, et al., editors, VLDB ’01: Proceedings of the 27th International
Conference on Very Large Data Bases, pages 581–590. Morgan Kauf-
mann Publishers Inc., Sept. 2001.

[69] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. XMIDDLE:
A data-sharing middleware for mobile computing. Personal and Wire-
less Communications, 21(1):77–103, Apr. 2002.

68

REFERENCES

[70] T. Mens. A state-of-the-art survey on software merging. IEEE Trans-
actions on Software Engineering, 28(5):449–462, 2002.

[71] R. Min, M. Bhardwaj, et al. Low-power wireless sensor networks.
In Fourteenth International Conference on VLSI Design, pages 205–210,
Swizerland, 2001. Inderscience.

[72] P. Mockapetris. RFC 1034: Domain Names — Concepts and Facilities.
Internet Engineering Task Force, Nov. 1987.

[73] P. Mockapetris. RFC 1035: Domain Names — Implementation and Spec-
ification. Internet Engineering Task Force, Nov. 1987.

[74] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. RFC 5201:
Host Identity Protocol. Internet Engineering Task Force, Apr. 2008. [Ex-
perimental].

[75] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME: a coordina-
tion model and middleware supporting mobility of hosts and agents.
ACM Transactions on Software Engineering and Methodology, 15(3):279–
328, 2006.

[76] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth net-
work file system. In SOSP ’01: Proceedings of the eighteenth ACM sym-
posium on Operating systems principles, pages 174–187, Banff, Alberta,
Canada, 2001.

[77] E. W. Myers. An O(ND) difference algorithm and its variations. Al-
gorithmica, 1(2):251–266, 1986.

[78] M. Nicola and J. John. XML parsing: a threat to database perfor-
mance. In 12th ACM Conference on Information and Knowledge Manage-
ment, pages 175–178, Nov. 2003.

[79] K. J. O’Brien. Panel rejects Microsoft’s open format. The New York
Times, September, 5, 2007.

[80] D. O’Mahony. UMTS: the fusion of fixed and mobile networking.
IEEE Internet Computing, 2(1):49–56, Jan. 1998.

[81] Organization for the Advancement of Structured Information Stan-
dards, Billerica, Massachusetts, USA. Open Document Format for Office
Applications (OpenDocument) v1.1, Feb. 2007. OASIS Standard.

[82] G. Oster, P. Urso, P. Molli, and A. Imine. Data consistency for P2P
collaborative editing. In CSCW ’06: Proceedings of the 2006 ACM con-
ference on Computer supported cooperative work, pages 259–268. ACM
Press, 2006.

69

REFERENCES

[83] J. A. Paradiso and T. Starner. Energy scavenging for mobile and wire-
less electronics. IEEE Pervasive Computing, 4(1):18–27, Jan. 2005.

[84] D. S. Parker, Jr., G. Popek, et al. Detection of mutual inconsistency
in distributed systems. IEEE Transactions on Software Engineering,
9(3):240–247, May 1983.

[85] P. Pavan, R. Bez, P. Olivo, and E. Zononi. Flash memory cells: An
overview. Proceedings of the IEEE, 85(8):1248–1271, 1997.

[86] C. E. Perkins. Ad hoc networking: an introduction. In C. E. Perkins,
editor, Ad Hoc Networking, pages 1–28. Addison-Wesley, Boston, Mas-
sachusetts, USA, 2001.

[87] K. Petersen, M. Spreitzer, et al. Flexible update propagation for
weakly consistent replication. In Proceedings of the sixteenth ACM
Symposium on Operating Systems Principles, pages 288–301, Sept. 1997.

[88] G. J. Popek, R. G. Guy, T. W. Page, Jr, and J. S. Heidemann. Replication
in Ficus distributed file systems. In Proceedings of the First Workshop
on the Management of Replicated Data, pages 20–25, Huston, TX, USA,
Nov. 1990. Institute of Electrical and Electronic Engineers.

[89] J. Postel and J. Reynolds. RFC 959: File Transfer Protocol (FTP). Internet
Engineering Task Force, Oct. 1985.

[90] K. Raatikainen, H. B. Christensen, and T. Nakajima. Application re-
quirements for middleware for mobile and pervasive systems. Mobile
Computing and Communications Review, 6(4):16–24, Oct. 2002.

[91] M. O. Rabin. Fingerprinting by random polynomials. Technical Re-
port TR-15-81, Department of Computer Science, Harvard Univer-
sity, 1981.

[92] N. Ramsey and E. Csirmaz. An algebraic approach to file synchro-
nization. In Proceedings of the 8th European software engineering con-
ference held jointly with 9th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 175–185, Vienna, Austria,
2001.

[93] D. Ratner, P. Reiher, G. Popek, and G. H. Kuenning. Replication
requirements in mobile environments. Mobile Networks and Applica-
tions, 6(6):525–533, 2001.

[94] D. Ratner, P. Reiher, and G. J. Popek. Roam: a scalable replication
system for mobility. Mobile Networks and Applications, 9(5):537–544,
2004.

70

REFERENCES

[95] P. Reiher, J. Heidemann, et al. Resolving file conflicts in the Ficus
file system. In 1994 USENIX Summer Conference, pages 183–195, June
1994.

[96] S. Rhea, C. Wells, et al. Maintenance-free global data storage. IEEE
Internet Computing, 5(5):40–49, Sept. 2001.

[97] B. Richard, D. Mac Nioclais, and D. Chalon. Clique: a transparent,
peer-to-peer collaborative file sharing system. In M.-S. Chen, P. K.
Chrysanthis, M. Sloman, and A. B. Zaslavsky, editors, 4th Interna-
tional Conference on Mobile Data Management, volume 2574 of Lecture
Notes in Computer Science, pages 21–24, Heidelberg, Germany, Jan.
2003. Springer-Verlag.

[98] O. Riva and J. Kangasharju. Challenges and lessons in developing
middleware on smart phones. IEEE Computer, Oct. 2008.

[99] D. Roundy. Darcs: distributed version management in Haskell. In
Proceedings of the 2005 ACM SIGPLAN workshop on Haskell, pages 1–4,
Tallinn, Estonia, Sept. 2005. ACM Press.

[100] S. Rönnau, C. Pauli, and U. M. Borghoff. Merging changes in XML
documents using reliable context fingerprints. In D. C. A. Bulterman,
L. F. G. Soares, and M. da Graça C. Pimentel, editors, ACM Symposium
on Document Engineering, pages 52–61, Sao Paulo, Brazil, Sept. 2008.

[101] S. Rönnau, J. Scheffczyk, and U. M. Borghoff. Towards XML version
control of office documents. In ACM Symposium on Document Engi-
neering, pages 10–19. ACM Press, Nov. 2005.

[102] Y. Saito and M. Shapiro. Optimistic replication. ACM Computing
Surveys, 37(1):42–81, 2005.

[103] I. Salmre. Writing mobile code: essential software engineering for building
mobile applications. Addison-Wesley, New York, LLC, Feb. 2005.

[104] M. Satyanarayanan. The influence of scale on distributed file system
design. IEEE Transactions on Software Engineering, 18(1):1–9, 1992.

[105] M. Satyanarayanan. Mobile information access. IEEE Personal Com-
munications, 3(1):26–33, Feb. 1996.

[106] M. Satyanarayanan. Pervasive computing: Vision and challenges.
IEEE Personal Communications, 8(4):10–17, Aug. 2001.

[107] M. Satyanarayanan. The evolution of Coda. ACM Transactions on
Computer Systems, 20(2):85–124, 2002.

71

REFERENCES

[108] M. Satyanarayanan and J. Kistler. Disconnected operation in the
Coda file system. ACM Transactions on Computer Systems, 10(1):3–25,
Feb. 1992.

[109] M. Satyanarayanan, M. Kozuch, C. Helfrich, and D. R. O’Hallaron.
Towards seamless mobility on pervasive hardware. Pervasive and Mo-
bile Computing, 1(2):157–189, 2005.

[110] M. Satyanaraynan et al. Coda: A highly available file system for a
distributed workstation environment. IEEE Transactions on Comput-
ers, 39(4):447–459, 1990.

[111] S. M. Selkow. The tree-to-tree editing problem. Information Processing
Letters, 6(6):184–186, Dec. 1977.

[112] P. Serrano-Alvarado, C. Roncancio, and M. Adiba. A survey of mo-
bile transactions. Distributed and Parallel Databases, 16(2):193–230,
2004.

[113] S. Shepler, B. Callaghan, et al. RFC 3530: Network File System (NFS)
version 4 Protocol. Internet Engineering Task Force, Apr. 2003.

[114] J. P. Sousa and D. Garlan. Aura: an architectural framework for user
mobility in ubiquitous computing environments. In J. Bosch, M. Gen-
tleman, C. Hofmeister, and J. Kuusela, editors, Software Architecture:
System Design, Development, and Maintenance (Proceedings of the 3rd
Working IEEE/IFIP Conference on Software Architecture), pages 29–43.
Kluwer Academic Publishers, Aug. 2002.

[115] C. Sun and C. Ellis. Operational transformation in real-time group
editors: issues, algorithms, and achievements. In CSCW ’98: Proceed-
ings of the 1998 ACM conference on Computer supported cooperative work,
pages 59–68. ACM Press, 1998.

[116] E. Swierk, E. Kiciman, et al. The Roma personal metadata service.
Mobile Networks and Applications, 7(5):407–418, 2002.

[117] SyncML Initiative. SyncML Sync Protocol, version 1.1, Feb. 2002.

[118] K.-C. Tai. The tree-to-tree correction problem. Journal of the ACM,
26(3):422–433, July 1979.

[119] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, Upper
Saddle River, New Jersey, USA, 2nd edition, 2001.

[120] S. Tarkoma. Fuego toolkit: a modular framework for content-based
routing. In R. Baldoni, editor, Proceedings of the Second International
Conference on Distributed Event-Based Systems, DEBS 2008, pages 325–
328, July 2008.

72

REFERENCES

[121] S. Tarkoma, J. Kangasharju, T. Lindholm, and K. Raatikainen. Fuego:
Experiences with mobile data communication and synchronization.
In 17th Annual IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), Sept. 2006.

[122] D. B. Terry, A. J. Demers, et al. Session guarantees for weakly-
consistent replicated data. In Proceedings of the 3rd International Con-
ference on Parallel and Distributed Information Systems, pages 140–149,
Sept. 1994.

[123] R. H. Thomas. A majority consensus approach to concurrency control
for multiple copy databases. ACM Transactions on Database Systems,
4(2):180–209, June 1979.

[124] M. Tian, T. Voigt, et al. Performance considerations for mobile web
services. Computer Communications, 27(11):1097–1105, July 2004.

[125] W. F. Tichy. The string-to-string correction problem with block
moves. ACM Transactions on Computer Systems, 2(4):309–321, 1984.

[126] J. Tolvanen, T. Suihko, J. Lipasti, and N. Asokan. Remote storage
for mobile devices. In First International Conference on Communication
System Software and Middleware COMSWARE, pages 1–9, Delhi, India,
2006. Institute of Electrical and Electronic Engineers.

[127] F. J. Torres-Rojas and M. Ahamad. Plausible clocks: constant size log-
ical clocks for distributed systems. Distributed Computing, 12(4):179–
195, 1999.

[128] A. Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD
thesis, Australian National University, Canberra, Australia, Feb.
1999.

[129] Unicode Consortium. The Unicode Standard, Version 4.0. Addison-
Wesley, Boston, Massachusetts, USA, Aug. 2003.

[130] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-Diff: an effective change detec-
tion algorithm for XML documents. In U. Dayal, K. Ramamritham,
and T. M. Vijayaraman, editors, 19th International Conference on Data
Engineering, pages 519–530. Institute of Electrical and Electronic En-
gineers, Mar. 2003.

[131] WAP Forum. Wireless Application Protocol: Architecture Specification,
2001.

[132] M. Weiser. Some computer science issues in ubiquitous computing.
Communications of the ACM, 36(7):75–84, July 1993.

73

REFERENCES

[133] World Wide Web Consortium, Cambridge, Massachusetts, USA.
HTML 4.01 Specification, Dec. 1999. W3C Recommendation.

[134] World Wide Web Consortium, Cambridge, Massachusetts, USA.
WAP Binary XML Content Format, June 1999. W3C Note.

[135] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML Path Language (XPath) 1.0, Nov. 1999. W3C Recommendation.

[136] World Wide Web Consortium, Cambridge, Massachusetts, USA. XSL
Transformations (XSLT) Version 1.0, Nov. 1999. W3C Recommenda-
tion.

[137] World Wide Web Consortium, Cambridge, Massachusetts, USA.
Canonical XML Version 1.0, Mar. 2001. W3C Recommendation.

[138] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XHTML 1.0 The Extensible HyperText Markup Language (Second Edi-
tion), Aug. 2002. W3C Recommendation.

[139] World Wide Web Consortium, Cambridge, Massachusetts, USA. Scal-
able Vector Graphics (SVG) 1.1 Specification, Jan. 2003. W3C Recom-
mendation.

[140] World Wide Web Consortium, Cambridge, Massachusetts, USA.
Namespaces in XML 1.1, Feb. 2004. W3C Recommendation.

[141] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML Information Set, 2nd edition, Feb. 2004. W3C Recommendation.

[142] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XML Schema Part 1: Structures, 2nd edition, Oct. 2004. W3C Rec-
ommendation.

[143] World Wide Web Consortium, Cambridge, Massachusetts, USA. Ex-
tensible Markup Language (XML) 1.0, 4th edition, Aug. 2006. W3C
Recommendation.

[144] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XQuery 1.0: An XML Query Language, Jan. 2007. W3C Recommen-
dation.

[145] World Wide Web Consortium, Cambridge, Massachusetts, USA.
XQuery 1.0 and XPath 2.0 Data Model (XDM), Jan. 2007. W3C Rec-
ommendation.

[146] J. Zhang, A. Helal, and J. Hammer. Ubidata: Ubiquitous mobile file
service. In Proceedings of the 2003 ACM symposium on Applied comput-
ing, pages 893–900, Melbourne, Florida, USA, 2003. ACM Press.

74

REFERENCES

[147] K. Zhang and D. Shasha. Fast algorithm for the unit cost editing dis-
tance between trees. Journal of Algorithms, 11(4):581–621, Dec. 1990.

75

REFERENCES

76

List of Figures

2.1 The “Dream” smartphone from HTC Corporation 7

3.1 Data Synchronization . 13
3.2 Data Synchronizer Components 14
3.3 Editing the state of an object 17
3.4 Concurrent editing of an object 17
3.5 Events is a distributed system 19
3.6 Star, two-tiered, and tree synchronization topologies 27

4.1 A simple XML document . 34
4.2 Example XML reconciliation task 37
4.3 Merge of revisions 1 and 2 in Figure 4.2 38

6.1 Editor for 1 GB XML file with Wikipedia content. 49
6.2 Synchronization links . 54
6.3 Overview of Syxaw and contributions of Articles I–IV 56

77

Index

access point, 9
ad-hoc network, 9
alignment, 47
asynchronous (message pattern), 26
attribute (XML), 34

base state, 29
base station, 9
batch (of edits), 27
branch, 17
bundle (of edits), 27
bursty network usage, 26

canonical (XML), 35
client/server, 41
commitment, 23
concurrent event, 18
conflict, 28
consistency, 17
consistency, eventual, 21
constraint (reconciliation), 28
content addressable storage, 21
context (of edit), 39
continuous network usage, 26
create/delete ambiguity, 30
current state, 17

data synchronization problem, 2
delete marker, 31
delete/edit conflict, 47
delta, 25
dependency, 28
derived state, 29
diff, 25
diff/patch merging, 29

differencing, 25
diffing, 25
disconnected operation, 9
distributed computing, 2
document tree, 35

edit, 2
edit distance, 36
edit-based, 23
element (XML), 34
end user, 16
entity (XML), 35
epidemic propagation, 26

fingerprint, 16
Fuego XML Stack, 48

gateway, 11

happens-before, 18
hash history, 20
history (of object), 17
hoarding, 42
hop, 9
hotspot (WLAN), 9

immediate synchronization, 23
infrastructure-based networking, 9
integration phase, 27
interoperability, 2

Lamport clock, 19
layered file system, 24
lazy data structure, 48
lens, 40
limited device, 10

78

INDEX

linearizability, 21
lost update, 20

master node, 23
master replica, 23
matching, 47
merge, 29
message (in network), 2
metadata, 17
metadata-only synchronization, 42
mobile computing, 7
mobile device, 10
move (tree edit), 37

name (of object), 16
name space (XML), 35
node (in network), 2
normalization (of RefTree), 50

object, 15
object provider, 55
one-way (message pattern), 26
optimistic synchronization, 22
ordered tree, 36

patch, 25
patching, 25
peer-to-peer, 41
periodic synchronization, 23
pervasive computing, 7
pessimistic synchronization, 22
placeholder node, 50
position/position conflict, 47
precondition (reconciliation), 28
primary replica, 22
protocol, 14

Random Access XML Store, 49
reconciliation, 17
reconciliation phase, 27
reconciliation topology, 25
reference node, 50
referenced tree, 50
RefTree, 49
replica, 16

root (of XML document), 34

schema (XML), 35
semantic level, 16
server, 41
smartphone, 7
snapshot synchronization, 23
star (toplogy), 26
state, 15
state-based, 23
stream synchronization, 23
structural level, 16
structure (of object), 16
subtree, 35
synchronization link, 55
synchronization protocol, 26
synchronization topology, 25
synchronizer, 2
synchronous (message pattern), 26
syntactic level, 16

tag (XML), 34
tentative update, 24
textual level, 16
three-way merging, 29
tombstone, 31
traditional synchronization, 22
tree (toplogy), 27
tree-to-tree correction problem, 36
tree-with-references, 49
tuple, 44
tuple space, 44
two-step reconciliation, 28
two-tiered (sync. topology), 26
two-tiered network topology, 9
two-way merging, 29

ubiquitous computing, 7
unordered tree, 36
update detection, 24
update/update conflict, 47
user object, 16

valid (XML), 35
vector clock, 20

79

INDEX

version vector, 20
vertical handover, 9
view update problem, 34

weak device, 10
weakly connected, 9
well-formed (XML), 35

XAS, 49
XML-aware, 2
XML-with-references, 49

80

ISBN 978-952-248-212-9
ISBN 978-952-248-213-6 (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)

	Acknowledgments
	Original Publications
	Introduction
	Research Question, Scope, and Objectives
	Structure of the Thesis
	Summary of Contribution
	Research Methodology and History

	The Mobile Computing Environment
	Designing Software for the Mobile Environment

	Data Synchronization
	Data Objects and Synchronization
	Causality and Consistency
	Causality
	Consistency

	Optimistic Data Synchronization
	Update Detection and Propagation
	Update Propagation and the Synchronization Protocol

	Reconciliation
	The Two-step Reconciliation Process
	Object Life Cycle Edits
	Some Observations on File System Reconciliation

	Synchronizing XML
	The Extensible Markup Language (XML)
	Differencing
	Merging

	Data Synchronization in the Mobile Environment
	Synchronization in Mobility Middleware

	Contributions
	State-based XML Reconciliation
	Lazy Trees for Data Access and Synchronization
	Efficient XML Differencing
	XML-aware Synchronization for Mobile Devices

	Discussion and Conclusions
	References
	List of Figures
	Index

