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This article extends the earlier work (Haavisto et al. 2008. Optical spectrum based measurement of flotation
slurry contents. Int. J. Miner. Process. 88 (3–4), 80–88), where visible and near-infrared (VNIR) reflectance
spectroscopy was used together with an X-ray fluorescence (XRF) analyzer to improve the assaying of zinc
flotation concentrate. Especially the sampling interval of the assay could be drastically reduced by the
presented approach. In this study, a multichannel VNIR spectrum analyzer is utilized to measure the
spectrum of the seven most important slurry lines in copper and zinc flotation circuits. Recursive data-based
modeling is applied to the VNIR spectrum data and XRF assays to calculate and adaptively maintain the
calibration model. The accuracy of the VNIR assays is evaluated in all the lines, and the benefits of the
obtained high frequency assays in detecting oscillations and sudden grade changes are demonstrated.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Monitoring and control of mineral flotation processes is mainly
based on the on-line assaying of the slurry flows. The most common
automatic assaying technique is X-ray fluorescence (XRF) analysis,
where slurry is radiated with X-rays and the spectrum of the reflected
fluorescent radiation is used to determine the elemental contents of
the slurry. At larger flotation plants sample lines from the main slurry
flows are led to one or more centralized on-line XRF analyzers.

Compared tomanual laboratory analysis the introduction of the XRF
analyzers in the 1970s released the plant personnel from the laborious
analysis work and provided the means for automatic process monitor-
ing and control (McKee, 1991). However, as pointed out, for example, by
Bartolacci et al. (2006)and Liu andMacGregor (2008), thedrawbackof a
centralized XRF analyzer is the sparse sampling interval for a single
slurry line. Several slurry lines are measured by the same analyzer in
turns, and in a typical setup the time between two consecutive assays
from one slurry line can be around 10–20 min. Therefore in some cases
the most critical slurry lines have to be sampled twice during the
analyzer cycle, which further increases the delay in the other lines.

The earlier phase (Haavisto et al., 2008) of this work introduced the
visible and near-infrared (VNIR, 400–1000 nm) reflectance spectrosco-
py as a tool for improving the sparse XRF assays of zinc concentrate
slurry. Originally, the reflectance spectroscopic analysis of minerals has
mostly been conducted in the field of remote sensing, where it has been
utilized, for example, to study the composition of planet surfaces or to
create mineralogical maps using imaging spectroscopy data gathered
from satellites or aircraft (Clark, 1999). In mineral processing,

reflectance spectroscopy can also be used to analyze the mineral
composition of drill cores as a lightweight option for laser-induced
breakdown spectroscopy (LIBS) or X-ray diffraction (XRD) (Kruse,
1996). On the other hand, the color information acquired by regular
red–green–blue (RGB) cameras has been used as an important variable
in many froth classification and grade estimation studies (Bartolacci
et al., 2006; Morar et al., 2005; Liu et al., 2005; Kaartinen et al., 2006).
Haavisto et al. (2006) further compared the RGB data and VNIR
reflectance spectroscopy in froth grade estimation.

In this study, the initial slurry VNIR spectrum analysis reported by
Haavisto et al., (2008) is extended to cover seven different slurry lines
at a copper and zinc flotation plant. First, the structure and properties
of the flotation process and the analyzed slurry lines are detailed and
the measurement setup is presented. Then, the data collection and
modeling are explained and the obtained results are reported and
discussed.

2. Materials and methods

The measurements and analysis for this study were conducted at
the Inmet Mining Corporation's Pyhäsalmi zinc, copper and sulfur
mine located in central Finland. The concentration at Pyhäsalmi is
performed sequentially in three stages: copper is first floated from the
milling product in the copper flotation circuit, zinc is then separated
from the copper tailings in the zinc circuit, and, finally, the zinc
tailings are processed in the sulfur circuit to float the sulfur. Copper
and zinc are the most important products of the plant, and thus the
focus of this study is on the copper and zinc circuit slurries. These
circuits both consist of rougher, scavenger, middlings flotation and
cleaner stages and are monitored by the same centralized on-line XRF
analyzer (Outotec Courier® 6 SL). For each slurry flow, the iron, copper
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and zinc elemental contents are directly measured by the analyzer,
and sulfur content is calculated from these. Additionally, the solids
content measurement is provided by the analyzer.

2.1. Materials

The main minerals in the slurry flows of the analyzed concentra-
tion plant are pyrite (FeS2), sphalerite (ZnXFe1−XS, where X≈0.95),
chalcopyrite (CuFeS2) and pyrrhotite (Fe1−YS, where Y varies from 0
to 0.17). Also minor amounts of galena (PbS) and sulfosalts are
present. The main gangueminerals are barite (BaSO4) and carbonates.
The particle size of the flotation circuit feed after milling is about 65%
—74 μm.

The optical properties of the main minerals can be analyzed by
comparing the reflectance spectra measured under laboratory
conditions. Fig. 1 shows the hemispherical reflectance spectra (see e.g.
Hapke, 1993) of the three most important minerals in two particle size
classes measured from dry mineral samples. The data were gathered
from the ASTER spectral library (http://speclib.jpl.nasa.gov/).

2.2. Measurement setup

The measurement principle of the multichannel slurry spectrum
analyzer, as shown in Fig. 2, is similar to the one presented by
Haavisto et al., (2008). However, in this case the analysis equipment is
packed into a specially designed enclosure that is relatively small in
size and lightweight. This makes it possible to conveniently install
several of these analyzer boxes right before the secondary sampler of
the XRF analyzer (see Fig. 3). The spectrograph is essentially the same
Specim ImSpector V10 combined with the Basler A102f camera as in
Haavisto et al. (2008), the only difference being that the imaging
optics is replacedwith a bundle of 7 optical fibers. The common end of
the bundle is attached in front of the entrance slit of the spectrograph
so that the fibers are positioned next to each other. The other ends of
the fibers are directed to the analyzer boxes and equipped with
collimator lenses that capture the light reflected from a round area
(diameter 11 mm) in the middle of the jet flow cell window.
Illumination of the slurry in each line is accomplished by a halogen
lamp (12 V, 10 W, 3000 K) that is equipped with an axial silver coated

reflector. The reflector improves illumination on the higher wave-
lengths and reduces thermal load into the enclosure. After calibration
the exact spectral range of the spectrograph was detected to be 421–
1021 nmwith a spectral resolution of 5 nm. A small process air flow is
used to prevent condensation on the window.

The analysis is carried out with Matlab (The Mathworks) in a
centralized desktop computer that is also capable of visualizing video
feeds from all the web cameras for monitoring purposes. Since all
channels are measured by the same imaging detector, the analysis is
performed simultaneously in all channels with a single image grab
and analysis sequence. However, the intensities of the measured
spectra have to be roughly equal between the lines, so that high
enough but not saturated spectra are obtained. This is ensured by
individually adjusting the voltage of the halogen lamps. The variations
of the color temperature caused by the different voltages as well as by
the aging of the lamps are compensated for by the adaptive calibration
as explained in Section 2.4. The measurement locations of the seven
XRF-assayed slurry lines analyzed in this study are indicated in Fig. 4.
The lines were selected to contain concentrates and tailings in both
copper and zinc circuits to enable a comprehensive testing of the
spectral analysis.

2.3. Data collection

The data for this study were collected during the normal operation
of the Pyhäsalmi concentration plant in June–August 2008. The small
sample cutters used to re-sample the Courier primary sample lines
were susceptible to blockage especially for the tailing samples. For this
reason, the sizes of valid data sets for different sample lines vary and
the data contain gaps during which no measurements were available.

For each slurry line, the VNIR spectrum was initially measured at
5 second intervals. To match the about 30 second long collection of
slurry sample for the XRF analysis, the 6 latest spectra were averaged
after every other spectrum measurement. Thus the final spectrum
samples represent 30 second averages of the slurry spectrum and
have a sampling interval of 10 s. The XRF analyzer assays were
collected during the normal operation of the analyzer, and the
sampling intervals vary from 5 to 20 min. The most important slurry
lines are assayed twice during the analyzer cycle, which shortens their
average XRF sampling interval.

Table 1 summarizes the amount of collected data and the average
contents of the slurry lines. Solids content of the copper middlings
tailing flow is not given because the corresponding XRF measurement
was not properly calibrated at the time. During the measurement
period, the copper concentrate and copper tailing were assayed twice
in one XRF cycle, which explains why more XRF data are available
from these lines. On the other hand, the spectrummeasurement flows
in the middlings flotation tailings in both copper and zinc circuits
were prone to blockages, and thus less middlings tailing data were
obtained. The mineral contents in the table are calculated from the
iron, copper and zinc XRF assays under the assumption that all copper
is contained by chalcopyrite, all zinc by sphalerite and all left-over
iron by pyrite. Even though these assumptions are not exactly fulfilled
due to the presence of other minerals (especially pyrrhotite), the
values should give reasonable approximates for the real proportions
of the minerals.

2.4. Modeling

Data-based modeling was applied to the measured VNIR reflec-
tance spectra and XRF values to find the connection between the
spectra and the assay information. The modeling part in this study
follows quite closely the same approach that was already reported by
Haavisto et al., (2008).

The obtained data were preprocessed first by reducing the
dimension of the spectral measurements from 960 to 20 wavelengths.

Fig. 1. Dry mineral reflectance spectra of the three main minerals contained by the
analyzed ore. Particle sizes: 0–45 μm (black) and 45–125 μm (grey).
Reproduced from the ASTER Spectral Library through the courtesy of the Jet Propulsion
Laboratory, California Institute of Technology, Pasadena, California. ©1999, California
Institute of Technology. ALL RIGHTS RESERVED.
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The reflectances R were then transformed to absorbance values with
the formula

A = logð1 = RÞ; ð1Þ

because according to the Beer–Lambert law, the absorbance A should
be linearly proportional to the concentrations of the absorbing species
in the target material (Ingle & Crouch, 1988). Even if the quite strict
assumptions of the Beer–Lambert law are not completely fulfilled (as
in this case due to the scattering caused by the small particle size,
among others), the transformation is commonly used as a starting
point in spectroscopic analysis (Osborne et al., 1993). Prior to the
modeling, both the spectral data and XRF data were mean-centered.

The actual modeling was realized using the recursive partial least
squares (rPLS) algorithm (Helland et al., 1991; Qin, 1993; Dayal &
MacGregor, 1997b; Qin, 1998) based on the fast kernel PLS algorithm
published by Dayal and MacGregor (1997a). The algorithm utilizes
exponential forgetting (see e.g. Ljung and Söderström, 1983) to
adaptively update the predictor x (VNIR spectrum) and response

y (XRF assay) autocovariance and cross-covariancematrix estimates on-
line. Based on the covariance matrix estimates, a PLS model matrix B is
calculated that can then be used to predict the assays from the spectra.
The recursive adaptation of themodel is doneduring the data collection.
After acquiring the kth sample pair {x(k),y(k)}, the updated covariance
matrix estimates Rxx(k) and Rxy(k) are calculated and further used by
the kernel PLS algorithm to give the updated PLS coefficientmatrixB(k).
The current PLS model B(k) should now represent the best possible
momentary calibration model between the spectra and the XRF assays,
since the older data are exponentially forgotten (see Haavisto et al.,
2008 for more details). Given a new spectrum x, the corresponding
assay estimate ŷ can be simply calculated by

ŷ = BðkÞx: ð2Þ

3. Results and discussion

3.1. Measured spectra

The general properties of the different slurry line VNIR spectra were
compared by calculating the average spectra for each line. Prior to
averaging, the area under each individual spectrum was normalized to
unity to compensate for the effect of the different illumination inten-
sities between the lines. The averaged spectra are shown in Fig. 5(a).
Both the spectrum of the illuminating light and the sensitivity of the
used camera explain the weak intensities on the short and long
wavelengths when compared with the middle region.

The effect of sphalerite and chalcopyrite on the spectrum is more
clearly seen in the relative average reflectances calculated with
respect to the average of the line averages (Fig. 5(b)). The spectra of
the two concentrates differ the most from the overall average (i.e.
one), whereas the tailing spectra are less distinctive. When compared
to the content information given in Table 1, it is obvious that the high
chalcopyrite and sphalerite percentages are the reason for the
differences. In general, a higher sphalerite content tends to lead to
higher relative reflectance values on the longer wavelengths and
lower reflectances on the shorter wavelengths. Also, the average
spectrum of the copper middlings tailing, where the sphalerite
content is the highest of the tailings, seems to follow this rule.

Especially the effect of sphalerite in the measured VNIR spectra is
well explained by the shape of the laboratory spectra of the powdered
dry minerals (Fig. 1). According to the laboratory data, sphalerite is

Fig. 2. Themultichannel slurry spectrum analyzer cuts separate continuous slurry flows from the primary sample lines of the XRF analyzer. The spectrum analyzer was installed onto
seven slurry lines, although only three are shown here.

Fig. 3. Two spectrum analyzer boxes and jet flow cells installed at the concentration
plant. The slurry tubes have not yet been connected.
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clearly distinguishable from the other two minerals due to its better
overall reflectance. The longer wavelengths are also more emphasized
in its spectrum, which corresponds to the acquired results. Curiously,
smaller particle size seems to improve the reflectance of sphalerite,
whereas the opposite is true for chalcopyrite and pyrite. The strong
effect of the particle size on the slurry spectrum partially explains why
an adaptive calibration algorithm is a necessity, since variations in the
particle size distribution would easily invalidate a constant calibration
model. On the other hand, with proper particle size reference data, the
estimation of the particle size distribution based on spectra could also
be possible.

3.2. Estimation results

The adaptive rPLS algorithm was applied separately to the data
sets collected from each of the slurry lines. The optimal delay between
the VNIR spectrum measurements and the XRF assays was computed
from the data as in Haavisto et al. (2008), however this time the rPLS
algorithm was used instead of the regular PLS. Seven latent variables
were used in all PLS models, and a forgetting factor λ=0.95 was
utilized. The modeling performance was evaluated by comparing the
PLS prediction

ŷrplsðkÞ = Bðk−1ÞxðkÞ; ð3Þ

calculated using the previous PLS model B(k−1) to the corresponding
measured XRF assay y(k). This validation scheme, as the normal cross-
validation (see e.g. Ljung, 1999), has the important property that the
data used in validation are not (yet) used for model estimation.

Additionally, since the validation is done right before the next model
adaptation, the obtained results represent themodel performance in the
‘worst-case’ situation. For each data set, the first 100 samples were
reserved for model initialization and were not used for validation.
Correspondingly, after a gap in thedata longer than 1 h, the 10 following
samples were not included in the validation to give the algorithm time
to re-adapt.

The accuracy of the VNIR assay in all the lines is given in Table 2.
For each line the coefficients of determination Q2 (squared correlation
coefficient for the validation data, see e.g. Toutenburg, 2002) are
computed between the rPLS estimates (3) and the XRF assays. To
describe the quality of the data, reference results for a ‘dummy’ zero-
order hold (zoh) prediction (i.e. ŷzoh(k)=y(k−1)) are also given in
Table 2. The zoh values equal the squared autocovariances of the XRF
assay time series with unit delay, thus describing how smoothly the
assays change in time. Even though the PLS model is static and not
dynamic, the rPLS method can be interpreted as a one-step predic-
tor due to its adaptive nature: the previous XRF assay y(k−1) is
known by the model when the next value, y(k), is estimated. Thus the
rPLS coefficients of determination should be compared to the
corresponding zoh values to better evaluate the accuracy of the
VNIR assays.

The best assay estimates using the Q2 criterion are obtained in the
copper and zinc concentrates as well as in the copper middlings
tailing. The zinc rougher tailing gives a fairly good iron estimate,
however the more important zinc and copper values are rather poor.
Also the performances of the other zinc tailing estimates excluding
the solids content remain lower than the corresponding zoh values. In
the two copper tailings the estimation is working better, especially

Fig. 4. The copper and zinc flotation circuits at Pyhäsalmi. The slurry lines analyzed in this study are: copper concentrate (CuC), copper middlings tailing (CuMT), copper tailing
(CuT), zinc concentrate (ZnC), zinc rougher tailing (ZnRT), zinc scavenger tailing (ZnST), and zinc middlings tailing (ZnMT).

Table 1
The amount of data collected from the slurry lines, the average elemental and solids contents of the slurries measured by the XRF analyzer, and the calculated proportions of themain
minerals.

Line #XRF
samples

#VNIR
samples

Average elemental contents (%) Average mineral contents (%) Solids (%)

Fe Cu Zn S Chalcopyrite Sphalerite Pyrite

CuC 8598 885,983 29.70 29.66 2.60 35.23 85.66 4.06 7.56 28.34
CuMT 981 168,779 35.03 0.22 3.29 41.65 0.63 5.13 74.52 –

CuT 6848 719,183 35.83 0.05 2.14 42.07 0.14 3.34 76.67 33.76
ZnC 4303 857,723 9.34 0.87 52.35 33.49 2.51 81.72 13.37 32.23
ZnRT 3060 632,193 33.80 0.04 0.12 38.86 0.12 0.19 72.53 25.58
ZnST 4725 950,219 38.07 0.04 0.07 43.74 0.12 0.11 81.71 31.59
ZnMT 1939 373,858 36.57 0.08 0.17 42.06 0.23 0.27 78.40 16.95

C = concentrate, T = tailing, MT = middlings tailing, RT = rougher tailing, and ST = scavenger tailing.
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the zinc content of the middlings tailing is estimated well, and even
though the Q2 for the copper estimate of the final copper tailing is as
low as 0.5, it is clearly higher than the zoh value.

When determining the actual accuracy of the VNIR spectral
measurement, it is important to note that also the XRF assays utilized
in the rPLS calibration have a limited accuracy. According to the
manufacturer (Anonymous, 2007), a relative standard deviation of 3–
6% for minor concentrations and 1–4% for major concentrations
should be achieved by the analyzer. A more comparable value of the
XRF measurement accuracy is given by the calibration samples
routinely collected at the concentration plant and analyzed in the
laboratory. In Table 2, the coefficient of determination between the
XRF assays and laboratory measurements for a set of calibration
samples is given for each line. The calibration set sizes vary from 30 to
90 samples. Even though the calibration samples have been collected
during an earlier period than the spectral measurements, they give a
rough idea of the XRF analyzer's accuracy in the different slurry lines.

The XRF analyzer accuracy can restrict the obtained modeling
performance between the detected VNIR spectra and the XRF assays.
Generally, the XRF Q2 values indicate that the XRF analyzer accuracy is
on a good level, especially for zinc and copper, whereas the iron
measurements are less accurate. An exceptionally low XRF Q2 is given
by the copper measurement in the zinc scavenger tailing, which
explains the low accuracy of the corresponding rPLS estimate.

Based on Table 2, it is obvious that the high chalcopyrite and
sphalerite contents in the concentrates improve the accuracy of the
VNIR spectral measurement. This is natural since these two minerals
contain most of the copper and zinc detected by the XRF analyzer, and
the higher the content values are, themore they affect the shape of the
slurry spectrum captured by the spectrograph. Especially the zinc
tailings with low sphalerite and chalcopyrite concentrates are more
difficult to assay. The concentrates also favor the selected modeling
approach, since there the grades are varying more regularly and the
range of variation is rather large. In the tailings, on the other hand, the
mineral contents typically remain quite low and constant for long
periods of time, which degenerates the adaptive rPLS model and
prevents the detection of sudden grade peaks. An alternative
modeling method for these situations is presented and discussed by
Haavisto and Hyötyniemi (2009). However, since the target of this
study was to provide comparable results for all slurry lines, the
highest disturbance peaks were omitted from the tailing data and the
rPLS modeling method was applied to all lines.

3.3. High frequency assays

A high frequency slurry assay can be obtained from the VNIR
spectra measured between the XRF assays. Assuming that the latest
PLS model B(k) calculated from the previous XRF assay y(k) and the
corresponding spectrum x(k) is up-to-date, it can be used to estimate
the assay information from all the spectra measured before the next
XRF assay y(k+1) is obtained. After that, the model can be updated.

Fig. 6 shows the high frequency assay of the copper content of
copper concentrate and zinc content of zinc concentrate for a short
period of time. Both the original VNIR assay and the low-pass filtered
(90% exponential filtering) assay are shown. The copper measure-
ment (Fig. 6(a)) clearly reveals that the copper content is heavily
oscillating with a cycle time of about 10 min. Using only the XRF
measurements even this slow oscillation could not be detected. The
high frequency assay also provides a good starting point for
diagnosing the cause of the oscillations, since, for example, spectrum
analysis by Fourier transformation or autocovariance function
calculation (Thornhill et al., 2003) can readily be performed.Fig. 5. (a) Average of the normalized spectra of the seven slurry lines and (b) the

reflectance of the slurries relative to the overall average of the average spectra in (a).

Table 2
Coefficients of determination (Q2) between the rPLS estimated content values and the
measured XRF assays.

Line Result Fe Cu Zn SC

CuC rPLS 0.82 0.83 0.96 0.76
zoh 0.82 0.81 0.96 0.76
XRF 0.72 0.93 0.98 0.77

CuMT rPLS 0.73 0.77 0.94 –

zoh 0.45 0.81 0.86 –

XRF 0.41 0.93 0.96 0.95
CuT rPLS 0.97 0.50 0.99 0.67

zoh 0.98 0.34 1.00 0.37
XRF 0.42 0.82 0.98 0.89

ZnC rPLS 0.87 0.95 0.89 0.90
zoh 0.80 0.98 0.84 0.73
XRF 0.79 0.98 0.76 0.61

ZnRT rPLS 0.91 0.57 0.78 0.93
zoh 0.91 0.65 0.94 0.92
XRF 0.80 0.79 0.97 0.72

ZnST rPLS 0.95 0.17 0.64 0.95
zoh 0.98 0.77 0.80 0.94
XRF 0.66 0.04 0.98 0.83

ZnMT rPLS 0.90 0.88 0.84 0.92
zoh 0.93 0.93 0.91 0.93
XRF 0.87 0.96 0.96 0.99

For a reference, the corresponding Q2 values of a zero-order hold (zoh) predictor are
also given. The XRF results are the Q2 values between XRF assays and laboratory
analysis for a different set of calibration samples. Bold numbers indicate the cases
where rPLS gives an equally good or better Q2 than zoh.

191O. Haavisto, J. Kaartinen / Int. J. Miner. Process. 93 (2009) 187–193



The zinc measurement (Fig. 6(b)), on the other hand, shows a
large grade drop in the zinc concentrate indicating a disturbance in
the zinc flotation circuit. Using the high frequency assays, this kind of
major changes can be revealed sooner than with only the XRF
analysis.

The high frequency assay of the zinc concentrate has been
available for the process operators at the Pyhäsalmi concentration
plant. The feedback has been positive: an operator interview revealed,
for example, that since the improved assay gives a fast response to
performed control actions, the operators can better evaluate the effect
of the control changes they make.

4. Conclusions

This study has discussed the applicability of the VNIR reflectance
spectrum assaying of slurry lines in copper and zinc flotation. The
structure and installation of a fiber optic multichannel spectrum
analyzer was described and the obtained spectra of the seven slurry
lines were analyzed. It was shown that the average mineral contents
clearly affect the general color of the slurry, and that especially the
spectra of the zinc and copper concentrates can be distinguished
easily due to their high sphalerite and chalcopyrite contents. A
recursive PLS modeling algorithm was used to calculate and maintain
on-line a valid linear calibration model between the spectra and the

XRF assays. The accuracy of the VNIR assay in all the lines was
evaluated by comparing the coefficient of determination of the rPLS
model with the dummy zero-order hold predictor. The VNIR assay
was detected to give accurate assays especially for the concentrate
lines with high sphalerite and chalcopyrite contents and regular grade
variations. The assays of the copper middlings tailing flow were the
best ones among the studied tailings.

The difficulty of VNIR-based assaying of the tailing flows is mainly
due to the low sphalerite and chalcopyrite contents of the slurries.
Also the blockage problems in these lines hindered the analysis, but a
new sampling scheme is under development to solve this issue.
Additionally, a more useful result would be the reliable and fast
detection of sudden increases in the mineral grades of the tailings
than an over-accurate analysis of the normally small content levels.

Finally, the high frequency VNIR assays were shown to provide new
information especially on the concentrate grades, since the fast
oscillations that are undetectable by the sparse XRF analysis can easily
be revealed.Also the fast gradedrops are shownearlier andmore reliably
by the VNIR analysis.
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