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ABSTRACT

A learning approach for estimating sound source distance bas-
ed on binaural signals is presented. The frequency-dependent co-
herence between the left and right ear signals is used as the dis-
tance cue. The distance estimation is based on pre-calculated co-
herence profiles and an energy-weighted likelihood function. The
system is evaluated with different speech samples. The accuracy is
best in the frontal direction and poorer in the sides, due to shadow-
ing of the head. However, the system shows promise for scenarios
where the sound source location is restricted and could be inte-
grated with a two-channel azimuth localization system.

1. INTRODUCTION

In the field of auditory perception research, the term “localization”
often refers to determining the direction of sound sources, i.e., the
azimuth and/or elevation angles relative to the listener. Computa-
tional models for azimuth localization (also termed lateralization)
have been developed for decades. However, a complete localiza-
tion of a sound source includes an assessment of the source dis-
tance, in addition to direction. A computational method that could
tell the direction and distance of a sound source, based on a binau-
ral signal, could be useful in, e.g., augmented reality audio [1], in-
telligent hearing aids [2] and audio surveillance — any application,
where information about the sound sources in the environment is
needed. Investigation of computational estimation of sound source
distance is thus well motivated.

In this work, a machine learning approach for estimating sound
source distance based on binaural signals is adopted. The frequen-
cy-dependent coherence between left and right ear signals is used
as the distance cue. The system is first trained using coherence
calculated from white noise recorded at a discrete set of source-to-
receiver distances in a room. In the testing phase, the most likely
distance for each frame of a test signal (speech) is chosen based
on maximum likelihood (ML) with energy weighting. The system
is evaluated using data recorded in real rooms at five source-to-
receiver distances.

The approach is adopted from [3], where the cross-spectral
magnitude and phase differences were used for learning azimuth
directions and trajectories using a microphone array of two or more
microphones. The current research could be combined by that sys-
tem so that the sound source direction is first calculated using the
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method described in [3], followed by distance evaluation using the
presented method.

According to the knowledge of the author, methods for esti-
mating sound source distance from a speech signal with one or
two microphones do not currently exist. There have been attempts
at estimating sound source distance from monaural room impulse
responses [4].

2. THE METHOD

2.1. Sound source distance features

The direct-to-reverberant ratio has been long recognized as one
of the main cues for the perception of sound source distance [5].
A quantity that is related to the direct-to-reverberant ratio is the
magnitude-squared coherence (MSC) [6], which measures the lin-
ear correlation between two signals as a function of frequency.
When the source-to-receiver distance in a room increases, the MSC
can generally assumed to decrease, because the sound field at the
receiver becomes more diffuse. Therefore, the magnitude-squared
coherence was chosen as the distance feature in this work. The
MSC is defined as

γ̂2
lr(f, t) =

|Ĝlr(f, t)|2
Ĝll(f, t)Ĝrr(f, t)

(1)

Ĝll(f, t) = 〈|Xl(f, t)|2〉 (2)

Ĝrr(f, t) = 〈|Xr(f, t)|2〉 (3)

Ĝlr(f, t) = 〈X∗
l (f, t)Xr(f, t)〉 (4)

where Glr(f, t) is the one-sided cross-spectrum between the left
and right ear signals at time t and frequency f . Gll(f, t) and
Grr(f, t) are the one-sided power spectra of the left and right ear
signals, xl(t) and xr(t), respectively. Discretized versions of Eqs.
(1)–(4) are used for practical calculations. The averaging opera-
tions (denoted by 〈·〉) in Eqs. (2)–(4) are realized by a first order
leaky integrator [6]

〈Q(n)〉 = β · 〈Q(n − 1)〉 + (1 − β) · Q(n) (5)

where β = 0.5 (time constant of 3.2 ms) defines the amount of
smoothing, n is the discrete time index and Q is a generic function.

In both the training and the evaluation phase of the experi-
ments, the coherence is calculated in overlapping signal frames of
length 128 samples (2.9 ms when fs = 44.1 kHz), with 25 %
overlap and an FFT size of 1024 samples. A Hanning windowing
function was used for windowing the time-domain segments. The
time domain window length is much shorter than the FFT length in
order to get a smoother coherence profile in the frequency domain.
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Figure 1: Top: coherence profile for room 1 (listening room, az-
imuth angle 0o). Bottom: coherence profile for room 2 (meeting
room, azimuth angle 0o). Vertical dashed lines indicate the range
of likelihood evaluation (KL and KU in Eq. (6))

2.2. Training the system

Eq. (1) is used for calculating the coherence for each frame of
the training data, which consists of white noise sequences of 16 s
duration convolved with binaural room impulse responses (BRIRs)
measured at the set of distances of interest. The average of the
coherence over time is calculated to get a coherence profile for
each distance.

For the experiments, the coherence profiles were calculated at
five discrete source-to-receiver distances in two different rooms.
The first of the rooms (room 1) is a standardized listening room
with reverberation time of 0.3 s at the 500 Hz third-octave band.
The second room (room 2) is a larger meeting room with rever-
beration time of 0.7 s. The measurement distances in room 1 are
0.5 m, 1 m, 2 m, 3 m and 4 m. There is more space in room 2 so
the distances were chosen to be 0.5 m, 2 m, 3 m, 4 m and 5 m. A
Cortex binaural manikin was used for measuring the BRIRs. The
length of each white noise burst used for training was 15 seconds.

The coherence profiles of the two rooms and the five source-
to-receiver distances are plotted in Fig. 1 for an azimuth angle
of 0o. There is a clear dip in the coherence profiles around 10
kHz in both rooms. Because the dip is present in profiles of both
rooms, its existence has probably something to do with the head-
related transfer function (HRTF) of the binaural manikin. When
the azimuth angle is 90o, the coherence profiles are very different,
as is evident in Fig. 2. Because the sound is now coming from
the side, the coherence is generally lower due to the shadowing of
the head. The profiles of different distances are now also closer
to each other and therefore it is to be expected that the presented
method will not work at larger azimuth angles.

2.3. Recognizing the most probable distance

The most probable distance is calculated by a maximum likelihood
scheme, as in [3]. An energy-based weighting is applied in cal-
culation of the likelihood, since the coherence does not carry any
useful information at time-frequency elements not occupied by the
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Figure 2: Same as Fig. 1 but for azimuth angle 90o.

sound source. For each frame n of the coherence γ̂2
lr(k, n) and

each considered distance d, the energy-weighted log-likelihood is
formulated as

L(n, d) = −
KUX

k=KL

 
w(k, n)

`
γ̂2

lr(k, n) − μ(k, d)
´2

2σ2(k, d)

!
(6)

where KL is the lower frequency limit, KU is the upper frequency
limit, γ̂2

lr(k, n) is the coherence estimated from frame n of the test
signal, μ(k, d) is the mean of the coherence profile (see Fig. 1)
for distance index d, and σ2(k, d) is the variance of the coherence
profile. The weights w(k, n) are calculated as

w(k, n) = −10 log10

`|Xl(k, n)|2 + |Xr(k, n)|2 + ε
´

(7)

where |Xl(k, n)| and |Xr(k, n)| are the left and right ear magni-
tude spectra for frame n, and ε is a small constant (eps in MAT-
LAB). The minus sign in Eq. (7) is necessary because small energy
values result in large negative values when expressed as logarith-
mic and the likelihood needs to be given a large positive weight
w(k, n) at those frequencies, due to the minus sign in Eq. (6).

The most probable distance for each frame is the one that gives
the maximum value for Eq. (6). However, not all frames of the sig-
nal contain information on the source-to-receiver distance. When
there is silence, the likelihood function can not provide any dis-
tance information. Therefore, the parts of L(n, d) that carry use-
ful information have to be identified. Due to the energy weighting,
L(n, d) should generally have high values when there is high en-
ergy in the input signal. In order to identify these parts, L(n, d) is
normalized by subtracting its maximum evaluated over all (n, d)
using

L′(n, d) = L(n, d) − max
∀n,d

{L(n, d)} (8)

This preserves the mutual order between the likelihoods evaluated
at different distances d. All frames for which L′(n, d) is below
a certain threshold TL are then discarded from evaluation of the
distance. For each of the remaining frames, the most probable
distance is the one that maximizes L′(n, d). Fig. 3 illustrates
L′(n, d) calculated from a short speech segment, the spectrogram
of which is also depicted. One can see that those parts of the signal
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Figure 3: Top panel: spectrogram of a speech signal segment (av-
erage of channels, true distance 0.5 m, room 1, azimuth angle
90o). Middle panel: corresponding normalized likelihood function
evaluated at different distances. Dashed horizontal line shows the
threshold value (TL = −300). Bottom panel: zoom into a segment
of the likelihood function.

that have a wideband signal result in a high value of the likelihood
and are therefore used for distance estimation.

For the experiments, the evaluation ranges were set to KL =
20 (≈ 818 Hz) and KU = 400 (≈ 17.2 kHz). The lowest fre-
quencies are not included, since the coherence always tends to be
large at low frequencies [6]. The upper frequency limit is moti-
vated by the fact that there is no significant energy above that limit
in the speech samples that were used as test signals. The means
μ(k, d) are depicted in Fig. 1 and the variances σ2(k, d) are set
to a constant value of one. The constant variance was chosen be-
cause the variance of the coherence calculated from the training
signal, i.e., stationary filtered white noise, is not the same as the
variance of the coherence calculated from a non-stationary speech
signal. Furthermore, it is hypothesized that the variance of the co-
herence over time does not give reliable information on the sound
source distance. Verification of this hypothesis is outside the scope
of this work. When the azimuth angle is 0o, the threshold is set to
TL = −300 for room 1 and to TL = −200 for room 2. For az-
imuth angle 90o, the threshold is set to TL = −90 for room 1 and
to TL = −100 for room 2.

3. EVALUATION

The distance learning method was evaluated using recordings made
in the two different rooms described previously. The coherence
profile was calculated for five different distances (see the legends
in Fig. 1) and two different angles (0o and 90o). The test signals
were made by playing back two anechoic speech samples of 5.7
s duration, using a Genelec 1029A loudspeaker at the same loca-
tions as the BRIRs were measured at, and recorded by the Cortex
binaural manikin. The test signals were recorded at two different
sound source levels to ensure that variation in the sound source
level does not affect the algorithm performance.

Figs. 4 and 5 show four frame-level confusion matrices for

rooms 1 and 2, with azimuth angle 0o, calculated with the four dif-
ferent source signal and level combinations. Each matrix element
(i, j) indicates the percentage of frames classified to distance j,
when the true sound source distance is i. In other words, the rows
indicate the true distance and the columns the estimated distance.
The percentages have been rounded to the nearest integer for con-
venience. Thus, all of the rows do not sum to exactly 100 %.

It is evident in Figs. 4 and 5 that the correct distance is found
in each case, even though on the frame level, the classification per-
centage seems to vary. It is notable that the shortest and longest
distances are classified the best on frame level. In room 1, the con-
fusion of individual frames seems to happen mostly with distances
closest to the true distance (e.g., 0.5 m and 2 m for true distance
of 1 m). There seems to be more confusion with the longer dis-
tances in room 2. The reason for this probably has something to
do with the coherence profiles for room 2 (Fig. 1) being quite close
to each other, for distances ≥2 m. A +5 dB boost in the playback
level has an effect on the classification on frame-level — some of
the percentages are higher and some are lower when the gain is
increased.

When the manikin head was oriented differently, i.e., the az-
imuth angle is 90o (Figs. 6 and 7), the performance of the method
is much worse. Some of the distances are correctly classified but
with a much smaller margin. There is also a lot more confusion
between different distances. This is due to the coherence profiles
being very close to each other (see Fig. 2). Also, quite a small
percentage of frames (average 2.6 %), is used for classifying the
distances compared to the zero azimuth case (average 6.9 %). This
also explains why there are large differences in classification be-
tween the two different playback levels. A small change in classi-
fication significantly affects the percentages when a small amount
of frames is used for evaluating the likelihood.

In these experiments, all the parameters were chosen manu-
ally. For a real-world algorithm, the threshold TL should be ad-
justed by an adaptive algorithm. Other approaches for finding the
informative parts of the likelihood function could also be consid-
ered. The current way of normalizing the likelihood by its max-
imum is also not suitable for a real-time implementation as such,
since the global maximum is needed.

4. CONCLUSIONS

A learning approach for estimating the sound source distance from
a binaural signal is proposed. The algorithm is suitable for situa-
tions where the microphones are stationary and when the sound
source is in frontal direction related to the listener. A more thor-
ough investigation into the behavior of the coherence profiles in
different source-to-receiver configurations could be conducted as
future work. Real-head recordings should also be tried, since hu-
man localization performance is better with real-head recordings
than with recordings made using a binaural manikin [7]. Other
cues besides the coherence should also be investigated, as well as
more powerful learning algorithms that could take the temporal
evolution of the features into account.
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