
Olli Haavisto and Heikki Hyötyniemi. 2009. Recursive multimodel partial least squares
estimation  of  mineral  flotation  slurry  contents  using  optical  reflectance  spectra.
Analytica Chimica Acta, volume 642, numbers 12, pages 102109.

© 2008 Elsevier Science

Reprinted with permission from Elsevier.



Analytica Chimica Acta 642 (2009) 102–109

Contents lists available at ScienceDirect

Analytica Chimica Acta

journa l homepage: www.e lsev ier .com/ locate /aca

Recursive multimodel partial least squares estimation of mineral
flotation slurry contents using optical reflectance spectra

Olli Haavisto ∗, Heikki Hyötyniemi
Department of Automation and Systems Technology, Helsinki University of Technology (TKK), P.O. Box 5500, FI-02015 TKK, Finland

a r t i c l e i n f o

Article history:
Received 9 July 2008
Received in revised form 9 October 2008
Accepted 6 November 2008
Available online 18 November 2008

Keywords:
Mineral flotation
Reflectance spectroscopy
Recursive partial least squares
Orthogonal signal correction
Local modeling

a b s t r a c t

In mineral flotation the X-ray fluorescence (XRF) grade measurements of the slurries typically give the
most important on-line information on the state of the flotation process. It has been shown that the
visual and near-infrared (VNIR) reflectance spectrum measurements of certain mineral slurries can be
used to complete the sparse XRF slurry content information. This study focuses on the chemometrical
analysis of the VNIR spectrum of the slurries and presents a new partial least squares (PLS)-based recursive
multimodel approach with local orthogonal signal correction (OSC) for predicting the slurry contents.
The advantage of the presented approach is that it can recursively adapt to real process data variations in
normal operating conditions, and is still able to remember the rare process failure situations with notably
different content values.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Froth flotation is one of the most important concentration meth-
ods in mineral processing (see, e.g. [1]). Before flotation the ore is
mixed with water and ground to small particle size in mills to liber-
ate the minerals. Flotation chemicals are then added to the formed
slurry in order to modify the surface chemical properties of the
particles. Slurry is further processed in flotation cells where air is
pumped to the bottom of the cell and heavy mixing is applied. Due
to the chemicals the particles containing specific minerals attach
to the rising air bubbles and are conveyed to the froth layer on the
surface of the cell. Froth is then allowed to overflow or skimmed
to obtain the concentrate rich in the specific minerals, whereas the
other particles are removed in the tailing flow from the bottom of
the cell.

In order to effectively monitor and control a flotation process
consisting of several flotation cells and slurry lines connecting
them, it is essential to be able to assay the main slurry lines in real
time and on-line. The most common on-line assaying device in large
concentration plants is an X-ray fluorescence (XRF) analyzer, which
is capable of measuring the elemental contents of the slurry. How-
ever, a typical XRF analyzer contains only one analyzer probe which
measures each slurry line in turns increasing the sampling inter-
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val of a single line to over 10 min. This deteriorates the detection
of sudden content changes like process failures or high-frequency
oscillations occasionally present in flotation circuits.

The image and color analysis of flotation froths and slurries has
been intensively studied during the last 15 years [2–5] as an alterna-
tive assaying method and for determining the state of the flotation
cells. However, mainly ordinary cameras have been utilized also
for measuring the color. In [6] it was shown that visual and near-
infrared (VNIR, 400–1000 nm) diffuse reflectance spectroscopy can
be successfully utilized as a supplemental on-line method for deter-
mining the elemental contents of zinc concentrate slurry along with
the traditional XRF analyzer in a real process environment. The
advantages of the presented VNIR spectral approach with respect
to the XRF analysis are – as in many other applications – speed and
simplicity: Spectra can be easily measured with a very small sam-
pling interval (e.g. 10 s) without specific sample preparation. Using
a PLS-based modeling approach, a practically continuous on-line
assay of the slurry can be provided. The improved slurry content
information can be further utilized by the automatic control system
and the process operators to react faster to the unexpected changes
in the process, thus improving the overall productivity.

Due to variations in the slurry properties (particle size distribu-
tion, solid content, mineralogy) a regular PLS model between the
spectra and the slurry contents calculated using a fixed calibration
set does not remain accurate for longer periods. This is why in [6]
the PLS model was recursively adapted with new XRF and spectrum
samples obtained during the normal operation of the process. The
learning was achieved by a recursive partial least squares (rPLS)
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model (see, e.g. [7]) with nonlinear data preprocessing and rather
fast exponential forgetting.

Effectively a recursive modeling algorithm gives the same result
as would the re-calibration of a batch-type regression model,
assuming that the re-calibration was performed with all the pre-
vious calibration samples every time a new sample is measured.
The exponential forgetting means that the calibration samples are
taken into account in the modeling using exponentially decreas-
ing weights: the older the sample is, the smaller effect it has in
the final model. The difference is that in a recursive algorithm the
re-calibration is realized by incrementally adapting the existing
model instead of storing and re-using all the previous calibration
samples, thus saving both memory and computations. Exponential
forgetting is conveniently obtained by including a forgetting fac-
tor � in the adaptation formula. With a suitable forgetting factor
the adapted model mainly describes the recent data and gradually
forgets the old data that has become irrelevant. Exponential for-
getting is a common method, e.g. in recursive system identification
algorithms [8].

It is a common requirement for adaptive systems [9] that the
data should be persistently exiting. This means that a rPLS model
in slurry VNIR spectrum analysis works well only for those slurry
lines and elements where the content values vary continuously over
the whole data range, so that despite the forgetting the calibration
model remains robust. However, in flotation circuits some content
values are in normal operation very small, but in the (rare) case
of a process failure they can suddenly increase considerably for a
short period of time. As demonstrated in this study, the regular rPLS
model presented in [6] cannot predict well these process failures,
especially if a long time has passed since the previous such failure.
However, because these increases in the normally small contents
are an indicator of an exceptional process behaviour, they should
be detected as soon as possible.

This study focuses on the detection of the increased slurry
content levels related to process failures. In Section 2 a recursive
multimodel PLS algorithm (rMM) is derived. It divides the set of all
possible spectra and XRF samples among several local models, each
covering only a subset of samples located near the center point of
that model in the predictor and response domain. Correspondingly,
each local model is calibrated mostly with the calibration samples
located in its subset. The final prediction of the total model is calcu-
lated as a weighted combination of the local model predictions. In
the prediction phase, each local model performs its own orthogonal
signal correction (OSC) preprocessing [10] to improve the evalua-
tion of the validity of that local model for the current predictor
sample. The proposed algorithm utilizes the kernel versions of OSC
and PLS algorithms.

The performance of the rMM algorithm is demonstrated by
applying it to a large VNIR spectrum and XRF sample data set col-
lected from a real zinc flotation circuit and comparing the copper
content modeling results to the results given by normal PLS and
recursive PLS models.

2. Theory

2.1. Problem formulation

Due to the differences in the sampling frequencies of the VNIR
spectrophotometer and the XRF analyzer, new predictor samples
x (spectra) are continuously received with a high sampling fre-
quency, and response samples y (XRF assays) with a low sampling
frequency. Assuming that the VNIR spectrophotometer and the XRF
analyzer measure the same slurry sample at the same time (or with
a small constant time difference), for each XRF assay a correspond-

ing spectrum can be found, thus forming a set of predictor-response
pairs suitable for data-based model calibration and validation. The
rest of the VNIR spectra are used to predict the element contents
when no XRF measurement is available.

The aim of the modeling is to form an on-line mapping from the
predictors to the responses with the following additional restric-
tions: (1) Since the modeling approach is to be applied continuously
to real process data, there exists variation in the relationship
between the predictors and responses; i.e. the mapping from pre-
dictors to responses is not constant in time. (2) The variation in
data does not cover the whole data range evenly in time; instead,
for long periods the data variation is small (normal operation), and
only seldom large peaks are received (process failures).

2.2. Approach

A classical way to tackle with the first restriction is to assume
that the changes in the process are slow and smooth, so that it is
possible to continuously adapt the model with new data to better
predict the response variable values for the future predictors. For
this purpose, a rPLS algorithm with exponential weighing of old
data can be used. The existing rPLS approaches are typically based
on the recursively updated data covariance matrices and kernel-
type PLS calculation [11,7], even though some other variants have
also been presented [12,13].

To prevent the model from forgetting the rare process fail-
ures, a local modeling approach is proposed in this study. The
modeling data space – both in predictor and response domains
– is divided among several local rPLS models with exponential
forgetting instead of using one global rPLS model. The assump-
tion is that if only the data near the center of each local
model is utilized in calibration of that model, the model remains
representative.

Traditionally, local models are typically used to deal with non-
linearities in the data as an alternative to global nonlinear models.
In the field of near-infrared spectroscopy (NIRS) local modeling has
been utilized to exploit spectral libraries: a local model is fitted
to the subset of library spectra that are similar to an unknown
spectrum to be predicted. This is repeated for each new unknown
spectrum. There exists several different strategies for subset selec-
tion and model calibration: locally weighted regression (LWR) was
originally suggested in [14] as a data smoothing method and has
since then been further developed to a localized version of prin-
cipal component regression [15,16]; CARNAC initially [17] utilized
Fourier transformation in subset selection, but also other ver-
sions exist; the LOCAL algorithm [18] uses local PLS models; and
locally-biased regression [19], that utilizes both PLS and OSC. The
application of these methods in NIRS is recently reviewed in [20],
showing that local methods indeed are a common tool for nonlin-
ear spectrum data analysis among the variety of artificial neural
networks.

Instead of calculating a new local model for each new predic-
tor, it is also possible to precalculate a set of local models which
cover the whole data range [21]. The final response prediction is
then obtained, e.g. as a weighted sum of the local predictions. This
approach has a couple of benefits: only the models have to be stored
in the memory, not the whole data set; and the calculation of new
predictions is less computationally intensive, since no model cali-
bration is required at the prediction step.

Recursive adaptation of new data with exponential forgetting
can also be utilized in model structures with several precalculated
local models [22]. This approach has specially been developed for
robot control [23,24], where strong nonlinearities typically exist.
The same approach has further been expanded to work also in high
dimensions [25] by exploiting PLS.
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In this study, the local models are utilized for storing the
regression information over time, not so much for compensating
the nonlinearities of the data. In the earlier phase of this work
[26], a memory-based LWR-type algorithm was used to deal with
the model degeneration issue. However, the structure consisting
of a fixed number of local models was preferred here since it
is less memory intensive solution and suits better for recursive
updating.

Evaluation of modeling performance for data-based methods
is typically conducted by cross-validation. Because of the adaptive
nature of the modeling method in this study, it is the one-step pre-
diction performance that is the key measure of the model quality.
This can be easily evaluated by predicting each new response y with
the existing model before using the sample for adaptation, and then
comparing the estimate ŷ with the measured value. Technically
this procedure is comparable to the traditional cross-validation,
since the model is validated with data not (yet) used in the model
calculation.

2.3. Proposed modeling algorithm

The recursive multimodel OSC and PLS (rMM) modeling
approach proposed in this study is based on a set of N local PLS
models with OSC preprocessing. The centers of the local models
are located in fixed points �i

y, i = 1, . . . , N in the response space.
Each local model is recursively calibrated as the data are gathered,
thus enabling the on-line use of the rMM model. To maintain the
localization, Gaussian weighing functions are used in the calibra-
tion (�i

y) and prediction (�i
x). This results in a situation where a

subset of predictor space (spectra) centered in �i
x is modeled by

the ith local model to a subset in the response (elemental contents)
space centered in �i

y.
In the experimental part of this study, a simple case of the model

structure with two local models and one-dimensional response
space is utilized as shown in Fig. 1. The first local model (i = 1)
is centered in the normal operating range of the process in the
response space, whereas the second model (i = 2) handles the large
response values related to process failures. Because of the local-
ized adaptation, the first model continuously adapts to the normal
operation of the process, and the second model contains the latest
available information related to process failures. In the following

Fig. 1. Multimodel structure with two local models. Only two components of the
predictor x are shown.

the rMM approach is derived in its general form with N local models
and several response variables (i.e. y is a vector).

2.3.1. Model adaptation
Every time a new XRF measurement y(k) is obtained, the cor-

responding VNIR spectrum x(k) is picked and the local model
structure is adapted. Adaptation in each local model i is based
on the recursive updating of the old data covariance matrix esti-
mates R̂i

xx(k − 1) and R̂i
xy(k − 1) with the new calibration sample

pair {x(k), y(k)}:
R̂i

xx(k) = �i(k)R̂i
xx(k − 1) + (1 − �i(k))x(k)xT (k), (1)

R̂i
xy(k) = �i(k)R̂i

xy(k − 1) + (1 − �i(k))x(k)yT (k), (2)

where 0 ≤ �i(k) ≤ 1 is the exponential forgetting factor. Addition-
ally, the predictor mean value estimate for each model is updated
correspondingly:

�̂i
x(k) = �i(k)�̂i

x(k − 1) + (1 − �i(k))x(k). (3)

The forgetting factor �i(k) is determined according to the valid-
ity �i

y(k) of the calibration sample measured in the response (y)
space:

�i
y(k) = exp[−(y(k) − �i

y)
T
�−1(y(k) − �i

y)], (4)

�i(k) = �
�i

y(k)
0 , (5)

where � is a scaling factor, �i
y is the fixed response mean of model

i and �0 is the nominal forgetting factor. Here the validity function
�i

y(k) (see, e.g. [21], Ch. 3) is selected as the unnormalized Gaussian
function giving values between 0 and 1. Thus the forgetting factor
varies between 1 (no updating when y(k) is very far from �i

y) and
�0 (maximal updating when y(k) = �i

y).
Given the updated covariances (1) and (2), one has to calculate

the OSC weights Wi(k) and loadings Pi(k) so that the OSC pre-
processing can be performed. The OSC calculation is based on the
kernel approach presented by Fearn [27]. However, since only the
covariance matrices are available, the original data matrix inner
products have to be replaced by the covariance matrix estimates:
The f OSC weights

Wi(k) = [wi
1(k), . . . , wi

j(k), . . . , wi
f (k)] (6)

can be determined as the f most important eigenvectors of

Mi(k)R̂i
xx(k), (7)

where

Mi(k) = I − R̂i
xy(k)(R̂i

xy(k)T R̂i
xy(k))

−1
R̂i

xy(k)T . (8)

Furthermore, also the OSC loadings can be obtained using the
covariance matrices:

pi
j(k) =

R̂i
xx(k)wi

j
(k)

wi
j
(k)T R̂i

xx(k)wi
j
(k)

, (9)

and collected in the columns of the matrix

Pi(k) = [pi
1(k), . . . , pi

j(k), . . . , pi
f (k)]. (10)

The OSC deflation related to the model i of a predictor vector x
is calculated by subtracting the f OSC factors:

xi
o = x − Pi(k)Wi(k)T x, (11)

The PLS model Bi(k) for the local model i is now calculated
between the OSC deflated predictors xi

o and the original responses
y. Since the kernel algorithm is to be used, the covariance matrix
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estimate R̂i
xxo(k) of the deflated predictor xi

o has to be known. From
(11) the outer product is

xi
oxi

o
T = (x − Pi(k)Wi(k)T x)(x − Pi(k)Wi(k)T x)

T

= (I − Pi(k)Wi(k)T )xxT (I − Wi(k)Pi(k)T ) (12)

which gives

R̂i
xxo(k) = (I − Pi(k)Wi(k)T )R̂i

xx(k)(I − Wi(k)Pi(k)T ). (13)

Because R̂i
xoy(k) = R̂i

xy(k) [27], the PLS model Bi(k) for each local

model can be calculated using the matrices R̂i
xxo(k) and R̂i

xy(k) with
a kernel PLS algorithm. In this study, the modified kernel algorithm
#2 presented in [28] was utilized.

2.3.2. Prediction
After the adaptation step, each local model has the up-to-date

OSC weights Wi(k) and loadings Pi(k), and PLS model Bi(k). Until
the next XRF measurement y(k + 1) is received, the rMM model is
used to predict the responses for the unknown VNIR spectra to fill
in the gaps between the sparse XRFs.

Whereas the amount of updating of each local model is based on
the distance between the response sample value y(k) and the model
mean �i

y (see (4) and (5)), the validity of each model for prediction
has to be evaluated using the predictor (x) sample, simply because
the correct response value y is unknown.

The OSC preprocessing is a key factor in selecting the correct
model for prediction. Instead of using the raw x sample to calculate
the model validities, the OSC deflated predictor xo is utilized. This
remarkably improves the model selection performance since the
disturbing variations are first eliminated from the data.

For a new predictor sample x the OSC deflation related to model
i, xi

o, is obtained using (11), and the corresponding PLS response
estimate is

ŷi = Bi(k)xi
o. (14)

To compare how well the deflated sample xi
o belongs to the local

model i, the distribution of the deflated predictor samples for each
local model is assumed to be normal. Now the probability density
function value in xi

o gives the validity value for the sample, i.e. a
Gaussian validity function is used also for the model estimation
phase. However, since the covariance matrix R̂i

xxo(k) is typically
ill-conditioned and cannot be inverted, only the main principal
component directions of the distribution are utilized. Assuming
that the no main eigenvectors of R̂i

xxo(k) are collected in the columns
of matrix Vi(k), the PCA score covariance matrix is

Ri
tto(k) = Vi(k)T R̂i

xxo(k)Vi(k). (15)

If ti
o contains the PCA projected xi

o, the validity value is obtained
as

�i
x(k) = ((2�)no det(Ri

tto(k)))
−1/2

× exp[−(ti
o − �i

to(k))
T
Ri

tto(k)−1(ti
o − �i

to(k))], (16)

where �i
to(k) is the OSC deflated (11) predictor mean (3) projected

to the PCA base:

�i
to(k) = Vi(k)T (�i

x(k) − Pi(k)Wi(k)T �i
x(k)). (17)

The final rMM prediction for the sample x is calculated as the
weighted average of the local response estimates (14):

ŷ =
(∑

i

�i
x(k)

)−1∑

i

�i
x(k)ŷi =

∑

i

�̃i
x(k)ŷi, (18)

where �̃i
x(k) is the normalized prediction validity of model i.

2.3.3. Final rMM algorithm
To clarify the calculation of the proposed rMM algorithm, the

key steps of the model updating and sample prediction are collected
here.

Model adaptation for each local model i given a new sample pair
{x(k), y(k)}:
1. Calculate the forgetting factor �i(k) using Eqs. (4) and (5).
2. Update the covariance matrix estimates R̂i

xx(k) and R̂i
xy(k) using

Eqs. (1) and (2).
3. Update the predictor mean �̂i

x(k) using Eq. (3).
4. Calculate the OSC weights Wi(k) as the f most important eigen-

vectors of Mi(k)R̂i
xx(k).

5. Calculate the f OSC loadings Pi(k) using Eq. (10).
6. Calculate the OSC deflated predictor covariance matrix estimate

R̂i
xxo(k) using Eq. (13).

7. Use the covariances R̂i
xxo(k) and R̂i

xy(k) in the kernel PLS algorithm
[28] to obtain the local PLS model matrix Bi(k).

Prediction calculation given a new predictor x:

1. For each local model i, calculate the deflated predictor xi
o and

local response estimate ŷi using Eqs. (11) and (14).
2. For each local model i, collect the main eigenvectors of R̂i

xxo(k) in
the columns of Vi(k) and calculate the model validity �i

x(k) using
Eqs. (15) and (17).

3. To obtain the final estimate ŷ, combine the local estimates as a
weighted average using Eq. (18).

3. Experimental

The data for this study were obtained from the final zinc con-
centrate slurry flow in the concentration plant of Inmet Mining
Corporation’s Pyhäsalmi mine, located in Finland. The spectra were
measured using an imaging spectrograph (SpecIm ImSpector V10)
having the wavelength range of 400–1000 nm and nominal spec-
tral resolution of 5 nm. The spectrograph was connected to a
monochrome CCD camera (Basler A102f), and the spectra were col-
lected using an ordinary desktop computer. The on-line measuring
was performed by leading a constant slurry flow through a jet flow
cell with a sapphire window. The window was illuminated with a
regular halogen light source and the spectrum of the light reflected
from the slurry was measured. The XRF data were collected from
the XRF analyzer of the concentrator plant (Outotec Courier®6 SL).
For more information on the equipment used in data collection,
please refer to [6].

In Pyhäsalmi, the solids in the zinc concentrate typically contain
about 55% zinc, 33% sulfur, 8% iron and 0.5% copper, which are the
elements continuously measured by the XRF analyzer. The solids
content of the flow is around 30–40%. However, during a process
failure the zinc content decreases, whereas the iron and copper
contents may significantly increase. In this study, the main focus
is on modeling the copper contents where the relative changes are
the largest.

The rMM algorithm was written and the modeling performed
in Matlab R2007b (The Mathworks Inc.) running on an ordinary
desktop computer. All the Matlab code used in the rMM algorithm
was written for this study, except the kernel PLS algorithm that
was adapted from [28]. The OSC preprocessing of the data for the
reference PLS calculations was done with the PLS Toolbox 4.0.2
(Eigenvector Research, Inc.).

3.1. Collected data

In total about 432,000 VNIR spectra and 4500 XRF values were
collected during the measurement period of 50 days. The data col-
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Fig. 2. Copper content variation in the final zinc concentrate during the 50 days sampling period as measured by the XRF analyzer.

lection was performed continuously using the sampling interval
of 10 s for the spectrum and the normal sampling interval of the
XRF analyzer (about 16 min) for the XRF values. A small number of
samples were omitted due to disturbances or maintenance breaks
either in the XRF analyzer or in the spectrum measurement equip-
ment. To reduce the amount of data and speed up the computations,
the measured wavelength range was averaged to 20 values reduc-
ing the dimension of the spectrum from 960 wavelength values to
20. This was detected not to decrease the modeling performance
[6].

The collected matching XRF and spectrum sample pairs (4500)
were divided into two parts: the first 1000 samples were reserved
for initializing the models, whereas the rest of the samples (3500)
were utilized in model performance validation (Fig. 2). The begin-
ning of the initialization data contained two short but major process
failures, where the copper concentration measured by the XRF
analyzer reached as high values as 4.5–5%. Near the end of the vali-
dation data set a third process failure with a very sharp increase in
the copper content was detected.

3.2. Model validation

All recursive modeling was performed maintaining the temporal
ordering of the samples to simulate the application of the models in
on-line process monitoring. For validating the different calibration
methods, the root mean square error (RMSE) for all the validation
samples was calculated using always the prediction given by the
“old” model, i.e. the model updated with all the samples preced-
ing the current sample. Thus, the RMSE describes well the general
prediction ability that can be achieved in real applications.

However, since the main interest of the spectral analysis is to
detect sudden major process changes as soon as possible, also the
RMSE during the copper content increase related to the process
failure in the validation data was used to compare the modeling
performances. This error (RMSE2) was calculated as the root mean
square prediction error for the eight validation samples where
the copper content was greater than 1.5% due to the process fail-
ure. These samples are referred in the following as the test period
(Fig. 2).

4. Results and discussion

4.1. Model estimation

The VNIR spectrum data were initially preprocessed to mean
centered absorbance values (log(1/R), where R is the measured
reflectance). For testing, also the normal OSC preprocessing was

calculated using the mean centered absorbance values of the ini-
tialization data. These preprocessed data sets are referred in the
following as ‘log(1/R)’ and ‘OSC(log(1/R))’, respectively. The recur-
sive multimodel OSC and PLS modeling method (rMM) presented in
Section 2.3 was applied to the ‘log(1/R)’ data. As a reference, a reg-
ular PLS model as well as a regular recursive PLS model (rPLS) were
applied to the both data sets, and the results were compared to the
rMM modeling results. For the PLS model, all the 1000 initialization
samples were utilized for estimation.

In the rMM approach, two local models centered in the response
space in �1

y = 0.5% and �2
y = 5% were utilized, and the width

parameter � in the response validity functions (4) was � = 2.5. The
locations and width of the local model regions were selected so that
the first model could handle the normal operation conditions with
low copper values and the second model the unusually high copper
levels related to process failures. The nominal recursive forgetting
factor in rMM was �0 = 0.95 and the forgetting factor in rPLS was
� = 0.95. The number of factors in both static and rMM OSC defla-
tion was f = 1. More OSC factors were also tested, but the modeling
results were not improved. The number of PCA latent variables that
were used to invert the deflated predictor covariance matrix (15)
was selected so that the condition number of R̂i

tto(k) was not too
high. With eight latent variables the maximum condition number
was kept around 106, which ensured that no numerical problems
occurred when inverting the matrix.

The number of latent variables in each model was optimized
according to the RMSE and RMSE2 values. Fig. 3 shows the modeling
performances with respect to the latent variable space dimension.
In the rMM method the specified number of latent variables was
used in both local PLS models. Clearly the two ordinary PLS models
give poor modeling results for the whole validation data regardless
of the number of latent variables. On the other hand, increasing the
latent dimension improves their modeling performance during the
test period. The rPLS models give generally better predictions, but
they are not able to match the modeling performance of the rMM
method even with a high number of latent variables.

According to the results presented in Fig. 3, six latent variables
were selected for the rMM approach, ten for the both rPLS mod-
els and thirteen for the both PLS models for the further analysis.
The differences in the number of optimal latent variables is easily
explained by the fact that the local models in rMM describe sim-
pler local dependencies whereas the rPLS models are required to
handle the whole data range. The regular PLS models on the other
hand are trained with a data set collected during a long time period,
so that they attempt to model also the temporal changes in the
relation of the VNIR spectra and XRF measurements, which further
increases the required latent dimension. It also seems clear that the
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Fig. 3. Root mean square errors for the whole data (a) and the test period containing
only a process failure (b) with respect to the number of latent variables (#LV).

OSC preprocessing is not significantly reducing the required num-
ber of latent variables in the PLS and rPLS models, thus indicating
that the static OSC preprocessing is also suffering from the temporal
changes in the data distributions.

Table 1
Comparison of the modeling performances.

Preprocessing Model #LV Q 2 RMSE RMSE2

log(1/R) PLS 13 0.27 0.290 0.77
OSC(log(1/R)) PLS 13 0.22 0.291 0.76
log(1/R) rPLS 10 0.92 0.056 0.77
OSC(log(1/R)) rPLS 10 0.92 0.058 0.75
log(1/R) rMM 6 0.95 0.046 0.40

To analyze the adaptation of the local models in the rMM model,
the first 110 data points containing the two process failures are
shown in the bottom part of Fig. 4 with the corresponding forgetting
factors �i(k) (5) above them. Additionally, the validity functions (4)
used to determine the forgetting factor values are drawn on the
right. The forgetting factor values indicate how much each model is
adapted with the corresponding data point: Clearly the local model
2 is adapted (�2(k) is less than one) only when the copper values
are large, and the local model 1 is adapted (�1(k) is less than one)
when the copper values are in the normal region. According to Fig. 4,
the about 20 process failure samples with �2(k) less than one are
used for the adaptation of the second local model. Since the copper
values stay small after that (Fig. 2), practically no adaptation of the
second model takes place until the third process failure (test period)
near the end of the whole data set is reached. This means that the
information of the large copper values is stored in the local model
2. On the other hand, the local model 1 is adapted continuously
after the process failures and thus it gives accurate predictions in
the normal operating region.

4.2. Modeling performance

The RMSE, RMSE2 and Q 2 values calculated for each model are
presented in Table 1. In general, the regular PLS models are not
able to model the validation data and give considerably higher error
values than the rPLS and rMM models. This clearly shows the advan-
tage of recursive modeling when the models are to be used for
longer periods on real process data. Mainly due to its better per-
formance on the test period samples, the rMM model is capable
of modeling the whole validation data better than the rPLS mod-
els. Because the static OSC preprocessing before utilizing PLS or
rPLS is practically not affecting the overall modeling results in the
following only the models with the ‘log(1/R)’ data are analyzed.

Fig. 4. The beginning of the recursive rMM estimation. On the bottom left are shown the first 110 XRF samples with the two process failures, above that is the behaviour of
the forgetting factors (5) during the adaptation and on the right are the response validity functions (4) for the two local models.
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Fig. 5. Scatter plots of the model predictions for the mean centered absorbance validation data. The first test period sample corresponding to the increase in the copper
content during the test period is circulated.

When comparing the test period performance related to the
rapid increase in the copper content (RMSE2) there is a great dif-
ference between the models. Fig. 5 shows the scatter plots for the
PLS, rPLS and rMM models with the ‘log(1/R)’ preprocessing and
highlights the most critical first test period sample. rMM is able to
decently predict the first test sample, whereas the rPLS fails com-
pletely. This is simply because the recursive updating has caused it
to forget the existence of the rare high copper content values. The
estimation data set of the PLS model contained also the two pro-
cess failures, and since no adaptation has been performed, it gives
a little better prediction for the first process failure sample. On the
other hand, in the rMM model the second local model in rMM was
adapted only to the large copper values, and can therefore predict
this first test sample.

After the rPLS and rMM models are adapted with the first test
period sample, the rest of the large copper values are predicted by
them with approximately equal accuracy. This shows that the rPLS
model can quickly adapt to the change in the process; however, it is
not capable of predicting the change beforehand, which is the key
point when the VNIR spectrum measurements are to be utilized in
the flotation plant monitoring and control.

4.3. Predicting the intermediate points

The real benefit of the VNIR spectrum measurements in the pre-
sented application of assaying the flotation slurries is the small
sampling interval. When compared with the traditional XRF-based
grade measurements which in the test case have a sampling inter-
val of about 16 min, the spectral sampling with a 10 s interval can
be considered practically continuous. With an up-to-date calibra-
tion model, the unknown spectra can be used to on-line predict the
elemental contents of the slurry between the XRF measurements.

Fig. 6 shows the copper content predictions calculated from the
spectra with rMM and rPLS during the beginning of the third pro-
cess failure (test period). The predictions are calculated on-line so
that when a new XRF measurement with the corresponding spec-
trum is obtained, the models are adapted. After that, the adapted
models are used to predict the received unknown spectra (every 10
s) until the next XRF measurement is received.

The rMM prediction detects the rapid increase in the copper
level about 5 min before the first large XRF measurement arrives.
Since the prediction is calculated on-line and involves only light
computations, the copper value estimate is available for the auto-
matic process control system and human operator within seconds
after the corresponding spectrum is measured. In this case the XRF
measurement is received quite soon after the real process failure
begins, whereas in a worst case situation a 15 min delay would be
possible. However, even as it is the rMM prediction confirms here

the copper level increase since it continuously analyzes the slurry
flow, thus ruling out the possibility of a single outlier in the XRF
measurements. Additionally, the prediction clearly indicates that
after the first large XRF measurement the copper level continues
to increase, and that some actions definitely are required either by
the process operator or the control system.

In the upper part of Fig. 6 the normalized prediction validity
�̃1

x (k) of the local model 1 in rMM is shown as a function of time.
It describes the importance of the first local model in the final pre-
diction given by the rMM (see (18)). Since only two models are
used, it holds that �̃2

x (k) = 1 − �̃1
x (k). Initially the low copper val-

ues are mainly predicted by the first local model. However, when
the increase in the copper content takes place around 11:56, the
weights very rapidly change so that the rMM prediction is given by
the second local model. This indicates that now the predicted VNIR
spectra locate completely in the subset of the second model, and it
should be used for the prediction.

Before the process failure there are also a couple of spectra that
are not solely predicted by the first local model, even though the
copper level stays quite low. However, since no corresponding XRF
measurements are available, it is not possible to evaluate the cor-
rectness of these predictions.

When comparing the rMM and rPLS predictions for the
unknown spectra (Fig. 6), the advantage of the local model structure

Fig. 6. The rMM and rPLS on-line predictions of all the spectra during the begin-
ning of the process failure. The upper part shows the behaviour of the normalized
predictor validity of local model 1 used to weigh the local model predictions in rMM.
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is evident. Since the rPLS model does not remember the last high
copper values seen in the beginning of the initialization data (about
47 days ago), it is unable to detect the new process failure until a
confirming XRF measurement is received and the model is adapted
with it. Even though the rPLS model then predicts the following
large copper values correctly, it does not improve the detection of
new process failures from the VNIR data with respect to the XRF
analyzer. On the other hand, the rMM model using the same data
for adaptation and giving equally good predictions for the normal
copper range predicts the process failure as soon as it takes place.

5. Conclusions

In this work, the prediction of mineral flotation slurry contents
based on VNIR reflectance spectrum measurements has been stud-
ied as a supplemental assaying method for XRF analyzers. It was
shown by comparing the prediction performances of regular PLS
and rPLS approaches during a long measurement period that a reg-
ular PLS model is not able to maintain a sufficient accuracy. It was
further shown that due to the recursive adaptation and exponen-
tial forgetting, an rPLS model is not capable of correctly predicting
the sudden large content changes caused by rare process failures.
However, for the flotation process control and monitoring, these
changes should be detected as soon as possible to minimize the
effects of the failures.

To manage also the process failure situations, a new recursive
multimodel approach (rMM) has been introduced. It is demon-
strated that the performance of the proposed rMM approach is at
least equal to that of the rPLS model in normal operation condi-
tions. Additionally, due to the selectively updated local PLS models,
rMM is capable of predicting the process failure situations where
the slurry content values increase rapidly and unexpectedly. This
enables the faster detection of the possible process failures that
may require immediate corrective control actions. The presented
rMM algorithm can also be generalized to other applications of the
similar type.
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