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Monitoring and control of a flotation circuit is mainly based on the information gained by assaying the
process slurry lines. In flotation plants, usually an X-ray fluorescence analyzer is used to obtain the on-
line assays. This article introduces the visual and near-infrared reflectance spectroscopic analysis of the
process slurries as a supplementary method which complements the on-line assay information available
from an X-ray fluorescence analyzer. It is shown that the spectral information can be used to accurately
predict the element contents in the slurry in between successive XRF analyses. Since the spectral
measurements can be taken with high frequency as opposed to the sparse X-ray fluorescence analysis, a
practically continuous on-line estimate of the slurry contents is reached. These estimates can be used in the
plant control to improve the overall performance of the circuits and to yield also economical savings.
Additionally, the frequent monitoring of the grades can provide means to eliminate rapid disturbances in the
circuits, thus improving the stability of the process.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Mineral flotation is the most typical method for ore enrichment in
the mining industry. The performance of flotation processes is
monitored by measuring the element contents in the feed, concen-
trate and tailing slurry flows of the flotation cells. These measure-
ments are also utilized in plant control. Additionally, the visual
properties of the flotation froths in the cells are oftenmonitored either
directly by the operators or by using some automatic machine vision
system. Especially color is generally agreed to roughly indicate the
mineral content of the froth.

X-ray fluorescence (XRF) is commonly used for on-line measuring
of elemental composition in industrial mineral flotation processes. In
an XRF analyzer the slurry sample is radiated using X-rays, and the
intensity of the fluorescence radiation of various elements in the
sample is measured. Based on the fluorescence intensities at specific
wavelengths the assay can be calculated. The XRF method provides
accurate measures of the element contents but requires a quite
extensive measurement equipment. Typically at flotation plants, one
centralized analyzer is used to measure several slurry flow lines in
turn. Assuming that there are over fifteen lines to be measured, the
sampling interval of a single line increases to over 10 min. Usually this
kind of cycle time is short enough to keep track of any disturbances
due to the changes in the ore since the residence time in the flotation
cells acts as a low pass filter. However, in a complex flotation circuit
there may be other disturbance sources that are significantly faster. To
compensate for this kind of changes with feedback control, a more

frequent concentration analysis is required. Otherwise the circuit may
not be operated optimally.

Optical color measurements have been studied in the context of
mineral composition analysis as a simple supplement or alternative
for the XRF analyzers. Many studies have also concentrated on the
visual analysis and classification of the flotation froths by machine
vision, and color has often been one of the measured features
(Bartolacci et al., 1998; Bonifazi et al., 2002; Hargrave and Hall, 1997;
Kaartinen et al., 2006; Liu et al., 2005). Surprisingly, the color of
flotation slurries has not been so intensively investigated. Oestreich
et al. (1995) measured the color of artificial dry mineral mixtures,
slurries of mineral mixtures and flotation froths using a video camera
and correlated them with the mineral contents of the samples. It was
detected that strong correlations exist between the color and the
mineral contents. However, no experiments with real process samples
were conducted.

Partly because of the interest in froth texture and also partly
because of the lack of suitable optical spectral analyzers, the
previously mentioned studies have mainly been using regular RGB
cameras that provide only rough information on color. Recently,
optical spectrometers capable of more accurate color measurements
have been developed and utilized to mineral mixture analysis.
Haavisto et al. (2006) measured the spectra of flotation froths in a
real process environment and compared the results to color informa-
tion gained from an RGB camera. The study concluded that the more
accurate froth color information leads to better estimates of the froth
element grades. Also slurry samples were analyzed and the results
suggested that there exist correlations between the slurry spectra and
the element contents. Additionally, a mineral analyzer produced by
Blue Cube Systems based on the spectral analysis has been used in
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heavy mineral sands separation plants for the analysis of dry mineral
mixtures (De Waal and Du Plessis, 2005).

In general, the concept of measuring the optical spectrum of light
reflected from a sample is referred as optical reflectance spectroscopy
(Clark, 1999). The specific form of the reflected light spectrum, i.e. the
color of the material is a result of the absorption properties of the
molecular structure of that specific material.

This study concentrates on the visible and near-infrared (VNIR)
reflectance spectroscopic analysis of slurry in mineral flotation. Earlier
operator interviews (Hätönen, 1999) have indicated that especially in
zinc flotation the visual inspection of froth color can be used to
roughly estimate the zinc grades. Thus, the zinc circuit was selected as
the starting point for the analysis. First, some laboratory tests are
introduced showing the effect of changing slurry element contents in
the different zinc slurry spectra. Then, a prototype of an on-line
measurement device is presented that is used to measure the
spectrum of the flowing slurry in a real flotation plant environment.
Statistical multivariate methods are applied to the measured data to
create a model between the spectral measurements and the element
contents of the slurries provided by the XRF analyzer. It is shown that
the spectra obtained by the simple and fast spectral measurement
system actually contain very specific information on the composition
of the slurry. Thus the sparse assays provided by the XRF analyzer can
be complemented with the frequent estimates calculated using the
spectra to obtain a comprehensive prediction of the current contents
of the slurry line. The frequent content estimates provide useful
monitoring information on fast changes of the circuits.

2. Methods

2.1. Application environment

The on-line measurements for this study were conducted at the
concentrator plant of Inmet Mining Corporation's Pyhäsalmi
copper, zinc and pyrite mine, located in Pyhäjärvi town, central
Finland. The concentration process of the mine starts with screen-
ing and grinding of the hoisted ore. After grinding, the process
comprises three concatenated flotation circuits, one for each main
mineral. The main slurry lines and some intermediate products in
the circuits are measured each in turn by a single XRF analyzer
(Outotec Courier® 6 SL), resulting to a sampling interval of about
18 min for altogether 24 sample lines. These measurements are
used by the operators and the automatic control system of the

plant to monitor the process and to regulate the amount of added
flotation reagents, flotation cell aeration rates and pulp levels.

The XRF analyzer at Pyhäsalmi concentrator is a centralized one,
meaning that a separate primary sampling line is sampled and
transported from each measured slurry line to the analyzer for the
assaying. From the final zinc concentrate, the iron, copper and zinc
contents are measured. Additionally, the sulphur content is estimated
as a linear combination of the iron and zinc contents based on the
knowledge of the compositions of the main minerals present in the
ore.

2.2. Spectral measurement equipment

Spectral measurements were carried out using an imaging
spectrograph (Specim ImSpector V10) mounted to a monochrome
CCD camera (Basler A102f). The spectral images are formed by passing
light from imaging optics to the spectrograph through an entrance slit.
The obtained line is transformed into a 2D image by passing the light
through a prism-grating-prism (PGP) component. The spectrograph
used in this study operates in VNIR with wavelength range of 400–
1000 nm and is equipped with an order blocking filter (OBF), which is
used to filter out unwanted higher order spectra.

Main criteria for the camera selection was a good enough spectral
response and spatial resolution as well as an affordable price. The
spectral response shown in Fig. 1 is good enough for the purposes of
this study, although the higher wavelengths suffer from diminished
sensitivity. The spatial resolution of the camera is 1280×960 pixels,
which is more than enough in vertical direction since the spectral
resolution of the spectrograph is 9 nm. The horizontal dimension is
related to position along the line and is not important in this case
because only one spectrum is currently used for the analysis. Thus, the
spectra along the whole line are averaged to form the final spectral
measurement.

An imaging spectrograph was used because in the future it can be
easily extended to measure many slurry samples by replacing the
regular optics with optical fibers. This way the same measurement
equipment will be applicable to the case where several slurry lines are
measured simultaneously.

2.3. Laboratory tests

At the beginning there was a need to get assurance of the power of
the proposed method before on-line factory scale analysis. Thus, the

Fig. 1. Relative spectral response of the CCD camera with respect to the wavelength (Figure courtesy of Basler Vision Technologies).
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very first tests were conducted in laboratory with test samples
collected from the plant. The samples were approximately 5 l in
volume and they were circulated continuously in a system consisting
of a small tank, an adjustable pump and a jet flow cell similar to one
used in commercial Courier® XRF analyzers (see Fig. 2). The jet flow
cell is designed to cause appropriate turbulence to the incoming flow
which results to a representative sample over the window area.
Spectral analysis was conducted by illuminating the flow cell window
with a lamp and measuring the light reflected from the sample with
the spectrophotometer. After testing different measurement setups
(illumination, imaging conditions and flow cell windows) it was
concluded that only the obvious factors had a significant impact on the
spectrum: the spectrum of the illuminating lamp should be wide
enough and the illumination geometry should be selected in a way
that total reflection from the window is minimized. In the selected
setup illumination is done with a single halogen lamp (12 V, 50 W,
4700 K) and a clear 50 μm mylar film is used as a flow cell window.

The analysis was done by preparing a batch of a sample for
circulation, measuring the spectra andwashing the system thoroughly
with water before the next sample. All the samples described here
were also analyzedwith different solids content (SC) values in order to
find out if that would have a significant influence on the spectra. The
solids content was altered by starting the analysis with the highest SC
values and diluting the continuously flowing sample with water. The
results obtained from the laboratory tests are presented in Section 3.1.

2.4. On-line spectral measurement setup

Since the first pilot test was a success a prototype capable of
performing on-line measurements was built. It is connected to a
primary sampling line of the on-line XRF analyzer as shown in Fig. 3.
The spectral analysis equipment and positioning is similar to the one
described above. The only modificationwas that the thin filmwindow
that must be used in the XRF analyzer to pass X-ray radiation through

could be replaced with a durable sapphire window. This made the on-
line setup practically maintenance free once the slurry flow was
running through the flow cell.

The camera is connected to a desktop PC that has a local area
connection to the ethernet network and automation system of the
plant. All the equipment are placed in a protective housing (Fig. 4) that
is kept in a slight overpressure in order to keep the instruments clean.
The incoming air is filtered and additional dried instrument air flow is
directed to the jet flow cell window to prevent condensing.

Furthermore, there are remote operating capabilities via the
Internet as well as an additional web camera monitoring the jet
flow cell window. This makes it possible to check the status of the
system and make algorithm updates remotely. To reduce the risk of
damages in case of a leakage, the flow cell is placed outside of the
protective housing and only the window is visible from inside.

2.5. On-line data preprocessing

On-line optical spectral data were gathered from the zinc
concentrate line for an eight day period using a sampling interval of
10 s. During this time the process was normally operated and typical
grade changes occurred. For improved data collection, the XRF
analyzer was configured to measure the zinc concentrate assay with
double the frequency, so that the sampling interval of the line was
approximately 9 min. The doubled XRF sampling frequency allowed
every other sample to be reserved for validation purposes, as
explained in Section 3. As a result, a set containing 66420 spectra
and 1100 grade measurements was obtained.

Fig. 3. Sampling point and a schematic diagram of the on-line analyzer.

Fig. 2. Pilot test equipment.
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The original dimension of one spectral measurement obtained
from the spectrophotometer equalled the vertical resolution of the
camera (960 pixels). However, since the spectral resolution of the
spectrophotometer was as large as 9 nm, the intensity vector
dimension was reduced to 20 by averaging each 48 neighboring
intensity values. This operation did not affect the modeling perfor-
mance but it reduced the required computational load.

The secondary sampling unit in the XRF analyzer collects the actual
slurry sample from the continuous primary sample flow during a 30 s
long period. Thus it can be assumed that the assays represent the
average of the element contents in the primary sample flow during
this period. To mimic the averaging in the spectrum measurements,
for each spectrum the average of the current and two previous spectra
was calculated, and the originalmeasurementswere replaced by these
values in the further analysis. To form the necessary XRF and spectrum
sample pairs for model calculation, a constant delay between the
spectral and XRF measurement was assumed, so that for each sparse
XRF sample a corresponding spectrum could be picked from the
spectrum data set.

The color intensities seen on the flow cell window of the spectral
measurement system are due to the reflections from separate mineral
particles in the slurry. It is obvious that the dependence of the
measured light intensity of the elemental concentrations in the solids
is nonlinear in nature; light is reflected only by the mineral surfaces
that are visible to the light source and the spectrograph immediately
at the surface behind the window. With the laboratory results it
turned out that most of the nonlinearity was compensated by a
straightforward exponential transformation. Themeasured intensities
were raised to the power of 3/2. This kind of linearization step was
used throughout the analysis.

The predictor and response data were scaled by dividing each
variable with its standard deviation. Instead of removing the mean
values, an additional constant predictor variable was added to each

spectrum vector. This was convenient later in the recursive estimation
case since the estimation and removal of the mean values was thus
coded inside the model.

2.6. Partial least squares regression

The standard multivariate regression (MLR) based on the least
squares fitting is not suitable for data sets where the predictor
variables have strong correlations with each other (Hyötyniemi,
2001), like in this case of the smooth spectrum values. The situation
can be remedied by mapping the predictors (collected in vector x(k))
first into a lower dimensional latent variable space, from which the
final mapping to the response space is performed. This principle is
used e.g. in principal component regression (PCR) and partial least
squares regression (PLS). In this study, the PLS approach was selected
because it considers both predictor and response data when
determining the optimal latent space used in the mapping. Since the
required mappings are linear, the final PLS model can be described as
one matrix B which connects the predictors to the responses:

y kð Þ ¼ Bx kð Þ þ f kð Þ; ð1Þ
where x(k) refers to the predictor column vector (spectrum) and y(k)
to the response column vector (element and solids contents) of the k:
th data sample. The column vector f(k) contains the modeling error.
For more information on the PLS regression, the reader is referred to
Wold et al. (2001).

Typical industrial processes are non-stationary or time-varying.
Thus a static PLS model calculated from a fixed data set is not valid for
longer term usage. To overcome this restriction, a recursive PLS (rPLS)
algorithm was introduced by Helland et al. (1991) and improved by
Qin (1993), Dayal and MacGregor (1997), and Qin (1998). The idea of
rPLS is to recursively update the original PLS model using new data
points. Usually also some forgetting scheme is included, so that the
newer data points are affecting more in the current mapping whereas
the older ones are gradually forgotten.

For this study, the fast kernel-based rPLS algorithm presented by
Dayal and MacGregor (1997) was applied to the measured data. The
recursive part of the algorithm is realized by updating the (unscaled)
predictor covariance matrix, Rxx, and the (unscaled) crosscovariance
matrix of the predictors and responses, Rxy, as follows:

Rxx kð Þ ¼ λRxx k−1ð Þ þ x kð ÞxT kð Þ; ð2Þ

Rxy kð Þ ¼ λRxy k−1ð Þ þ x kð ÞyT kð Þ; ð3Þ

where (∙)T denotes the transpose. This corresponds to exponential
weighting of the samples with the forgetting factor λ. To describe the
effect of forgetting, the memory time constant T0(λ) of the decreasing
of the weights can be calculated (Ljung, 1999):

T0 λð Þ ¼ 1
1−λ

; ð4Þ

meaning that it is assumed that the system remains constant for
approximately T0(λ) samples.

3. Results

The results of this study can be divided into three main categories.
At first, the results from the laboratory tests are presented and
analyzed. Then, the on-line data containing the spectra and the XRF
values are modeled using an ordinary, non-recursive PLS model.
The quality of the model is judged by the root mean square of
the estimation error for the validation data set. Using this non-
recursive PLS model, the time delay between the spectral and XRF
measurements is estimated to synchronize the measurements as well

Fig. 4. Prototype of the on-line analyzer.
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as possible. After that, the optimal number of latent variables for the
PLS mapping is determined.

The third part of the results deals with the recursive PLS modeling
as a method for continuous on-line grade value estimation. The
recursive approach has to be utilized because it turns out that the
system is not stationary.

3.1. Laboratory tests

The samples for the preliminary laboratory tests were collected
from the froth lip of the zinc rougher, scavenger and cleaner flotation
cells of the Pyhäsalmi concentrator during a normal operation of the
plant. They were split into two parts, one for the plant laboratory and
the other for spectral analysis conducted in the Outotec's test
laboratory. The results of the laboratory analysis are shown in
Table 1. As can be seen, there are large variations in the element
contents, especially for zinc and iron, which were expected to be seen
in the spectra.

Fig. 5 shows the results for the analysis of the zinc circuit
samples. There are eleven spectra in total that are drawn with three
different line types depending on the origin of the sample. The used
solids content values for each sample are shown in the legend texts.
As can be seen, the changes in the mineral content are dominating
the shape of the spectrum, whereas the variation in the solids
content has a minor effect (emphasized on the small sub-figure).
This explains why the reflectance spectroscopy is not so reliable in
predicting the solids contents as they are with the elements — as
described later in Section 3.3.

3.2. Delay and model order

After the promising laboratory results, the study was continued
with the on-line data collected from the final zinc concentrate. The

complete data set was divided into three parts: Every other sample of
the first half of the data was used for estimation, and the samples in
between formed the validation data. The second half of the data was
entirely reserved for testing, and is referred in the following as the test
data set.

Based on the measurement setup, the time delay between the time
stamps given by the XRF analyzer and the spectral measurement
system for the same slurry sample could not be determined. The delay
had to be estimated from the data. Non-recursive PLS models were
calculated using the estimation data set and the corresponding
spectral measurements with different constant delays between the
spectra and the XRF measurements. Fig. 6 shows the averaged root
mean squared error (RMSE) between the measured and estimated
grades of all the element species and the solids content for the
validation data, when the time delay used in the modeling was varied
around the optimal value. Clearly it is very important to synchronize
themeasurements correctly, since already a deviation of 20 s increases
the estimation error considerably. This also suggests that the content
values are varying quite rapidly and that measurements with a high

Fig. 6. Temporal synchronization of the spectral and XRFmeasurements affects strongly
the root mean square error for the validation data.

Fig. 5. Spectral responses for different flotation cells and solids contents (SC). The peak area is emphasized in the top right hand corner.

Table 1
Laboratory analysis for the collected zinc circuit samples

Zn% Cu% S% Fe% Pb%

Rougher 45.39 0.29 31.3 12.0 0.20
Scavenger 12.43 0.71 29.7 26.0 0.22
Cleaner 56.44 0.32 32.5 8.5 0.22
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sampling frequency are required to follow these changes. The model
of order nine was used in the delay estimation to ensure that all the
important properties of the data were captured by the model.

In addition to the optimal time delay, also the optimal number of
latent variables (i.e. the PLS model order, see Section 2.6) was
determined using the non-recursive PLSmodel. Fig. 7 shows the RMSE
of the validation data for different model orders with the optimal
delay. The best possible modeling performance is almost reached
already with seven latent variables. However, by using eight variables
slightly better results are obtained. Thus, in the following analysis the
model order eight was utilized.

3.3. Model analysis

Once the model structure was determined, the modeling perfor-
mance was analyzed by comparing the measured and estimated
content values for the validation data. Fig. 8 shows a typical sample of
these results. Only the validation samples are shown, and the
estimation samples between them are omitted. Clearly the overall
performance of the model is very good; the actual modeling errors for
the whole validation data set are shown in the first column of Table 2.
Based on these results it is already possible to conclude that the
spectral measurements provide a promising supplement for assaying
mineral slurries. Also the solids content can be predicted from the
spectra, even though with quite poor accuracy.

In order to determine the importance of different wavelengths for
the estimation, the model coefficients in matrix B can be analyzed
(Fig. 9). Evidently the whole spectral range is used by the model and
can thus be assumed to carry information on the response variables.
However it seems that the importance of different wavelengths is
varying quite heavily. The coefficients related to iron and zinc have a
strong resemblance, only with an opposite sign. This is natural
because the relative content values are used; if the zinc grade
increases there is more sphalerite in the slurry, which decreases the
iron grade since less pyrite and chalcopyrite is present. Also the

Fig. 9. Constant PLS model coefficients with respect to wavelength.

Table 2
Root mean square errors (RMSE) in percentage points for the non-recursive PLS model
(validation and test data sets) and for the recursive PLS (rPLS) model compared with the
data mean and standard deviation

PLS RMSE (validation) PLS RMSE (test) rPLS RMSE Data mean Data std

Fe 0.41 1.00 0.33 9.91 1.27
Cu 0.24 1.02 0.16 0.87 0.78
Zn 0.68 1.64 0.56 52.39 2.17
S 0.18 0.45 0.14 34.16 0.52
SC 1.52 4.10 1.39 36.43 2.42

Fig. 8.Measured and estimated contents for a typical sample of the validation data. The
time period of the shown data series is about 15 h.

Fig. 7.Modeling error of validation datawith respect to the number of latent variables in
the PLS model.
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copper and zinc coefficients are close to each other, the main
differences being on the wavelength range 400–500 nm. On the
both extremes (near 400 and 1000 nm) the absolute values of the
spectrum are small (see Fig. 5). This may cause numerical problems
which further affect the corresponding model coefficient values, thus
explaining the sharp changes of the coefficients near these
wavelengths.

As mentioned in Section 3.2, the non-recursive PLS model was
calculated and validated using the first half of the whole data set. This
data covered a period of 3 days and 10 h. The same model was then
applied to the test data set (second half of the whole data) to test the
model generalization ability. The results (Fig. 10, second column of
Table 2) clearly show that the constant model quite quickly loses the
ability to predict the grades when applied to new data. About five or
six of the first test samples are estimated well, but after that the
prediction gradually becomes biased. Consequently, as the sampling
interval in Fig. 10 is about 9 min, the model remains valid for about an
hour.

The gradual changes in the relation between the color and the
grades are due to the changing properties of measured slurry that are
not related to the elemental composition. Evidently some of the
variation is due to varying mineralogy in the mine. Also the upstream
processes can cause changes. At least the following properties
typically vary:

(1) exact chemical compositions of the minerals
(2) particle size distribution
(3) grain size distribution
(4) amount of locked particles

The XRF analysis is based on atomic phenomena and measures the
element composition of the slurry sample and is not so sensitive to
these factors. The optical reflectance spectrum, on the other hand, is
determined by the light absorption properties of the mineral particles
in the sample. Since the minerals consist of varying non-stoichio-

metric compounds (for example, in Pyhäsalmi sphalerite (ZnS)
typically contains also 7–8% of iron) it is possible that two samples
with very similar element compositions have different spectra. Also
the particle and grain size distributions have their effect on the colour
of the reflected light: if the grains or particles are small, an average
photon has to scatter many times before it is (possibly) reflected back
to the spectrometer. This increases the probability of absorption and
amplifies the influence of darkminerals on the spectrum (Clark,1999).

However, as shown by the previous results, the changes in the
incoming ore appeared to be relatively smooth so that it was possible
to calculate a model that momentarily connects the spectral
information and the element contents of the slurry. To further exploit
this observation, a recursive modeling approach was applied to the
data.

3.4. Recursive PLS model

In the recursive approach the PLS model is updated on-line after
each new XRF analysis and spectrum sample pair is obtained. This way
the model should always describe the current relation between the
spectrum and the corresponding contents of the slurry, assuming that
the changes in the system are smooth enough. The recursive PLS
algorithm (see Section 2.6) was applied to the same data set as
previously using eight latent variables and a forgetting factor value
λ=0.96, which according to Eq. (4) corresponds to a memory time
constant T0(0.96)=25 samples. One hundred matching XRF and
spectrum sample pairs from the beginning of the data set were used
purely for estimation to initialize the recursive PLS model. After that,
again only every second sample pair was used to update the recursive
model, whereas the other sample pairs were reserved for validation.
Because of the doubled XRF sampling frequency, this enabled the
measuring of the prediction performance of the recursive model
between two ordinary XRF measurements. However, as opposed to
the validation of the non-recursive PLS model, this time the model
was calculated on-line using only the previously obtained XRF and
spectrum sample pairs.

As shown in Table 2, the recursive PLS model provides the best
alternative for estimating the assays from the spectra. Predictions for
the validation samples are even better than the ones given in the
validation of the non-recursive PLS model. These results indicate that
it is possible to accurately estimate the slurry contents on-line from
the spectral data by constantly updating the PLS model with the latest
available XRF measurement.

Since it is easily possible to reach as short sampling interval as 10 s
for the spectrum and a valid PLS model is always provided by the
recursive algorithm, a practically continuous assay of the slurry line is
obtained as demonstrated in Fig. 11. The data shown in the figure
represents a situation where the zinc content of the final zinc
concentrate starts to fall, whereas the copper content increases
indicating a disturbance in the flotation process. Clearly the predicted
content values agree well with both the estimation and validation XRF
samples, as already shown.

One important observation directly seen from Fig. 11 is that there
are rapid oscillations present in each content value. This explains the
importance of the temporal synchronization of the XRF and spectral
measurements. However, it also reveals that the original XRF
measurements which use a 30 s long slurry sample provide only a
very instantaneous assay of the slurry. For the plant monitoring and
control, more important would be to know the general behaviour of
the element content variations. Now, because of the high sampling
frequency of the spectrum it is easy to calculate a low-pass filtered
estimate representing the averaged contents of the slurry at the
current time. This was done by exponentially filtering the original
estimate. Naturally, since the filtered estimate is an average overmany
measurements, it provides a much more reliable assay than the
instantaneous and sparse values provided by the XRF analyzer alone

Fig.10. Estimation results of the constant PLSmodel for the first 7.5 h of the test data set.
The model was calibrated with the estimation data collected immediately before the
shown test data. The sampling interval of the data is about 9 min.
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(Fig. 11). As a consequence, the more accurate and frequent assays
should also improve the performance of the circuit if utilized in
control instead of the traditional XRF measurements.

Additionally, the frequent assaying of slurry lines provides new
information on the dynamic behaviour of the flotation circuit. For
example, the fast oscillations of the content values shown in Fig. 11
cannot be seen from the sparse XRF measurements alone. It is evident
that these oscillations are caused somewhere earlier in the zinc circuit,
and it seems that the alternating overflow of the roughing and
middlings roughing cell banks is the primary reason for them together
with the slow single input PID control loops for the cell levels. From
the plant control point of view, detecting and eliminating this kind of
oscillations would improve the overall performance of the circuit by
stabilizing the flotation conditions in the cells.

In Pyhäsalmi mine, the spectral measurements of the zinc
concentrate are currently provided for the process operators for
monitoring purposes. However, in the future the improved assays will
be utilized also in the plant control.

4. Conclusion

A relatively straightforward method for on-line measuring the
VNIR spectrum of mineral flotation slurry was presented in this study.
It was shown that the spectral information can be used to predict the
temporary element and solids contents of the slurry in a zinc flotation
circuit within a limited period of time. Because of the high sampling
frequency of the spectrophotometer, a practically continuous estimate

for the contents of the final zinc concentrate slurry line was obtained.
This estimate reveals the high-frequency oscillations that the XRF
analyzer is unable to detect, thus providing means to improve the
process performance by eliminating these disturbances. Furthermore,
the low-pass filtered estimate serves as a reliable assay of the major
content variations in the slurry.

The results showed that the relationship between the slurry
spectrum and the element contents of the zinc concentrate in
Pyhäsalmi mine does not remain constant for longer periods of
time because of the changes in the slurry properties. That is why
regular reference measurements from the XRF analyzer were
required to update the recursive PLS model which maps the
spectrum to the assay. However, it seems that the necessary
changes in the model are relatively smooth, so that the newest
model is valid longer than the typical sampling interval of the XRF
analyzer. A reference is required within 1 h to keep the assay from
drifting from the XRF analyses.

In a more general level, this study confirms that the VNIR range
spectrum of the flotation slurry definitely is a beneficial indicator of
the element contents at least in the case of zinc flotation. When
applied together with the XRF analyzer, the spectral measurements
can notably improve the assaying of flotation slurries.
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Fig. 11. Original sparse XRF measurements can be completed with the frequent estimates calculated from the spectra. The normal sampling interval of the XRF analyzer is about
18 min. However, during this experiment, doubled sampling frequency was used to collect also the validation samples. The sampling interval of the spectrum and the estimate was
10 s, and 90% exponential filtering was used to calculate the filtered estimate.
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